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ABSTRACT Since its initiation, hesitant fuzzy sets (HFSs) have gained prominence thanks to their
capability to describe the hesitation of experts to assign membership degrees to objects belonging to a
concept. Proportional hesitant fuzzy sets (PHFSs) are an important extension of HFSs and are characterized
by the combination of possible membership degrees and their associated proportional information. PHFSs
have a huge application potential for hesitant fuzzy GDM problems, because the proportional information in
PHFSs can be determined objectively and the introduction of this new information dimension can effectively
reduce the uncertainty. Nevertheless, PHFSs have not yet attracted sufficient attention from researchers and
practitioners, which motivates us to expand the theory of PHFSs and explore its application potential. The
main work comprises the following three aspects: First, we define some basis operations on PHFSs, develop
aggregation operators for PHFSs, and demonstrate their properties and interrelationships to lay the theoretical
foundations for the application of PHFSs. Next, we construct two multicriteria group decision making
(MCGDM) models based on the proposed PHFS-based aggregation operators to bridge between theory and
practice for PHFSs. In this step, we propose a method for transforming HFSs or fuzzy sets (FSs) into PHFSs,
and two methods based on the maximum entropy principle are proposed for specifying criterion weights.
Finally, we investigate a practical case study of the problem of selecting an electric vehicle battery (EVB) sup-
plier to validate the outstanding advantages of PHFSs, explore the compensation characteristics and the appli-
cability of the PHFS-based aggregation operators, and demonstrate the effectiveness and feasibility of the
proposed MCGDMmodels. This paper provides a useful reference for MCGDM in a hesitant fuzzy context.

INDEX TERMS Hesitant fuzzy set (HFS), proportional hesitant fuzzy set (PHFS), aggregation operators,
multicriteria group decision making (MCGDM), electric vehicle battery (EVB) supplier selection.
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I. INTRODUCTION

A fuzzy set is a class of objects with a continuum of member-
ship degrees and is represented mathematically by a mem-
bership function that assigns a membership degree in the
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interval [0,1] to each object [1]. Starting with the original
work of Zadeh [1], fuzzy sets have gained significant atten-
tion because of their outstanding ability to model uncertainty.
At present,several generalizations exist to relax the require-
ment that only a single value between 0 and 1 be assigned
to the membership of an element. Examples include type-
2 fuzzy sets [2], intuitionistic fuzzy sets [3], Pythagorean
fuzzy sets [4],and hesitant fuzzy sets [5]. Type-2 fuzzy sets
incorporate uncertainty about the membership function into
fuzzy sets to address the drawback of the original fuzzy
sets whereby the membership function has no uncertainty
associated with it [6], [7]. Type-n fuzzy sets generalize type-
2 fuzzy sets by permitting the membership to be a type-
(n − 1) fuzzy set. Intuitionistic fuzzy sets are characterized
by membership degree and nonmembership degree which
satisfy the condition that their sum is equal to or less than
one. As a generalization of IFSs, PFSs accommodate more
relaxed condition that the square sum of the membership
degree and nonmembership degree is equal to or less than
one [8]–[10]. Hesitant fuzzy sets (HFSs) are introduced to
model the scenario in which a set of values are possible for
assigning membership degree to an object belonging to a
concept. Scenarios involving hesitation can be classified into
the following two types:

• Scenario 1: When an expert is required to assign a
membership degree to an object belonging to a concept,
the expert hesitates among a set of possible values. To
characterize the hesitation of the expert, all possible
values are retained in a set instead of selecting a single
value.

• Scenario 2: When each member of an expert team
is asked to assign a membership degree to an object
belonging to a concept, the experts have different opin-
ions and fail to reach an agreement. Instead of using an
aggregation operator to fuse these values into a single
value, all values are retained in a set to characterize the
hesitation of this expert team.

Both types of hesitant scenarios are common in real
decision-making problems. Thus, since their introduction,
HFSs have attracted significant research attention [11]–[17].
Existing theoretical research on HFSs mainly focuses on
diverse extensions, information measures, and aggregation
operators.

Currently, various extensions of HFSs have been pro-
posed in a bid to model uncertainty from different perspec-
tives [12]; for example, dual hesitant fuzzy sets [18], interval-
valued hesitant fuzzy sets [19],Pythagorean hesitant fuzzy
sets [20]–[22], hesitant fuzzy linguistic terms sets [23], and
proportional hesitant fuzzy sets (PHFSs) [24]. In the field
of information measurement, researchers mainly concentrate
on the construction of distance measures, correlation coeffi-
cients, entropy, and cross entropy [19], [25]. In addition, some
scholars have turned their attention to aggregation operators
for HFSs and facilitate the decision-making process; such
operators include hesitant fuzzy averaging operators [26],

hesitant fuzzy geometric operators [26], hesitant fuzzy power
aggregation operators [27], and hesitant fuzzy geometric
Bonferroni means [28].

PHFSs are an extension of HFSs that were introduced
by [24] and are characterized by a predefined set of possi-
ble membership degrees for elements and the proportional
information of each membership degree. These are mainly
used to address group-decision-making (GDM) problems in
a fuzzy hesitant context. Initially, PHFSs were introduced to
model Scenario 2 with the proportion of each membership
degreemeasurable. In this scenario, eachmember of an expert
team is required to output individual assessment information
in the form of a fuzzy set (FS), and PHFSs can be used to
characterize the collective assessment information in which
membership degrees comprise all values given by all the
experts, and the proportion of eachmembership degree equals
the proportion of experts who output it. In practical decision-
making scenarios, it is hard for experts to provide assessment
information in the form of PHFSs, but outputting assessment
information in the form of HFSs is feasible. Scenario 1
describes a GDM context in which an expert may prefer to
articulate her preferences in the form of a HFS when she
hesitates between possible values. Thus, the initial condition
should be relaxed to enable PHFSs to characterize the collec-
tive assessment information synthesized from the individual
assessment information in the form of FSs or HFSs. In addi-
tion, the linguistic counterpart of PHFSs, which is called
a proportional hesitant fuzzy linguistic term set [29], is an
effective alternative when linguistic uncertainty needs to be
modeled in real-life scenarios.

PHFSs are easily mistaken by the concepts of probabil-
ity hesitant fuzzy sets proposed by Zhu and Xu [30] and
weighted hesitant fuzzy sets proposed by Zhang and Wu [31]
owing to the fact that the three concepts share the same math-
ematical structure, but there are obvious differences between
them. Subsequently, we highlight the merits of PHFSs by
differentiating these similar concepts. For probability hesi-
tant fuzzy sets, the authors clearly state that the probability
information is assigned to each possible membership degree
with the sum of all the probability information equaling 1.
The probability information is derived from the subjective
judgement of expert to measure the likelihood of each mem-
bership degree in HFS. For weighted hesitant fuzzy sets,
different weights are assigned to all the possible membership
degrees and the sum of these weights is equal to 1. The weight
information is also specified by experts to depict the relative
importance ratings of each membership degree. Thus, both
the probability information in probability hesitant fuzzy sets
and the weight information in weighted hesitant fuzzy sets are
subjectively given by experts, and probability hesitant fuzzy
sets and weighted hesitant fuzzy sets can be used to model
assessment information in hesitant fuzzy GDM settings both
individually and collectively. Nevertheless, it is difficult for
decision makers (DMs) to further output the corresponding
probability information or weighting information besides
hesitant fuzzy evaluations in practical decision-making
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context. For PHFSs, proportional information is introduced to
depict the collective preferences on all the possible member-
ship degrees. Thus, PHFSs are only used to model collective
assessment information. More importantly, the proportional
information can be objectively calculated from the assess-
ment information given by all the DMs, thus PHFSs are more
preferable than probability hesitant fuzzy sets and weighted
hesitant fuzzy sets in hesitant fuzzy GDM settings. Further-
more, the introduction of a new dimension of information
about proportional information can reduce the uncertainty
of characterizing group evaluations while preserving the
original assessment information, effectively improving the
reliability of decision-making results. Thus, PHFSs has a
significant application potential for hesitant fuzzy GDM
problems.

Xiong et al. [24] defined a normalized Hamming distance
measure and a comparison law for PHFSs and developed a
multiple criterion GDM method in the context of PHFSs.
However, few studies have since followed up on the theory
and the application of PHFSs, which motivates us to expand
the theory of PHFSs and explore its application potential.

Information aggregation functions, which are used to
combine various inputs coming from different sources into
a single representative value [32], [33], have been widely
applied in the aspects of decision-making, expert systems,
risk analysis, and image processing [33]–[36]. This paper
concentrates on the proposal of proportional hesitant fuzzy
weighted averaging (PHFWA) operator, proportional hesitant
fuzzy weighted geometric (PHFWG) operator, proportional
hesitant fuzzy ordered weighted averaging (PHFOWA) oper-
ator, proportional hesitant fuzzy ordered weighted geometric
(PHFOWG) operator, and further puts forward their gen-
eralized types, including the generalized PHFWA operator
(GPHFWA), generalized PHFWGoperator (GPHFWG), gen-
eralized PHFOWA operator (GPHFOWA), and generalized
PHFOWG operator (GPHFOWG), to extend the weighted
averaging and geometric aggregation operators, the ordered
weighted averaging and geometric aggregations to accom-
modate the PHFS environments and to lay the theoretical
foundations for the application of PHFSs. In addition, the
PHFS-based aggregation operators are preceded by the oper-
ation laws for PHFSs to serve as the basis of developing these
aggregation operators.

As an important extension of multi-criteria decision mak-
ing (MCDM) [37]–[41] and one of the main application
fields of aggregation functions [42]–[44], multi-criteria GDM
(MCGDM) has garnered considerable attention from schol-
ars and practitioners and been widely applied to vari-
ous socioeconomic fields including management science,
social science, economics, public administration, military
research, etc. [45]–[52] In this paper, we further develop
two MCGDM models that use the PHFS-based aggrega-
tion operators to connect theory and practice for PHFS.
One model is constructed based on the GPHFWA or
GPHFWG operator, and the other model is based on the
GPHFOWA or GPHFOWG operator. The main reason for

developing two different MCGDM models is that clear
differences exist between the prerequisites of applications
of the GPHFWA or GPHFWG operator and those of the
GPHFOWA or GPHFOWG operator. Additionally, because
PHFSs exist only as collective assessment information dur-
ing hesitant fuzzy GDM processes,we propose a method to
transform individual assessment information outputted by
DMs in the form of FSs or HFSs to collective assessment
information in the form of PHFSs during the construction of
MCGDM models. Furthermore, for the proposed MCGDM
model based on the GPHFWAor GPHFWGoperator, we pro-
vide a method based on maximum entropy to specify the
weights of the criteria. For the proposed MCGDM model
based on the GPHFOWA or GPHFOWG operator, we pro-
vide a similar method based on maximum entropy and the
attitudinal character given by DMs. Finally, we conduct a
thorough practical case study of the selection of a strategic
supplier of electric-vehicle batteries (EVBs), which involves
multiple qualitative and quantitative criteria and necessitates
a multifunctional expert team. Therefore, this problem can be
considered as an MCGDM problem in a hesitant fuzzy con-
text. Through this case study, we not only test the properties
of the PHFS-based aggregation operators and demonstrate
the effectiveness and feasibility of the proposed MCGDM
models but also explore the compensation characteristics and
the applicability of these aggregation operators and validate
the advantages of PHFSs.

This paper is organized as follows: Section 2 briefly
reviews several basic concepts of HFSs and PHFSs
and presents some basic laws for operations on PHFSs.
Section 3 presents a series of PHFS-based averaging
operators and their properties and interrelationships. Two
MCGDM models based on PHFS-based averaging operators
are developed in Sec. 4, in which we propose a method for
transforming FSs or HFSs into PHFSs andmethods to specify
criterion weights. Section 5 undertakes a practical case study
to validate the effectiveness and practicality of the proposed
techniques. Finally, Sec. 6 concludes this paper.

II. PRELIMINARIES
This section reviews the basic concepts of HFSs and PHFSs
and gives some basic laws for operations on PHFSs.

A. HESITANT FUZZY SETS
A hesitant fuzzy set is defined by a function that returns a
set of possible membership degrees for each element in the
domain [5], [53].
Definition 1 [5], [53]: Let X be a reference set: a HFS on X

is a function that, when applied toX , returns a subset of [0, 1].
The HFS can be mathematically expressed as [25], [26]

E = {〈x, hE (x)〉 |x ∈ X },

where hE (x) is a set of values in [0, 1] that denotes the pos-
sible membership degrees of the element x ∈ X to the set E .
For convenience, [26] called h = hE (x) a hesitant fuzzy
element (HFE).
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Torr [5], Torra and Narukawa [53], and Xia and Xu [26]
defined the following operations on HFEs:
Definition 2 [5], [26], [53]:Let h, h1, and h2 be three HFEs

on a fixed set X ; then
(1) hc = ∪γ∈h {1− γ };
(2) h1 ∪ h2 = ∪γ1∈h,γ2∈hmax {γ1, γ2};
(3) h1 ∩ h2 = ∪γ1∈h,γ2∈hmin {γ1, γ2};
(4) hλ = ∪γ∈h{γ λ}, λ > 0;
(5) λh = ∪γ∈h{1− (1− γ )λ}, λ > 0;
(6) h1 ⊕ h2 = ∪γ1∈h,γ2∈h {γ1 + γ2 − γ1γ2};
(7) h1 ⊗ h2 = ∪γ1∈h,γ2∈h {γ1γ2}.

B. PROPORTIONAL HESITANT FUZZY SETS
A HFS and its related operations can be used to deal
with GDM problems in a fuzzy, hesitant context. However,
if the proportion of each membership degree is measurable,
the information characterized by the HFS is incomplete.
To bridge this gap, Xiong et al. [24] proposed PHFSs based
on HFSs.
Definition 3 [24]: Let X be a reference set; the PHFS E on

X is then represented as

E = {〈x,PE (x)〉 |x ∈ X } = {〈x, (hE (x), pE (x))〉 |x ∈ X },

where
(a) hE (x) = {γ1, γ2, . . . , γn} is a set of values in [0, 1]

that represents n possible degrees of membership of the
element x to the set X ; and

(b) pE (x) = {τ1, τ2, . . . , τn} is a set of values in [0, 1],
where τi (i = 1, 2, . . . , n) is the proportion of member-
ship degree γi (i = 1, 2, . . . , n) and

∑n
i=1 τi = 1.

For convenience, Xiong et al. [24] called P = PE (x) a
PHFE. This paper similarly uses ‘‘PHS’’ to refer to the set of
all PHFEs.
Definition 4 [24]: Let X be a reference set; for

any x ∈ X ,
(1) PE (x) = {(0, 1)} is the empty PHFS, denoted by ∅;
(2) PE (x) = {(1, 1)} is the full PHSF, denoted by �.
Definition 5 [24]: Given a PHFS represented by its PHFE

P, the complement of P is

Pc
= ∪(γ,τ )∈P {(1− γ, τ )}.

If l (P) represents the number of elements in PHFEP, it is
difficult to calculate the distance measure between PHFSs
A and B because l(PA (x)) is usually not equal to l(PB (x))
for any x ∈ X . Supposing lx = max {l(PA (x)), l(PB (x))},
this problem can be handled by the following two
steps:
(1) Ordering: Arrange the elements in l(PA (x)) and

l(PB (x)) in decreasing order according to the product
values of the membership degrees and their associated
proportions.

(2) Adding: Add several times the PHFE with smaller l (∗)
with element (0, 0) until both have the same number of
elements, i.e., lx .

The distance measure of PHFS is then given as follows:
Definition 6 [24]: Let A and B be two PHFSs on the

reference set X = {x1, x2, . . . , xn}, then the proportional
hesitant normalized Hamming distance is

d (A,B)

=
1
n

n∑
i=1

 1
2lxi

lxi∑
j=1

(∣∣∣γ σ(j)A (xi)·τ
σ(j)
A (xi)−γ

σ(j)
B (xi)·τ

σ(j)
B (xi)

∣∣∣
+

∣∣∣τσ(j)A (xi)− τ
σ(j)
B (xi)

∣∣∣)


where lxi = max{l(PA (xi)), l(PB(xi))}, and γ
σ(j)
A (xi),

τ
σ(j)
A (xi) and γ

σ(j)
B (xi), τ

σ(j)
B (xi) are the jth largest product

value in PHFEs PA (xi) and PB (xi), respectively.
The following two definitions are used to compare PHFSs:
Definition 7 [24]: LetP be a PHFE on the reference set X ;

the score function of P is then defined as

s (P) =
∑

(γ,τ )∈P

γ · τ ,

and the deviation function of P is defined as

t (P) =
∑

(γ,τ )∈P

τ [γ − s (P)]2.

Definition 8 [24]: Let P1 and P2 be two PHFEs on the
reference set X :
(1) if s (P1) > s (P2), then P1 > P2;
(2) if s (P1) = s (P2) and t (P1) < t (P2), then P1 >

P2;
(3) if s (P1) = s (P2), t (P1) = t (P2),

(a) and d ({P1}, �) = d ({P2}, �), then P1 = P2;
(b) and d ({P1}, �) < d ({P2}, �), then P1 > P2;

where � is the full proportional hesitant fuzzy set and
d (A,B) is the distance measure for PHFSs, as defined by
Xiong et al. [24].

C. OPERATIONAL LAWS FOR PROPORTIONAL HESITANT
FUZZY ELEMENTS
In this section, we present some basic operations on PHFEs
to lay the foundations for the development of PHFS-based
aggregation operators.
Let P1 and P2 be two PHFEs in the reference set X and

suppose the membership degree of the x ∈ X for the set ‘‘1"
and that for the set ‘‘2" are mutually independent. Based on
the operation laws for HFSs [26], the following operations
are defined from the angle of probability:
Definition 9: Let P, P1, and P2 be three PHFEs in the

fixed set X , then
(1) Pλ

= ∪(γ,τ )∈P{(γ λ, τ )}, λ > 0;
(2) λP = ∪(γ,τ )∈P{(1− (1− γ )λ, τ )}, λ > 0;
(3) P1⊕P2 = ∪(γ1,τ1)∈P1,(γ2,τ2)∈P2 {(γ1 + γ2 − γ1γ2,

τ1τ2)};
(4) P1⊗P2 = ∪(γ1,τ1)∈P1,(γ2,τ2)∈P2 {(γ1γ2, τ1τ2)}.
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Theorem 1: For three PHFEs β, β1, and β2 in the fixed set
X , we have
(1) (PC )λ = (λP)C , λ > 0;
(2) λPC

= (Pλ)C , λ > 0;
(3) PC

1 ⊕PC
2 = (P1⊗P2)

C ;
(4) PC

1 ⊗PC
2 = (P1⊕P2)

C .
Proof: (1) For any λ > 0,(

PC
)λ
=
[
∪(γ,τ )∈P {(1− γ, τ )}

]λ
= ∪(γ,τ )∈P

{(
(1− γ )λ, τ

)}
= (λP)C .

(2) For any λ > 0,

λPC
= ∪(γ,τ )∈P

{(
1− (1− (1− γ ))λ, τ

)}
= ∪(γ,τ )∈P

{(
1− γ λ, τ

)}
=
(
Pλ
)C
.

(3)

PC
1 ⊕PC

2 = ∪(γ1,τ1)∈P1,(γ2,τ2)∈P2 {((1− γ1)+ (1− γ2)

− (1− γ1) (1− γ2), τ1τ2)}

= ∪(γ1,τ1)∈P1,(γ2,τ2)∈P2 {(1− γ1γ2, τ1τ2)}

= (P1⊗P2)
C .

(4)

PC
1 ⊗PC

2

= ∪(γ1,τ1)∈P1,(γ2,τ2)∈P2 {((1− γ1) (1− γ2), τ1τ2)}

= ∪(γ1,τ1)∈P1,(γ2,τ2)∈P2 {(1− γ1 − γ2 + γ1γ2, τ1τ2)}

= (P1⊕P2)
C .

Theorem 2: Let Pj (j = 1, 2, . . . , n) be a collection of
PHFEs and let ω = (ω1, ω2, . . . , ωn)

T be the weight vector
of Pj (j = 1, 2, . . . , n) with wj ∈ [0, 1] and

∑n
j=1 wj = 1,

λ > 0. Then
(1) ⊕nj=1(ωjP

C
j ) = (⊗nj=1P

ωj
j )C ;

(2) ⊗nj=1(P
C
j )
ωj = (⊕nj=1ωjPj)C ;

(3) {⊕nj=1[ωj(P
C
j )
λ
]}1/λ = { 1

λ
[⊗nj=1(λPj)ωj ]}C ;

(4) 1
λ
[⊗nj=1(λP

C
j )
ωj ] = {[⊕nj=1(ωjP

λ
j )]

1/λ
}
C .

Proof: For any (γ1, τ1)∈ P1, (γ2, τ2)∈ P2, . . . ,

(γn, τn)∈ Pn, we have
(1)

⊕
n
j=1

(
ωjP

C
j

)
= ∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn


1−

n∏
j=1

γ
ωj
j ,

n∏
j=1

τj


=

∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn


 n∏
j=1

γ
ωj
j ,

n∏
j=1

τj


C

=

(
⊗
n
j=1P

ωj
j

)C
,

(2)

⊗
n
j=1

(
PC
j

)ωj
= ∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn


 n∏
j=1

(
1− γj

)ωj , n∏
j=1

τj



=

∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn




1−

n∏
j=1

(
1− γj

)ωj
,

n∏
j=1

τj





C

=

(
⊕
n
j=1ωjPj

)C
,

(3){
⊕
n
j=1

[
ωj

(
PC
j

)λ]}1/λ

=∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn


1− n∏

j=1

[
1−

(
1−γj

)λ]ωj1/λ

,

n∏
J=1

τj


=∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn


1−

1− n∏
j=1

[
1−

(
1−γj

)λ]ωj1/λ,
n∏

J=1

τj

]
C

=

{
1
λ

[
⊗
n
j=1

(
λPj

)ωj]},
(4)

1
λ

[
⊗
n
j=1

(
λPC

j

)ωj]
= ∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn


1−

1− n∏
j=1

(
1−γ λj

)ωj1/λ

,

n∏
J=1

τj




=

∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn



1− n∏

j=1

(
1− γ λj

)ωj1/λ

,

n∏
J=1

τj




C

=

{[
⊕
n
j=1

(
ωjP

λ
j

)]1/λ}C
.
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III. AGGREGATION OPERATORS FOR PROPORTIONAL
HESITANT FUZZY SETS
This section presents a series of aggregation operators for
PHFSs to lay the foundation for the construction of MCGDM
models, including the PHFWA, PHFWG, PHFOWA, and
PHFOWG operators and their generalized forms. In addition,
we validate the properties and interrelationships of these
aggregation operators.

A. PROPORTIONAL HESITANT FUZZY WEIGHTED
AVERAGING OPERATOR
This section defines the PHFWA operator based on PHFEs
and the traditional weighted averaging operator and gives the
properties of the PHFWA operator.
Definition 10: Let E = {P1,P2, . . . ,Pn} be n PHFEs

defined for a fixed set X , and let 2 be a function of E ,
2 : [0, 1]n→ [0, 1]. In this case,

2E = ∪(γ,τ )∈{P1×P2×···×Pn} {2(γ, τ)} .

Following Definition 10, we begin our discussion.
Definition 11: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs. A PHFWA operator is a mapping PHn
→ PH such

that

PHFWA (P1,P2, . . . ,Pn) =
n
⊕
j=1

(
ωjPj

)
,

where ω = (ω1, ω2, . . . , ωn)
T is the weighting vector of

Pj (j = 1, 2, . . . , n) with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1.

In particular, if ω =
(
1
/
n, 1

/
n, . . . , 1

/
n
)T , then the

PHFWA operator reduces to the PHFA operator:

PHFA (P1,P2, . . . ,Pn) =
n
⊕
j=1

(
1
n
Pj

)
.

Theorem 3: Let Pj (j = 1, 2, . . . , n) be a collection of
PHFEs and let ω = (ω1, ω2, . . . , ωn)

T be the weighting vec-
tor ofPj (j = 1, 2, . . . , n)with ωj ∈ [0, 1] and

∑n
j=1 ωj = 1.

The aggregated value using the PHFWA is also a PHFE, and

PHFWA (P1,P2, . . . ,Pn)

= ∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn


1−

n∏
j=1

(
1−γj

)ωj , n∏
j=1

τj

 .
Proof: The proof is by mathematical induction on n.

First, we show that

⊕
n
j=1

(
ωjPj

)
= ∪ (γ1,τ1)∈P1,

...,(γn,τn)∈Pn

{(
1−

∏n

j=1

(
1− γj

)ωj , ∏n

j=1
τj

)}
holds for n = 2.
Following the operations of PHFEs, we have

2
⊕
j=1

(
ωjPj

)
= ∪

(γ1,τ1)∈P1,(γ2,τ2)∈P2

{
1− (1− γ1)ω1 + 1− (1− γ2)ω2

−
(
1− (1− γ1)ω1

) (
1− (1− γ2)ω2

)
, τ1τ2

}

= ∪
(γ1,τ1)∈P1,(γ2,τ2)∈P2

{
1− (1− γ1)ω1(1− γ2)ω2 , τ1τ2

}
.

If

⊕
n
j=1

(
ωjPj

)
= ∪ (γ1,τ1)∈P1,

...,(γn,τn)∈Pn

{(
1−

∏n

j=1

(
1− γj

)ωj , ∏n

j=1
τj

)}
holds for n = k , then

k
⊕
j=1

(
ωjPj

)
= ∪
(γ1,τ1)∈P1,...,(γk ,τk )∈Pk


1−

k∏
j=1

(
1− γj

)ωj , k∏
j=1

τj

.
When n = k + 1, PHFE operations yield

k+1
⊕
j=1

(
ωjPj

)
=

k
⊕
j=1

(
ωjPj

)
⊕ ωk+1Pk+1

= ∪
(γ1,τ1)∈P1,··· ,(γk+1,τk+1)∈Pk+1


1−

k∏
j=1

(
1− γj

)ωj
+ 1− (1− γk+1)ωk+1 −

1−
k∏
j=1

(
1− γj

)ωj
×
(
1− (1− γk+1)ωk+1

)
,

 k∏
j=1

τj

 τk+1


= ∪
(γ1,τ1)∈P1,··· ,(γk+1,τk+1)∈Pk+1


1−

k+1∏
j=1

(
1− γj

)ωj ,
k+1∏
j=1

τj


Then,

⊕
n
j=1

(
ωjPj

)
= ∪ (γ1,τ1)∈P1,

...,(γn,τn)∈Pn

{(
1−

∏n

j=1

(
1− γj

)ωj , ∏n

j=1
τj

)}
holds for n = k + 1.
Thus,

⊕
n
j=1

(
ωjPj

)
= ∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn

{(
1−

∏n

j=1

(
1− γj

)ωj ,∏n

j=1
τj

)}
holds for all n.

Similarly, we have the following theorem:
Theorem 4: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs and let ω =
(
1
/
n, 1

/
n, . . . , 1

/
n
)T be the weight
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vector of Pj (j = 1, 2, . . . , n). The aggregated value using
the PHFA is also a PHFE, and

PHFA (P1,P2, . . . ,Pn)

= ∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn


1− n∏

j=1

(
1−γj

)1/n
,

n∏
j=1

τj

.
Proof: The proof of Theorem 4 is similar to that of

Theorem 3.
Theorem 5 (Commutativity): LetPj (j = 1, 2, . . . , n) be a

collection of PHFEs. If P′j (j = 1, 2, . . . , n) is any permuta-
tion of Pj (j = 1, 2, . . . , n), then we have

PHFA (P1,P2, . . . ,Pn) = PHFA
(
P′1,P

′

2, . . . ,P
′
n
)
.

Proof: SinceP′j (j = 1, 2, . . . , n) is any permutation of
Pj (j = 1, 2, . . . , n), then there exists for anyPj one and only
one P′i such that Pj = P′i, and vice versa. We then have

PHFA (P1,P2, . . . ,Pn) =
n
⊕
j=1

(
1
n
Pj

)
=

n
⊕
i=1

(
1
n
Pi

)
= PHFA

(
P′1,P

′

2, . . . ,P
′
n
)
.

The following example shows that the PHFA operator is
neither idempotent, bounded, nor monotonic.
Example 1: Let P1 = {(0.8, 0.6), (0.3, 0.4)}, P2 =

{(0.9, 0.4), (0.4, 0.6)}, P3 = {(0.5, 0.1), (0.2, 0.9)},
and P4 = {(0.6, 0.8), (0.4, 0.2)} be four PHFEs.
From Theorem 4, we obtain

PHFA (P1,P1,P1)

= {(0.8, 0.2160), (0.6963, 0.432), (0.539, 0.288),
(0.3, 0.064)},
PHFA (P1,P2,P3)

= {(0.7846, 0.024), (0.7480, 0.216), (0.6085, 0.036),
(0.5421, 0.324), (0.6729, 0.016), (0.6174, 0.144),
(0.4056, 0.024), (0.3048, 0.216)},
PHFA (P1,P2,P4)

= {(0.8, 0.1920), (0.7711, 0.048), (0.6366, 0.288),
(0.584, 0.072), (0.6963, 0.128), (0.6524, 0.032),
(0.4482, 0.192), (0.3684, 0.048)}.

Following Definition 7, we have

s (P1) = s (P2) = 0.6,
t (P1) = t (P2) = 0.06,
s (P3) = 0.23,
s (P4) = 0.56,

s (PHFA (P1,P1,P1)) = 0.6480,
s (PHFA (P1,P2,P3)) = 0.5532,
s (PHFA (P1,P2,P4)) = 0.6297,

then
(1) the PHFA operator is not idempotent because

s (PHFA (P1,P1,P1)) 6= s (P1);

(2) the PHFA operator is not bounded because

s (PHFA (P1,P2,P4)) > max
i=1,2,4

{s (Pi)};

(3) the PHFA operator is not monotonic because

s (PHFA (P1,P2,P3)) < s (PHFA (P1,P1,P1))

< s (PHFA (P1,P2,P4)) .

B. PROPORTIONAL HESITANT FUZZY WEIGHTED
GEOMETRIC OPERATOR
This section defines the PHFWG operator based on PHFEs
and the traditional weighted geometric operator and also
presents the properties of the PHFWG operator.
Definition 12: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs. A PHFWG operator is a mapping PHn
→ PH such

that

PHFWG (P1,P2, . . . ,Pn) =
n
⊗
j=1

(
P
ωj
j

)
,

where ω = (ω1, ω2, . . . , ωn)
T is the weighting vector of

Pj (j = 1, 2, . . . , n) with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1.

In particular, if ω =
(
1
/
n, 1

/
n, . . . , 1

/
n
)T , the PHFWG

operator reduces to the PHFG operator:

PHFG (P1,P2, . . . ,Pn) =
n
⊗
j=1

(
P

1/n
j

)
.

Theorem 6: Let Pj (j = 1, 2, . . . , n) be a collection of
PHFEs and let ω = (ω1, ω2, . . . , ωn)

T be the weighting vec-
tor ofPj (j = 1, 2, . . . , n)with ωj ∈ [0, 1] and

∑n
j=1 ωj = 1.

The aggregated value using the PHFWG operator is also a
PHFE, and

PHFWG (P1,P2, . . . ,Pn)

= ∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn


 n∏
j=1

γ
ωj
j ,

n∏
j=1

τj

.
Proof: The proof of Theorem 6 is similar to that of

Theorem 3.
Similar to the PHFA operator, the PHFG operator is neither

idempotent, bounded, nor monotonic, but it is commutative.
Lemma 1: Let xj > 0, λj > 0, j = 1, 2, . . . , n and∑n
j=1 λj = 1. Then

n∏
j=1

x
λj
j ≤

n∑
j=1

λjxj,

with equality if and only if x1 = x2 = · · · = xn.
Theorem 7: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs and ω = (ω1, ω2, . . . , ωn)
T be the weight vector of

Pj (j = 1, 2, . . . , n)with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1. Then

PHFWG (P1,P2, . . . ,Pn) ≤ PHFWA (P1,P2, . . . ,Pn).
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Proof: For any (γ1, τ1)∈ P1, . . . , (γn, τn)∈ Pn, based
on Lemma 1, we obtain

n∏
j=1

γ
ωj
j ≤

n∑
j=1

ωjγj = 1−
n∑
j=1

ωj
(
1− γj

)
≤ 1−

n∏
j=1

(
1− γj

)ωj ,
then  n∏

j=1

γ
ωj
j

 n∏
j=1

τj ≤

1−
n∏
j=1

(
1− γj

)ωj n∏
j=1

τj.

Following Definitions 7 and 8, we have

PHFWG (P1,P2, . . . ,Pn) ≤ PHFWA (P1,P2, . . . ,Pn).

Theorem 8 shows that the aggregated value obtained by
the PHFWG operator is no more than that obtained by the
PHFWA operator.

C. GENERALIZED PROPORTIONAL HESITANT FUZZY
WEIGHTED AVERAGING OPERATOR
This section generalizes the PHFWA operator to define the
GPHFWA operator and its properties.
Definition 13: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs. A GPHFWA operator is a mapping PHn
→ PH such

that

GPHFWAλ (P1,P2, . . . ,Pn)=

(
n
⊕
j=1

(
ωjP

λ
j

))1/λ
, λ>0,

where ω = (ω1, ω2, . . . , ωn)
T is the weighting vector of

Pj (j = 1, 2, . . . , n) with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1.
In particular, if λ = 1, then the GPHFWA operator reduces

to the PHFWA operator.
Theorem 8: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs and let ω = (ω1, ω2, . . . , ωn)
T be the weighting vec-

tor ofPj (j = 1, 2, . . . , n)with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1.
For any λ > 0, the aggregated value using the GPHFWA
operator is also a PHFE, and

GPHFWAλ (P1,P2, . . . ,Pn)

= ∪ (γ1,τ1)∈P1,...
,(γn,τn)∈Pn



1− n∏

j=1

(
1− γ λj

)ωj1/λ

,

n∏
j=1

τj


,

λ > 0.

Proof: The proof of Theorem 8 is similar to that of
Theorem 3.
Theorem 9: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs and let ω = (ω1, ω2, . . . , ωn)
T be the weighting vec-

tor ofPj (j = 1, 2, . . . , n)with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1,
λ > 0. Then,

PHFWG(P1,P2, . . . ,Pn)≤GPHFWAλ(P1,P2, . . . ,Pn).

Proof: For any (γ1, τ1)∈ P1, (γ2, τ2)∈ P2, . . . ,

(γn, τn)∈ Pn, on the basis of Lemma 1, we obtain

n∏
j=1

γ
ωj
j ≤

 n∏
j=1

(
γ λj

)ωj1/λ

≤

 n∑
j=1

ωjγ
λ
j

1/λ

=

1−
n∑
j=1

ωj

(
1− γ λj

)1/λ

≤

1−
n∏
j=1

(
1− γ λj

)ωj1/λ

,

then n∏
j=1

γ
ωj
j

 n∏
j=1

τj ≤

1−
n∏
j=1

(
1− γ λj

)ωj1/λ n∏
j=1

τj.

From Definitions 7 and 8 we obtain the result

PHFWG(P1,P2, . . . ,Pn)≤GPHFWAλ(P1,P2, . . . ,Pn).

Theorem 9 shows that the aggregated value obtained by
the PHFWG operator is not greater than that obtained by the
GPHFWA operator.
Theorem 10: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs. The aggregated value obtained by the GPHFWA
operator increasesmonotonically with the parameter λ, where
λ > 0.

Before proving this theorem, we first introduce the follow-
ing lemma which was proven by Zhang [27]:
Lemma 2: For any x ∈ [0, 1],

g (x) =
(1− x) ln (1− x)

x

is strictly convex.
We now prove Theorem 10.
Proof: For any (γ1, τ1)∈ P1, (γ2, τ2)∈ P2, . . . ,

(γn, τn)∈ Pn, let f (λ) = [1−
∏n

j=1 (1− γ
λ
j )
ωj ]1/λ. Because

the proportion of the aggregated value is
∏n

j=1 τj for any
λ > 0, then we only need to show that the function f (λ)
increases monotonically with λ (λ > 0). Since

f ′ (λ)=
[
e
ln
[
1−
∏n
j=1

(
1−γ λj

)ωj]/
λ
]′

=

f (λ)
∏n

j=1

(
1−γ λj

)ωj
λ2
[
1−

∏n
j=1

(
1−γ λj

)ωj]
 n∑
j=1

ωjg
(
xj
)
−g (x0)

,
where xj = 1−γ λj (j = 1, 2, . . . , n), x0 =

∏n
j=1

(
1− γ λj

)ωj
and g (x) = (1−x) ln(1−x)

x .
Following Lemma 2, because g (x) is strictly convex for

any x ∈ [0, 1], g
(
xj
)
> g (x0) +

(
xj − x0

)
g′ (x0) holds for

all x0 > 0, xj ≥ 0 (j = 1, 2, . . . , n), x0 6= xj. We then
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have
n∑
j=1

ωjg
(
xj
)

>

n∑
j=1

ωj
[
g (x0)+

(
xj − x0

)
g′ (x0)

]
=

n∑
j=1

ωjg (x0)+
n∑
j=1

ωj
(
xj − x0

)
g′ (x0)

= g (x0)
n∑
j=1

ωj + g′ (x0)

 n∑
j=1

ωjxj − x0
n∑
j=1

ωj


= g (x0)+ g′ (x0)

 n∑
j=1

ωj

(
1− hλj

)
−

n∏
j=1

(
1− hλj

)ωj.
By Lemma 1, we have
n∑
j=1

ωjg
(
xj
)

> g (x0)+ g′ (x0)

 n∑
j=1

ωj

(
1− hλj

)
−

n∏
j=1

(
1− hλj

)ωj
> g (x0)+ g′ (x0)

 n∏
j=1

(
1− hλj

)ωj
−

n∏
j=1

(
1− hλj

)ωj
= g (x0).

Thus, f ′ (λ) > 0, and f (λ) increases monotonically with
λ (λ > 0).
Theorem 11: Let Pj (j = 1, 2, . . . , n) be a collection

of PHFEs. As λ → 0 (λ > 0), the GPHFWA operator
approaches the following limit:

lim
λ→0

GPHFWAλ (P1,P2, . . . ,Pn)

= ∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn


e∏n

j=1 (ln γj)
ωj
,

n∏
j=1

τj

.
Proof: Following Theorem 8, we have

lim
λ→0

GPHFWAλ (P1,P2, . . . ,Pn)

= ∪
(γ1,τ1)∈P1,...,(γn,τn)∈Pn


 lim
λ→0

1− n∏
j=1

(
1−γ λj

)ωj1/λ

,

n∏
j=1

τj


,

so we only need to consider the limit of the function f (λ) =
[1−

∏n
j=1 (1− h

λ
j )
ωj ]1/λ; namely, lim

λ→0
f (λ).

With l’Hôpital’s rule, we have

lim
λ→0

f (λ) = lim
λ→0

e
ln
(
1−
∏n
j=1

[
1−hλj

]ωj)/
λ

= e
lim
λ→0

ln
(
1−
∏n
j=1

[
1−hλj

]ωj)/
λ

= e
lim
λ→0

n∑
j=1

 ωjhλj ln hj

1−hλj

n∏
k=1
(1−hλk)

ωk


1−
∏n
j=1

(
1−hλj

)ωj

= e

n∑
j=1

[
ωj ln hj lim

λ→0

∏n
k=1 (1−h

λ
k)
ωk

1−hλj
lim
λ→0

hλj

1−
∏n
j=1

(
1−hλj

)ωj
]

= e

n∑
j=1

[
ωj ln hj lim

λ→0

∏n
k=1 (1−h

λ
k)
ωk

1−hλj

]

= e

n∑
j=1

[
ωj ln hj lim

λ→0

∏n
k=1 (1−h

λ
k)
ωk∏n

k=1

(
1−hλj

)ωk
]

= e

n∑
j=1

[
ωj ln hj

n∏
k=1

(
lim
λ→0

1−hλk
1−hλj

)ωk ]

= e

n∑
j=1

[
ωj ln hj

n∏
k=1

(
lim
λ→0

hλk ln hk
hλj ln hj

)ωk ]

= e

n∑
j=1

[
ωj ln hj

n∏
k=1

(
ln hk
ln hj

)ωk ]

= e

n∑
j=1

[
ωj ln hj

∏n
k=1 (ln hk )

ωk

ln hj

]

= e

n∑
j=1

[ωj
∏n
k=1 (ln hk )

ωk ]
= e

∏n
k=1 (ln hk )

ωk

= e
∏n
j=1 (ln hj)

ωj
.

Thus,

lim
λ→0

GPHFWAλ (P1,P2, . . . ,Pn)

= ∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn


e∏n

j=1 (ln γj)
ωj
,

n∏
j=1

τj

 .
D. GENERALIZED PROPORTIONAL HESITANT FUZZY
WEIGHTED GEOMETRIC OPERATOR
This section generalizes the PHFWG operator and defines the
GPHFWG operator and its properties.
Definition 14: Let Pj (j = 1, 2, . . . , n) be a collection

of PHFEs. A GPHFWG operator is a mapping PHn
→

PH such that

GPHFWGλ (P1,P2, . . . ,Pn) =
1
λ

n
⊗
j=1

(
λPj

)ωj , λ > 0,

where ω = (ω1, ω2, . . . , ωn)
T is the weighting vector of

Pj (j = 1, 2, . . . , n) with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1.
In particular, if λ = 1, then the GPHFWG operator reduces

to the PHFWG operator.
Theorem 12: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs and let ω = (ω1, ω2, . . . , ωn)
T be the weighting vec-

tor of Pj (j = 1, 2, . . . , n) with ωj ∈ [0, 1], and
∑n

j=1 ωj =

1. For any λ > 0, the aggregated value using the GPHFWG
operator is also a PHFE, and

GPHFWGλ (P1,P2, . . . ,Pn)

= ∪ (γ1,τ1)∈P1,
...,(γn,τn)∈Pn


1−

1−
n∏
j=1

[
1−

(
1− γj

)λ]ωj1/λ

,

n∏
j=1

τj


, λ > 0.
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Proof: The proof of Theorem 12 is similar to that of
Theorem 3.
Theorem 13: emphLet Pj (j = 1, 2, . . . , n) be a col-

lection of PHFEs. The aggregated value obtained by the
GPHFWG operator decreases monotonically with the param-
eter λ (λ > 0).

Proof: Following Theorem 10,
{1−

∏n
j=1 [1− (1− γj)λ]

ωj
}
1/λ increases with the parameter

λ (λ > 0), so 1− {1−
∏n

j=1 [1− (1− γj)λ]
ωj
}
1/λ decreases

with the parameter λ (λ > 0). The use ofDefinitions 7 and 8
proves this theorem.
Theorem 14: Let Pj (j = 1, 2, . . . , n) be a collection

of PHFEs. As λ → 0 (λ > 0), the GPHFWG operator
approaches the following limit:

lim
λ→0

GPHFWGλ (P1,P2, . . . ,Pn)

= ∪(γ1,τ1)∈P1,...,(γn,τn)∈Pn


1−e∏n

j=1 [ln(1−γj)]
ωj
,

n∏
j=1

τj

.
Proof: The proof of Theorem 14 is similar to that of

Theorem 11.
Theorem 15: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs and let ω = (ω1, ω2, . . . , ωn)
T be the weighting vec-

tor ofPj (j = 1, 2, . . . , n)with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1.
For any λ > 0, we have

GPHFWGλ(P1,P2, . . . ,Pn)≤PHFWA(P1,P2, . . . ,Pn).

For any (γ1, τ1)∈ P1, (γ2, τ2)∈ P2, . . . , (γn, τn)∈ Pn,
we obtain from Lemma 1,

1−

1−
n∏
j=1

[
1−

(
1− hj

)λ]ωj
1/λ

≤ 1−

1−
n∑
j=1

ωj

[
1−

(
1− hj

)λ]
1/λ

= 1−

 n∑
j=1

ωj
(
1− hj

)λ1/λ

≤ 1−

 n∏
j=1

(
1− hj

)λωj1/λ

= 1−
n∏
j=1

(
1− hj

)ωj ,
then1−

1−
n∏
j=1

[
1−

(
1− hj

)λ]ωj
1/λ
 n∏

j=1

τj

≤

1− n∏
j=1

(
1− hj

)ωj n∏
j=1

τj.

From Definitions 7 and 8, we have

GPHFWGλ(P1,P2, . . . ,Pn)≤PHFWA(P1,P2, . . . ,Pn).

Theorem 15 shows that the aggregated value obtained by
the PHFWA operator is no less than that obtained by the
GPHFWG operator.
CombiningTheorems 7, 9, and 15, we obtain the following

theorem:
Theorem 16: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs and let ω = (ω1, ω2, . . . , ωn)
T be the weighting vec-

tor ofPj (j = 1, 2, . . . , n)with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1.
For any λ > 0, we have

GPHFWGλ (P1,P2, . . . ,Pn)

≤ GPHFWAλ (P1,P2, . . . ,Pn).

We visually illustrate these relationships of the aggre-
gated values obtained by the four operators by the following
example:
Example 4: Let P1 = {(0.8, 0.6), (0.3, 0.4)}, P2 =

{(0.9, 0.3), (0.3, 0.7)}, and P3 = {(0.7, 0.2), (0.4, 0.8)}
be three PHFEs, and suppose that the weighting vector
ω = (0.3, 0.5, 0.2)T . Following Definitions 11–14,
we have

GPHFWA1 (P1,P2,P3)

= PHFWA (P1,P2,P3)

= ∪
(γ1,τ1)∈P1,(γ2,τ2)∈P2,
(γ3,τ3)∈P3


1−

3∏
j=1

(
1− γj

)ωj , 3∏
j=1

τj


= {(0.8466, 0.036), (0.8238, 0.144), (0.7767, 0.024),

(0.7435, 0.096), (0.5942, 0.084), (0.5339, 0.336),

(0.4091, 0.056), (0.3213, 0.224)};

GPHFWA6 (P1,P2,P3)

= ∪
(γ1,τ1)∈P1,(γ2,τ2)∈P2,
(γ3,τ3)∈P3



1−

3∏
j=1

(
1− h6j

)ωj1/6

,

3∏
j=1

τj




= {(0.8550, 0.036), (0.8494, 0.144), (0.8324, 0.024),

(0.8254, 0.096), (0.6923, 0.084), (0.6672, 0.336),

(0.5418, 0.056), (0.3346, 0.224)}.

GPHFWG1 (P1,P2,P3)

= PHFWG (P1,P2,P3)

= ∪
(γ1,τ1)∈P1,(γ2,τ2)∈P2
,(γ3,τ3)∈τ3


 3∏
j=1

h
ωj
j ,

3∏
j=1

τj


= {(0.8262, 0.036), (0.7387, 0.144), (0.6156, 0.024),

(0.5504, 0.096), (0.4770, 0.084), (0.4265, 0.336),

(0.3554, 0.056), (0.3178, 0.224)} .
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GPHFWG6 (P1,P2,P3)

= ∪
(γ1,τ1)∈P1,··· ,
(γ3,τ3)∈P3


1−

1−
3∏
j=1

(
1−

(
1− γj

)6)ωj1/6

,

3∏
j=1

τj




= {(0.7657, 0.036), (0.5396, 0.144), (0.4228, 0.024),

(0.4014, 0.096), (0.3729, 0.084), (0.3586, 0.336),

(0.3240, 0.056), (0.3144, 0.224)}.

By Definition 7, we have

s (PHFWA (P1,P2,P3)) = 0.5633,

s (GPHFWA6 (P1,P2,P3)) = 0.6399,

s (PHFWG (P1,P2,P3)) = 0.4782,

s (GPHFWG6 (P1,P2,P3)) = 0.3943.

Then,

GPHFWG6 (P1,P2,P3) < PHFWG (P1,P2,P3)

< PHFWA (P1,P2,P3)

< GPHFWA6 (P1,P2,P3).

E. EXTENDING PREVIOUS OPERATORS TO OPERATORS
BASED ON OWA: PHFOWA, PHFOWG, GPHFOWA, AND
GPHFOWG OPERATORS
This section extends the PHFWA, PHFWG, GPHFWA, and
GPHFWG operators based on the OWA operator to define the
PHFOWA, PHFOWG, GPHFOWA, and GPHFOWG opera-
tors, and also gives their properties and interrelationships.
Definition 15: Let Pj (j = 1, 2, . . . , n) be a collection

of PHFEs, let Pδ(j) be the jth largest PHFE, and let ω =
(ω1, ω2, . . . , ωn)

T be the aggregation-associated vector with
ωj ∈ [0, 1] and

∑n
j=1 ωj = 1. A PHFOWA operator is then a

mapping PHn
→ PH such that

PHFOWA
(
Pδ(1),Pδ(2), . . . ,Pδ(n)

)
=

n
⊕
j=1

(
ωjPδ(j)

)
.

In particular, if ω =
(
1
/
n, 1

/
n, . . . , 1

/
n
)T , then the

PHFOWA operator reduces to the PHFA operator.
Theorem 17: Let Pj (j = 1, 2, . . . , n) be a collection

of PHFEs, let Pδ(j) be the largest PHFE, and let ω =
(ω1, ω2, . . . , ωn)

T be the aggregation-associated vector with
ωj ∈ [0, 1] and

∑n
j=1 ωj = 1. The aggregated value using a

PHFOWA operator is also a PHFE, and

PHFOWA
(
Pδ(1),Pδ(2), . . . ,Pδ(n)

)
= ∪(γδ(1),τδ(1))∈Pδ(1),...,(γδ(n),τδ(n))∈Pδ(n)

×


1−

n∏
j=1

(
1− γδ(j)

)ωj , n∏
j=1

τδ(j)

.
Proof: The proof of Theorem 17 is similar to that of

Theorem 4.

Definition 16: Let Pj (j = 1, 2, . . . , n) be a collection
of PHFEs, let Pδ(j) be the jth largest PHFE, and let ω =
(ω1, ω2, . . . , ωn)

T be the aggregation-associated vector with
ωj ∈ [0, 1] and

∑n
j=1 ωj = 1. A PHFOWG operator is then

a mapping PHn
→ PH such that

PHFOWG
(
Pδ(1),Pδ(2), . . . ,Pδ(n)

)
=

n
⊗
j=1

(
P
ωj
δ(j)

)
.

In particular, if ω =
(
1
/
n, 1

/
n, . . . , 1

/
n
)T , then the

PHFOWG operator reduces to the PHFG operator.
Theorem 18: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs, let Pδ(j) be the jth largest PHFE, and let ω =
(ω1, ω2, . . . , ωn)

T be the aggregation-associated vector with
ωj ∈ [0, 1] and

∑n
j=1 ωj = 1. The aggregated value using a

PHFOWG operator is also a PHFE, and

PHFOWG
(
Pδ(1),Pδ(2), . . . ,Pδ(n)

)
= ∪(γδ(1),τδ(1))∈Pδ(1),...,(γδ(n),τδ(n))∈Pδ(n)

×


 n∏
j=1

γ
ωj
δ(j),

n∏
j=1

τδ(j)

.
Proof: The proof of Theorem 18 is similar to that of

Theorem 4.
Definition 19: Let Pj (j = 1, 2, . . . , n) be a collection

of PHFEs, let Pδ(j) be the jth largest PHFE, and let ω =
(ω1, ω2, . . . , ωn)

T be the aggregation-associated vector with
ωj ∈ [0, 1] and

∑n
j=1 ωj = 1. A GPHFOWA operator is a

mapping PHn
→ PH such that

GPHFOWA
(
Pδ(1),Pδ(2), . . . ,Pδ(n)

)
=

n
⊕
j=1

(
ωjPδ (j)

λ
)1/λ

,

λ > 0.

In particular, if λ = 1, the GPHFOWA operator reduces
to the PHFOWA operator, and if ω =

(
1
/
n, 1

/
n, . . . , 1

/
n
)T

and λ = 1, the GPHFOWA operator reduces to the PHFA
operator.
Theorem 19: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs, let Pδ(j) be the jth largest PHFE, and let ω =
(ω1, ω2, . . . , ωn)

T be the aggregation-associated vector with
ωj ∈ [0, 1] and

∑n
j=1 ωj = 1. For any λ > 0, the aggregated

value using a GPHFOWA operator is also a PHFE, and

GPHFOWA
(
Pδ(1),Pδ(2), . . . ,Pδ(n)

)
= ∪ (γδ(1),τδ(1))∈Pδ(1),...,

(γδ(n),τδ(n))∈Pδ(n)



1− n∏

j=1

(
1− γ λδ(j)

)ωj1/λ

,

n∏
j=1

τδ(j)


.

Proof: The proof of Theorem 19 is similar to that of
Theorem 4.
Definition 18: Let Pj (j = 1, 2, . . . , n) be a col-

lection of PHFEs, let Pδ(j) be the jth largest PHFE,
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and let ω = (ω1, ω2, . . . , ωn)
T be the aggregation-associated

vector with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1. A GPHFOWG
operator is then a mapping PHn

→ PH such that

GPHFOWG
(
Pδ(1),Pδ(2), . . . ,Pδ(n)

)
=

1
λ

[
n
⊗
j=1

(
λPδ(j)

)ωj].
In particular, if λ = 1, the GPHFOWG operator reduces

to the PHFOWG operator, and if ω =
(
1
/
n, 1

/
n, . . . , 1

/
n
)T

and λ = 1, the GPHFOWG operator reduces to the PHFG
operator.
Theorem 20: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs, let Pδ(j) be the jth largest PHFE, and let ω =
(ω1, ω2, . . . , ωn)

T be the aggregation-associated vector with
ωj ∈ [0, 1] and

∑n
j=1 ωj = 1. For any λ > 0, the aggregated

value using a GPHFOWG operator is also a PHFE, and

GPHFOWG
(
Pδ(1),Pδ(2), . . . ,Pδ(n)

)
= ∪ (γδ(1),τδ(1))∈Pδ(1),

...,(γδ(n),τδ(n))∈Pδ(n)


1−

n∏
j=1

[
1−

(
1− γδ(j)

)λ]ωj
,

n∏
j=1

τδ(j)

.
Proof: The proof of Theorem 20 is similar to that of

Theorem 4.
The four ordered-weighted operators are expended based

on the PHFWA, PHFWG, GPHFWA, and PHFWG operators.
We then have the following theorems:
Theorem 21: Let Pj (j = 1, 2, . . . , n) be a collection of

PHFEs, let Pδ(j) be the jth largest PHFE, and let ω =
(ω1, ω2, . . . , ωn)

T be the aggregation-associated vector with
ωj ∈ [0, 1] and

∑n
j=1 ωj = 1. For any λ > 0,

GPHFOWGλ
(
Pδ(1),Pδ(2), . . . ,Pδ(n)

)
≤ GPHFOWAλ

(
Pδ(1),Pδ(2), . . . ,Pδ(n)

)
.

Theorem 22: The GPHFOWAoperator increases monoton-
ically with λ (λ > 0), and the GPHFOWAoperator decreases
monotonically with λ (λ > 0).

IV. MULTIPLE-CRITERIA DECISION MAKING MODELS
BASED ON PHFS-BASED AGGREGATION OPERATORS
In this section, we develop two models based on GPH-
FWA (or GPHFWG) and GPHFOWA (or GPHFOWG) oper-
ators to solve the MCGDM problem in an uncertain context.
First, we use the following notations to denote the important
indices, sets, and variables in the MCGDM problem in the
proportional hesitant fuzzy context.
• m: total number of alternatives;
• n: total number of criteria;
• t: total number of DMs involved in the decision process;
• i ∈ M = {1, 2, . . . ,m}: index of alternative;
• j ∈ N = {1, 2, . . . , n}: index of criterion;
• k ∈ T = {1, 2, . . . , t}: index of DM involved in the
decision process;

• Ai: ith alternative;

• A = {A1,A2, . . . ,Am}: set of m alternatives;
• Cj: jth criterion;
• C = {C1,C2, . . . ,Cn}: set of n criteria, which are
considered to be independent;

• Dk : kth DM;
• D = {D1,D2, . . . ,Dt }: set of t DMs;
• δk : Weight of kth DM;
• ϕ = (ϕ1, ϕ2, . . . , ϕt)

T : vector of weights of DMs, where∑t
k=1 ϕk = 1, 0 ≤ ϕk ≤ 1, and k = 1, 2, . . . , t;

• ω = (ω1, ω2, . . . , ωn)
T : weighting vector of crite-

ria with respect to DM Dk , where
∑n

j=1 ωj = 1,
0 ≤ ωj ≤ 1, and j = 1, 2, . . . , n;

• Nb: collection of benefit criteria;
• Nc: collection of cost criteria such that Nb ∪ Nc = N ;

• skij = {γ
k1
ij , γ

k2
ij , . . . , γ

k#skij
ij }: assessment information on

the performance of alternative Ai with respect to crite-
rion Cj that is given by decision maker Dk and takes the
form of a FS or a HFS, in which each element of the set
represents the possible membership degree to which the
alternative should satisfy the criterion and #skij represents
the number of elements in the set;

• S =
(
S1, S2, . . . , S t

)T
: vector of proportional hesitant

fuzzy decision matrices with respect to all DMs, where
Sk =

(
skij
)
m×n

, k = 1, 2, . . . , t .

In group decision making under uncertainty individuals
feel easier to elicit FSs or HFSs than PHFSs. But from
FSs or HFSs we propose to fuse individual assessments into
collective assessments represented by PHFSs.

In addition, the accurate specification of expert weights
and criterion weights is a usual core prerequisite for a
MCGDM problem. The existing methods for deriving expert
weights and criterion weights can be classified into three
categories: subjective methods, objective methods, and meth-
ods integrating subjective methods and objective methods.
In our proposals, the expert weights are predetermined by a
supervisor who is familiar with all of the DMs based on the
richness of his relevant knowledge and experience, and the
weights of criteria can be specified based on the principle of
maximum entropy principle.

Firstly, we give the basic framework of the proposed
MCGDM models, which is presented in
Figure1. Subsequently,we build the MCGDM model based
on the GPHFWA or GPHFWG operator.
Model 1:
Step 1-1: Normalize the evaluation information. In a

MAGDM problem, benefit criteria frequently coexist with
cost criteria. If Nc = ∅, the normalization for assessment
information is unnecessary. If Nc 6= ∅, we transform
the assessment values of cost type into values of bene-
fit type. Assessment information {Sk = (skij)m×n|k ∈ T } is
then transformed to the normalized assessment information
{Rk = (rkij )m×n|k ∈ T }, where r

k
ij is also a HFE and can be
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FIGURE 1. Framework of the proposed MCGDM models.

determined by

rkij =

s
k
ij, for benefit criterionCj(
skij
)C
, for cost criterionCj .

where i ∈ M , j ∈ N , and k ∈ T .
Without loss of generality, the normalized values rkij are

also represented as the set rkij = {γ
k1
ij , γ

k2
ij , . . . , γ

k#rkij
ij }, where

#rkij is the number of elements in the set rkij .
Step 1-2: Aggregate individual arguments into collective

assessment information by transforming FSs or HFSs into
PHFSs. In this paper, we propose a method to achieve this
transformation. This method simultaneously accommodates
the membership degrees and the corresponding proportional
information, thereby more accurately characterizing the hes-
itancy of DMs. Given the fact that rkij (k = 1, 2, . . . , t) is
made up of a set of values, we can determine the collective
assessment information

rij =
{(
γ 1
ij , τ

1
ij

)
,
(
γ 2
ij , τ

2
ij

)
, . . . ,

(
γ
#rij
ij , τ

#rij
ij

)}
,

in which {γ 1
rij , γ

2
rij , . . . , γ

lij
rij } is the union of the sets

r1ij, r
2
ij, . . . , r

t
ij, and τ lij

(
l = 1, 2, . . . , lij

)
denotes the

proportion of the membership degree γ lij
(
l = 1, 2, . . . , lij

)
that can be determined by

τ lij =
∑

Dk∈D′

(
δk

/
#rkij

)
,

where D′ is the set of DMs who provide the value γ lij.
Step 1-3:Determine the weights of the criteria. An entropy

measure of weight, which is called a ‘‘weight-dispersion’’
measure, is introduced to quantify the degree to which
the corresponding weighted aggregation function takes into
account all the inputs. For a given weighting vector ω =
(ω1, ω2, . . . , ωn)

T , the entropy measure is determined by

Disp (ω) = −
n∑
i=1

ωilog2ωi,

with the convention 0 · log20 = 0.
Remark: According to the principle of maximum entropy,

we assume that the weighting vector with the largest entropy
is the best because the corresponding weighted aggregation
function can make full use of the information on all the
criteria. For example, given the two weighting vectors ω1 =

(0.5, 0.5) and ω2 = (0.1, 0.9), the former is assumed to be
preferable because the weighted aggregation function based
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on the former can use information from two sources with
equal degree and is less sensitive to inaccurate input.

During the decision process, the decision team can easily
express the preference information on criteria, but the team
has difficulty accurately specifying the weights of all the cri-
teria.With respect to aMAGDMproblem, letωj ∈ 0 (j ∈ N ),
where 0 is a set of known information of criterion weights
provided by the DM Dk (k ∈ T ) and can be constructed by
the following ranking forms [54]: For j1 6= j2 6= j3 and k ∈ T ,
Form 1: a weak ranking: 01 =

{
ωj1 ≥ ωj2

∣∣ j1, j2 ∈ N};
Form 2: a strict ranking:02=

{
ωj1−ωj2≥σj1j2

∣∣ j1, j2 ∈ N};
Form 3: a ranking of differences:

03 =
{
ωj1 − ωj2 ≥ ωj2 − ωj3

∣∣ j1, j2, j3 ∈ N} ;
Form 4: a ranking with multiples:

04 =
{
σj1 ≤ ωj1 ≤ σj1 + εj1

∣∣ j1 ∈ N};
Form 5: an interval form: 05 =

{
ωj1 ≥ σj1ωj2

∣∣ j1, j2 ∈ N},
0 ≤ σj1 ≤ 1; where 0 = 0k1 ∪ 0

k
2 ∪ 0

k
3 ∪ 0

k
4 ∪ 0

k
5 .

Based on the principle ofmaximum entropy and the incom-
plete information given by DMs of criterion weights, we can
determine the criterion weights for each DM by constructing
the following programming model:

[M1] max Disp (ω) = −
n∑
j=1

ωjlog2ωj

s.t.


(ω1, ω2, . . . , ωn)

T
∈ 0∑n

j=1
ωj = 1

ωj ≥ 0.

By solving the method [M1], we can determine the optimal
weighting vector (ω1, ω2, . . . , ωn)

T to maximize the infor-
mation contained in the original decision information.
Step 1-4: For each alternative, aggregate assessment infor-

mation on all criteria into overall assessment information.
This model uses the GPHFWA operator,

ri = GPHFWAλ (ri1, ri2, . . . , rin)

= ∪ (γi1,τi1)∈ri1,
...,(γin,τin)∈rin



1− n∏

j=1

[
1−

(
γij
)λ]ωj1/λ

,

n∏
j=1

τij


,

or the GPHFWG operator,

ri = GPHFWGλ (ri1, ri2, · · · , rin)

= ∪ (γi1,τi1)∈ri1,
··· ,(γin,τin)∈rin


1−

1−
n∏
j=1

(
1−

(
1−γij

)λ)ωj1/λ

,

t∏
k=1

τij




to determine the overall performance of each alternative
{ri |i ∈ M }, where ωj is the weight of criterion k ,

∑n
j=1 ω

k
j =

1, 0 ≤ ωj ≤ 1, λ > 0, i ∈ M , and j ∈ N .
Step 1-5: Rank the ri (i ∈ M) in descending order by Def-

initions 7 and 8 and select the best alternative according to
the ranking.

Finally, we formulate another MAGDM model based on
the GPHFOWA or GPHFOWG operator.
Model 2:
Step 2-1: The information processing process is similar to

Step 1 of Model 1.
Step 2-2: The information processing process is the same

as Step 1 ofModel 1.
Step 2-3: Determine the criterion weights. In this model,

we also specify the criterion weights on the principle of
maximum entropy. In addition, we introduce as constraint
the desired ORness measure [42], [43] instead of the partial
preference information. The ORness measure, also known
as the attitudinal character (AC), is used to measure how
far a given averaging function is from the max function and
reflects changes in the DM’s attitude. For an OWA function
with a weighting vector ω = (ω1, ω2, . . . , ωn)

T , its ORness
measure is

ORness(OWAω) =
n∑
j=1

n− j
n− 1

ωj.

If ω∗ = (1, 0, . . . , 0)T , the ORness measure is unity and
theOWAoperator is reduced to themax operator, correspond-
ing to the fully optimistic decision. If ω∗ = (0, 0, . . . , 1)T ,
the ORness measure is zero and the OWA function is
reduced to the min function, corresponding to a fully pes-
simistic decision. Finally, if ωA =

(
1
/
n, 1

/
n, . . . , 1

/
n
)T ,

the ORness measure is 0.5 and the OWA operator is
reduced to the averaging operator, corresponding to a Laplace
decision [42], [43].

During the decision process, each DM may have different
attitudes towards each alternative. We can fuse individual
attitudes into a collective attitude towards each alternative.
If the decision team has an optimistic collective attitude
on the overall performance of the alternative ACi (i ∈ M),
the team can determine the AC value ACi ∈ (0.5, 1],
where a more positive team reaction corresponds to a big-
ger AC. Similarly, if the team expresses a pessimistic atti-
tude regarding the overall performance of the alternative
ACi (i ∈ M), they can give an AC value ACi ∈ [0, 0.5), where
a smaller AC represents a more pessimistic reaction of the
DM. The AC is used to guide the OWA aggregation process
by specifying the corresponding weighting vector for each
alternative.

Based on the principle of maximum entropy and the per-
ceived AC value ACi (i ∈ M) for each alternative, we deter-
mine the weighting vector for each alternative by calculating
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the following programming model:

[M2] max Disp (ωi) = −
n∑
j=1

ωij logωij

s.t.



n∑
j=1

n− j
n− 1

ωij = ACi∑n

j=1
ωij = 1

ωij ≥ 0.

By solving the method [M2], we can determine the optimal
weighting vector {(ωi1, ωi2, . . . , ωin)T |i ∈ M} for each alter-
native to maximize the information contained in the original
decision information and to characterize the AC of each DM
simultaneously.
Step 2-4: For each alternative, use the GPHFOWA opera-

tor,

ri = GPHFOWAλ (ri1, ri2, · · · , rin)

= ∪ (γiδ(1),τiδ(1))∈riδ(1),

··· ,
(
γiδ(n),τiδ(n)

)
∈riδ(n)



1− n∏

j=1

(
1−

(
γiδ(j)

)λ)ωj1/λ

,

n∏
j=1

τiδ(j)




or the GPHFOWG operator.

ri = GPHFOWGλ (ri1, ri2, · · · , rin)

= ∪ (γiδ(1),τiδ(1))∈riδ(1),

··· ,
(
γiδ(n),τiδ(n)

)
∈riδ(n)

1−

1−
n∏
j=1

(
1−

(
1− γiδ(j)

)λ)ωj1/λ

,

n∏
j=1

τiδ(j)


to derive the overall assessment information {ri |i ∈ M },
where

(
riδ(1), riδ(2), . . . , riδ(n)

)
is the rearrangement of

(ri1, ri2, . . . , rin) satisfying riδ(1) ≥ riδ(2) ≥ · · · ≥ riδ(n), riδ(j)
is the jth largest in (riδ(1), riδ(2), . . . , riδ(n)), and ωj denotes the
weight of the kth position in (riδ(1), riδ(2), . . . , riδ(n)) with the
following conditions satisfied:

∑n
j=1 ω

k
j = 1, 0 ≤ ωj ≤ 1,

λ > 0, i ∈ M , and j ∈ N .
Step 2-5: Rank the ri (i ∈ M) in descending order by Def-

initions 7 and 8, and select the best alternative in accordance
with the ranking.

V. CASE STUDY
Over the last decade, due to environmental issues and the fear
of peak oil prices, battery electric vehicles (BEVs), which
use for vehicle propulsion the chemical energy stored in
rechargeable battery packs combinedwith electricmotors and

motor controllers, have garnered considerable attention from
governments around the word, including China, the Euro-
pean Union, and the United States. These governments have
issued a series of regulations to compel original equipment
manufacturers (OEMs) to produce more EVs and encour-
age consumers to buy EVs. To date, the price and driv-
ing range are the biggest obstacles preventing consumers
from purchasing EVs, and both obstacles are directly linked
to the EVB. At present, most OEMs are inclined to out-
source EVB manufacturing to a battery manufacturer. Thus,
selecting a suitable EVB supplier is extremely important
for OEMs.

In China, an OEM has made a strategic decision to invest
in the research and development of EVs. During the develop-
ment of a newBEV, the OEM tries to select the best EVB sup-
plier on the market and hope to establish a long-term, stable,
andmutually beneficial strategic partnershipwith the selected
EVB supplier. The OEM builds a decision-making team that
is responsible for selecting the EVB supplier. The team con-
sists of five experts {D1,D2,D3,D4,D5} who are weighted
by the weighting vector ϕ = (0.15, 0.2, 0.3, 0.1, 0.25)T on
the basis of their relevant knowledge and experience. The first
task assigned to the decision team is to specify the assessment
criteria for selecting the EVB supplier. For the strategic-
supplier-selection problem, the OEM should not only focus
on short-term criteria, such as cost and quality, but also focus
on long-term criteria, such as technical capability, company
profile, and level of risk. Based on the objectives for the EVB
supplier, the decision team specifies seven criteria: cost (C1),
quality (C2), delivery and lead time (C3), service level (C4),
technical capability (C5), company profile (C6), and risk level
(C7). Evidently, C1, C3, and C7 are cost criteria whereas the
others are benefit criteria. Table 1 gives detailed information
on the seven criteria.

Once the criteria are specified, the alternative potential
suppliers are identified from upstream of the EV indus-
try chain, which is not limited to the domestic market.
The decision team identifies a list of suppliers through a
variety of channels and slims down the list to five poten-
tial suppliers thorough a preliminary review. These sup-
pliers are represented as {A1,A2,A3,A4,A5}. Next, each
expert Dk (k = 1, 2, . . . , 5) assesses the performance of
each potential supplier Ai (i = 1, 2, . . . , 5) with respect to
each criterion Cj (j = 1, 2, . . . , 7). The following rules are
used to facilitate the articulation of assessment information
for DMs:
• The assessment value given by each DM should fall in
the range of 0 to 1 and is used to embody the possible
membership degree that alternatives should satisfy or to
measure the performance of an alternative with respect
to a specific criterion.

• The better an alternative performs with respect to a
specific criterion, the larger assessment value given by
DMs.

• DMs can assign only a single value to the performance
of an alternative with respect to a specific criterion when
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TABLE 1. Criteria for selection of electric vehicle battery (EVB) supplier.

she affirms her judgment. She can also give a set of
possible values when she hesitates about her judgment.

Thus, the assessment should be either a degree of member-
ship of a FS or several degrees of membership of a HFS. The
initial assessment information{

Sk =
(
skij
)
5×7

∣∣∣∣ k = 1, 2, . . . , 5
}

is presented in Table 2.
Next, Models 1 and 2 are used to address the problem of

selecting the EVB supplier.

A. APPLICATION OF MODEL 1
Step 1-1: Transform the initial assessment information into

normalized assessment information{
Rk =

(
rkij
)
5×7

∣∣∣∣ k ∈ 1, 2, . . . , 5
}
,

which is presented in Table 3.
Step 1-2: Aggregate individual assessment information

into collective assessment information R =
(
rij
)
5×7 by trans-

forming the FS or HFS into a PHFS, the result of which is
given in Table 4.
Step 1-3: Determine the weights of criteria based on the

principle of maximum entropy. After thorough discussion,
the decision team gives incomplete preference information on
the importance of criteria, which is presented as follows:

ω2 − ω1 ≥ 0.025, ω2 = ω4, ω4 − ω3 ≥ 0.05,

ω3 ≥ ω1, ω5 ≥ 1.25 · ω2, ω6 ≥ ω5,

ω6 ≥ 1.25 · ω7.

The input of information into Method [M1], which was
developed based on themaximum entropy principle, gives the
optimal weighting vector for criteria,

ω = (0.097, 0.147, 0.097, 0.147, 0.184, 0.184, 0.141)T .

Step 1-4: Use the GPHFWA operator with λ = 1 to
fuse collective assessment information on each criterion
and obtain overall assessment information on each alterna-
tive {ri |i = 1, 2, . . . , 5 }. Due to space limitations, we only
present the scores for the overall assessment information on
each alternative:

s (r1) = 0.68, s (r2) = 0.675,

s (r3) = 0.682, s (r4) = 0.753, s (r5) = 0.593.

Applying the GPHFWG operator, we obtain

s (r1) = 0.524, s (r2) = 0.565,

s (r3) = 0.653, s (r4) = 0.581, s (r5) = 0.55.

Step 1-5: Using Definitions 7 and 8, we find that the
application of the GPHFWA operator leads to A4 � A3 �
A1 � A2 � A5, with A4 being the best alternative, and the use
of the GPHFWGoperator leads toA3 � A4 � A2 � A5 � A1,
with A3 being the best EVB supplier.
After negotiation with the OEMmanagement, the decision

team chooses A3 as the best EVB supplier for the following
reasons:
• From Table 4, we find that the alternative A4, which is a
well-known overseas EVB supplier, performs well with
respect to criteria including quality (C2), service level
(C4), technical capability (C5), and company profile
(C6). But the cost (C1) and the geopolitical risk (C7)
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TABLE 2. Initial assessment information provided by DMs.

TABLE 3. Normalized assessment information.

obtain a lower score, placing them beyond the scope of
tolerance.

• The alternative A3, which is also an overseas EVB sup-
plier, obtains more balanced scores for each criterion.
The cost (C1) and the geopolitical risk (C7) have mod-
erate scores that fall within the scope of tolerance. The
main reason that the decision team chooses A3 is that
the supplier has set up a factory for EVB manufacturing
with a domestic manufacturer.

• The domestic EVB supplier A1 performs well for cost
(C1), quality (C2), and risk (C7) but performs poorly
on company profile (C6), which plays a significant
role in the establishment of a strategic partnership. The
domestic alternative A2 obtains a lower score for tech-
nical capability (C5), which plays a significant role
in a long-term partnership because EVB technology is
changing very fast. The alternative A5, which is also
a domestic EVB supplier, obtains balanced scores on
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TABLE 4. Normalized assessment information.

TABLE 5. Results obtained by the GPHFWA and GPHFWG operators.

FIGURE 2. Results obtained by the GPHFWA operator with different
values of λ.

each criterion. Compared with A3, A5 performs worse
on quality (C2), service level (C4), technical capability
(C5), and company profile (C6), which means that A3 is
the best supplier.

When the parameter λ varies, we attain different results.
In this section, we assign 1/10, 1/5, 1/2, 1, 2, 5, and 10 to λ
and use the GPHFWA operator to calculate the results, which
are presented in Table 5 and Figure 2. Similarly, we use the
GPHFWG operator with these seven values of λ to determine
the results given in Table 5 and Figure 3.

FIGURE 3. Results obtained by the GPHFWG operator with different
values of λ.

(1) When the input information of the model remains the
same, the score determined by the GPHFWA operator
becomes larger with increasing λ, and the score value
obtained by the GPHFWG operator becomes smaller
with increasing λ. In addition, the scores obtained by
the GPHFWA operator are always greater than those
obtained by the GPHFWG operator.

(2) Applying the GPHFWA operator gives alternative A4
as the best supplier, whereas applying the GPHFWG
operator gives alternative A3 as the best supplier. From
Table 4, we see that the differences between the
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TABLE 6. Weights of criteria in the case of different ACs for alternatives.

performances of A4 with respect to each criterion are
greater than those of its counterpart A3. In other words,
the cohesiveness of the assessment information of A3
exceeds that of A4. We further conclude that, upon
applying the GPHFWA operator, the criteria with lower
scores obtain more compensation from the criteria with
higher scores, thus leading to the result that A4 is
the best supplier. However, applying the GPHFWG
operator yields the result that the criteria with lower
scores obtain limited compensation from the criteria
with higher scores, thus leading to the result that A3
is the best supplier. Thus, we conclude that, for PHFSs
with less difference between elements, the GPHFWG
operator is more friendly than the GPHFWA operator.
In this case, the OEM prefers A3 to A4, which indicates
that, in practical applications, the GPHFWG operator
is preferable when the compensation is limited between
the performances with respect to criteria.

(3) For the GPHFWA operator, as the parameter λ

increases, the ranking of A1 rises and the ranking of
A3 drops. For the GPHFWG operator, increasing the
parameter λ decreases the ranking of A4 and increases
the ranking of A5. Table 4 reveals that A1 and A4
have a greater difference between performances for all
criteria, and A3 and A5 have less difference. We thus
infer that, upon increasing λ, the compensation of the
GPHFWA operator increases, and the compensation of
the GPHFWG operator decreases.

B. APPLICATION OF MODEL 2
This section describes the application ofModel 2 to the case
described above.
Step 2-1: The results of the information processing proce-

dure of this step are listed in Table 3.
Step 2-2: The results of this step are given in Table 4.
Step 2-3: Determine the weights of criteria based on the

maximum entropy principle and the AC of DMs. In this
case, different DMs have different ACs for each alternative.
We simplify the information processing procedure and, after
much deliberation, let the decision team output a collective
AC for each alternative:

AC1 = 0.3, AC2 = 0.4, AC3 = 0.6, AC4 = 0.4,

AC5 = 0.5.

Based onMethod [M2], we calculate the final weights of cri-
teria with respect to eachDM. The results are given in Table 6.

Step 2-4: Use the GPHFOWA operator with λ = 1 to syn-
thesize the overall assessment information of each potential
supplier, which gives the following scores:

s (r1) = 0.543, s (r2) = 0.642,

s (r3) = 0.692, s (r4) = 0.646, s (r5) = 0.611.

Instead of using the GPHFOWA operator, we use the
GPHFOWG operator with λ = 1 to determine the overall
assessment information for each alternative, which gives the
following results:

s (r1) = 0.407, s (r2) = 0.534,

s (r3) = 0.665, s (r4) = 0.456, s (r5) = 0.564.

Step 2-5: Applying the GPHFOWA operator gives A3 �
A4 � A2 � A5 � A1, with A3 being the best EVB supplier,
and the introduction of the GPHFOWG operator gives A3 �
A5 � A2 � A4 � A1, with A3 being the best alternative.
Evidently, the results obtained by the GPHFOWA and

GPHFOWG operators are consistent with the desired result
of the OEM. In a similar way, we assign the values 1/10, 1/5,
1/2, 1, 2, 5, 10 to λ and use the GPHFOWA operator and
the GPHFOWG operator to determine the final ranking of
alternatives. The results are given in Table 7 and Figs.4 and 5.
(1) Evidently, the scores obtained by the GPHFOWA

operator increase as λ increases, whereas the scores
obtained by the GPHFOWG operator decrease as λ
increases. In addition, the scores obtained by the GPH-
FOWA operator are always greater than those obtained
by the GPHFOWG operator.

(2) When the GPHFOWA operator is applied, if λ = 0.1,
0.2, 0.5, or 1, the alternative A3 is the best supplier,
followed by A2 and A4; if λ = 5 or 10, A4 becomes
the optimum supplier, followed by A2. When the
GPHFOWG operator is applied, the alternative A3
remains the best supplier, followed by A5. Table 4
shows that the differences for A2 and A4 between the
performances for each alternative are greater than for
the counterparts of A3 and A5. We can then reason that,
compared with the GPHFWG operator, the GPHFWA
operator has a higher level of compensation for the
performance with respect to the given criteria, but the
results obtained by the GPHFOWG operator are better,
which is consistent with the preferences of the OEM.

(3) For the GPHFOWA operator, along with the parameter
λ increasing, the rankings of A3 and A5 decline, but
the rankings of A1 and A4 increase. Given that the
differences for A1 and A4 are greater than those for
A3 and A5, we infer that the compensation for the
GPHFOWA operator increases along with λ.

(4) For the GPHFOWGoperator, the data in Table 7 cannot
reveal the relationship between the compensation level
of the GPHFOWG operator and the value of λ, mainly
because different ACs are assigned to different alterna-
tives, and the AC critically impacts the compensation
level of the GPHFOWG operator, as illustrated below.
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TABLE 7. Results obtained by GPHFOWA and GPHFOWG operators.

FIGURE 4. Results obtained by the GPHFOWA operator with different
values of λ.

To eliminate the impact of AC, we assign 0.6 to the AC
for each alternative and apply the GPHFOWG operator
with different values of λ. The results are presented
in Table 8 and Figure 6. Obviously, as λ increases,
the rankings of A3 and A5 with lower compensation
levels rise, but the rankings slip for A2 and A4, which
have a higher level of compensation. Thus, we infer
that the compensation level of the GPHFOWGoperator
decreases as λ increases.

To further explore how AC affects the final ranking of
alternatives, we maintain λ = 1 and change the AC. In this
case, the decision team may have different ACs for each
alternative. For convenience, we assign the same AC to all
alternatives. The results obtained by the GPHFOWA and
GPHFOWG operators are given in Table 9 and Figs. 7 and
8.

(1) Table 9 shows clearly that the AC has a remarkable
impact on the final ranking of alternatives. DMs should
accurately output the AC according to their real feel-
ings about alternatives.

(2) Upon applying the GPHFOWAoperator, the increase in
AC increases the rankings of A1 and A4 and decreases

FIGURE 5. Results obtained by the GPHFOWG operator with different
values of λ.

the rankings of A3 and A5. The results obtained by the
GPHFOWG operator also lead to a similar conclusion.
We therefore conclude that the compensation level of
the GPHFOWA operator and of the GPHFOWG oper-
ator increases along with the AC.

C. COMPARISON BETWEEN PROPORTIONAL HESITANT
FUZZY SETS AND HESITANT FUZZY SETS
In this section, we compare PHFSs with HFSs. [25] pro-
posed a series of aggregation operators for HFS, including
theGHFWA,GHFWG,GHFOWA, andGHFOWGoperators.
To delve into the differences between PHFSs and HFSs,
we make the following comparisons: GPHFWA vs GHFWA,
GPHFWG vs GHFWG, GPHFOWA vs GHFOWA, and
GPHFOWG vs GHFOWG.

1) GPHFWA VS GHFWA AND GPHFWG VS GHFWG
In accordance with Model 1, we develop a new MCGDM
model, called Model 1′, by replacing the GPHFWA oper-
ator or the GPHFWG operator with the GHFWA opera-
tor or the GHFWG operator, respectively. Model 1′ is based

VOLUME 7, 2019 172553



J.-P. Chang et al.: Paradigm Shift Toward Aggregation Strategies in Proportional Hesitant Fuzzy MCGDM Models

TABLE 8. Results obtained by GPHFOWG operator with AC = 0.6.

TABLE 9. Results obtained by GPHFOWA and GPHFOWG operator with λ = 1.

FIGURE 6. Results obtained by the GPHFOWG operator with AC = 0.6 and
different values of λ.

on the GHFWA and GHFWG operators and consists of the
following steps:
Step 1-1′: Normalize the evaluation information in the

same way as in Step 1 of Model 1. The original assess-
ment information {Sk = (skij)m×n|k ∈ T } is converted into the

FIGURE 7. Results obtained by the GPHFOWA operator with λ = 1 and
different values of AC.

normalized assessment information {Rk = (rkij )m×n|k ∈ T }

where rkij is a HFE.
Step 1-2′: Fuse individual assessment information
{Rk = (rkij )m×n|k ∈ T } into collective assessment informa-
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FIGURE 8. Results obtained by the GPHFOWG operator with λ = 1 and
different values of AC.

tion R =
(
rij
)
m×n by using the GHFWA operator,

rij = GPHFWAλ
(
r1ij, r

2
ij, . . . , r

t
ij

)
= ∪γ 1ij∈r

1
ij ,...,γ

t
ij∈r

t
ij


1−

n∏
j=1

[
1−

(
γ kij

)λ]ϕk1/λ
,

or the GHFWG operator,

rij=GPHFWGλ
(
r1ij, r

2
ij, . . . , r

t
ij

)
=∪γ 1ij∈r

1
ij ,...,γ

t
ij∈r

t
ij

1−
1−

n∏
j=1

[
1−

(
1−γ kij

)λ]ϕk1/λ
,

where ϕk is the weight of the kth DM, which is provided in
advance,

∑t
k=1 ϕk = 1, 0 ≤ ϕk ≤ 1, λ > 0, i ∈ M , j ∈ N ,

k ∈ T .
Step 1-3′: Determine the weights of criteria in accordance

with Step 3 of Model 1 and represent the results as ω =
(ω1, ω2, . . . , ωn)

T .
Step 1-4′: For each alternative, aggregate assessment infor-

mation for all criteria into overall assessment information by
using the GHFWA operator,

ri = GHFWAλ (ri1, ri2, . . . , rin)

= ∪γi1∈ri1,...,γin∈rin


1−

n∏
j=1

[
1−

(
γij
)λ]ωj1/λ

,
or the GHFWG operator,

ri=GHFWGλ (ri1, ri2, . . . , rin)

=∪γi1∈ri1,...,γin∈rin


1−

1−
n∏
j=1

[
1−

(
1−γij

)λ]ωj1/λ
,

where ωj is the weight of the kth criterion,
∑n

j=1 ω
k
j = 1,

0 ≤ ωj ≤ 1, λ > 0, i ∈ M , j ∈ N .

TABLE 10. Comparison of results obtained by aggregation operators
based on HFSs and PHFSs.

Step 1-5′:Rank the ri (i ∈ M) in descending order by using
Definitions 7 and 8 and select the best alternative according
to the ranking.
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Next, we apply theModel 1′ to the EVB-supplier-selection
problem described above. During the process, the input
information for Model 1′, including the original assessment
information provided by DMs, the weights of DMs, and
the incomplete preference information given by the decision
team for the importance of criteria, remains the same with the
input information of Model 1 to ensure comparability. The
results obtained by using the GHFWA or GHFWG operators
with λ = 1 are given in Table 10. The counterparts derived
by using the GPHFWA or GPHFWG operators with λ = 1
are also given in Table 10.

• When the GHFWA operator is applied to the case study,
A4 becomes the best supplier, followed by A5. When
the GPHFWA operator is used, A4 remains the best
supplier, followed by A3. The main difference is that
the ranking of A5 slips from 2 in the ranking obtained
by the GHFWA operator to 5 in the ranking derived by
the GPHFWA operator. Comparing the original assess-
ment information of A3 and A5 in Table 4, we find that
A5 only outperforms A3 on criteria C1 and C7, but A3
outperforms A5 on criteria C2, C3, C4, C5, and C6. The
final decision of selecting A3 as the best supplier shows
that the GHFWA operator is preferable to the GPHFWA
operator.

• When theGHFWGoperator is used,A2 becomes the best
supplier, followed by A1. However, the application of
the GPHFWG operator leads to the result that A3 is the
best supplier, followed by A4. Remarkable differences
exist between the results obtained by the GHFWG and
GPHFWG operators. Comparing A2 with A3 with the
help of the original assessment information in Table 4,
we see that A2 scores lower on criteria C2 and C5, which
are beyond the scope of tolerance, but A3 has more
balanced scores on all the criteria, which is the main
reason why the OEM prefers A3 to the other alterna-
tives. Thus, we come to a similar conclusion that the
GPHFWG operator outperforms the GHFWG operator
in this case study.

2) GPHFOWA VS GHFOWA AND GPHFOWG VS GHFOWG
In this section, we construct another MCGDM model, called
Model 2′ and that is based on the GHFOWA or GHFOWG
operator, by replacing the GPHFOWA operator or the
GPHFOWG operator with the GHFOWA operator or the
GHFOWG operator, respectively. In addition, note that,
unlike the weights in the weighted means, which represent
the relative importance of inputs, the weights in OWA func-
tions are associated with ordered positions, meaning that
the weight ωi reflects the importance of the ith ordered
position. Thus, instead of the original weighting vector
ϕ = (ϕ1, ϕ2, . . . , ϕt)

T that indicates the relative degree
of importance of DMs, we specify a new type of expert
weight for the execution of OWA functions. Model 2′ can
be described as follows:

Step 2-1′: Transform the original assessment information
{Sk = (skij)m×n|k ∈ T } into the normalized assessment infor-

mation {Rk = (rkij )m×n|k ∈ T }, where r
k
ij is a HFE.

Step 2-2′: Determine the weights of DMs to facilitate the
execution of the GHFOWA operator or the GHFOWG oper-
ator. We let the OEM give a value to measure their AC value,
with AC ∈ [0, 1], for the performance of the decision team,
and then introduce the AC into Method [M2] to determine
the order weights (ϕ1, ϕ2, . . . , ϕt) for aggregating individual
arguments on the expert level.
Step 2-3′: Fuse individual assessment information
{Rk = (rkij )m×n|k ∈ T } into the collective assessment infor-
mation R =

(
rij
)
m×n by using the GHFOWA operator,

rij=GHFOWAλ
(
r1ij, r

2
ij, . . . , r

t
ij

)
=∪

γ
δ(1)
ij ∈r

δ(1)
ij ,...,γ

δ(t)
ij ∈r

δ(t)
ij


(
1−

t∏
k=1

[
1−

(
γ
δ(k)
ij

)λ]ϕk)1/λ
,

or the GHFOWG operator,

rij = GPHFWGλ
(
r1ij, r

2
ij, . . . , r

t
ij

)
= ∪

γ
δ(1)
ij ∈r

δ(1)
ij ,...,γ

δ(t)
ij ∈r

δ(t)
ij

×

1−
1−

n∏
j=1

[
1−

(
1− γ δ(k)ij

)λ]ϕk1/λ
,

where ϕk is the weight of the kth ordered position in
(rδ(1)ij , rδ(2)ij , . . . , rδ(t)ij ), (rδ(1)ij , rδ(2)ij , . . . , rδ(t)ij ) is the reorder-

ing of (r1ij, r
2
ij, . . . , r

t
ij) satisfying r

δ(1)
ij ≥ rδ(2)ij ≥ · · · ≥ rδ(t)ij ,

and
∑t

k=1 ϕk = 1, 0 ≤ ϕk ≤ 1, λ > 0, i ∈ M , j ∈ N , k ∈ T .
Step 2-4′: Determine the weights of criteria in accordance

with Step 2-3 of Model 2 and represent the results as ω =
(ω1, ω2, . . . , ωn)

T .
Step 2-5′: Synthesize the overall assessment infor-

mation {ri |i ∈ M } for criterion level by using the
GHFOWA operator,

ri=GHFOWAλ
(
riδ(1), riδ(2), . . . , riδ(n)

)
=∪γiδ(1)∈riδ(1),...,γiδ(n)∈rin


1−

n∏
j=1

[
1−

(
γiδ(j)

)λ]ωj1/λ
,

or the GHFOWG operator,

ri = GHFOWGλ
(
riδ(1), riδ(2), . . . , riδ(n)

)
= ∪γiδ(1)∈riδ(1),...,γiδ(n)∈rin

×


1−

1−
n∏
j=1

[
1−

(
1− γiδ(j)

)λ]ωj1/λ
,

where (riδ(1), riδ(2), . . . , riδ(n)) is the rearrangement of
(ri1, ri2, . . . , rin) satisfying riδ(1) ≥ riδ(2) ≥ · · · ≥ riδ(n), riδ(j)
is the jth largest in (riδ(1), riδ(2), . . . , riδ(n)), andωj denotes the
weight of the kth position in (riδ(1), riδ(2), . . . , riδ(n)) with the
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following conditions satisfied:
∑n

j=1 ω
k
j = 1, 0 ≤ ωj ≤ 1,

λ > 0, i ∈ M , j ∈ N .
Step 2-6′: Rank ri (i ∈ M) in descending order by using

Definitions 7 and 8 and select the best alternative according
to the ranking.

Next, we use Model 2′ to address the EVB-supplier-
selection problem for this case. During the process, to com-
pare the results from various angles, we assign 0.6 and
0.4 to the AC based on the performance of the decision
team, and also assign the AC ACi (i ∈ M) on each alternative
0.6 and 0.4. In addition, λ is set to unity. Four experiments
are needed for the GHFOWA and GHFOWG operators. The
results are given in Table 10. Note that, during the application
of the GPHFOWA and GPHFOWG operators, the AC value
ACi (i ∈ M) for all alternatives should also be set to 0.6 and
0.4 to ensure comparability. The results obtained by using
the GPHFOWA and GPHFOWG operators are presented
in Table 10.

• For the GHFOWA operator, if ACi = 0.6 (i ∈ M),
A4 is the best supplier; if ACi = 0.4 (i ∈ M), A5
becomes the best supplier. For the GPHFOWA operator,
A4 remains the best supplier independent of whether
ACi = 0.6 or 0.4 (i ∈ M). Thus, we infer that the
results obtained by the GPHFOWA operator are more
robust than those derived by the GHFOWA operator.

• When using the GHFOWG operator with ACi =
0.6 or 0.4 (i ∈ M), A5 remains the best supplier, fol-
lowed by A3. When using the GPHFOWG operator with
ACi = 0.6 or 0.4 (i ∈ M), A3 remains the best supplier,
followed by A5. We cannot differentiate between the
robustness of the two operators. However, as mentioned
above, the results obtained by the GPHFOWG operator
are preferable to those obtained by the GHFOWG oper-
ator.

Based on a comparative analysis, we find that the aggre-
gation operators based on PHFSs, including GPHFWA,
GPHFWG, GPHFOWA, and GPHFOWG, outperform the
aggregation operators based on HFSs including GHFWA,
GHFWG, GHFOWA, and GHFOWG, which indicates that
PHFSs perform better than HFSs for uncertain MCGDM
problems. Themain reasons for this result can be summarized
as follows:

(1) Compared with HFSs, PHFSs introduce a new propor-
tional dimension of information that is mined from the
original assessment information to reduce the uncer-
tainty associated with the original assessment informa-
tion. Thus, MCGDM based on PHFSs can effectively
improve the reliability of decision results.

(2) Instead of aggregation operators, a different type of
information processing is introduced during the aggre-
gation process on the expert level, which is described
in Step 1-2 of Model 1. This information fusion
aims to generate proportional informationwhile reserv-
ing original information as much as possible. Thus,
it can mitigate the risk of information distortion.

In addition, it is easy to operate and has a high degree
of interpretability. For example, the five DMs give the
original assessment information for the performance of
alternative A1 with respect to quality (criterion C2) in
this case study,

{0.8, 0.7}, {0.7}, {0.8}, {0.8, 0.7, 0.6}, {0.8, 0.7}.

By using Step 1-2 of Model 1, we can synthesize the
collective assessment information of A1 for C2:

{(0.8, 0.533), (0.7, 0.433), (0.6, 0.034)},

for which the proportional information has been inte-
grated with the DM weights. The application of Step
1-2′ of Model 1′ leads to the result

{0.727, 0.734, 0.743, 0.745, 0.75, 0.753, 0.76,

0.76, 0.7688, 0.77, 0.774, 0.783}.

Evidently, the new type of information fusion on the
expert level is preferable.

(3) The aggregation operators based on HFSs and PHFSs
necessitate all possible combinations of individual
arguments. In the context of MCGDM, the aggregation
operators based on PHFSs only need to be executed
once, but the aggregation operators based on HFSs
need to be executed twice, easily leading to information
distortion and the combinatorial-explosion problem in
combinatorics. Thus, the processing of the proposed
MCGDM model based on PHFSs requires less com-
puting time and is more efficient.

D. DISCUSSION
This section summarizes the conclusions obtained by the case
study.
(1) The case study further verifies the theorems given

in Sec. 3; namely, that the score determined by the
GPHFWA or GHPFOWA operator increases with
increasing λ, the score obtained by the
GPHFWG or GPHFOWG operator decreases with
increasing λ, the scores obtained by the GPHFWA
operator are always greater than those obtained by
the GPHFWG operator, and the scores derived by the
GPHFOWA operator are always greater than those
obtained by the GPHFOWG operator.

(2) Based on this case study, we find that the GPH-
FWA and GPHFOWA operators have a higher level
of compensation than the GPHFWG and GPHFOWG
operators, respectively. But the results obtained by the
GPHFWG and GPHFOWG operators are preferable.
In addition, the compensation level for the GPHFWA
and GPHFOWA operators increases with increasing λ,
whereas the compensation level for the GPHFWA and
GPHFOWA operators decrease with increasing λ.

(3) Attitudinal character, which can be characterized by
the ORness value and used to guide the aggregation
process, has a remarkable impact on the final ranking
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of alternatives. In fact, the main advantage of OWA
functions over traditional averaging operators is that
the former can flexibly provide an aggregation operator
ranging between min and max by incorporating the
AC of DMs. In addition, the compensation level of
the GPHFOWA and GPHFOWG operators increases
with increasing AC. Furthermore, OWA operators can
flexibly model different degrees of compensation with
the help of the ORness measure. When ORness takes
the value of zero, OWA reduces to the max operator,
which indicates full compensation between criteria.
When ORness takes the value of unity, OWA reduces
to the min operator, which indicates no compensation
between criteria. A positive linear relationship exists
between ORness measure and compensation level.

(4) Based on a comparative analysis, we conclude that
the introduction of PHFSs into the MCGDM pro-
cess under a hesitant, uncertain context is preferable
because the addition of a new information dimension
reduces the uncertainty. In addition, instead of aggre-
gation operators, we propose a method to fuse indi-
vidual assessment information on the expert level and,
simultaneously, transform from FSs or HFSs to PHFSs.
The fusion of information by this method outperforms
its counterpart involving aggregation operators.

Based on these conclusions, we give the following prereq-
uisites for applying each PHFS-based aggregation operator:

(1) When DMs output assessment information with no
AC and have clear preferences on criteria regard-
less of whether the preference information is com-
plete or incomplete, the GPHFWA or GPHFWG oper-
ator can be applied to fuse assessment information dur-
ing the MCGDM process in the hesitant fuzzy context.
For GPHFWA and GPHFWG operators, if limited
compensation exists between criteria, or if DMs hope
to mitigate the influence of outliers, the GPHFWG
operator is more preferable.

(2) When DMs output the hesitant fuzzy assessment infor-
mation under optimistic or pessimistic conditions and
have no preferences for criteria, or if DMs hope to
flexibly choose aggregation operators ranging from the
minimum to the maximum by specifying a parame-
ter, the GPHFOWA or GPHFOWG operator can be
used. Similarly, if limited compensation exists between
criteria, or if DMs hope to mitigate the influence of
outliers, the GPHFOWG operator is more preferable.

VI. CONCLUSION
By introducing a new proportional dimension, PHFSs offer
outstanding advantages for modeling uncertainty. In this
paper, we restrict our attention to expanding PHFS theory in
terms of information fusion, constructing twoMCGDMmod-
els involving PHFS-based aggregation techniques and explor-
ing applications to which the twomodels may be applied. The
three main contributions of this paper are summarized below.

(1) We present some basic operations on PHFSs, develop a
series of aggregation operators for PHFSs, and validate
their properties and relationships. These aggregation
operators include the PHFWA, PHFWG, PHFOWA,
and the PHFOWG operators and their generalized
forms. The introduction of these aggregation operators
lays the theoretical foundation for the application of
PHFSs.

(2) We construct two MCGDM models, one of which is
based on the GPHFWA or GPHFWG operator, and the
other on the GPHFOWA or GPHFOWG operator. For
both models, we provide two methods based on the
maximum entropy principle to determine theweights of
criteria. In addition, we propose a method to transform
FSs or HFSs into PHFSs. The two proposed models
are effective and practical techniques for dealing with
MCGDM problems in a hesitant fuzzy context and can
serve to bridge between theory and practice for PHFSs.

(3) We present a practical case study involving EVB sup-
plier selection as an example of an application of
PHFSs. In this case study, we demonstrate the effective-
ness and feasibility of the proposed MCGDM models,
explore the compensation characteristics and the appli-
cability of the PHFS-based aggregation operators, and
validate the significant advantages of PHFS through a
comparative analysis.

Overall, PHFS deals well with MCGDM problems in a
hesitant fuzzy context, and we propose a series of tech-
niques including aggregation operators, MCGDM models,
a method to transform FSs or HFSs to PHFSs, and meth-
ods to determine criterion weights to explore applications of
PHFSs. The results provide a useful reference when deal-
ing with MCGDM problems in a hesitant fuzzy context.
However, this work also has some limitations, including the
expansion of PHFS-based aggregation operators, such as
(geometric) Bonferroni means [28], [64], power aggregation
operators [65], the proof of compensation characteristics
of PHFS-based aggregation operators, and the impact of
consensus-reaching problems in MCGDM [66], [67]. These
omissions give the main directions for future research.
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