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Ordered Weighted Averaging (OWA) operators are some of the most widely used aggregation 
functions in classic literature, but their application to fuzzy numbers has been limited due to the 
complexity of defining a total order in fuzzy contexts. However, the recent notion of admissible 
order for fuzzy numbers provides an effective method to totally order them by refining a given 
partial order. Therefore, this paper is devoted to defining OWA operators for fuzzy numbers 
with respect to admissible orders and investigating their properties. Firstly, we define the OWA 
operators associated with such admissible orders and then we show their main properties. 
Afterward, an example is presented to illustrate the applicability of these AOWA operators in 
linguistic decision-making. In this regard, we also develop an admissible order for trapezoidal 
fuzzy numbers that can be efficiently applied in practice.

1. Introduction

The ordered weighted averaging (OWA) operator came to light by Yager [25] to solve multicriteria decision-making problems. In 
this regard, Yager’s idea was to provide a family of functions whose decision lies between the case in which all the criteria must be 
satisfied (“and” operators), and the case in which the satisfaction of any criteria is enough (“or” operators). To do so, Yager defined 
the OWA operators as a normalized weighted average where the input vector is decreasingly ordered. Consequently, their coefficients 
are not associated directly with particular attributes, but with the magnitude of the inputs [25].

Many extensions and applications of OWA operators can be found in the decision-making literature and they continue being 
investigated and applied nowadays [4,12,24]. The classical OWA operator, as well as most of its extensions, typically operates with 
real numbers [8,13,21], but this approach may not be convenient for capturing people’s perceptions in practice. Indeed, in real-world 
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scenarios, experts usually feel much more comfortable providing their opinions using linguistic terms, which are much closer to their 
way of thinking [16]. To model linguistic information, the fuzzy linguistic approach has emerged as a methodology able to model the 
uncertainty inherent to linguistic terms by means of fuzzy linguistic variables [26]. In particular, one of the most popular approaches 
consists of the use of fuzzy numbers, which are a specific class of fuzzy sets, to account for the vagueness and imprecision inherent 
in our perceptions [7]. Even though there are some attempts to define OWA operators for fuzzy numbers in the specialized literature 
[11,18], all of them neglect a fundamental aspect: in the definition of the classical OWA operator, a total order relationship, such as 
the one defined on the real line, is essential for its good performance.

For instance, some proposals [27,28] rely on the fuzzy extension principle [23] to define a fuzzy OWA operator. However, this 
presents two major shortcomings. On the one hand, it is hard to determine if the thus-defined OWA operators result in ordering the 
inputs and then computing the corresponding weighted average [28]. On the other hand, it has been shown that such OWA operators 
may return the same result as an OWA operator based on a partial order, implying that some fuzzy numbers cannot be compared 
and, therefore, the domain of definition of such an OWA operator is not the entire family of fuzzy numbers [29].

Other proposals define the fuzzy OWA operator using an index-based ranking method for fuzzy sets [18]. However, such ranking 
methods are not based on a total order defined on the set of fuzzy numbers and usually require computing a certain scalar index 
[16]. The main disadvantage of the use of ranking indexes is that different fuzzy numbers could be completely indistinguishable, 
as it would occur with any other ranking method based on a non-antisymmetric binary relation. This is fatal for the OWA operator 
because, in the case of two different inputs having the same ranking index, it is not possible to decide which one goes first in the 
aggregation, resulting in two different possible values for the output of the OWA aggregation.

Additionally, another extended shortcoming of fuzzy OWA operators in the literature is the fact that they are exclusively defined 
for a specific class of fuzzy numbers such as trapezoidal fuzzy numbers (TrFN for short) or discrete fuzzy numbers [11,28], which 
limits its applicability in other domains.

Therefore, to address all these limitations this proposal aims to define an OWA operator for fuzzy numbers based on the notion 
of admissible order introduced by Zumelzu et al. [30], which provides a total order relation that makes it possible, with a solid 
mathematical base, to univocally rank any family of elements within this class of fuzzy sets [30]. Hence, our goal is to obtain an 
OWA operator with the following characteristics:

• The inputs can be any family of fuzzy numbers, without being constrained to any specific subfamily;

• It is well-defined, i.e., for each input there is one and only one possible output;

• It performs an actual ordered weighted average with respect to the corresponding order;

• The traditional properties of OWA operators for real numbers are also satisfied by the OWA operator for fuzzy numbers.

Notice that without a total order relation on fuzzy numbers it is not possible to obtain an extension of the OWA operator with 
these characteristics and, until now, the only reasonable total order relation for fuzzy numbers is the notion of admissible order [30]. 
Thus, first, we study the necessary axioms to guarantee that the admissible order-based extension of OWA operators, the so-called 
Admissible OWA (AOWA) operator, is well-defined. Subsequently, we show that AOWA operators satisfy the key properties of the 
original OWA operators related to their averaging nature. Additionally, we introduce a general method to construct admissible orders 
for TrFNs. On the one hand, with this method, it is possible to overcome the limitations of traditional ranking methods and then 
order TrFNs according to a total order that refines the standard partial order for fuzzy numbers. On the other hand, unlike existing 
admissible orders [30], with our methodology it is not necessary to rely on an upper-dense sequence, which is extremely helpful from 
the computational point of view. Finally, we illustrate the performance of the AOWA operator for fuzzy numbers in the resolution of 
a linguistic multi-criteria decision problem which is modeled using TrFNs.

The remainder of this paper is as follows. In Section 2, we introduce some basic notions regarding admissible orders and fuzzy 
numbers. Section 3 introduces a huge family of admissible orders for TrFNs. We then define the OWA operators associated with 
admissible orders in Section 4, and we investigate their main properties in Section 5. In Section 6, we develop an illustrative example 
in which fuzzy OWA operators are applied in linguistic decision-making. Finally, in Section 7 we provide some final comments and 
conclusions.

2. Preliminaries

In this section, we present some definitions and results related to OWA operators, fuzzy numbers, and admissible orders.

2.1. OWA operators

The purpose of an aggregation function is to summarize several inputs to a singular output regarding the monotonicity in each 
variable and certain boundary conditions [9]. A special type of an 𝑛–ary aggregation function on [0, 1] is the ordered weighted 
averaging (OWA) operator, whose definition is given as follows.

Definition 2.1. [25] Let 𝜔 = (𝜔1, … , 𝜔𝑛) be a weight vector, i.e., 𝜔𝑖 ∈ [0, 1], for all 𝑖 ∈ {1, … , 𝑛}, and 
∑𝑛
𝑖=1𝜔𝑖 = 1. The OWA operator 

associated to 𝜔 is the mapping OWA𝜔 ∶ [0, 1]𝑛 → [0, 1] defined by

𝑛∑

2

OWA𝜔(𝑥1,… , 𝑥𝑛) =
𝑛=1

𝜔𝑖𝑥(𝑖) (1)
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where 𝑥(𝑖) denotes the 𝑖-th largest value among 𝑥1, … , 𝑥𝑛.

Example 2.1. The mappings 𝑀𝑖𝑛(𝑛), 𝑀𝑎𝑥(𝑛) ∶ [0, 1]𝑛 → [0, 1], given by 𝑀𝑖𝑛(𝑛)(𝑥) =min{𝑥1, … , 𝑥𝑛} and 𝑀𝑎𝑥(𝑛)(𝑥) =max{𝑥1, … , 𝑥𝑛}
are OWA operators whose weight vectors are, respectively, (0, … , 0, 1) and (1, 0, … , 0). The arithmetic mean 𝑀 (𝑛) ∶ [0, 1]𝑛 → [0, 1], 
given by 𝑀 (𝑛)(𝑥) = (1∕𝑛) ⋅

∑𝑛
𝑖=1 𝑥𝑖 is an OWA operator with weight vector (1∕𝑛, … , 1∕𝑛).

2.2. Fuzzy numbers

Fuzzy subsets of ℝ extend the classic idea of a subset by considering characteristic functions whose codomain can be any subset 
of [0, 1]. Formally,

Definition 2.2 ([19]). A fuzzy subset of ℝ is a mapping 𝐴 ∶ℝ → [0, 1]. In addition, for 𝛼 ∈]0, 1]:

1. the support of 𝐴 is the set 𝑠𝑢𝑝𝑝(𝐴) = {𝑥 ∈ℝ ∶𝐴(𝑥) > 0};

2. the 𝛼-cut (or 𝛼-level set) of 𝐴 is the set 𝐴𝛼 = {𝑥 ∈ℝ ∶𝐴(𝑥) ≥ 𝛼}.

The most interesting subset of fuzzy sets is the class of fuzzy numbers, which extends the idea of real numbers.

Definition 2.3. [14,30]1 A fuzzy number 𝐴 ∶ℝ → [0, 1] is a fuzzy subset of ℝ that satisfies the following conditions:

1. 𝐴 is normal (i.e. there exists 𝑥 ∈ℝ such that 𝐴(𝑥) = 1).

2. The support of 𝐴 is bounded.

3. The 𝛼-cuts of 𝐴 are closed intervals for all 𝛼 > 0.

From now on,  (ℝ) will denote the family of all fuzzy numbers.

Therefore, the following statements hold:

1. Real numbers can be seen as fuzzy numbers [19].

2. A fuzzy number is upper semicontinuous [2].

3. If 𝐴 is a fuzzy number with 𝐴(𝑟) = 1 for a certain 𝑟 ∈ ℝ, then 𝐴 is non-decreasing on (−∞, 𝑟] and non-increasing on [𝑟, +∞)
[14].

Below, we introduce some examples of fuzzy numbers.

Example 2.2. Given a closed and bounded real interval 𝐼 , the lower bound will be denoted by 𝐼 and the upper bound by 𝐼 , i.e. 
𝐼 = [𝐼, 𝐼]. The family of all closed and bounded real intervals will be represented by 𝕀(ℝ), i.e.

𝕀(ℝ) = {[𝐼, 𝐼] ∶ 𝐼, 𝐼 ∈ℝ and 𝐼 ≤ 𝐼}.

Note that each 𝐼 ∈ 𝕀(ℝ) can be identified with the fuzzy number 𝐼 ∶ℝ → [0, 1] defined by,

𝐼(𝑥) =

{
1, if 𝑥 ∈ 𝐼,

0, otherwise.
(2)

Because of its shape, 𝐼 is called a rectangular fuzzy number whenever 𝐼 < 𝐼 (see the number 𝐼 in Fig. 1). Moreover, if 𝐼 = 𝐼 = 𝑟 ∈ℝ, 
the resulting fuzzy number 𝐼 = �̃�, so-called crisp fuzzy number, represents the characteristic function of the real number 𝑟 (see the 
fuzzy number 𝑟 in Fig. 1), i.e.,

�̃�(𝑥) =

{
1, if 𝑥 = 𝑟,

0, otherwise.
(3)

 will denote the family of all crisp fuzzy numbers.
3

1 Recently, there has been a debate about this notion (see [20]). In this paper, we recall the definition used in [14].
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Fig. 1. Plots of a crisp fuzzy number (left) and a rectangular fuzzy number (right).

Example 2.3. 𝑇 ∈  (ℝ) is said to be a TrFN if its membership function is defined by

𝑇 (𝑎∕𝑏∕𝑐∕𝑑)(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥− 𝑎
𝑏− 𝑎

, if 𝑎 ≤ 𝑥 < 𝑏,

1, if 𝑏 ≤ 𝑥 ≤ 𝑐,

𝑑 − 𝑥
𝑑 − 𝑐

, if 𝑐 < 𝑥 ≤ 𝑑,

0, if 𝑥 < 𝑎 or 𝑥 > 𝑑,

for some 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑. A TrFN 𝑇 will be denoted by 𝑇 (𝑎∕𝑏∕𝑐∕𝑑) (see the fuzzy number 𝐸 plotted in Fig. 2). Note that if 𝑏 = 𝑐, then 
the TrFN will have a triangular shape (see the fuzzy number 𝐴 plotted in Fig. 2). Also, if 𝑎 = 𝑏 and 𝑐 = 𝑑, then TrFN will have a 
rectangular shape (see fuzzy number 𝐼 plotted in Fig. 1). Hereinafter,  stands for the set of all the TrFN whose support is contained 
in [0, 1], i.e.,  =

{
𝑇 (𝑎∕𝑏∕𝑐∕𝑑) ∶ 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 ≤ 1

}
.

The classic algebraic operations defined in the real line can be extended to fuzzy numbers as follows.

Definition 2.4. [14,19] Let 𝐴, 𝐵 ∈  (ℝ). Define 𝐴 ⊕𝐵, 𝐴 ⊙𝐵, 𝐴 ∨𝐵, 𝐴 ∧𝐵 ∈  (ℝ) by

(𝐴⊕𝐵)(𝑧) = sup
𝑥+𝑦=𝑧

min{𝐴(𝑥),𝐵(𝑦)} (4)

(𝐴⊙𝐵)(𝑧) = sup
𝑥⋅𝑦=𝑧

min{𝐴(𝑥),𝐵(𝑦)} (5)

(𝐴 ∨𝐵)(𝑧) = sup
max{𝑥,𝑦}=𝑧

min{𝐴(𝑥),𝐵(𝑦)} (6)

(𝐴 ∧𝐵)(𝑧) = sup
min{𝑥,𝑦}=𝑧

min{𝐴(𝑥),𝐵(𝑦)} (7)

for all 𝑧 ∈ℝ.

Let us define the partial order ‘≤’ on  (ℝ) as 𝐴 ≤𝐵 ⟺ 𝐴(𝑥) ≤𝐵(𝑥) for all 𝑥 ∈ℝ. Then, the operations ⊕ and ⊙ defined above 
satisfy commutativity, associativity and ⊙ subdistributes over ⊕, i.e., 𝐴 ⊙ (𝐵 ⊕𝐶) ≤ (𝐴 ⊙𝐵) ⊕ (𝐴 ⊙𝐶) (see [14,19]). In addition, 
these operations present some desirable properties when dealing with crisp fuzzy numbers.

Proposition 2.1. [19] Let 𝐴, 𝐵 ∈  (ℝ) and ̃𝑟 ∈  . Then:

1. 𝐴 ⊙ 1̃ =𝐴;
2. �̃� ⊙ (𝐴 ⊕𝐵) = (�̃� ⊙ 𝐴) ⊕ (�̃� ⊙ 𝐵).

2.3. Admissible orders on fuzzy numbers

Given a set 𝑋, an order on 𝑋 is a binary relation 𝑅 which satisfies reflexivity, anti-symmetry and transitivity. Moreover, if, for 
any 𝑥1, 𝑥2 ∈𝑋, 𝑥1𝑅𝑥2 or 𝑥2𝑅𝑥1, 𝑅 is said to be a total order. Otherwise, 𝑅 is called a partial order.

In this context, Bustince et al. [3] introduced the admissible orders for closed subintervals of [0, 1] as total orders that refine the 
Kulisch and Miranker (KM) order [15] restricted to this set of intervals. This notion can be easily generalized for 𝕀(ℝ) [30]. Formally, 
a total order ≤𝕀(ℝ) is called an admisible order on 𝕀(ℝ), if, for all 𝐼, 𝐽 ∈ 𝕀(ℝ), 𝐼 ≤𝕀(ℝ) 𝐽 whenever 𝐼 ≤𝕀(ℝ)

KM 𝐽 , where

𝐼 ≤
𝕀(ℝ)
KM 𝐽 ⟺ 𝐼 ≤ 𝐽 and 𝐼 ≤ 𝐽 , (8)

for all 𝐼, 𝐽 ∈ 𝕀(ℝ).
De Miguel et al. [5] defined admissible orders on n-tuples to construct OWA operators for a special class of fuzzy sets. Finally, 
4

Zumelzu et al. [30] defined admissible orders on fuzzy numbers as follows.
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Fig. 2. Plots of some fuzzy numbers.

Definition 2.5 (Admissible order [30]). Let 𝑍 ⊆  (ℝ) be a class of fuzzy numbers, and consider a partial order ⪯ on 𝑍 . Then a total 
order ⊴ on 𝑍 is called an admisible order w.r.t. ⪯, if for all 𝐴, 𝐵 ∈𝑍 , 𝐴 ⊴𝐵 whenever 𝐴 ⪯𝐵.

A specific admissible order on fuzzy numbers was constructed under the notion of an upper-dense sequence.

Definition 2.6. [22] Let 𝑆 = (𝛼𝑖)𝑖∈ℕ be a sequence in (0,1]. 𝑆 is said to be upper-dense if, for every point 𝑥 ∈ (0,1] and any 𝜖 > 0, 
there exists 𝑖 ∈ ℕ such that 𝛼𝑖 ∈ [𝑥, 𝑥+ 𝜖).

Example 2.4. The following sequences are upper-dense sequences in (0, 1]:

1. The sequence 𝑆𝑏 =
(
𝑑𝑏𝑖

)
𝑖∈ℕ defined by

𝑑𝑏𝑖 = 2 − 2𝑖− 1
2⌈log2(𝑖)⌉ ,

where ⌈𝑡⌉ denotes the value of the ceiling function at real number 𝑡, i.e., the smallest integer greater than or equal to 𝑡. Some 
terms of this sequence are 𝑑𝑏1 = 1, 𝑑𝑏2 = 1∕2 = 0.5, 𝑑𝑏3 = 3∕4 = 0.75, 𝑑𝑏4 = 1∕4 = 0.25, 𝑑𝑏5 = 7∕8 = 0.875, 𝑑𝑏6 = 5∕8 = 0.625, 𝑑𝑏7 =
3∕8 = 0.375, 𝑑𝑏8 = 1∕8 = 0.125, 𝑑𝑏9 = 15∕16 = 0.9375, …

2. Let 𝑆𝑚 = (𝑚𝑖)𝑖∈ℕ be the sequence defined by 𝑚𝑖 = max{𝑗 ∈ ℕ ∶ 𝑗(𝑗+1)
2 ≤ 𝑖}, 𝑖 ∈ ℕ. Then, the sequence 𝑆𝑡 = (𝑡𝑖)𝑖∈ℕ defined by 
5

𝑡𝑖 =
𝑖

𝑚𝑖
− 𝑚𝑖−1

2 , 𝑖 ∈ ℕ is upper-dense. In this case, the first terms of 𝑆𝑡 are as follows: 11 , 
1
2 , 

2
2 , 

1
3 , 

2
3 , 

3
3 , 

1
4 , 

2
4 , 

3
4 , 

4
4 ,...
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Using upper-dense sequences, it is possible to state a decomposition formula for fuzzy numbers.

Proposition 2.2. [30] Let 𝐴, 𝐵 ∈  (ℝ) and 𝑆 = (𝛼𝑖)𝑖∈ℕ be an upper-dense sequence in (0,1]. Then, 𝐴 =𝐵 if and only if 𝐴𝛼𝑖 = 𝐵𝛼𝑖 , for all 
𝑖 ∈ℕ.

The above result guarantees that the following value is well-defined.

Definition 2.7. [30] Let 𝐴, 𝐵 ∈  (ℝ) and 𝑆 = (𝛼𝑖)𝑖∈ℕ be an upper-dense sequence in (0,1]. Then, define 𝑚(𝐴, 𝐵) by

𝑚(𝐴,𝐵) =

{
min{𝑖 ∈ℕ ∶𝐴𝛼𝑖 ≠𝐵𝛼𝑖}, if 𝐴 ≠𝐵,

0, otherwise.

Given two fuzzy numbers 𝐴, 𝐵 ∈  (ℝ), the value 𝑚(𝐴, 𝐵) allows defining a binary relation w.r.t. a certain order for intervals.

Definition 2.8. [30] Let 𝑆 = (𝛼𝑖)𝑖∈ℕ be an upper-dense sequence in (0,1] and let ⪯ be an order on 𝕀(ℝ). Then, define the binary 
relation ⊴𝑆 on  (ℝ) by

𝐴⊴𝑆 𝐵 ⟺ 𝐴 =𝐵 or 𝐴𝛼𝑚(𝐴,𝐵) <
𝕀(ℝ) 𝐵𝛼𝑚(𝐴,𝐵) . (9)

The following theorem states a sufficient condition on the interval order ⪯ to guarantee that the corresponding relation ⊴𝑆 is an 
admissible order on  (ℝ) w.r.t. the Klir and Yuan (KY) partial order ⪯KY [14] defined as

𝐴 ⪯KY 𝐵 ⟺ 𝐴 ∧𝐵 =𝐴 (10)

for 𝐴, 𝐵 ∈  (ℝ).

Theorem 2.1. [30] Let 𝑆 = (𝛼𝑖)𝑖∈ℕ be an upper-dense sequence in (0,1]. If ⪯ is an admissible order, then ⊴𝑆 is an admissible order on 
 (ℝ) w.r.t. the KY partial order.

In other words, any admissible order ⊴𝑆 refines the order ≤KY on  (ℝ). Hereinafter, we will abuse the notation and call 
admissible order on  (ℝ) to any admissible order w.r.t. the KY order.

The following result provides a characterization of the KY order through the KM ordering of 𝛼-cuts.

Proposition 2.3. [14] Given two fuzzy numbers 𝐴, 𝐵 ∈  (ℝ), the following assertions are equivalent:

1. 𝐴 ⪯KY 𝐵;
2. 𝐴 ∨𝐵 = 𝐵;
3. 𝐴𝛼 ≤

𝕀(ℝ)
KM 𝐵𝛼 for each 𝛼 ∈ (0,1].

Example 2.5. Firstly, it is observed that the fuzzy numbers 𝐴 and 𝐵, 𝐶 and 𝐷, 𝐸 and 𝐹 , 𝐺 and 𝐻 , 𝐷 and 𝐻 from Example 2.3 are 
not comparable w.r.t. KY partial order. However, consider an upper-dense sequence 𝑆 = (𝛼𝑖)𝑖∈ℕ in (0, 1] and the admissible orders 
≤
𝕀(ℝ)
𝐿𝑒𝑥1, ≤𝕀(ℝ)

𝐿𝑒𝑥2 and ≤𝕀(ℝ)
𝑋𝑌

, given by [30]:

1. [𝐼, 𝐼] ≤𝕀(ℝ)
𝐿𝑒𝑥1 [𝐽 , 𝐽 ] ⇔ 𝐼 < 𝐽 or (𝐼 = 𝐽 and 𝐼 ≤ 𝐽 ); and

2. [𝐼, 𝐼] ≤𝕀(ℝ)
𝐿𝑒𝑥2 [𝐽 , 𝐽 ] ⇔ 𝐼 < 𝐽 or (𝐼 = 𝐽 and 𝐼 ≤ 𝐽 ); and

3. [𝐼, 𝐼] ≤𝕀(ℝ)
𝑋𝑌

[𝐽 , 𝐽 ] ⇔ 𝐼 + 𝐼 < 𝐽 + 𝐽 or (𝐼 + 𝐼 = 𝐽 + 𝐽 and 𝐼 − 𝐼 ≤ 𝐽 − 𝐽 ),

then for any 𝑃 , 𝑄 ∈  (ℝ), we have that ⊴𝑆
𝐿𝑒𝑥1, ⊴𝑆

𝐿𝑒𝑥2 and ⊴𝑆
𝑋𝑌

given by:

𝑃 ⊴𝑆
𝐿𝑒𝑥1 𝑄 ⟺ 𝑃 =𝑄 or 𝑃𝛼𝑚(𝑃 ,𝑄) ≤

𝕀(ℝ)
𝐿𝑒𝑥1 𝑄𝛼𝑚(𝑃 ,𝑄) (11)

𝑃 ⊴𝑆
𝐿𝑒𝑥2 𝑄 ⟺ 𝑃 =𝑄 or 𝑃𝛼𝑚(𝑃 ,𝑄) ≤

𝕀(ℝ)
𝐿𝑒𝑥2 𝑄𝛼𝑚(𝑃 ,𝑄) (12)

𝑃 ⊴𝑆
𝑋𝑌

𝑄 ⟺ 𝑃 =𝑄 or 𝑃𝛼𝑚(𝑃 ,𝑄) ≤
𝕀(ℝ)
𝑋𝑌

𝑄𝛼𝑚(𝑃 ,𝑄) (13)

are admissible orders on  (ℝ). Therefore, if 𝑆 is any sequence of the Example 2.4, it follows that

𝐵 ⊴𝑆
𝐿𝑒𝑥1 𝐴 and 𝐵 ⊴𝑆

𝐿𝑒𝑥2 𝐴 and 𝐵 ⊴𝑆
𝑋𝑌

𝐴

𝐷 ⊴𝑆
𝐿𝑒𝑥1 𝐶 and 𝐷⊴𝑆

𝐿𝑒𝑥2 𝐶 and 𝐷⊴𝑆
𝑋𝑌

𝐶

6

𝐹 ⊴𝑆
𝐿𝑒𝑥1 𝐸 and 𝐹 ⊴𝑆

𝐿𝑒𝑥2 𝐸 and 𝐹 ⊴𝑆
𝑋𝑌

𝐸
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𝐻 ⊴𝑆
𝐿𝑒𝑥1 𝐺 and 𝐻 ⊴𝑆

𝐿𝑒𝑥2 𝐺 and 𝐻 ⊴𝑆
𝑋𝑌

𝐺

𝐷 ⊴𝑆
𝐿𝑒𝑥1 𝐺 and 𝐷⊴𝑆

𝐿𝑒𝑥2 𝐺 and 𝐷⊴𝑆
𝑋𝑌

𝐺

𝐻 ⊴𝑆
𝐿𝑒𝑥1 𝐷 and 𝐷⊴𝑆

𝐿𝑒𝑥2𝐻 and 𝐷⊴𝑆
𝑋𝑌

𝐻

Notice that admissible orders generated by distinct upper-dense sequences may produce different rankings, even under the same 
interval admissible orders. Let us consider the sequence 𝑆∗

𝑡 = (𝑡𝑖+1)𝑖∈ℕ, where 𝑡𝑖, 𝑖 ∈ ℕ is defined as in Example 2.4. The first terms 
of 𝑆∗

𝑡 are as follows: 12 , 
2
2 , 

1
3 , 

2
3 , 

3
3 , 

1
4 , 

2
4 , 

3
4 , 

4
4 , .... Under these conditions, it is easy to see that 𝐺 ⊴𝑆

∗
𝑡

𝐿𝑒𝑥1 𝐷 and 𝐴 ⊴𝑆
∗
𝑡

𝐿𝑒𝑥2 𝐵.

3. Admissible orders for trapezoidal fuzzy numbers

This section aims to present a general method to define admissible orders for the class of TrFNs. To do so, we use as a basis 
an interval admissible order ≤𝕀(ℝ), and we will see that when we are restricted to TrFNs it is not necessary to rely on upper-dense 
sequences on (0, 1] to define admissible orders.

First, note that if 𝑇 (𝑎∕𝑏∕𝑐∕𝑑) ∈  and 𝛼 ∈ (0,1], then each 𝛼-cut is determined as follows:

𝐴𝛼 = [𝑎+ 𝛼(𝑏− 𝑎), 𝑑 − 𝛼(𝑑 − 𝑐)].

Bellow, we use this fact to show that any TrFN 𝑇 (𝑎∕𝑏∕𝑐∕𝑑) can be univocally determined by any two different 𝛼-cuts:

Lemma 3.1. Let 𝑇 (𝑎∕𝑏∕𝑐∕𝑑) ∈  and denote 𝑇 (𝑎∕𝑏∕𝑐∕𝑑)
𝛼1

= [𝑥1, 𝑦1], 𝑇
(𝑎∕𝑏∕𝑐∕𝑑)
𝛼2

= [𝑥2, 𝑦2] for 𝛼1 ≠ 𝛼2, 𝛼1, 𝛼2 ∈ (0,1]. Then,

𝑎 =
𝛼2𝑥1 − 𝛼1𝑥2
𝛼2 − 𝛼1

, 𝑏 =
(1 − 𝛼1)𝑥2 − (1 − 𝛼2)𝑥1

𝛼2 − 𝛼1

𝑐 =
(1 − 𝛼1)𝑦2 − (1 − 𝛼2)𝑦1

𝛼2 − 𝛼1
, 𝑑 =

𝛼2𝑦1 − 𝛼1𝑦2
𝛼2 − 𝛼1

.

Proof. The definition of 𝛼-cut yields:

𝑥1 = 𝑎+ 𝛼1(𝑏− 𝑎), 𝑥2 = 𝑎+ 𝛼2(𝑏− 𝑎),

𝑦1 = 𝑑 − 𝛼1(𝑑 − 𝑐), 𝑦2 = 𝑑 − 𝛼2(𝑑 − 𝑐).

Therefore,

𝑏− 𝑎 =
𝑥1 − 𝑥2
𝛼1 − 𝛼2

, 𝑑 − 𝑐 =
𝑦1 − 𝑦2
𝛼2 − 𝛼1

,

and, subsequently,

𝑎 = 𝑥1 − 𝛼1
𝑥1 − 𝑥2
𝛼1 − 𝛼2

=
𝛼1𝑥2 − 𝛼2𝑥1
𝛼1 − 𝛼2

𝑏 = 𝑎+
𝑥1 − 𝑥2
𝛼1 − 𝛼2

=
(1 − 𝛼2)𝑥1 − (1 − 𝛼1)𝑥2

𝛼1 − 𝛼2

𝑑 = 𝑦1 + 𝛼1
𝑦1 − 𝑦2
𝛼2 − 𝛼1

=
𝛼2𝑦1 − 𝛼1𝑦2
𝛼2 − 𝛼1

𝑐 = 𝑑 −
𝑦1 − 𝑦2
𝛼2 − 𝛼1

=
(1 − 𝛼1)𝑦2 − (1 − 𝛼2)𝑦1

𝛼2 − 𝛼1
. □

The strength of the previous lemma relies on the possibility of characterizing any TrFN by using only two distinct 𝛼-cuts. Let us 
state this in a formal way.

Lemma 3.2. Let 𝐴, 𝐵 ∈  be two TrFN satisfying that 𝐴𝛼1 =𝐵𝛼1 and 𝐴𝛼2 =𝐵𝛼2 for 𝛼1 ≠ 𝛼2, 𝛼1, 𝛼2 ∈ (0,1], then 𝐴 =𝐵.

Proof. This result follows immediately from the previous Lemma. If the 𝛼1-cuts and the 𝛼2-cuts of 𝐴 and 𝐵 are equal, then the 
values of the parameters 𝑎, 𝑏, 𝑐 and 𝑑 for 𝐴 and 𝐵 must be also equal, and thus 𝐴 =𝐵. □

Finally, the above result can be used to define admissible orders for TrFN w.r.t. a given admissible order for intervals.

Theorem 3.1. Let 𝑇 (𝑎∕𝑏∕𝑐∕𝑑), 𝑇 (𝑎′∕𝑏′∕𝑐′∕𝑑′) ∈  and consider an admissible order for intervals ≤𝕀(ℝ)
∗ . Then, the binary relation ⊴∗ on TrFN 
7

defined by:
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𝑇 (𝑎∕𝑏∕𝑐∕𝑑) ⊴∗ 𝑇
(𝑎′∕𝑏′∕𝑐′∕𝑑′) ⟺⎧⎪⎨⎪⎩

𝑎 = 𝑎′, 𝑏 = 𝑏′, 𝑐 = 𝑐′, 𝑑 = 𝑑′ or

[𝑏, 𝑐] <𝕀(ℝ)
∗ [𝑏′, 𝑐′] or

𝑏 = 𝑏′, 𝑐 = 𝑐′, [ 𝑎+𝑏2 , 𝑐+𝑑2 ] <𝕀(ℝ)
∗ [ 𝑎

′+𝑏′
2 , 𝑐

′+𝑑′
2 ]

is an admissible order on  .

Proof. Consider an upper-dense sequence (�̃�𝑖)𝑖∈ℕ on (0,1]. Also, consider the upper dense sequence 𝑆 = (𝛼𝑖)𝑖∈ℕ defined by:

𝛼𝑖 =
⎧⎪⎨⎪⎩
1 if 𝑖 = 1
1
2 if 𝑖 = 2
�̃�𝑖−2 if 𝑖 ≥ 3

At this stage, we can apply Theorem 2.1 to obtain an admissible order ⊴𝑆 on  (ℝ) associated to 𝑆 and ≤𝕀(ℝ)
∗ .

Now, let us analyze the restriction of the admissible order ⊴𝑆 to the class of TrFN  . Note that for 𝑇 (𝑎∕𝑏∕𝑐∕𝑑), 𝑇 (𝑎′∕𝑏′∕𝑐′∕𝑑′) ∈ 

we have

𝑚(𝑇 (𝑎∕𝑏∕𝑐∕𝑑), 𝑇 (𝑎′∕𝑏′∕𝑐′∕𝑑′)) ≤ 2.

Indeed, if 𝑚(𝑇 (𝑎∕𝑏∕𝑐∕𝑑), 𝑇 (𝑎′∕𝑏′∕𝑐′∕𝑑′)) ≥ 3, then the 𝛼-cuts corresponding to 𝛼1 = 1 and 𝛼2 =
1
2 would be equal, i.e., 𝑇 (𝑎∕𝑏∕𝑐∕𝑑)

1 =

𝑇
(𝑎′∕𝑏′∕𝑐′∕𝑑′)
1 and 𝑇 (𝑎∕𝑏∕𝑐∕𝑑)

1
2

= 𝑇 (𝑎′∕𝑏′∕𝑐′∕𝑑′)
1
2

, which, by Lemma 3.2, implies 𝑇 (𝑎∕𝑏∕𝑐∕𝑑) = 𝑇 (𝑎′∕𝑏′∕𝑐′∕𝑑′) and thus 𝑚(𝑇 (𝑎∕𝑏∕𝑐∕𝑑), 𝑇 (𝑎′∕𝑏′∕𝑐′∕𝑑′))

= 0, which is contradictory with the assumption of 𝑚(𝑇 (𝑎∕𝑏∕𝑐∕𝑑), 𝑇 (𝑎′∕𝑏′∕𝑐′∕𝑑′)) ≥ 3. This leads to the following mutually disjoint 
scenarios:

• 𝑚(𝑇 (𝑎∕𝑏∕𝑐∕𝑑), 𝑇 (𝑎′∕𝑏′∕𝑐′∕𝑑′)) = 0. This is equivalent to 𝑎 = 𝑎′, 𝑏 = 𝑏′, 𝑐 = 𝑐′, 𝑑 = 𝑑′;
• 𝑚(𝑇 (𝑎∕𝑏∕𝑐∕𝑑), 𝑇 (𝑎′∕𝑏′∕𝑐′∕𝑑′)) = 1, which holds if and only if [𝑏, 𝑐] <𝕀(ℝ)

∗ [𝑏′, 𝑐′] or [𝑏′, 𝑐′] <𝕀(ℝ)
∗ [𝑏, 𝑐];

• 𝑚(𝑇 (𝑎∕𝑏∕𝑐∕𝑑), 𝑇 (𝑎′∕𝑏′∕𝑐′∕𝑑′)) = 2, which means that 𝑏 = 𝑏′, 𝑐 = 𝑐′ and [ 𝑎+𝑏2 , 𝑐+𝑑2 ] <𝕀(ℝ)
∗ [ 𝑎

′+𝑏′
2 , 𝑐

′+𝑑′
2 ] or [ 𝑎

′+𝑏′
2 , 𝑐

′+𝑑′
2 ] <𝕀(ℝ)

∗ [ 𝑎+𝑏2 , 𝑐+𝑑2 ].

Hence, the restriction of ⊴𝑆 to the class of TrFN  is precisely the binary relation defined in the statement of this theorem, which 
completes the proof. □

Note that admissible orders for fuzzy numbers require checking the order of many 𝛼-cuts according to a dense sequence 𝑆
that obviously has infinite terms. In practice, this can be computationally unfeasible. However, using the previous theorem we can 
construct admissible orders for TrFNs that only require a few comprobations on the 1-cuts and the 12 -cuts.

Example 3.1. To show the superiority of the admissible orders for TrFN defined using this method, let us reflect on the admissible 
order ⊴𝑋𝑌 defined on  associated with the interval admissible order ≤𝕀(ℝ)

𝑋𝑌
. Below, we compare the ranking provided by ⊴𝑋𝑌 with 

the one provided by the notion of magnitude [1], which is a ranking index for TrFNs defined as

𝑀𝑎𝑔(𝑇 (𝑎∕𝑏∕𝑐∕𝑑)) = 𝑎+ 5𝑏+ 5𝑐 + 𝑑
12

, ∀ 𝑇 (𝑎∕𝑏∕𝑐∕𝑑) ∈  .

Let us consider the following TrFNs, which are graphically represented in Fig. 3.

𝑇1 = 𝑇 (0.3∕0.5∕0.6∕0.8)

𝑇2 = 𝑇 (0.3∕0.45∕0.65∕0.8)

𝑇3 = 𝑇 (0.4∕0.5∕0.6∕0.7)

𝑇4 = 𝑇 (0.4∕0.45∕0.65∕0.7).

A simple computation reveals that the magnitudes of these TrFNs are equal, i.e., 𝑀𝑎𝑔(𝑇1) =𝑀𝑎𝑔(𝑇2) =𝑀𝑎𝑔(𝑇3) =𝑀𝑎𝑔(𝑇4) =
0.55. This implies that they are completely indistinguishable from the point of view of their magnitudes and, consequently, it 
would not be possible to define an OWA operator using such a ranking index. Meanwhile, assume the admissible orders ⊴𝑋𝑌 , 
⊴𝐿𝑒𝑥1 and ⊴𝐿𝑒𝑥2 respectively associated with the interval admissible orders ≤𝕀(ℝ)

𝑋𝑌
, ≤𝕀(ℝ)

𝐿𝑒𝑥1
and ≤𝕀(ℝ)

𝐿𝑒𝑥2
. A few comparisons lead to 

𝑇2 ⊳𝑋𝑌 𝑇4 ⊳𝑋𝑌 𝑇1 ⊳𝑋𝑌 𝑇3, 𝑇3 ⊳𝐿𝑒𝑥1 𝑇1 ⊳𝐿𝑒𝑥1 𝑇4 ⊳𝐿𝑒𝑥1 𝑇2, and 𝑇2 ⊳𝐿𝑒𝑥2 𝑇4 ⊳𝐿𝑒𝑥2 𝑇1 ⊳𝐿𝑒𝑥2 𝑇3. This emphasizes the versatility of the 
proposed method. As final notes, let us remark that these TrFN are not even comparable when using the partial order ⪯KY .

4. OWA operators for fuzzy numbers
8

This section applies the idea of admissible order to define OWA operators for fuzzy numbers.
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Fig. 3. Graph of the TrFNs 𝑇1, 𝑇2, 𝑇3 and 𝑇4 .

Firstly, let us make some previous considerations. Regarding the weight vector, this paper considers that they are given as crisp 
fuzzy numbers. Otherwise, in case of an arbitrary fuzzy number is used as a weight vector, the associated OWA operator would 
present some undesired behaviors, i.e. some classical properties of the original OWA operator could not be satisfied.

Definition 4.1. A vector �̂� = (𝜔1, … , ̃𝜔𝑛) is called a weight vector of crisp fuzzy numbers, whenever, for all 𝑗 ∈ {1, 2, .., 𝑛}:

1. 𝜔𝑗 is a crisp fuzzy number such that 𝜔𝑗 ∈ [0, 1],

2. 𝜔1 ⊕⋯ ⊕𝜔𝑛 = 1̃.

Example 4.1. �̂� = (𝜔1, ̃𝜔2, ̃𝜔3, ̃𝜔4) such that 𝜔𝑗 = 𝑗 ⋅ 10−1, for all 𝑗 ∈ {1, 2, 3, 4}, is a weight vector of crisp fuzzy numbers.

Furthermore, since the goal of this paper is to define OWA operators for fuzzy numbers, it is necessary to guarantee some 
monotonicity conditions with respect to addition and multiplication. This was discussed for the case of addition in [30] and here 
also is included the case of multiplication by scalars.

Definition 4.2. An admissible order ≤𝕀(ℝ) is said to be compatible with the addition and the positive scalar multiplication if for any 
𝐼1, 𝐼2, 𝐽1, 𝐽2 ∈ 𝕀(ℝ) and 𝑟 > 0, 𝐼1 <𝕀(ℝ) 𝐼2 and 𝐽1 <𝕀(ℝ) 𝐽2 implies:

1. [𝐼1 + 𝐽1, 𝐼1 + 𝐽1] <𝕀(ℝ) [𝐼2 + 𝐽2, 𝐼2 + 𝐽2]; and

2. [𝐼1 ⋅ 𝑟, 𝐼1 ⋅ 𝑟] <𝕀(ℝ) [𝐼2 ⋅ 𝑟, 𝐼2 ⋅ 𝑟].

Definition 4.3. Let ⊴ be an admissible order on  (ℝ). ⊴ is said to be compatible with the addition (⊕) and positive crisp fuzzy 
number multiplication (⊙) if, for any 𝐴1, 𝐴2, 𝐵1, 𝐵2 ∈  (ℝ) and ̃𝑟 ∈  , then 𝐴1 ⊲𝐴2, 𝐵1 ⊲𝐵2, and 𝑟 > 0 implies:

1. 𝐴1 ⊕𝐵1 ⊲𝐴2⊕𝐵2; and

2. 𝐴1 ⊙ �̃�⊲𝐴2 ⊙ �̃�.

Proposition 4.1. Under the same hypotheses of Theorem 2.1, the order ⊴𝑆 is compatible with the addition and the positive crisp fuzzy 
number multiplication if the order ≤𝕀(ℝ) is compatible with the addition and the positive scalar multiplication.

Proof. The proof is analogous to the one shown in [30](prop. III.3). □

Example 4.2. The admissible orders ⊴𝑆
𝐿𝑒𝑥1 and ⊴𝑆

𝑋𝑌
showed in Example 2.5 are compatible with the addition and the positive crisp 

fuzzy number multiplication.
9

Now, OWA operators for fuzzy numbers based on admissible orders may be defined as follows.



Fuzzy Sets and Systems 480 (2024) 108863D. García-Zamora, A. Cruz, F. Neres et al.

Definition 4.4. Let �̂� =
(
𝜔1,… ,𝜔𝑛

)
be a weight vector of crisp fuzzy numbers. Also consider an admissible order ⊴ which is 

compatible with the addition and the positive crisp fuzzy number multiplication. Then, the AOWA operator associated to ⊴ and �̃� is 
the mapping AOWA�̂�⊴ ∶  (ℝ)𝑛 →  (ℝ) defined by

AOWA�̂�⊴(𝐴1,… ,𝐴𝑛) =
(
𝜔1 ⊙𝐴(1)

)
⊕⋯⊕

(
𝜔𝑛 ⊙𝐴(𝑛)

)
(14)

for all 𝐴1, … , 𝐴𝑛 ∈  (ℝ), where 𝐴(𝑖) stands for 𝑖-th largest element in {𝐴1, ..., 𝐴𝑛} according to the order ⊴.

Note that Definition 2.4 guarantees that the AOWA operator is well-defined.

Example 4.3. The mappings Min⊴, Max⊴, M�̂� ∶  (ℝ)𝑛 →  (ℝ) defined by

1. Min⊴(𝐴1, … , 𝐴𝑛) =𝐴(𝑛),
2. Max⊴(𝐴1, … , 𝐴𝑛) =𝐴(1), and

3. M�̂�(𝐴1, … , 𝐴𝑛) =
(
𝜔1 ⊙𝐴(1)

)
⊕⋯ ⊕

(
𝜔𝑛 ⊙𝐴(𝑛)

)
are AOWA operators for �̂�∗ = (0̃, ̃0, … , ̃1), �̂�∗ = (1̃, ̃0… , ̃0), and �̂� =

(
1̃∕𝑛,… , 1̃∕𝑛

)
respectively, i.e.:

1. Min⊴ =AOWA�̂�∗
⊴

,

2. Max⊴ =AOWA�̂�
∗
⊴ , and

3. M�̂� =AOWA�̂�⊴.

5. Main properties of AOWA operators on fuzzy numbers

In this section, some classic properties of crisp OWA operators are shown in the case of AOWAs. So, in view of the original Yager’s 
idea of this operator, we show that AOWA operators on fuzzy numbers are symmetric, monotonic, idempotent, and limited by the 
minimum and maximum operators. Further, other properties of OWA operators, like shift-invariance and positive homogeneity, are 
also demonstrated for AOWAs.

Firstly, it is shown that AOWA operators satisfy the monotonicity property. Beforehand, we clarify the relationship between 
monotonicity and compatibility of ⊴ with respect to addition and positive crisp fuzzy number multiplication.

Lemma 5.1. Let 𝐴, 𝐵, 𝐴1, 𝐴2, 𝐵1, 𝐵2 ∈  (ℝ) and �̃� ∈  . Consider an admissible order ⊴ compatible with addition and positive crisp 
fuzzy number multiplication. Then, it holds that:

1. If 𝐴 ⊴ 𝐵, then ̃𝑟 ⊕𝐴 ⊴ �̃� ⊕𝐵;
2. If 𝐴 ⊴ 𝐵 and 𝑟 ≥ 0, then ̃𝑟 ⊙𝐴 ⊴ �̃� ⊙ 𝐵;
3. If 𝐴1 ⊴ 𝐵1 and 𝐴2 ⊴ 𝐵2, then 𝐴1⊕𝐴2 ⊴ 𝐵1 ⊕𝐵2.

Proof. Directly from the compatibility of ⊴ with the addition and the positive crisp fuzzy number multiplication. □

Consequently, we obtain the monotonicity of AOWA operators with respect to the order ⊴.

Theorem 5.1. Under the same hypotheses of Definition 4.4. Let (𝐴1, … , 𝐴𝑛) ∈  (ℝ)𝑛 and (𝐵1, … , 𝐵𝑛) ∈  (ℝ)𝑛 be two ordered vectors, 
i.e. 𝐴𝑖 ⊵𝐴𝑗 and 𝐵𝑖 ⊵𝐵𝑗 for each 𝑖 < 𝑗. If 𝐵𝑘 ⊵𝐴𝑘, for each 𝑘 then

AOWA�̂�⊴ (𝐴1,… ,𝐴𝑛) ⊴ AOWA�̂�⊴(𝐵1,… ,𝐵𝑛).

Proof. Since 𝐴(𝑗) ⊴ 𝐵(𝑗), for all 1 ≤ 𝑗 ≤ 𝑛, then, by Lemma 5.1(2), (𝑟𝑗 ⊙𝐴(𝑗)) ⊴ (𝑟𝑗 ⊙𝐵(𝑗)), for all 1 ≤ 𝑗 ≤ 𝑛. Hence, by Lemma 5.1(3),

(𝑟1 ⊙𝐴(1))⊕⋯⊕ (𝑟𝑛 ⊙ 𝐴(𝑛)) ⊴ (𝑟1 ⊙𝐵(1))⊕⋯⊕ (𝑟𝑛 ⊙ 𝐵(𝑛)),

i.e., AOWA�̂�⊴(𝐴1, … , 𝐴𝑛) ⊴ AOWA�̂�⊴(𝐵1, … , 𝐵𝑛). □

Corollary 5.1. Under the same hypotheses of Definition 4.4. Let 𝐴1, … , 𝐴𝑛 ∈  (ℝ) and 𝐵1, … , 𝐵𝑛 ∈  (ℝ). If 𝐵𝑘 ⊵𝐴𝑘, for each 𝑘 then

AOWA�̂�⊴ (𝐴1,… ,𝐴𝑛) ⊴ AOWA�̂�⊴(𝐵1,… ,𝐵𝑛).
10

Proof. Let �̂� = (𝐴(1), … , 𝐴(𝑛)) and �̂� = (𝐵(1), … , 𝐵(𝑛)). Then it can be easily shown that �̂�𝑖 ⊴ �̂�𝑖. □
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It is also possible to obtain a monotonicity result for AOWA operators with respect to the order ≤ as follows.

Lemma 5.2. The partial order ≤ on fuzzy numbers is compatible with addition and positive crisp fuzzy numbers multiplication.

Proof. Directly from Equations (4) and (5). □

Theorem 5.2. Under the same hypotheses of Definition 4.4. Let 𝐴𝑗, 𝐵𝑗 ∈  (ℝ), and 𝐴𝑗 ≤ 𝐵𝑗 , for all 𝑗 ∈ {1, ..., 𝑛}, then

AOWA�̂�⊴(𝐴1,… ,𝐴𝑛) ≤AOWA�̂�⊴(𝐵1,… ,𝐵𝑛).

Proof. Analogous to the proof of Corollary 5.1, considering the Lemma 5.2. □

Notice that the previous results show that if the monotonicity with respect to the order ⊴ presented in Corollary 5.1 is re-

quired, then such order must be compatible with addition and positive fuzzy numbers multiplication. This paper considers that such 
monotonicity is a key property for OWA operators and for this reason we included the compatibility axioms in the AOWA definition.

In addition, averaging operators must provide an output between the minimum and the maximum. The following result states 
that this important property of means defined on [0, 1] is also maintained for AOWA operators.

Theorem 5.3. The least and the greatest AOWA operators, w.r.t. the admissible order ⊴, are Min⊴ and Max⊴ , respectively. Formally, for 
any tuple (𝐴1, … , 𝐴𝑛) ∈  (ℝ)𝑛

Min⊴(𝐴1,… ,𝐴𝑛)⊴AOWA�̂�⊴(𝐴1,… ,𝐴𝑛)

⊴Max⊴ (𝐴1,… ,𝐴𝑛),

for every 𝑛-ary weight vector �̂�.

Proof. Let (𝐴1, … , 𝐴𝑛) ∈  (ℝ)𝑛 and consider an 𝑛-ary weight vector �̂�. First, let us prove that the AOWA operator is lower than the 
maximum operator. Since 𝐴(𝑛) ⊴ … ⊴ 𝐴(1), by Lemma 5.1(2) 𝜔𝑗 ⊙ 𝐴(𝑗) ⊴ 𝜔𝑗 ⊙ 𝐴(1) for all 𝑗 ∈ {1, ..., 𝑛}. Then, by Lemma 5.1(3), 
AOWA�̂�⊴(𝐴1, … , 𝐴𝑛) = (𝜔1 ⊙𝐴(1)) ⊕⋯ ⊕ (𝜔𝑛 ⊙𝐴(𝑛)) ⊴ (𝜔1 ⊙𝐴(1)) ⊕⋯ ⊕ (𝜔𝑛 ⊙𝐴(1)) =AOWA�̂�⊴(𝐴(1), … , 𝐴(1)) =𝐴(1), which is the 
maximum operator. Therefore, AOWA�̂�⊴(𝐴1, … , 𝐴𝑛) ⊴ Max⊴ (𝐴1, … , 𝐴𝑛). A similar argument leads to the inequality

Min⊴ (𝐴1,… ,𝐴𝑛) ⊴ AOWA�̂�⊴(𝐴1,… ,𝐴𝑛). □

Theorem 5.4. The least and the greatest AOWA operators, w.r.t. the partial order ≤, are Min⊴ and Max⊴ , respectively. Formally, for any 
tuple (𝐴1, … , 𝐴𝑛) ∈  (ℝ)𝑛

Min⊴(𝐴1,… ,𝐴𝑛) ≤AOWA�̂�⊴(𝐴1,… ,𝐴𝑛)

≤Max⊴ (𝐴1,… ,𝐴𝑛),

for every 𝑛-ary weight vector �̂�.

Proof. Analogous to the previous result, considering Lemma 5.2. □

The following statement points out that AOWAs are symmetric, i.e., invariant under permutations. This property is fundamental 
because the initial idea of OWA operators presumes its satisfaction.

Theorem 5.5. Under the same hypotheses of Definition 4.4,

AOWA�̂�⊴(𝐴1,… ,𝐴𝑛) = AOWA�̂�⊴(𝐴𝜎(1),… ,𝐴𝜎(𝑛)),

for all permutation 𝜎 ∶ {1, … , 𝑛} → {1, … , 𝑛} and for any tuple (𝐴1, … , 𝐴𝑛) ∈  (ℝ)𝑛.

Proof. Directly from Definition 4.4. □

Another expected property for averaging aggregation operators is the idempotency. Let us introduce a previous lemma.

Lemma 5.3. Let 𝐴 ∈  (ℝ) and ̃𝑟, ̃𝑠 ∈  . Then,( ) ( ) ( )

11

𝐴⊙ �̃�⊕ �̃� = 𝐴⊙ �̃� ⊕ 𝐴⊙ �̃� .
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Proof. For any 𝑧 ∈ℝ, it follows that[
𝐴⊙

(
�̃� ⊕ �̃�

)]
(𝑧) =[𝐴⊙ 𝑟+ 𝑠](𝑧)

= sup
𝑥⋅𝑦=𝑧

min{𝐴(𝑥), 𝑟+ 𝑠(𝑦)}

= sup
𝑥⋅(𝑟+𝑠)=𝑧

min{𝐴(𝑥), 𝑟+ 𝑠(𝑟+ 𝑠)}

= sup
𝑥𝑟+𝑥𝑠=𝑧

𝐴(𝑥)

= sup
𝑥𝑟+𝑥𝑠=𝑧

min{𝐴(𝑥),𝐴(𝑥)}

= sup
𝑥𝑟+𝑥𝑠=𝑧

min
{[

sup
𝑥⋅𝑢=𝑥𝑟

min{𝐴(𝑥), �̃�(𝑢)}
]
,[

sup
𝑥⋅𝑣=𝑥𝑠

min{𝐴(𝑥), �̃�(𝑣)}
]}

= sup
𝑥𝑟+𝑥𝑠=𝑧

min
{
(𝐴⊙ �̃�)(𝑥𝑟), (𝐴⊙ �̃�)(𝑥𝑠)

}
=
[(
𝐴⊙ �̃�

)
⊕

(
𝐴⊙ �̃�

)]
(𝑧). □

Corollary 5.2. Let 𝐴 ∈  (ℝ) and 𝑟1, … , 𝑟𝑛 ∈  . Then,

𝐴⊙
(
𝑟1 ⊕⋯⊕ 𝑟𝑛

)
=
(
𝐴⊙ 𝑟1

)
⊕⋯⊕

(
𝐴⊙ 𝑟𝑛

)
.

Finally, we show that AOWA operators are idempotent.

Theorem 5.6. Let AOWA�̂�⊴ be the operator defined in Definition 4.4. Then,

AOWA�̂�⊴(𝐴,… ,𝐴) =𝐴,

for all 𝐴 ∈  (ℝ).

Proof. It holds that

AOWA�̂�⊴(𝐴,… ,𝐴) =
(
𝜔1 ⊙𝐴

)
⊕⋯⊕

(
𝜔𝑛 ⊙𝐴

)
(by Definition 4.4)

=
(
𝐴⊙𝜔1

)
⊕⋯⊕

(
𝐴⊙𝜔𝑛

)
(by the commutativity of ⊙)

=𝐴⊙
(
𝜔1 ⊕⋯⊕𝜔𝑛

)
(by Corollary 5.2)

=𝐴⊙ 1̃ (by Definition 4.1)

=𝐴 (by Proposition 2.1(1)).

Hence AOWA operators are idempotent. □

Next, it is shown that the properties describing the stability of aggregation functions with respect to changes in the used scale, 
i.e., shift-invariance and homogeneity, remain valid for the AOWA operators.

Theorem 5.7. In the hypothesis of Definition 4.4,

AOWA�̂�⊴(𝐴1⊕𝜆,… ,𝐴𝑛 ⊕ 𝜆) = AOWA�̂�⊴(𝐴1,… ,𝐴𝑛)⊕𝜆,

for all 𝜆 ∈  and for any tuple (𝐴1, … , 𝐴𝑛) ∈  (ℝ)𝑛.

Proof. Proposition 2.1(2) guarantees that 𝜔𝑗 ⊙
(
𝐴(𝑗) ⊕𝜆

)
=
(
𝜔𝑗 ⊙𝐴(𝑗)

)
⊕

(
𝜔𝑗 ⊙ 𝜆

)
, for all 𝑗 ∈ {1, ..., 𝑛}. Considering Equation 

(14), Propositions 2.1(1) and associativity of ⊕ and Corollary 5.2, we have:

AOWA�̂�⊴(𝐴1 ⊕𝜆,… ,𝐴𝑛 ⊕ 𝜆) =

=
[
𝜔1 ⊙

(
𝐴(1) ⊕𝜆

)]
⊕⋯⊕

[
𝜔𝑛 ⊙

(
𝐴(𝑛) ⊕𝜆

)]
=
[(
𝜔1 ⊙𝐴(1)

)
⊕

(
𝜔1 ⊙𝜆

)]
⊕⋯⊕

[(
𝜔𝑛 ⊙𝐴(𝑛)

)
⊕

(
𝜔𝑛 ⊙ 𝜆

)]
[( ) ( )] [( ) ( )]
12

= 𝜔1 ⊙𝐴(1) ⊕⋯⊕ 𝜔𝑛 ⊙𝐴(𝑛) ⊕ 𝜔1 ⊙𝜆 ⊕⋯⊕ 𝜔𝑛 ⊙ 𝜆
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=
[(
𝜔1 ⊙𝐴(1)

)
⊕⋯⊕

(
𝜔𝑛 ⊙𝐴(𝑛)

)]
⊕

[
𝜆⊙

(
𝜔1⊕⋯⊕𝜔1

)]
=AOWA�̂�⊴(𝐴1,… ,𝐴𝑛)⊕𝜆.

Hence, AOWA�̂�⊴ is shift-invariant. □

Theorem 5.8. Under the same hypotheses of Definition 4.4,

AOWA�̂�⊴(𝜆⊙𝐴1,… , 𝜆 ⊙ 𝐴𝑛) = 𝜆 ⊙AOWA�̂�⊴(𝐴1,… ,𝐴𝑛),

for all 𝜆 ∈  and for any tuple (𝐴1, … , 𝐴𝑛) ∈  (ℝ)𝑛.

Proof. Commutativity and associativity of ⊙ guarantees that 𝜔𝑗 ⊙
(
𝜆⊙𝐴𝑗

)
= 𝜆 ⊙

(
𝜔𝑗 ⊙𝐴𝑗

)
, for all 𝑗 ∈ {1, ..., 𝑛}. Therefore, by 

Lemma 5.1(2)

AOWA�̂�⊴(𝜆⊙𝐴1,… , 𝜆 ⊙ 𝐴𝑛) =
[
𝜔1 ⊙

(
𝜆⊙𝐴(1)

)]
⊕⋯⊕

[
𝜔𝑛 ⊙

(
𝜆⊙𝐴(𝑛)

)]
=
[
𝜆⊙

(
𝜔1 ⊙𝐴(1)

)]
⊕⋯⊕

[
𝜆⊙

(
𝜔𝑛 ⊙𝐴(𝑛)

)]
= 𝜆 ⊙

[(
𝜔1 ⊙𝐴(1)

)
⊕⋯⊕

(
𝜔𝑛 ⊙𝐴(𝑛)

)]
= 𝜆 ⊙AOWA�̂�⊴(𝐴1,… ,𝐴𝑛).

Hence, AOWA�̂�⊴ is homogeneous. □

6. Admissible orders for trapezoidal fuzzy numbers and an application to multi-criteria decision making

This section proposes an illustrative example related to sustainability in which the AOWA operators are used in multi-criteria 
decision-making. To do so, we start by introducing ELICIT (Extended Comparative Linguistic Expressions with Symbolic Translation) 
information, which relies on the fuzzy linguistic approach [26] to model the linguistic information provided by experts. Since ELICIT 
information induces a bijection between the linguistic expressions and the set of TrFNs  , we will apply the novel construction 
method introduced in Section 3 to generate admissible orders on  . Finally, we show the feasibility of AOWA operators by conducting 
a case study.

6.1. ELICIT information

From a theoretical point of view, ELICIT expressions are generated by a context-free grammar that models comparative linguistic 
expressions such as “between good and very good” or “at least good” [16]. Formally, ELICIT information relies on the 2-tuple 
linguistic model [17], which was introduced to precisely manipulate the linguistic values by representing them as a (𝑠𝑖, 𝛼) ∈ S ∶=
{𝑠0} × [0, 0.5) ∪ {𝑠1} × [−0.5, 0.5) ∪ {𝑠2} × [−0.5, 0.5) ∪… ∪ {𝑠𝑔−1} × [−0.5, 0.5) ∪ {𝑠𝑔} × [−0.5, 0], where 𝑠𝑖 is a linguistic term in the 
linguistic term set S = {𝑠0, 𝑠1, … , 𝑠𝑔} (𝑔 ∈ ℕ even) and 𝛼 ∈ [−0.5, 0.5[ stands for the deviation of the fuzzy membership function of 
the 2-tuple expression with respect to the membership function of the term 𝑠𝑖. The main feature of the 2-tuple linguistic approach is 
that any 2-tuple linguistic expression may be univocally remapped into the real interval [0, 𝑔] using the bijection Δ−1 ∶ S → [0, 𝑔]
defined as Δ−1

S
(𝑠𝑖, 𝛼) = 𝑖 + 𝛼, ∀ (𝑠𝑖, 𝛼) ∈ S [17].

Even though the 2-tuple linguistic model succeeds at modeling linguistic expressions by using the fuzzy linguistic approach, it 
fails at dealing with the hesitancy between different linguistic terms. For this reason, Labella et al. [16] proposed ELICIT information 
as a generalization of the 2-tuple approach that improves its flexibility when modeling hesitation. Formally, an ELICIT expression 
is denoted as [𝑠𝑖, 𝑠𝑗 ]𝛾1 ,𝛾2 , where 𝑠𝑖, 𝑠𝑗 ∈ S , 𝑖 ≤ 𝑗 are two 2-tuple terms and 𝛾1, 𝛾2 are two parameters that ensure that there is no 
information loss when manipulating the ELICIT expression [7]. Note that any ELICIT expression may be univocally remapped into a 
TrFN [7]:

Proposition 6.1 ([7]). Let S be the set of all the ELICIT values. Then, the mapping 𝜁 ∶  → S defined as:

𝜁(𝑇 (𝑎∕𝑏∕𝑐∕𝑑)) = [𝑠1, 𝑠2]𝛾1 ,𝛾2 ,

where

𝑠1 = Δ𝑆 (𝑔𝑏), 𝛾1 = 𝑎−max
{
𝑏− 1

𝑔
,0
}
,

𝑠2 = Δ𝑆 (𝑔𝑐) and 𝛾2 = 𝑑 −min
{
𝑐 + 1

𝑔
,1
}

13

is a bijection.
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In order to adapt OWA operators to ELICIT information, for a real number 𝜔 ∈ [0, 1], let us consider the associated membership 
function �̃� ∶ [0, 1] → [0, 1] defined as

�̃�(𝑥) =

{
1 if 𝑥 = 𝜔
0 otherwise

∀ 𝑥 ∈ [0,1].

In this case, for a weight vector �̂� = (𝜔1, ̃𝜔2, ..., ̃𝜔𝑛), 𝑛 ∈ℕ, a family of ELICIT values 𝑇 (𝑎1∕𝑏1∕𝑐1∕𝑑1), ..., 𝑇 (𝑎𝑛∕𝑏𝑛∕𝑐𝑛∕𝑑𝑛) may be aggregated 
according to an AOWA operator as follows:

AOWA�̂�⊴
(
𝑇 (𝑎1∕𝑏1∕𝑐1∕𝑑1), ..., 𝑇 (𝑎𝑛∕𝑏𝑛∕𝑐𝑛∕𝑑𝑛)

)
=

= 𝑇
(∑𝑚

𝑖=1 𝜔𝑖𝑎(𝑖)∕
∑𝑚
𝑖=1 𝜔𝑖𝑏(𝑖)∕

∑𝑛
𝑖=1 𝜔𝑖𝑐(𝑖)∕

∑𝑛
𝑖=1 𝜔𝑖𝑑(𝑖)

)
where 𝑇 (𝑎(𝑖) ,𝑏(𝑖) ,𝑐(𝑖) ,𝑑(𝑖)) is the 𝑖-th largest value in 𝑇 (𝑎1∕𝑏1∕𝑐1∕𝑑1), ..., 𝑇 (𝑎𝑛∕𝑏𝑛∕𝑐𝑛∕𝑑𝑛) according to a certain admissible order ⊴. Note that 
the construction method for deriving admissible orders for TrFNs introduced in Section 3 allows inducing a total order for ELICIT 
values.

6.2. Case study

Sustainability aims for a regenerative production process that minimizes adverse outcomes and exploits the source material as 
much as possible [10]. In the implementation process of a sustainable production model, it is necessary to make decisions based on 
experts’ recommendations that may be vague or imprecise. In this case, we consider the fast food company EasyLunch, that desires 
to introduce a new sustainability policy among the following:

• 𝐴1 ∼ Use electric vehicles for deliveries.

• 𝐴2 ∼ Replace disposable plastic cutlery with reusable steel cutlery.

• 𝐴3 ∼ Install solar panels in all the restaurants.

• 𝐴4 ∼ Replace the natural gas heating system with an electric heat pump.

In order to select the best alternative, the company wants to consider its 𝐶1 ∼ Environmental, 𝐶2 ∼ Social, and 𝐶3 ∼ Economical 
impact [6] and, consequently, they ask an expert to evaluate the different alternatives according to these criteria by using the 
linguistic term set

𝑆 =
{
𝑠0 ∼ Very inadequate, 𝑠1 ∼ Inadequate,

𝑠2 ∼ Slightly inadequate, 𝑠3 ∼ Irrelevant,

𝑠4 ∼ Slightly adequate,

𝑠5 ∼ Adequate, 𝑠6 ∼ Very adequate
}
.

Therefore, the expert provides her opinion about the suitability of each alternative according to the above-mentioned criteria using 
comparative linguistic expressions. The corresponding decision matrix is as follows:

⎛⎜⎜⎜⎝
[(𝑠3,0.0), (𝑠3,0.0)]0.0,0.0 [(𝑠0,0.0), (𝑠2,0.0)]0.0,0.0 [(𝑠2,0.0), (𝑠4,0.0)]0.0,0.0
[(𝑠2,0.0), (𝑠5,0.0)]0.0,0.0 [(𝑠0,0.0), (𝑠5,0.0)]0.0,0.0 [(𝑠0,0.0), (𝑠0,0.0)]0.0,0.0
[(𝑠0,0.0), (𝑠6,0.0)]0.0,0.0 [(𝑠2,0.0), (𝑠6,0.0)]0.0,0.0 [(𝑠3,0.0), (𝑠5,0.0)]0.0,0.0
[(𝑠2,0.0), (𝑠5,0.0)]0.0,0.0 [(𝑠0,0.0), (𝑠4,0.0)]0.0,0.0 [(𝑠5,0.0), (𝑠5,0.0)]0.0,0.0

⎞⎟⎟⎟⎠ ,
where the item in the 𝑖-th row and 𝑗-th column corresponds to the evaluation of the alternative 𝐴𝑖 under the criteria 𝐶𝑗 . Note that, 
in spite of its notation, preference values such as [(𝑠0, 0.0), (𝑠1, 0.0)]0.0,0.0 stand for the linguistic comparative expression less than 
inadequate, whereas values such as [(𝑠1, 0.0), (𝑠3, 0.0)]0.0,0.0 correspond to the expression between inadequate and irrelevant. Using the 
ELICIT framework, these preferences are transformed into TrFN, obtaining the following decision matrix:

𝑇 =
⎛⎜⎜⎜⎝

𝑇 (0.33∕0.5∕0.5∕0.67) 𝑇 (0.0∕0.0∕0.33∕0.5) 𝑇 (0.17∕0.33∕0.67∕0.83)

𝑇 (0.17∕0.33∕0.83∕1.0) 𝑇 (0.0∕0.0∕0.83∕1.0) 𝑇 (0.0∕0.0∕0.0∕0.17)

𝑇 (0.0∕0.0∕1.0∕1.0) 𝑇 (0.17∕0.33∕1.0∕1.0) 𝑇 (0.33∕0.5∕0.83∕1.0)

𝑇 (0.17∕0.33∕0.83∕1.0) 𝑇 (0.0∕0.0∕0.67∕0.83) 𝑇 (0.67∕0.83∕0.83∕1.0)

⎞⎟⎟⎟⎠
Following the initial idea used by Yager to apply OWA operators in MCDM problems [25], we assume that the final score of the 

alternative should depend on how much it satisfies all the criteria. Therefore, we use the aforementioned AOWA operator associated 
with the weights �̂� = (0̃.5, ̃0.3, ̃0.2) to aggregate, for each alternative, the rating of the criteria. Note that, for the TrFNs in the matrix 
𝑇 , the following holds:

𝑇1,3 ⊵𝑋𝑌 𝑇1,1 ⊵𝑋𝑌 𝑇1,2
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𝑇2,1 ⊵𝑋𝑌 𝑇2,2 ⊵𝑋𝑌 𝑇2,3
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Fig. 4. Membership functions of the final ELICIT ratings for the alternatives when using XY-order.

𝑇3,3 ⊵𝑋𝑌 𝑇3,2 ⊵𝑋𝑌 𝑇3,1

𝑇4,3 ⊵𝑋𝑌 𝑇4,1 ⊵𝑋𝑌 𝑇4,2.

It must be highlighted that ⊴𝑋𝑌 is a total order constructed according to the procedure developed in Section 3 and thus the order in 
which these values are aggregated using the AOWA does not depend on the applied sorting algorithm.

Consequently, the TrFNs obtained after using the AOWA�̂�⊴𝑋𝑌 are as follows.

⎛⎜⎜⎜⎝
𝑇 (0.18∕0.32∕0.55∕0.72)

𝑇 (0.08∕0.17∕0.67∕0.83)

𝑇 (0.22∕0.35∕0.92∕1.0)

𝑇 (0.38∕0.52∕0.8∕0.97)

⎞⎟⎟⎟⎠,
and the corresponding ELICIT version is

⎛⎜⎜⎜⎝
[(𝑠2,−0.1), (𝑠3,0.3)]0.03,0.0
[(𝑠1,0.0), (𝑠4,0.0)]0.08,0.0
[(𝑠2,0.1), (𝑠6,−0.5)]0.03,0.0
[(𝑠3,0.1), (𝑠5,−0.2)]0.03,0.0

⎞⎟⎟⎟⎠ .
Here, it should be remarked that when making the aggregation, this AOWA operator prioritizes the highest (according to the order) 
rating of the alternatives in any criteria, in the same way as the crisp OWA operator with weights (0.5,0.3,0.2). In other words, an 
alternative is considered to have a good overall performance if it has a very good performance for any of the criteria.

Finally, we can use the ELICIT XY-order induced by ⊴𝑋𝑌 on the above matrix to conclude that 𝐴4 ≻𝐴3 ≻𝐴1 ≻𝐴2 (see Fig. 4).

7. Conclusions

The definition of a reasonable ordering method for fuzzy numbers has been an open problem for many years. However, the 
recently introduced notion of admissible order for fuzzy numbers provides a total order relation that allows their ranking. In this 
paper, we have applied this admissible order idea to extend OWA operators, which is a classic family of aggregation functions that, 
as we have shown in this paper, need a total order relation to be well-defined. In this perspective, we have carried out a deep study 
regarding the necessary axioms required to define such an OWA operator from admissible orders on fuzzy numbers. In addition, we 
have shown that the classic properties of OWA operators for crisp numbers remain valid in the fuzzy numbers domain. Finally, we 
have illustrated that our proposal can be easily applied to properly solve decision-making problems under uncertain environments. 
Additionally, we have provided a generic method to define admissible orders on TrFNs from admissible orders for intervals. The 
main advantage of this methodology is the fact that it does not need to compare 𝛼-cuts according to an upper-dense sequence, unlike 
in the already proposed admissible orders [30].

For future studies, we will investigate the extension of OWA operators to interval-valued fuzzy numbers. This would allow 
for a more comprehensive handling of uncertainty, as interval-valued fuzzy numbers can capture a wider range of possibilities. 
Additionally, we will focus on the application of the concept of admissible order to broaden the scope of other aggregation operators 
15

into the domain of fuzzy numbers, such as the Sugeno and Choquet integrals. Finally, from the application point of view, we will 
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study the integration of AOWA operators into big data analytics and machine learning algorithms to enhance data fusion, feature 
selection, and model combination in large and complex datasets.
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