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One of the most widely adopted approaches to define weights for Ordered Weighting
Averaging (OWA) operators consists of using biparametric linear increasing fuzzy linguistic
quantifiers. However, several shortcomings appear when using these quantifiers because
depending on the values of these parameters, the aggregations could be biased or the
extreme values might be completely ignored. In this contribution, the use of Extreme
Values Reductions (EVRs) as fuzzy linguistic quantifiers is proposed to define weights for
OWA operators in order to provide more realistic aggregations. First, the impact of the
parameters of these linear fuzzy linguistic quantifiers in the OWA aggregations is studied.
After that, EVR-OWA operators are introduced as those OWA operators whose weights are
computed by using an EVR as fuzzy linguistic quantifier. It will be shown that when using
EVR-OWA operators to fuse information, the aggregations are non-biased, take into
account more information and the intermediate values are prioritized before the extreme
ones. After proposing several families of EVRs, the generalising potential of the EVR-OWA
operators is shown by proving that every family of symmetric weights for OWA operators
that prioritize the intermediate information are the weights obtained from a certain EVR.
Finally, an illustrative example is provided.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Several real world problems demand the fusion of information or expert knowledge which might be fuzzy or imprecise.
For instance, according to [13], Group Decision Making (GDM) problems require of an aggregation phase which combines the
experts’ preferences to obtain a collective opinion before carrying the exploitation phase out, in which the ranking of the
alternatives to select the best one as solution of the decision problem is established. Even though lots of aggregation oper-
ators have been proposed in the literature [1,2], one of the most widely used is the Ordered Weighted Averaging (OWA)
operator, which assigns weights to the input values according to their order [18,20,21]. In order to compute these weights,
among other proposals [7,11,17], it is common to use the method proposed by Yager [21], which is based on the use of a
biparametric family of linear fuzzy linguistic quantifiers [20] which assigns zero to the values that are close to zero and
one to the values that are close to one.

This approach is simple and effective but it presents important drawbacks regarding the selection of necessary parame-
ters. For instance, the aggregations could produce biased results (orness measure [2] not equal to 0:5) or even do not aggre-
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gate enough information (low entropy measure [2]). In addition, the OWA operator constructed from these linear fuzzy lin-
guistic quantifiers completely ignores the most extreme values in the aggregation process which could lead to non realistic
aggregations. These biased or non realistic aggregations could be a major inconvenient in many real-world applications. For
instance, in consensus processes for GDM [6,9], an OWA operator whose orness is greater than 0.5 tends to prioritize extreme
values close to 1 regarding those close to 0, which is not reasonable because all of them are equally important. Furthermore,
a theoretical consensus reached by completely ignoring the most extreme values would not be realistic. However, it has been
proved that the less extreme information has a cohesive effect and facilitates the agreement among experts [14,15]. There-
fore it seems reasonable to provide new ways of generating OWA weights which prioritize the intermediate information
before the extreme data, as linear fuzzy linguistic quantifiers do, but taking into account more information in the aggregation
process and avoiding biased aggregations in the results.

This work aims at solving three different problems.

i) First, it is necessary to clarify the relation between the biparametric family of linear fuzzy linguistic quantifiers [20] and
the way that these quantifiers fuse the information.
ii) A new proposal is then required to deal with the limitations of these linear fuzzy linguistic quantifiers by keeping their
simplicity and applicability [7] but allowing to generate weights which prioritize the intermediate information in a non
biased way.
iii) Finally, the abstract conditions required to generate the aforementioned weights are discussed.

Therefore, we raise the following research questions:

� RQ1: How do the parameters of the linear fuzzy linguistic quantifiers impact the aggregation of information?
� RQ2: How to fuse information in a more realistic way than by using the linear fuzzy linguistic quantifier?
� RQ3: What properties share those linguistic quantifiers whose associated OWA weights allow to fuse information sym-
metrically by prioritizing the intermediate values?

Consequently, this proposal analyzes the impact in the aggregation of information of the parameters of these widely
extended linear fuzzy linguistic quantifiers [20] and shows their main shortcomings. We then propose an abstract novel
extension of OWA operators which uses an Extreme Values Reduction (EVR) [4] as a fuzzy linguistic quantifier instead of
the traditional linear fuzzy linguistic quantifier. The resulting operator is characterized for assigning weights to information
depending on its degree of polarization, such that the most important values are the intermediate ones and their importance
(weight) progressively decreases for the most extreme values. In addition, this novel EVR-OWA operator provides a non
biased way to fuse information which takes into account almost as much information as the arithmetic mean operator,
which is the one with higher entropy measure [2]. Furthermore, the generalizing potential of this EVR approach is high-
lighted by showing that any family of positive symmetric weights which prioritize the intermediate information, like the
ones studied in [17], are actually EVR-OWA weights.

The structure of this contribution is as follows: Section 2 is a brief review about OWA operators and fuzzy linguistic quan-
tifiers. In Section 3 the impact of the parameters of linear fuzzy linguistic quantifier in the aggregation of information is ana-
lyzed and the main shortcomings of this approach are exposed. Section 4 introduces the main proposal of this contribution,
the EVR-OWA operator, and studies some of its main properties. Section 5 completes this proposal by providing several fam-
ilies of EVRs. In Section 6, the relation between symmetric weights for OWA operators and EVRs is studied. In Section 7, an
illustrative example of aggregations by using this EVR-OWA operator is developed. Section 8 summarizes the main contri-
butions of this work. Finally, Section 9 concludes this contribution.

2. Preliminaries

This section provides a brief review about OWA operators [20] and Yager’s method [21] to compute their weights with a
fuzzy linguistic quantifier, which is the starting point of our proposal. Finally, the notion of EVR [4] is introduced.

2.1. Ordered weighted averaging operators

The Ordered Weighted Averaging (OWA) operators [20] are a family of aggregation functions which generalizes the
notion of arithmetic mean.

Definition 1 (OWA Operator). Let x 2 0;1½ �m be a weighting vector (x 2 0;1½ �m;Pm
i¼1xi ¼ 1). The OWA Operator

Ux : 0;1½ �m ! 0;1½ � associated to x is given by:
Ux x!
� �

¼
Xm
i¼1

xixr ið Þ8 x!2 0;1½ �m
where r is a permutation of the m-tuple 1;2; . . . ;mð Þ which satisfies xr 1ð Þ P xr 2ð Þ P . . . P xr mð Þ.
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Remark 1. If x ¼ 1;0; . . . ;0ð Þ 2 0;1½ �m, the corresponding OWA Operator is the maximum operator, whereas when
x ¼ 0;0; . . . ;1ð Þ 2 0;1½ �m the respective OWA Operator is the minimum operator. For x ¼ 1

m ; 1m ; . . . ; 1m
� � 2 0;1½ �m, the OWA

Operator associated to x is the arithmetic mean.
OWA operators have several remarkable properties such as the facts that they are idempotent non decreasing functions

which are continuous, symmetric, homogeneous and shift-invariant [2].
There are different measures to study the behavior of an OWA Operator. Among the most extended measures are the

arithmetic mean and the standard deviation of the weights. Other useful measures are the Orness and the entropy measures
[2].

The orness measure of an OWA Operator quantifies the similarity between this OWA Operator and the maximum oper-
ator. It is given by
orness Uxð Þ ¼
Xm
i¼1

xi
m� i
m� 1

:

And, when m is large enough [10]:
orness Uxð Þ �
Z 1

0
Q tð Þdt
When the coordinates of the weighting vector are increasing, i.e. w1 6 w2 6 . . . 6 wm; orness Uxð Þ 2 1
2 ;1
� �

whereas when
these coordinates are decreasing, i.e. w1 P w2 P . . . P wm; orness Uxð Þ 2 0; 12

� �
[2]. In addition, it is known that the orness

measure equals to 0:5 if and only if the weights are symmetric, i.e. wk ¼ wm�kþ18k ¼ 1;2; . . . ;m [2]. In particular, the orness
measure for the arithmetic mean operator, in which all the weights are the same, is equal to 1

2.
The entropy measure, or simply entropy, quantifies how much information is taken into account during the aggregation

process. It is given by
Entropy Uxð Þ ¼ �
Xm
i¼1

xi logxi;
If no orness measure is specified, the weighting vector which maximizes the Entropy is the associated with the arithmetic
mean operator [2].
2.2. Using fuzzy linguistic quantifiers to compute weights

Among others proposals [5] to compute OWA weights, Yager proposed the use of fuzzy linguistic quantifiers [22] to
obtain the weights for OWA Operators [21].

Fuzzy linguistic quantifiers are fuzzy subsets Q : 0;1½ � ! 0;1½ � of the unit interval 0;1½ � and they were classified by Yager
as follows [19]:

� Regular Increasing Monotone (RIM) quantifiers, i.e. Q 0ð Þ ¼ 0;Q 1ð Þ ¼ 1;Q xð Þ 6 Q yð Þ8x 6 y,
� Regular Decreasing Monotone (RDM) quantifiers, i.e. Q 0ð Þ ¼ 1;Q 1ð Þ ¼ 0;Q xð Þ P Q yð Þ8x 6 y,
� Regular UniModal (RUM) quantifiers, i.e. Q 0ð Þ ¼ 0;Q 1ð Þ ¼ 0;Q xð Þ 6 Q yð Þ8x 6 y; y < a;Q xð Þ ¼ 18x 2 a; b½ �, and
Q xð Þ P Q yð Þ8x 6 y; x > b for some a; b 2 0;1½ � such that a < b.

Yager introduced the use of RIM quantifiers for generating the weights [21] according to the following formula:
wk ¼ Q
k
m

� 	
� Q

k� 1
m

� 	
for k ¼ 1;2; . . . ;m
The OWA operators based on linear fuzzy linguistic quantifiers have been widely used in the literature [12]. One of the
most common approaches consists of using the linear RIM quantifier Qa;b : 0;1½ � ! 0;1½ � given by:
Qa;b xð Þ ¼
0 0 6 x < a
x�a
b�a a 6 x 6 b

1 x > b

8><>: ;
where a < b are two parameters in the interval 0;1½ �. Several consensus models for GDM problems [6,10] have used this
method to compute the weights of their aggregations since they allow to adjust the importance of the intermediate infor-
mation by adjusting the value of a and b.
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2.3. Extreme values reductions

García-Zamora et al. [4] studied the effect of remapping experts’ preferences by using non linear scales in consensus mod-
els for GDM. To do that, the notion of EVR was introduced as those automorphisms on the interval 0;1½ �, i.e. strictly increas-
ing bijections which satisfy the boundary conditions D 0ð Þ ¼ 0 and D 1ð Þ ¼ 1. These functions are characterized by reducing
the distance between the values which are close to 0 and 1. Formally:

Definition 2 (Extreme Values Reduction [4]). Let bD : 0;1½ � ! 0;1½ � be a function satisfying:

1. bD is an automorphism on the interval 0;1½ �,
2. bD is a function of class C1, i.e. it is differentiable and its derivative is continuous,

3. bD satisfies bD xð Þ ¼ 1� bD 1� xð Þ8x 2 0;1½ �,
4. bD0 0ð Þ < 1 and bD0 1ð Þ < 1,

5. bD is convex in a neighborhood of 0 and concave in a neighborhood of 1,

Then bD is called an Extreme Values Reduction (or EVR) on the interval 0;1½ �.
It was shown [4] that these EVR functions satisfy the following properties.

Theorem 1. Let bD : 0;1½ � ! 0;1½ � be an EVR on 0;1½ �. Then:

1. The function dbD : 0;1½ � � 0;1½ � ! 0;1½ � given by
dbD x; yð Þ ¼ jbD xð Þ � bD yð Þj8x; y 2 0;1½ �;

is a Restricted dissimilarity [3] and the function SbD : 0;1½ � � 0;1½ � ! 0;1½ � defined by

SbD x; yð Þ ¼ 1� jbD xð Þ � bD yð Þj8x; y 2 0;1½ �:

is a Restricted Equivalence Function [3].
2. We can find three intervals I1; I2; I3 � 0;1½ � such that 0 2 I1;1 2 I3, and I1 < I2 < I3 satisfying that
jbD yð Þ � bD xð Þj < jy� xj8x; y 2 I1 : x – y;

jbD yð Þ � bD xð Þj > jy� xj8x; y 2 I2 : x – y;

jbD yð Þ � bD xð Þj < jy� xj8x; y 2 I3 : x – y:

3. The graph of bD is under the diagonal of the square 0;1½ � � 0;1½ � for values close enough to 0 and it is over the same diagonal for
those values close enough to 1,

4. There exist a neighborhood U0 containing 0 and a neighborhood U1 containing 1 such that for every x; y 2 U�
0; x < y, there exists

h0 > 0 such that the inequality jbD xð Þ � bD x� tð Þj 6 jbD yð Þ � bD y� tð Þj holds for any t 2 0;h0½ � and for every x; y 2 U�
1; x < y,

there exists h1 > 0 such that the inequality jbD x� tð Þ � bD xð Þj P jbD y� tð Þ � bD yð Þj holds for any t 2 0;h1½ �.

Note that EVRs deform the unit interval in a very particular way. According to the second thesis of the previous Theorem,
when using an EVR the distances between extreme values (those which are close to 0 or 1) are decreased, whereas the dis-
tances between certain intermediate values are increased. In addition, the forth thesis of that result guarantees that the dis-
tances among extreme values are progressively reduced when the values become closer to 0 or 1.

3. On the drawbacks of the linear RIM quantifier for computing OWA weights

In this section, it is analyzed the implications of choosing the weighting vector by using the linear RIM quantifier defined
in the previous section.

Suppose 0 < a < b < 1. Then for any k 6 am we obtain xk ¼ 0. When k P mbþ 1, we also get wk ¼ 0. If ma > k but
k� 1 6 ma we obtain
wk ¼ k�ma
m b� að Þ :
In the case mb 6 k and k� 1 < mb:
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wk ¼ 1� k� 1ð Þ �ma
m b� að Þ ¼ mb� kþ 1

m b� að Þ :
The remaining case amþ 1 < k < mb is reduced to:
wk ¼ k�ma
m b� að Þ �

k� 1�ma
m b� að Þ ¼ 1

m b� að Þ :
The previous discussion is summarized in the following result.

Proposition 1. The weights for the m-dimensional OWA operator obtained from the linear RIM quantifier Qa;b are given by
wk ¼

0 1 6 k 6 am
k�ma
m b�að Þ ma < k 6 amþ 1

1
m b�að Þ amþ 1 < k < mb

mbþ1�k
m b�að Þ mb 6 k < mbþ 1

0 bmþ 1 6 k 6 m

8>>>>>>><>>>>>>>:
; ð1Þ
where k ¼ 1;2; . . . ;m.
Note that for any k 6 ma, all the weightswk are zero and the same occurs when k P bmþ 1. In terms of the OWA operator

associated to these weights, this fact means that the operator ignores the first ma values and the last m� bmþ 1ð Þ values. In
other words, the greater a, the less top ranked values are considered for the OWA aggregation. In the same way, the less
value of b, the less bottom ranked values are considered for OWA aggregation. Depending on the choice of a and b, the
ignored values could be high enough to declare non realistic any aggregation which is based in this linear RIM quantifier.
Keep in mind, that OWA operators order the values to aggregate before applying the weights. So, the ignored information
is the corresponding to the most extreme values (polarized, if polarization exist in such a set of values) among the elements
to be aggregated.

In addition, if non biased aggregations are required, the orness measure of the corresponding OWA operator must be
equal to 0:5. For instance, if the orness measure is greater than this value, the aggregation would swing towards the max-
imum, giving more importance to the values greater than the median value of the elements which are being aggregated. The
following result provides a relation between the parameters a and b which characterizes non biased aggregations.

Proposition 2. The orness measure for the OWA operator associated with the linear RIM quantifier Qa;b equals to 0:5 if and
only if aþ b ¼ 1.
Proof. According to [2], the orness measure of an OWA operator equals to 0:5 if and only if the associated weights are sym-
metric. It is clear that if aþ b ¼ 1, the weights provided by the linear RIM quantifier Qa;b are symmetric and consequently the
orness measure equals to 0:5.

To prove the reciprocal assumption, fix m 2 N and 0 6 a < b 	 1 fixed and consider
k1 :¼ Eþ ma½ � ¼ min
k¼1;2;...;m

k : wk – 0f g
k2 :¼ Eþ mb½ � ¼ max

k¼1;2;...;m
k : wk – 0f g;
where Eþ : R ! Z denotes the ceiling function. Note that Proposition 1 allows to study the symmetry of the weights
w1;w2; . . . ;wm by just looking at wk1 andwk2 . Therefore, if the weights are symmetric, the following chain of equalities holds:
wk1 ¼ wk2 ¼ wm�k2þ1:
From the first one, the constrain k1 �ma ¼ mbþ 1� k2 is obtained, whereas comparing the first term and the last one leads
to k1 þ k2 ¼ mþ 1. If these constraints are combined, aþ b ¼ 1 is obtained.

This fact induces a constraint for a and b. If they are not chosen in a symmetric way, i.e. b ¼ 1� a, the aggregation gives
more importance to certain extreme values, and this may have no sense when applied in some real world problems like con-
sensus models for GDM.

Example 1. Consider a problem in which five experts express their preferences through the vector
P ¼ P1; P2; P3; P4; P5ð Þ ¼ 1;1;0:75;0:5;0:5ð Þ on how much they prefer the alternative X1 to the alternative X2. When using
the linear RIM quantifier Qa;b for a ¼ 0:4 and b ¼ 0:8, the obtained weights are w ¼ w1;w2;w3;w4;w5ð Þ ¼ 0;0;0:5;0:5;0ð Þ.

Note that the orness of the corresponding OWA operator is 1� 0:4þ 0:8ð Þ=2 ¼ 0:4. In practice, this means that the fusion
of information does not prioritize the most intermediate values, i.e. the ones which are around the median value of the
preferences. On the contrary, the aggregations made by this OWA operator prioritize the values which are slightly deviated
to the lower values of the preferences.
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For instance, when fusing the preferences in the previous problem, the aggregation of these preferences is
0:5 
 0:75þ 0:5 
 0:5 ¼ 0:625, which is deviated from the median value of preferences, i.e. 0:75. Note that this deviation
implies introducing a bias in the computations because equally extreme values of the preferences are not weighted in the
same way: the distance between the median value and both P2 and P4 are the same, but this is not reflected in the
aggregations made by this operator, which prioritize the value P4 because it is lower than the median value.

In addition, note that we have just three possibilities for the value of wk:

� wk ¼ 0, for the most extreme values,
� 1

m b�að Þ, which is much higher than 1
m, for most of the intermediate values,

� k�ma
m b�að Þ or

mbþ1�k
m b�að Þ , which are lower than 1

m b�að Þ, for at most two of the possible values of k.

The fact that there are just a few possible values for the weights is somehow against the fuzzy logic view. It should be
convenient that the values of the weights change smoothly from the minimum possible value to the maximum one, instead
of changing drastically from zero to 1

m b�að Þ as it occurs with the weights associated to the linear RIM quantifier Qa;b.

To summarize, the main shortcomings of the linear RIM quantifier (see Fig. 1) are:

� If a is too high or b is too low, the aggregations are non realistic because we are ignoring too many extreme values,
� If aþ b – 1 the results of the aggregations are biased,
� The obtained weights are against the fuzzy logic philosophy.

Therefore, we propose an alternative method to select such OWA weights which guarantees not only to take into account
the more extreme values, but also allows the user to control the relevance given to these values. Our aim is to aggregate
elements in a more realistic non biased way.

4. An OWA operator based on Extreme Values Reductions

This section presents the main novelty of this contribution, namely EVR-OWA operator. This operator is based in the
notion of Extreme Values Reduction, detailed in SubSection 2.3. The properties of EVRs are applied to construct an OWA
Operator which has similar measures to the arithmetic mean but giving more importance to the intermediate values and
less importance to the more extreme values to smooth out the importance of polarized opinions in GDM, but taking them
into account instead of ignoring them.

Let us start by analysing the fourth thesis of Theorem 1. Consider an EVR bD : 0;1½ � ! 0;1½ � which is convex in 0;0:5½ � and
concave in 0:5;1½ �. Suppose we have a partition of the interval 0;1½ �. For instance, we can take m 2 N and define
xk ¼ k
m

;8k 2 1;2; . . . ;mf g
Since bD is convex in 0;0:5½ �, for any k1 6 k2 such that xk1 ; xk2 2 1
m ; 12
� �

we obtain
Fig. 1. Flowchart summarizing drawbacks of linear RIM quantifiers when used in OWA operators.

588



D. García-Zamora, Á. Labella, R.M. Rodríguez et al. Information Sciences 584 (2022) 583–602
jbD xk1
� �� bD xk1 �

1
m

� 	
j 6 jbD xk2

� �� bD xk2 �
1
m

� 	
j:
In other words, the more closer xk is to 0, the smaller the difference jbD xkð Þ � bD xk � 1
m

� �j. A similar reasoning leads us to the

concave counterpart of this: the more closer xk is to 1, the smaller the difference jbD xkð Þ � bD xk � 1
m

� �j.
This reasoning and the fact that EVRs are RIM quantifiers allow to define the weights of an OWA operator by using the

general scheme introduced by Yager [21].

Definition 3. [EVR-OWA Operator] Let bD be an Extreme Values Reduction and consider m 2 N. We define
wk ¼ bD k
m

� 	
� bD k� 1

m

� 	
8k 2 1;2; . . . ;mf g:
The familyW ¼ w1;w2; . . . ;wmf g receives the name of ordermweights associated with the EVR bD, and the OWA- operator
given by UbD : 0;1½ �m ! 0;1½ � defined by
UbD x1; x2; . . . ; xmð Þ ¼
Xm
k¼1

wkxr kð Þ;

8 x1; x2; . . . ; xmð Þ 2 0;1½ �m;

where r is a permutation of the m-tuple 1;2; . . . ;mð Þ which satisfies xr 1ð Þ P xr 2ð Þ P . . . P xr mð Þ.

We highlight the philosophy behind this operator. As any OWA operator, UW starts by ordering the values x1; x2; . . . ; xm
from the largest one, to the smallest one. When we use these weights, those values of x which are closer to extremes, i.e.
the largest ones, and the smallest ones, are matched with the smallest weights while the intermediate values of x are
matched with the highest wk’s. Hence, this operator aggregates elements by assigning more relevance to the intermediate
values of the elements which aggregates, and giving less importance to the more extreme elements, but taking them into

account since bD is strictly increasing and therefore those weights can not be zero.

Let us analyze some properties of these weights. First note that since bD is strictly increasing, all of these weights are
greater than zero. In addition,
Xm

k¼1

wk ¼
Xm
k¼1

bD k
m

� �� bD k�1
m

� � ¼
¼ bD 1ð Þ � bD 0ð Þ ¼ 1;
and they are properly defined.

By using the third condition of the EVR definition, i.e. bD xð Þ ¼ 1� bD 1� xð Þ8x 2 0;1½ �, we get:
bD k
m

� � ¼ 1� bD 1� k
m

� � ¼ 1� bD m�k
m

� �
;bD k�1

m

� � ¼ 1� bD 1� k�1
m

� � ¼ 1� bD m�kþ1
m

� �
;

therefore
wk ¼ bD k
m

� �� bD k�1
m

� � ¼
¼ bD m�kþ1

m

� �� bD m�k
m

� � ¼ wm�kþ1:
This symmetry and the fifth property of EVRs, used as we have explained before, give us an idea of the distribution of
these weights. On the one hand, the smallest values of wk are always located at k ¼ 1 and k ¼ m, i.e.
wmin ¼ w1 ¼ D
1
m

� 	
¼ 1� D 1� 1

m

� 	
¼ wm:
We know that these weights are matched by pairs. So there is a minimum value at w1 and the values of the weights
strictly increase until a certain maximum value wmax and then, because of the symmetry wk ¼ wm�kþ1, the values of the
weights start to decrease towards the value wm ¼ w1. The maximum value for wk depends on the parity of m. When m is
even, the maximum value is at k ¼ m

2 due to wm
2
¼ wm�m

2þ1 ¼ wmþ2
2
. When m is odd, the maximum value is at k ¼ mþ1

2 :
wmax ¼
wm

2
if m is even

wmþ1
2

if m is odd

(
;

Let us remark here that wmax is a kind of median value for the weights.
Note that the arithmetic mean of these weights is
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w ¼ 1
m

Xm
k¼1

wk ¼ 1
m

:

and the orness measure of the corresponding OWA operator must be equal to 0:5 because the weights are symmetric [1]. So

orness UbD� �
¼ 0:5 for any EVR bD and any m 2 N.

To conclude this section, the main advantages of EVR-OWA operators are summarized (see Fig. 2). First, since their orness
measure is equal to 0:5, the weights are symmetrically distributed and the aggregations give equal importance to the
extreme values. In addition, all the weights are positive and the most extreme values are always considered in the aggrega-
tion process. Finally, they are simple to compute and the corresponding EVR can be used as RIM Quantifier in any scenario in
which weights are required to prioritize intermediate values.

5. Examples of EVR-OWA operators

In this section several families of EVRs are introduced, complementing the examples of EVAs proposed in [4]. For the EVR-
OWA operator associated to these families, their main measures, namely the arithmetic mean, the orness measure, the stan-
dard deviation and the entropy measure, are studied.

5.1. The EVR-OWA associated to ŝa

Let a 2�0; 1
2p ½ and consider the EVR sa : 0;1½ � ! 0;1½ � given by
ŝa xð Þ ¼ xþ a 
 sin 2px� pð Þ8x 2 0;1½ �:

The following result summarizes the performance of the EVR-OWA operator associated to ŝa regarding its main measures:

Proposition 3. Let a 2�0; 1
2p ½ and m 2 N;m > 1 and consider the EVR-OWA operator of order m U : 0;1½ �m ! 0;1½ � associated

to the EVR ŝa and the respective weighting vector w ¼ w1;w2; . . . ;wmð Þ. Then

� The arithmetic mean of the weights is given by w ¼ Pm
k¼1

wk
m ¼ 1

m,
� The orness measure of the OWA operator is orness Uð Þ ¼ 0:5,
� The standard deviation of the weights is bounded by rw 6 a 2p

m 2�0;1=m�.
Proof. The two first items are consequence of the discussion made in the previous section. In order to show the third one, let
us study the difference jwk �wj:
Fig. 2. Flowchart summarizing the main advantages of the EVR-OWA operator.
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Table 1
Measur

EVR

ŝ0
ŝ0:04
ŝ0:08
ŝ0:09
ŝ0:15
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jwk �wj ¼ ĵsa k
m

� �� ŝa k�1
m

� �� 1
m j ¼

ĵsa k
m

� �� ŝa k�1
m

� �� k�kþ1
m j ¼

ĵsa k
m

� �� k
m þ k�1

m þ ŝa k�1
m

� �j ¼
aj sin 2pk=m� pð Þ � sin 2p k� 1ð Þ=m� pð Þj ¼
ajcos nð Þj 2pð Þ=m
where n is given by the Mean Value Theorem. Therefore:
jwk �wj 6 a
2p
m

8k 2 1;2; . . . ;mf g
and therefore the standard deviation of the wk’s is bounded by
ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
k¼1

wk � �wð Þ2
vuut 6 a

2p
m

which is a small value for m highly enough and a 2�0; 1
2p ½.

For m ¼ 100, Table 1 shows the calculations of the most standard measures for the weights obtained for different values
of a (keep in mind that for a ¼ 0 we get the weights associated to the arithmetic mean operator). In Fig. 3 we show the com-
parison between values of the weights obtained for several values of a.

In order to analyze the behavior of the entropy measure for this EVR-OWA operator, we provide the plot in Fig. 4. For each
fuzzy linguistic quantifier, namely the identity function (arithmetic mean), ŝ0:08; ŝ0:15 and Q0:2;0:8, the values of the entropy
measure of the corresponding OWA operator have been computed for m ¼ 2;3; . . . ;1000. The graph shows that the OWA
operators constructed from these EVRs present higher entropy than the linear RIM quantifier Q0:2;0:8.

5.2. The EVR-OWA associated to m̂a

Let a > 1 and consider the EVR m̂a : 0;1½ � ! 0;1½ � given by
m̂a xð Þ ¼
1
2 � 1

2 1� 2xð Þ1a 0 6 x < 1
2

1
2 þ 1

2 2x� 1ð Þ1a 1
2 6 x 6 1

8<: :
Remark 2. Note that m̂a is not an EVR strictly speaking since it is not differentiable in x ¼ 1
2. However,

limx!1
2�f

0 xð Þ ¼ limx!1
2þf

0 xð Þ ¼ þ1 and therefore there is no problem with considering it as an EVR.
The following result summarizes the performance of the EVR-OWA operator associated to m̂a regarding its main
measures:

Proposition 4. Let a > 1 and m 2 N;m > 1 and consider the EVR-OWA operator of order m U : 0;1½ �m ! 0;1½ � associated to
the EVR m̂a and the respective weighting vector w ¼ w1;w2; . . . ;wmð Þ. Then
� The arithmetic mean of the weights is given by w ¼ Pm
k¼1

wk
m ¼ 1

m,
� The orness measure of the OWA operator is orness Uð Þ ¼ 0:5,
� The standard deviation of the weights is bounded by rw 6 1 ffiffi

aa�1p 1� 1
a

� � 2�0;1�.
es for ŝa , m ¼ 100.

Orness Entropy Mean SD Min Max

0.5 4.6051 0.01 0 0.01 0.01
0.5 4.5892 0.01 0.0017 0.0074 0.0125
0.5 4.5398 0.01 0.0035 0.0049 0.0150
0.5 4.5216 0.01 0.0039 0.0043 0.0156
0.5 4.3443 0.01 0.0066 0.0005 0.0194
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Fig. 3. Comparison of wk for different ŝa;m ¼ 100.

Fig. 4. Graph of the entropy function for several fuzzy linguistic quantifiers.
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Proof. The two first items are consequence of the discussion made in the previous section. In order to show the third one, let
us study the difference jwk �wj. To do that, let us consider the function g : 0:5;1½ � ! 0:5;1½ � given by

g xð Þ ¼ m̂a xð Þ � x8x 2 0:5;1½ �, which reach its maximum value at x0 ¼ 1
2

ffiffi
1
a

a�1
q

þ 1
� �

. In that case:
jm̂a xð Þ � xj 6 g x0ð Þ ¼ 1
2

ffiffiffi
aa�1

p 1� 1
a

� 	
:

Now we can compute:
jwk �wj ¼ jm̂a
k
m

� �� m̂a
k�1
m

� �� 1
m j ¼

jm̂a
k
m

� �� m̂a
k�1
m

� �� k�kþ1
m j ¼

jm̂a
k
m

� �� k
m þ k�1

m � m̂a
k�1
m

� �j ¼
6 2

2
ffiffi
aa�1p 1� 1

a

� �
:

So
jwk �wj 6 1 ffiffiffi
aa�1

p 1� 1
a

� 	

and
ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
k¼1

wk �wð Þ2
vuut 6 1 ffiffiffi

aa�1
p 1� 1

a

� 	
:

Let us study this bound. Consider the function h :�1;1 ! R½ , defined by
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Table 2
Measur

EVR

m̂1

m̂1:35

m̂2

m̂3:39

m̂5

m̂10
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h að Þ ¼ 1 ffiffiffi
aa�1

p 1� 1
a

� 	
¼ a �1

a�1 1� 1
a

� 	
;8a 2�1;1½
Note that lima!1h að Þ ¼ 0 and
lim
a!1

h að Þ ¼ lim
a!1

a �1
a�1 1� 1

a

� � ¼
lim
a!1

exp �1
a�1 log að Þ� �

1� 1
a

� � ¼ 1
In order to study h0, note that for any A � Rþ and f : A ! R, the derivative of the function g : A ! R defined by
g xð Þ ¼ xf xð Þ ¼ exp f xð Þ log xð Þð Þ8x 2 A is given by
g0 xð Þ ¼ xf xð Þ f 0 xð Þ log xð Þ þ f xð Þ
x

� 	
8x 2 A:
In that case
h0 að Þ ¼ a �1
a�1þ

a� 1ð Þa �1
a�1

� a�1ð Þþa
a�1ð Þ2 log að Þ � 1

a�1

� �
¼

a �1
a�1 1þ log að Þ

a�1 � 1
� �

¼
a �1
a�1

log að Þ
a�1 P 08a 2�1;1½
So h is increasing and ra 2�0;1½ for any value of a.
For m ¼ 100 we show the results of the calculations for most standard measures for the weights in Table 2 (in this case,

the weights associated to the arithmetic mean operator are given by a ¼ 1). In Fig. 5 we show the comparison between val-
ues of the weights obtained for the different values of a. In order to analyze the behavior of the entropy measure for this EVR-
OWA operator, we provide the plot in Fig. 6. For each fuzzy linguistic quantifier, namely the identity function (arithmetic
mean), m̂1:5; m̂2; m̂3 and Q0:2;0:8, the values of the entropy measure of the corresponding OWA operator have been computed
form ¼ 2;3; . . . ;1000. The graph shows that the OWA operators constructed from these EVRs present higher entropy that the
linear RIM quantifier Q0:3;0:7.
es for m̂a , m ¼ 100.

Orness Entropy Mean SD Min Max

0.5 4.605 0.01 0 0.01 0.01
0.5 4.5581 0.01 0.0034 0.0074 0.0275
0.5 4.3421 0.01 0.0098 0.0050 0.0707
0.5 3.8057 0.01 0.0219 0.0029 0.1576
0.5 3.3090 0.01 0.0317 0.0020 0.2286
0.5 2.4379 0.01 0.0470 0.0010 0.3381

Fig. 5. Comparison of wk for different m̂a;m ¼ 100.
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Fig. 6. Graph of the entropy function for several fuzzy linguistic quantifiers.
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5.3. The EVR-OWA associated to b̂r;s
a

Let us consider now the automorphism f a : 0;1½ � ! 0;1½ � given by
Table 3
Useful c

r

0.6

0.5

0.55
f a xð Þ ¼ xa8x 2 0;1½ �;

where 0 < a < 1 and let h : a; b½ � ! a; b½ � be the standard affine transformation given by
h xð Þ ¼ b� a
b� a

� 	

 x� að Þ þ a;8x 2 a;b½ �:
By using similar arguments that the ones applied in [4] the following result is clear.

Proposition 5. Consider r; s 2� 12 ;1½ such that r < s;a 2�0;1½ and � 2�0;1½ and the standard affine transformations:
ha :
1
2 ; r
� � ! 1

2 ; s
� �

hb : r;1½ � ! �;1½ �
hc : �a;1½ � ! s;1½ �:
Then the function b̂r;s
a : 0;1½ � ! 0;1½ � given by
b̂r;s
a xð Þ ¼ 1� b� 1� xð Þ 0 6 x < 1

2

b� xð Þ 1
2 6 x 6 1

(
: ð2Þ
where b� : 1
2 ;1
� � ! 1

2 ;1
� �

is defined by
b� xð Þ ¼ ha xð Þ 1
2 6 x 6 r

hc � f a � hb xð Þ r < x 6 1

(

is an EVR if and only if the following equality holds
k ¼ s� 1
2

r � 1
2

¼ 1� s
1� r

1� �
1� �a

a�a�1;
where k is the derivative of ha and indicates how much the intermediate values further apart.
Some useful combinations of these parameters are shown in Table 3.
Let us analyse the special case r ¼ s ¼ 1=2. Note that this assumption implies that the affine transformation ha disappears
ombinations of parameters for the EVR b̂r;s
a .

s k a �

0.75 2.5 1
3

0.043034

0.5 2 1
2

0.111177

0.6 2 1
2

0.081757
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and b1 xð Þ ¼ hc � f a � hb xð Þ8x 2 1
2 ;1
� �

.
Define g :�0;1 ! R½ by
Table 4
Measur

EV

b̂11
b̂0:551=2

b̂0:551=3

b̂21=
g �ð Þ ¼ a
�a�1 � �a

1� �a
8� 2�0;1½
Note that lim�!0g �ð Þ ¼ þ1 and
lim
�!1

g �ð Þ ¼ lim
�!1

a�a�1 1� �
1� �a

¼ 1
In addition
g0 �ð Þ ¼ a
1��að Þ2 a� 1ð Þ�a�2 � a�a�1

� �
1� �að Þ þ �a�1 � �a

� �
a�a�1

� � ¼
¼ a�a�2

1��að Þ2 a� 1� a�ð Þ 1� �að Þ þ a �a � �aþ1
� �� � ¼

¼ a�a�2

1��að Þ2 a 1� �ð Þ 1� �að Þ � 1� �að Þ þ a�a 1� �ð Þð Þ ¼
¼ a�a�2

1��að Þ2 a 1� �ð Þ � 1� �að Þð Þ
8� 2�0;1½
To study the sign of g0 let us consider h :�0;1 ! R½ defined by
h �ð Þ ¼ a 1� �ð Þ � 1� �að Þ8� 2�0;1 :½

Since h0 �ð Þ ¼ a �a�1 � 1

� �
> 08� 2�0;1½ and lim�!0h �ð Þ ¼ a� 1; lim�!1h �ð Þ ¼ 0 we can conclude that h < 0 in its domain

and therefore g0 �ð Þ < 08� 2�0;1½ In that case g is strictly decreasing and its codomain is �1;þ1½. This fact allows to state
the following result.

Proposition 6. Let � 2�0;1 ;a 2½ �0;1½ and consider the standard affine transformations hb : 1
2 ;1
� � ! �;1½ � and

hc : �a;1½ � ! 1
2 ;1
� �

and the function b̂1 : 1
2 ;1
� � ! 1

2 ;1
� �

defined by b̂� xð Þ ¼ hc � f a � hb xð Þ8x 2 1
2 ;1
� �

.

Then, for every k 2�1;1½ we can find � 2�0;1½ (i.e. the unique one which satisfies k ¼ a �a�1��a
1��a ) such that the function

b̂ka : 0;1½ � ! 0;1½ � defined by
b̂k
a xð Þ ¼ b̂� xð Þ 1

2 6 x 6 1

1� b̂� 1� xð Þ 0 6 x 6 1
2

(
;

is an EVR such that b̂k
a

� �0
1
2

� � ¼ k.

Note that by taking � ¼ 0 we would obtain the m̂a family of EVRs.
It should be highlighted that the previous reasoning allows to deduce the existence and unicity of a value � which guar-

antees that the EVRs br;s
a is well defined for 1

2 < r < s < 1 and a 2�0;1½.

Proposition 7. Consider r; s 2� 12 ;1½ such that r < s;a 2�0;1½ and � 2�0;1½. Then there exist a unique � 2 0;1½ � such that
s� 1
2

r � 1
2

¼ 1� s
1� r

1� �
1� �a

a�a�1:
In the following, we use the notation br;s
a for the unique EVR which could be defined for the parameters r < s and a.

The quality measures for the OWA weights generated for some of these EVRs for the order 100 case are sumarised in

Table 4 and the respectively obtained weights are sketched in Fig. 7. Note that when using the family b̂r;s
a all the weights

in the interval 0:5� r;0:5þ r½ � remain the same and their value depend on the value of s�0:5
r�0:5. On the other hand, the family
es for b̂r;s
a , m ¼ 100.

R Orness Entropy Mean SD Min Max

0.5 4.605 0.01 0 0.01 0.01
;0:6 0.5 4.515 0.01 0.004 0.0057 0.020

;0:6 0.5 4.505 0.01 0.005 0.0052 0.020

2
0.5 4.560 0.01 0.003 0.006 0.019
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Fig. 7. Comparison of wk for different b̂r;s
a ;m ¼ 100.

Fig. 8. Graph of the entropy function for several fuzzy linguistic quantifiers.
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b̂k
a allows to control the weight of the median value by modifying the value of k. The comparative graph of the entropies for

the obtained EVR weights is shown in Fig. 8.

5.4. Comparison of the families ŝa; m̂a and b̂r;s
a

Even though, there exist plenty of examples of EVRs, such as the cumulative distribution function for the Gaussian dis-
tribution [17], all the EVR families which have been proposed in this section are parametric families which allow to control
the relevance of the intermediate values in the aggregations by adjusting the value of the parameters. The family ŝa consists
of functions of class C1 which always assign the same weight to the values corresponding to the second and third quartiles.

On the other hand, the family ma resulted to be a particular case of the family b̂r;s
a and provided a simple way of generating

OWA weights which give much more importance to the intermediate values than to the extreme ones. Finally, the family b̂a
allows to control the amount of intermediate values which receive the higher relevance in the aggregations and the exact
weights for these values.

6. Symmetric weights and EVRs

In Section 4 it was proved that any EVR is able to produce a family of symmetric weights which give more importance to
the intermediate values in the OWA aggregations. This section is devoted to show the reciprocal statement, i.e., to some
extent, any family of symmetric weights which prioritizes intermediate values is obtained from an EVR function. First, it
is proposed a result which highlights an interesting property relating the weights associated to a fuzzy linguistic quantifier
Q and its derivative.

Proposition 8. Let Q : 0;1½ � ! 0;1½ � be a RIM quantifier of class C1. Then:
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wk ¼ Q
k
m

� 	
� Q

k� 1
m

� 	
¼ Q 0 nkð Þ 1

m
¼

Z k
m

k�1
m

Q 0 tð Þdt; k ¼ 1;2; . . . ;m
where nk 2� k�1
m ; k

m ½. In addition,
jwk �wj ¼ jQ 0 nkð Þ 1
m

� 1
m

j ¼ 1
m

j1� Q 0 nkð Þj; nk 2�
k� 1
m

;
k
m

½

for any k ¼ 1;2; . . . ;m.
Proof. It is consequence of the Mean Value Theorem and the Fundamental Theorem of Calculus.
Remark 3. For m large enough wk � Q 0 k
m

� �
1
m.
Remark 4. The previous proposition allows to measure how far the weights produced by a RIM quantifier are from their
mean value. For instance, when the EVR ŝa;a 2�0; 1

2p ½ is considered, we obtain
jwk �wj ¼ 1
m

2paj cos 2pnk � pð Þj 6 2pa
m

:

The following Theorem provides the reciprocal statement, i.e., given w1; . . . ;wm, under certain conditions Theorem 2
assures that we can find an EVR such that, when Yager’s method is applied to compute the associated OWA weights, the
obtained values for these weights are precisely w1; . . . ;wm.
Theorem 2. Given a positive symmetric wk ¼ wm�kþ1 > 0; k ¼ 1;2; . . . ;mð Þ weighting vector w ¼ w1;w2; . . . ;wmð Þ consider a
continuous function q : 0;1½ � ! Rþ

0 such that:

1. For any k ¼ 1;2; . . . ;m
wk ¼
Z k

m

k�1
m

q tð Þdt;

2. q satisfies the symmetry condition q xð Þ ¼ q 1� xð Þ8x 2 0;1½ �,
3. q 1ð Þ < 1 and q 0ð Þ < 1,
4. q is strictly increasing in 0; 12

� �
and strictly decreasing in 1

2 ;1
� �

.

Then, the function Q : 0;1½ � ! 0;1½ � given by Q xð Þ :¼ R x
0 q tð Þdt is an EVR whose associated EVR-OWA operator is determined by the

weighting vector w.
Proof. Let us check the properties which characterizes EVRs.

1. Q is a function of class C1. Clear by using the Fundamental Theorem of Calculus.
2. Q is an increasing automorphism. Since q P 0;Q must be an increasing function. The 4th hypothesis guarantees that in

fact, Q is strictly increasing. In addition,
0 ¼ R 0
0 q tð Þdt ¼ Q 0ð Þ

1 ¼
Xm
k¼1

wk ¼
Xm
k¼1

R k
m
k�1
m
q tð Þdt ¼ R 1

0 q tð Þdt ¼ Q 1ð Þ:

3. Involution with respect to the standard negation. Note that
Q xð Þ þ Q 1� xð Þ ¼ R x
0 q tð Þdt þ R 1�x

0 q tð Þdt ¼
¼ R x

0 q tð Þdt þ R 1
1�x q 1� tð Þdt ¼ R 1

0 q tð Þdt ¼ 1;

4. Q 0 0ð Þ ¼ q 0ð Þ < 1 and Q 0 1ð Þ ¼ q 1ð Þ < 1,
5. The convexity of Q in 0; 12

� �
is consequence of the fact that q is increasing in that interval. A similar argument can be pro-

vided to show that Q is concave in 1
2 ;1
� �

By using the first hypothesis and the Fundamental Theorem of Calculus it is obtained that
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Q
k
m

� 	
� Q

k� 1
m

� 	
¼

Z k
m

k�1
m

q tð Þdt ¼ wk:
Therefore, when using Yager’s method to compute the weights for the RIM quantifier Q, the obtained family is the former
one.

Let us analyze the hypotheses of the previous result. The first one is just about relating the derivative of the EVR Q with
the given weights such that when using Proposition 8 to compute the corresponding weights, the obtained values are
w1; . . . ;wm. The second one is a symmetry condition. The third condition is easy to obtain because the minimum values
for a family of weights which prioritizes intermediate values must be lower than the arithmetic mean of these weights,
i.e. w1 < 1

m and wm < 1
m. The last hypothesis is related with both the symmetry condition and the fact that the weights for

the intermediate values should be higher than the weights for the more extreme values.
In order to construct the function q : 0;1½ � ! Rþ

0 required in the previous result, we suggest using a continuous linear
spline such that its restriction to the interval k�1

m ; k
m

� �
, qk :¼ qj k�1

m ; km½ � k ¼ 1;2; . . . ;m, satisfies
wk ¼
Z k

m

k�1
m

qk tð Þdt; k ¼ 1;2; . . . ;m:
Ifm is even we can consider the functions defined by qk tð Þ ¼ ak þ bkt8t 2 k�1
m ; k

m

� �
; k ¼ 1;2; . . . ;m2 , which provide a total ofm

parameters. By considering the equations
wk ¼
Z k

m

k�1
m

qk tð Þdt ¼ ak

m
þ bk 2k� 1ð Þ

2m2 ; k ¼ 1;2; . . . ;
m
2
;

the boundary condition q1 0ð Þ ¼ a1 ¼ 0, and the continuity conditions
qk
k
m

� 	
¼ ak þ k

m
bk ¼ akþ1 þ bkþ1

k
m

¼ qkþ1
k
m

� 	
; k ¼ 1;2; . . .

m
2
� 1
We obtain a total of m linear constraints. The matrix representation of this linear system is
1 0 0 0 
 
 
 0 0 0 0 0 
 
 
 0
1 �1 0 0 
 
 
 0 1

m
�1
m 0 0 
 
 
 0

0 1 �1 0 
 
 
 0 0 2
m

�2
m 0 
 
 
 0

..

. ..
. . .

. . .
. ..

. ..
. ..

. . .
. . .

. ..
. ..

. ..
.

0 0 0 
 
 
 1 �1 0 0 
 
 
 0 m�2
2m �m�2

2m

1 0 0 0 
 
 
 0 1
2m 0 0 0 
 
 
 0

0 1 0 0 
 
 
 0 0 3
2m 0 0 
 
 
 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

. . .
. ..

. ..
.

0 0 0 0 
 
 
 1 0 0 0 0 
 
 
 m�1
2m

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

a1

a2

..

.

am
2

b1

b2

..

.

bm
2

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
¼

0
0
..
.

0
mw1

mw2

..

.

mwm
2

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA

The determinant of this m�m matrix is given by
1 0 0 0 
 
 
 0 0 0 0 0 
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which is non zero. Therefore the linear system of equations has a unique solution. By using this solution to determine the
functions q1; q2; . . . ; qm

2
a piecewise linear function �q : 0; 12

� � ! Rþ
0 is obtained. This piecewise function can be extended to

the entire interval 0;1½ � by defining �q : 1
2 ;1
� � ! Rþ

0 by �q tð Þ ¼ �q 1� tð Þ8t 2 1
2 ;1
� �

.
If m is odd, a similar reasoning can be developed by considering the system of equations consisting on
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wk ¼
R k

m
k�1
m
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2

2m�1ð Þ
8m2 ;
the boundary condition q1 0ð Þ ¼ a1 ¼ 0, and the continuity conditions
qk
k
m

� 	
¼ ak þ k

m
bk ¼ akþ1 þ bkþ1

k
m

¼ qkþ1
k
m

� 	
; k ¼ 1;2; . . .

m� 1
2

which consists of mþ 1 parameters and mþ 1 linear constraints. The matrix representation of this linear system is
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which is non zero too.

To summarise, every family of symmetric positive weights for OWA operators which prioritize the intermediate values in
the aggregations is the family of weights obtained by using Yager’s method with a certain EVR function.

7. An illustrative case of aggregation

In this section an illustrative example is provided in order to show in a practical environment the theoretical contents of
this work.

Suppose a group consisting on 10 experts who give their opinions on how much they prefer a certain alternative x1 to the
alternative x2. These preferences are denoted as pk :¼ pk

1;2 2 0;1½ �; k ¼ 1;2; . . . ;10 and are given as follows:
p1 ¼ 0:1118857p2 ¼ 0:2152431 p3 ¼ 0:7635773 p4 ¼ 0:8914762
p5 ¼ 0:3605274p6 ¼ 0:8650980 p7 ¼ 0:6478957 p8 ¼ 0:2588964
p9 ¼ 0:1553312 p10 ¼ 0:1962114
For m ¼ 10 and the EVR ŝ0:08 the obtained list of weights is:
w1 ¼ 0:05297718 w2 ¼ 0:07093830 w3 ¼ 0:10000000 w4 ¼ 0:12906170
w5 ¼ 0:14702282 w6 ¼ 0:14702282 w7 ¼ 0:12906170 w8 ¼ 0:10000000
w9 ¼ 0:07093830 w10 ¼ 0:05297718
and the collective preference by using these weights is given by
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Table 5
Measures for several fuzzy linguistic quantifiers, m ¼ 10.

EVR Orness Entropy Mean SD Min Max Collective Preference

ŝ0 ¼ Q0;1 0.5 2.302585 0.1 0 0.1 0.1 0.4466142
ŝ0:04 0.5 2.287187 0.1 0.01748064 0.07648859 0.1235114 0.4353018
ŝ0:08 0.5 2.239431 0.1 0.03496128 0.05297718 0.1470228 0.4239893
ŝ0:15 0.5 2.052446 0.1 0.0655524 0.01183221 0.1881678 0.4041924

Q0:1;0:9 0.5 2.079442 0.1 0.05 0 0.125 0.4328476
Q0:2;0:8 0.5 1.791759 0.1 0.08164966 0 0.1666667 0.4070586
Q0:3;0:7 0.5 1.386294 0.1 0.1224745 0 0.25 0.3706407

Fig. 9. Weights generated by the EVR ŝ0:08 when m ¼ 10.
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pc ¼< p1;p2; . . . ;p10ð Þ &; w1;w2; . . . ;w10ð Þ >¼ 0:4239893:
Table 5 compiles the standard measures for the weighting vectors obtained for different fuzzy linguistic quantifiers. Fig. 9
shows the distribution of the weighting vector of order 10 associated with the EVR ŝ0:08 around its mean value.

Table 5 shows that the OWA operator associated with the EVR ŝa provides, in general, values for the entropy measure
which are greater than the obtained for the OWA operator associated with the linear RIM quantifier Qa;b. Consequently,
the aggregations made by using the EVR-OWA operator take into account more information than the aggregations based
on the linear RIM quantifiers Q0:2;0:8 or Q0:3;0:7, which are commonly used in the literature. In addition, the Standard Devia-
tions obtained for the EVR-OWA operators are lower than the obtained for the linear RIM quantifiers Q0:2;0:8 and Q0:3;0:7. Fur-
thermore, whereas the weights associated with linear RIM quantifiers just take the minimum value (0) or the maximum
value (0:125;0:17 or 0:25, depending on the case), the weights which are computed by using the EVR ŝa take different values
in the interval defined by the respective minimum and maximum.

Note that the median for the preferences is 0.3097119. When using the linear RIM quantifier Qa;b, a reduction in the quan-
tity b� a is translated in a value for the collective preference which is closer to the median preference and farther from the
collective preference given by the arithmetic mean operator. However, when using the EVR-OWA operator associated with
the EVR ŝa, changes in the parameter a allows to control the importance given to the more extreme values without losing too
much information in the aggregation process (higher entropy measure) and thus obtaining values for the collective prefer-
ence similar to the obtained with the arithmetic mean operator.

8. Results and discussion

Currently, RIM quantifiers are widely used in order to compute the weights for OWA operators due to their simplicity and
applications in several contexts such as poset environments [7]. Even though, several families of RIM quantifiers have been
proposed in the specialized literature [17], one of the most extended approaches consists of using linear RIM quantifiers
Qa;b : 0;1½ � ! 0;1½ �, where 0 6 a < b 6 1, to define OWA operators.

First, this study has analyzed the limitations of using these linear RIM quantifiers to generate OWA weights (RQ1). To do
so, the impact of the parameters a and b which define this quantifier has been measured by checking out the corresponding
standard quality measures. The obtained results are:

� If a is too high or b is too low the aggregations are non realistic because too many extreme values are ignored, i.e. the
entropy of the obtained OWA operator is too low.
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� If aþ b– 1 the aggregations are biased, i.e., the orness measure of the obtained operator is not 0:5, and therefore they are
not suitable for those real world applications which require symmetry around the median value.

� With just two possible exceptions, the value wk is either zero or the constant 1
m b�að Þ. Therefore, the progressive behavior of

the weighting vector calculated by using the EVR approach is more related to the fuzzy environment we are dealing with:
whereas the classical linear RIM quantifier Qa;b completely ignores the most extreme elements, the use of EVR based RIM
quantifiers that is proposed here provides a progressive reduction of the importance we are giving to the more extreme
values, which is closer to the fuzzy philosophy.

Second, the EVR-OWA operator, which is focused on overcoming the limitations of the OWA operator, has been intro-
duced. Several families of EVRs have been proposed and it has been proved that their corresponding EVR-OWA operators
satisfy:

� Symmetry: w1 ¼ wm;w2 ¼ wm�1;w3 ¼ wm�2,. . .,
� No wk is zero,
� The smallest values of the wk’s are the first and, by symmetry, the last ones. The largest values are the intermediate ones,
� Their arithmetic mean is 1=m,
� Their standard deviation is close to zero,
� Their orness measure is 0:5,
� Their entropy is similar to the entropy of the arithmetic mean operator, which is the maximum possible value.

Therefore, OWA operators based in EVRs show a considerably higher performance than those based on linear RIM quan-
tifiers, but keeping their simplicity and applicability (RQ2).

Finally, it has been proved (Theorem 2) that any family of positive symmetric weights which prioritize the intermediate
information is actually the family of OWA weights obtained from a certain EVR (RQ3).

To sum up, this study has highlighted the main disadvantages of the use of linear RIM quantifiers in OWA aggregations,
concluding that these kinds of weights do not show a high quality when non biased aggregations which prioritize interme-
diate information without ignoring the most extreme values are required. The EVR-OWA operator, which is based on using
EVRs as fuzzy linguistic quantifiers, allows to overcome this disadvantages by providing families of positive symmetric
weights which prioritize the intermediate information. Furthermore, it has been proved that any other family of weights
which satisfies these requirements can be obtained from a certain EVR, which guarantees that EVRs are actually a very com-
plete proposal to generate weights with such properties.
9. Conclusions and future research

Linear RIM quantifiers are widely accepted in specialized literature [7,17], but they present several shortcomings. The
novel EVR-OWA operator proposes using EVRs as fuzzy linguistic quantifiers in order to overcome these limitations by
obtaining an OWA operator which takes into account the more extreme values, but gives more importance to the interme-
diate ones.

The aggregations made by EVR-OWA operators are not only more related with the fuzzy logic view than those done by
using the linear RIM quantifier Qa;b, but are also better for certain real world applications such as consensus models for GDM
[6,9], since they aggregate preferences in a non biased way and allow to take into account more information in the aggre-
gation process.

In addition, the abstract nature of this proposal not only provides a simple and general method to obtain OWA weights
with such properties, but also gives a characterization relating those families of symmetric positive OWA weights which pri-
oritize intermediate values and EVRs: for every weighting vector w with these properties it can be found an EVR function
such that the weighing vector for this EVR is the weighting vector w.

Further studies should be related with the behavior of these weights in large scale GDM problems and consensus models
in which preferences tends to be polarized. In addition, it would be interesting to compute the optimal parameters for the
proposed EVR families which maximize the entropy measure of the aggregations under certain constrains. Other research
line could be to extend the proposed methods to other contexts such as Pythagorean fuzzy uncertain environments [16]
or ELICIT information [8].
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