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a b s t r a c t

Optimal decision-making has become increasingly more difficult due to their inherent complexity
exacerbated by uncertain and rapidly changing environmental conditions in which they are defined.
Hence, with the aim of improving the uncertainty management and facilitating the weighting criteria,
this paper introduces an improved fuzzy Einstein Combined Compromise Solution (CoCoSo) method-
ology. Such a CoCoSo model improves previous CoCoSo proposals by using nonlinear fuzzy weighted
Einstein functions for defining weighted sequences. In addition, it proposes a novel algorithm for
determining the criteria weights based on the fuzzy logarithmic function, therefore it allows decision-
makers a better perception of the relationship between the criteria, as it considers the relationships
between adjacent criteria; high consistency of expert comparisons; and enables the definition of
weighting coefficients of a larger set of criteria, without the need to cluster (group) the criteria.
Nonlinear fuzzy Einstein functions implemented in the fuzzy Einstein CoCoSo methodology enable
the processing of complex and uncertain information. Such characteristics contribute to the rational
definition of compromise strategies and enable objective reasoning when solving real-world decision
problems. The efficiency, effectiveness, and robustness of the proposed fuzzy Einstein CoCoSo model
are illustrated by a case study to create a conceptual framework to evaluate and rank the prioritization
of public transportation management at the time of the COVID-19 pandemic. The results reveal its good
performance in determining the transportation management systems strategy.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

We have recently seen how pandemics among other disasters
an affect countries all around the world in various negative ways.
ransportation is one of the most affected fields because of the
tay-at-home restrictions and strict lockdown measures. In the
arly stages of the COVID-19 pandemic, private vehicle usage
nd public transportation usage have decreased dramatically [1].
fterward, the decrease in private vehicle use has picked up from
he bottom, but the public transportation demands are still very
ow compared to the pre-pandemic stages [2]. People are avoiding
losed and crowded areas, which is lowering the increase in
he demand for public transportation. Therefore, there is a need
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nc-nd/4.0/).
for new management methods to re-adjust public transportation
according to the current pandemic conditions and increase the
demands [3,4].

Due to the COVID-19 pandemic, the demand for public trans-
portation has decreased significantly [5]. Consequently, there is a
potential for increased traffic congestion in urban areas, as people
who stopped using public transportation primarily switch to pri-
vate vehicles [6]. In addition to private vehicles, studies indicate
that micro-mobility services such as bike-sharing have attracted
a significant amount of demand since the pandemic, which can
be linked to a portion of the decline in public transportation
[7]. Therefore, people are abandoning public transportation and
adopting new behaviors, such as cycling and driving private ve-
hicles. These passengers may not use public transportation even
after the pandemic, putting public transportation operators in a
dangerous position. Despite the fact that public transportation
systems are services for the public, they incur high operating ex-

penses due to vehicle maintenance, fuel consumption, and taxes.
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f the pandemic continues or even if it ends and demand does
ot return to pre-pandemic levels, the revenues generated from
ommuters will not be sufficient to cover operating expenses. In
ight of the ongoing pandemic, new public transportation man-
gement strategies are required to ensure commuters’ safety
hile simultaneously reducing operating costs.
In this study, a fuzzy CoCoSo method by applying Einstein

orms is proposed to improve two issues: (i) the definition of
eighted sequences and compromise alternative strategies by
sing fuzzy nonlinear Einstein functions, and (ii) the proposal
f a new algorithm for determining the weight coefficients of
he criteria based on the fuzzy logarithmic function. We can
ummarize the advantages and novelty of fuzzy Einstein CoCoSo
ethodology as follows:

– The fuzzy Einstein CoCoSo methodology has an original
nonlinear model for defining the significance of the criteria,
thus eliminating the need to apply additional auxiliary tools.
This algorithm enables objective expert reasoning and the
rational definition of the relationship between the criteria
and allows decision-makers to better understand the re-
lationships between the criteria because it considers the
relationships between adjacent criteria.

– The proposed methodology for determining criteria weights
eliminates the problem of defining the relationships be-
tween remote criteria, which often leads to inconsistent
results in subjective models, such as the Analytic Hierarchy
Process (AHP) and Best Worst Method (BWM) [8] in which
there are many criteria (more than eight). This limitation is
due to the small scale range in AHP and BWM models. A
nine-point scale limits the expression of expert preferences
to a maximum ratio of 9:1, which further imposes incon-
sistencies in comparisons. However, with the methodology
proposed in this paper, this limitation is eliminated, by com-
paring adjacent criteria for obtaining weighting coefficients
in cases where there are many criteria, since the model is
not limited to the use of a predefined scale. This allows
decision-makers to objectively express their preferences and
the relationships between the criteria.

– Nonlinear fuzzy Einstein functions implemented in the fuzzy
Einstein CoCoSo methodology allow the processing of com-
plex and uncertain information.

– A flexible nonlinear function for fusion weighted alterna-
tive strategies has been proposed in the fuzzy Einstein Co-
CoSo methodology. The introduction of nonlinear fuzzy Ein-
stein functions enables nonlinear information processing
and improves flexibility in decision making. These char-
acteristics of the proposed multi-criteria framework con-
tribute to the rational definition of compromise strategies
and enable objective reasoning when solving real-world
decision problems.

– The proposed fuzzy Einstein CoCoSo methodology has an
improved methodology for calculating a compromise index
of alternatives. The new approach to integrating aggregate
strategies has been proposed, as the classical approach pro-
posed by Yazdani et al. [9] has anomalies that can lead to
wrong results.

– The introduction of additional stabilization parameters has
improved the flexibility of fuzzy Einstein functions. The
effectiveness, efficiency, and robustness of the proposed
fuzzy Einstein CoCoSo model were confirmed through appli-
cation in a complex case study for choosing the best trans-
portation management systems strategy involving seven
decision-makers.

The rest of this study is constructed as the following. Section 2
ives the literature review investigating previous studies regard-

ng the effects of the pandemic on travel behavior. Section 3

2

includes the problem definition, the definition of alternatives by
which the alternatives and the criteria are defined. Sections 4
and 5 presents the proposed methodology and the case study,
respectively. Section 6 is the results and discussion part, and
Section 7 provides the conclusion and future directions of the
study.

2. Preliminaries

In this section, first, a brief overview of different studies on
public transport management is introduced, and afterward, a
revision of the necessary concepts to better understand our pro-
posal is provided.

2.1. Overview of the studies on public transport management

Pandemics affect many aspects of the cities all around the
world, such as transportation, socio-economics, and general man-
agement activities. COVID-19 is not the first pandemic faced by
the world. However, traveling to other countries is easier, and
cheaper, and hence the growing interactions between the people
of different countries have made the rapidness of the spreading
of the virus greater than other pandemics in history [10]. The
continuous and rapid spreading of the virus has led authorities
to search for new and adapted ways of managing urban matters
like public transportation [11].

Mobility is one of the most affected fields by pandemics.
The fear of getting infected, the need for social distancing, stay-
ing away from crowded and closed areas and the stay-at-home
restrictions of authorities are the primary reasons behind the
negative effect of any pandemic on mobility. In a study regarding
the changes in mobility in the USA, the correlation between
stay-at-home restrictions, infection levels, and average distance
traveled by the individuals is investigated [12]. According to the
comparison between current and pre-pandemic data of average
distance traveled by the individuals, it is observed that with an
increase of 0.003% in the local infection rate, mobility is reduced
by 2.31%. It is also seen that, with the official application of a
stay-at-home restriction, mobility is seen to be decreasing by
7.87%. In a different study, the effects of social distancing on the
mobility of people in the UK are investigated [13]. The mobility
data of Google is used to analyze the changes in mobility after the
pandemic outbreak. Mobility in six different areas is investigated,
namely supermarkets, grocery shops, workplaces, retail areas,
and transit stations. Comparing the current and pre-pandemic
data, an overall reduction of 63% is observed in mobility. Mobility
in retail and recreational areas has seen the sharpest reduction
by 85%. Second, the most reduction is observed at transit stations
by 75%. According to the analysis, mobility in transit stations and
hence public transportation has seen to be facing a great decline.

There are many studies regarding the effects of pandemics
on the use of public transportation. One common result of these
studies is that the demand for public transportation decreases a
lot and that there is a need for new management and planning
methods for the public transportation systems. In a study regard-
ing the transportation mode used in Germany, the transportation
mode preferences of the individuals are investigated at the time
of the strictest lockdown measures [6]. According to the results
of a representative survey, it is seen that the usage of private
vehicles has increased considerably, whereas the usage of public
transportation has decreased drastically. It is also observed that
one-third of the car-free households wanted to have a car rather
than using public transportation, which shows that people are
leaning toward owning a private vehicle more than ever. In an-
other study about public transport usage in the USA, the decline
in demand and the correlative aspects related to this decline are
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nvestigated [5]. According to the analysis of the study, there is a
ecline in public transportation demand of around 60% and 80%
fter WHO (World Health Organization) declared COVID-19 as a
andemic.
It is also observed that as the population ratio of essen-

ial workers and vulnerable populations, such as people over
5 years, increases, the decline in demand for public transporta-
ion increases. Alongside the increase in private vehicle usage,
he demand for bike-sharing systems (BSS) is seen to be staying
trong, which makes the demand for public transportation de-
rease. In a different study, the current and pre-pandemic data of
iti Bike and subway usage in NYC are compared [14]. It is seen
hat initially, both bike and subway usage decreased drastically.
owever, demand for Citi Bike has reached back to the pre-
andemic levels, but subway usage is still very low compared
o pre-pandemic levels, which shows that people care for social
istancing while traveling. This is one of the major reasons that
here is a great demand decline in public transportation [15]. In
nother study, which analyzes the link between bike-sharing and
ubway use in NYC during the COVID-19 pandemic, it is seen that
here is evidence of a modal shifting from the subway to bike-
haring systems [7]. Therefore, considering all these studies, it is
ossible to say that there is still time until the demand levels for
ublic transportation reach back to the pre-pandemic levels, so
e-adjustment and re-planning of public transportation systems
s seeming to be essential.

Some studies investigate planning methods for public trans-
ortation systems to provide an optimized operation. Several of
hese studies are applied management styles of the authorities,
nd implemented. A study investigates the different physical,
ocial distancing restrictions such as 1, 1.5, and 2 m in the
ubway transportation system and analyzes if the social distanc-
ng restrictions compensate the passenger demand, allocation of
esources like train availability, and passenger waiting times [16].
he model proposed in the system allocates the trains according
o the demand distribution of lines. Results show that as the
istance increases, the number of trains, the frequency of the
rips, and the number of service-denied passengers must also be
ncreased. Therefore, there is a trade-off between safety because
f the applied social distancing and economics and public accept-
bility because of the increased number of trains, frequency, and
enied passengers. In another study, demand management of the
ublic transportation systems under social distancing measures
s investigated [17]. Five different demand management methods
re presented in the study, namely inflow control with queue-
ng, time and space-dependent pricing, capacity reservation with
ooking, slot auctioning, and tradeable travel permit schemes.
esults of the study show that, due to the individual limitations,
hese management methods should not be applied alone, but
group of them can be applied simultaneously to control the
ccupancy rates of the public transit vehicles.
In another study, various planning and managing methods for

ublic transportation systems are proposed [18]. One proposal is
hat authorities should create bus lines since the capacity of the
ehicles is to be reduced because of social distancing. Congestion
as the potential to be more severe in the post-pandemic stage
ince people use private vehicles more, so public transit vehicles
ust work at higher frequencies to compensate for the passenger
emand, but congestion slows down the process. Another pro-
osal is to divert the departure times of the companies so that
assenger demand becomes more spread, which makes it easy for
he public transportation system to compensate for the demand.
longside the studies about re-planning the public transportation
ystems, a study states that some authorities started investing
n non-car transportation infrastructure such as bike lanes [19].
hese acts promote the usage of bikes as a traveling mode, which
educes the demand for public transportation.
3

2.2. Preliminaries on Fuzzy Einstein T-norms and T-conorms

Fuzzy set theory [20] and different types of generalization of
fuzzy sets [21–27] are most commonly used to process uncer-
tain information in multi-criteria models. When using traditional
fuzzy theory in decision-making models, researchers most widely
use triangular fuzzy numbers [28], as they allow for efficient
and straightforward processing of uncertain information. Trian-
gular fuzzy numbers are represented by the membership function
µE(δ): R → [0,1] as follows [29,30]:

µE(δ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ − d
d − g

d ≤ δ ≤ s

1 δ = s
g − δ

g − s
s ≤ δ ≤ g

0 otherwise

(1)

where d and g mean the lower and upper bounds of the fuzzy
number E, and s is the modal value for E.

Definition 1 ([31]). Let ρ1 and ρ2 be any two real numbers. Then
the Einstein T-norm and T-conorm for ρ1 and ρ2 are defined as
follows:

t(ρ1, ρ2) =
ρ1ρ2

1 + (1 − ρ1) (1 − ρ2)
(2)

tc(ρ1, ρ2) =
ρ1 + ρ2

1 + ρ1ρ2
(3)

where (ρ1, ρ2) ∈ [0, 1].

Following the Einstein T-norm and T-conorm, Einstein opera-
tions with fuzzy numbers are defined.

Definition 2. Suppose that ρ1 = (ρ(d)1 , ρ
(s)
1 , ρ

(g)
1 ) and ρ2 =

(ρ(d)2 , ρ
(s)
2 , ρ

(g)
2 ) are two triangular fuzzy numbers (TFNs),

and let it be f (ρi) =

(
f
(
ρ
(d)
i

)
, f
(
ρ
(s)
i

)
, f
(
ρ
(g)
i

))
=

(
ρ
(d)
i /∑n

i=1 ρ
(d)
i , ρ

(s)
i /

∑n
i=1 ρ

(s)
i , ρ

(g)
i /

∑n
i=1 ρ

(g)
i ,

)
TFN function, then

some operational laws of TFNs based on the Einstein T-norm and
T-conorm can be defined as follows

(1) Addition:

ρ1 + ρ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ρ(d)1 + ρ
(d)
2 )

f
(
ρ
(d)
1

)
+ f

(
ρ
(d)
2

)
1 + f

(
ρ
(d)
1

)
f
(
ρ
(d)
2

) ,
(ρ(s)1 + ρ

(s)
2 )

f
(
ρ
(s)
1

)
+ f

(
ρ
(s)
2

)
1 + f

(
ρ
(s)
1

)
f
(
ρ
(s)
2

) ,
(ρ(g)1 + ρ

(g)
2 )

f
(
ρ
(g)
1

)
+ f

(
ρ
(g)
2

)
1 + f

(
ρ
(g)
1

)
f
(
ρ
(g)
2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

(2) Multiplication ‘‘×’’

ρ1 × ρ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ρ(d)1 + ρ
(d)
2 )

f
(
ρ
(d)
1

)
f
(
ρ
(d)
2

)
1 +

(
1 − f

(
ρ
(d)
1

))(
1 − f

(
ρ
(d)
1

)) ,
(ρ(s)1 + ρ

(s)
2 )

f
(
ρ
(s)
1

)
f
(
ρ
(s)
2

)
1 +

(
1 − f

(
ρ
(s)
1

))(
1 − f

(
ρ
(s)
1

)) ,
(ρ(g)1 + ρ

(g)
2 )

f
(
ρ
(g)
1

)
f
(
ρ
(g)
2

)
1 +

(
1 − f

(
ρ
(g)
))(

1 − f
(
ρ
(g)
))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)
1 1
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· ρ1 =
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ρ
(d)
1

(
1 + f

(
ρ
(d)
1

))ς
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(
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1

))ς
(
1 + f

(
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(d)
1
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+

(
1 − f

(
ρ
(d)
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1 + f
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−
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1 − f

(
ρ
(s)
1
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1 + f

(
ρ
(s)
1
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(s)
1

))ς ,
ρ
(g)
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(
1 + f

(
ρ
(g)
1

))ς
−

(
1 − f

(
ρ
(g)
1

))ς
(
1 + f

(
ρ
(g)
1

))ς
+

(
1 − f

(
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(g)
1

))ς

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6)

(4) Power, where ς > 0

ρ
ς

1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
(d)
1

2f
(
ρ
(d)
1

)ς
(
2 − f

(
ρ
(d)
1

))ς
+ f

(
ρ
(d)
1

)ς ,
ρ
(s)
1

2f
(
ρ
(s)
1

)ς
(
2 − f

(
ρ
(s)
1

))ς
+ f

(
ρ
(s)
1

)ς ,
ρ
(g)
1

2f
(
ρ
(g)
1

)ς
(
2 − f

(
ρ
(g)
1

))ς
+ f

(
ρ
(g)
1

)ς

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)

efinition 3. Let ρj = (ρ(d)j , ρ
(s)
j , ρ

(g)
j ); (j = 1, 2, . . . , n), rep-

esents a set of TFNs, and ϖj ∈ [0, 1] represents the weight
oefficient of ρj = (ρ(d)j , ρ

(s)
j , ρ

(g)
j ), (j = 1, 2, . . . , n), which fulfills

he requirement that it is
∑n

j=1ϖj = 1. Then we can define
uzzy weighted averaging (FWA) operator and fuzzy weighted
eometric averaging (FWGA) operator:

FWA (ρ1, ρ2, . . . , ρn) =

n∑
j=1

ϖjρj =

⎛⎝ n∑
j=1

ϖ
(d)
j ρ

(d)
j ,

n∑
j=1

ϖ
(s)
j ρ

(s)
j ,

n∑
j=1

ϖ
(g)
j ρ

(g)
j

⎞⎠ (8)

FWGA (ρ1, ρ2, . . . , ρn) =

n∏
j=1

(
ρj
)ϖj

=

⎛⎝ n∏
j=1

(
ρ
(d)
j

)ϖ (d)
j
,

n∏
j=1

(
ρ
(s)
j

)ϖ (s)
j
,

n∏
j=1

(
ρ
(g)
j

)ϖ (g)
j

⎞⎠ (9)

3. Problem definition

Pandemic periods have various adverse impacts on public
transportation since crowds provide viruses to transmit and infect
many people. Therefore, people get worried about traveling with
a bunch of people who inevitably have the possibility of carrying
the virus. Thus, ridership in public transportation decreased. To
overcome these negative effects on public transportation, some
public transportation management methods should be imple-
mented on public transportation. As an example, in COVID-19
times, the obligation to wear face masks and reduce capacities in
public transportation has been implemented by decision-makers.
However, there is still a gap in effectively prioritizing these alter-
native methods according to their advantages. In this study, four
different management methods, namely doing nothing, adjusting
public transportation schedule based on work hours, capacity
reduction in public transportation, and increasing the ridership
4

in sharing based modes such as bicycle sharing, scooter shar-
ing, car sharing, are present in the order of priority based on
economic, health and environmental, social, and transportation
aspects by using fuzzy MCDM. These alternatives are deduced
with the support of academic specialists in the field by interpret-
ing the responses of policies implemented in pandemic times, and
by studying publications on this subject.

Alternative 1 (A1). Do nothing
With this alternative, the management of public transporta-

tion systems is not adjusted according to the conditions of the
COVID-19 pandemic. Management style is kept the same as it was
before the pandemic.

Alternative 2 (A2). Adjusting public transportation schedule based on
the work hours

One of the public transportation management methods is
scheduling the time timetables of public transportation lines
according to the work hours. Because of the high demands faced
at work hours, adjusting public transportation schedules based on
these hours has the potential to reduce the waiting time of the
workers. However, there is a possibility of increasing the waiting
times of commuters, who are traveling outside of work hours.

Alternative 3 (A3). Capacity reduction in public transportation
Implementation of capacity reduction to public transportation

systems is related to the application of social distancing in public
transit vehicles, which decreases the risks of commuters getting
infected. The application of this alternative has the potential to
increase the number of services denied commuters and therefore
the waiting times [16].

Alternative 4 (A4). Increasing the ridership in sharing based modes
such as bicycle sharing, scooter sharing, car sharing

After the covid-19 outbreak, many people started staying out
of closed areas and keeping the social distance from others not to
get infected. This has increased the demands for micro-mobility
services such as bicycle sharing and scooter sharing [7]. How-
ever, since these transportation systems are sharing services,
frequent disinfection of the vehicles is a concern for the users.
Also, when the travel distances increase, micro-mobility services
lose sufficiency.

Criteria
Since pandemics affect public transportation negatively, some

actions should be taken to eliminate these adverse impacts. In
this study, solutions to public transportation in pandemics are in-
vestigated with the help of experts in public transportation in the
academy, by evaluating the responses of policies implemented
by decision-makers and municipalities during pandemic periods,
and by analyzing the publications on this issue. Thus, with the
help of extensive literature reviews, the alternatives and criteria
in this study are defined.
(1) Economic Aspect

C1. Operation cost (cost): Due to the COVID-19 pandemic,
the need for frequently disinfecting the public transit vehicles
increases the operating costs. Since public transit vehicle drivers
are at very high risk, there is a need for a budget for the compen-
sation. Also, the reduction in capacities of the vehicles increases
the financial burden on the operators because the revenues of
each trip reduce [18].

C2. Subsidy from the government (benefit): This criterion is
related to countries providing subsidies to the public transport
operators. Since there is a great decline in public transportation
demand, revenues have decreased to a great extent. Therefore,
subsidies are of big importance for the operators to keep pro-
viding services of good quality. Also, workers, who are at higher
risks than others such as public transportation drivers, need extra
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ayments, which puts an additional financial burden, and this
xtra payment can be provided the subsidies.
C3. Ridership of public transportation (cost): In alternatives

xcept for the do nothing alternative, ridership of public trans-
ortation is highly affected. The reduction in capacities or the
requencies of public transportation lines can increase the use
f private vehicles and reduce the share of public transportation,
hich is the case in some countries [32].
2) Health and Environmental Aspect

C4. The severity of the pandemic (cost): As the mortality of
he coronavirus increases by a mutation or another reason, the
mportance of social distancing also increases, which makes it
ore important to manage public transportation to keep the
ommuters healthy and uninfected.
C5. The health of the drivers (benefit): Since public transporta-

ion drivers are of great importance in keeping the public trans-
ortation systems working, their health is very important. The
lternative, which increases the usage of ride-sharing systems
nd the capacity reduction alternative, reduces the in-vehicle
rowd and has a positive effect on drivers’ health.
C6. Spread of the COVID-19 virus (cost): This criterion is re-

ated to the spreading speed of the coronavirus, regardless of the
ortality rate of the virus. As the virus spreads and more cities
re affected, total usage of public transportation decreases to a
reat extent. Also, as the speed of spreading increases, strict lock-
own measures are taken by the authorities, which accompanies
decline in public transportation usage [33].
C7. Air pollution (cost): This criterion is defined as the air

ollution arising from the vehicles in traffic. Alternatives that are
ot in favor of the commuters such as the ones that increase wait-
ng times, increase the number of service-denied commuters due
o decreased capacities, and concentrate the trips at determined
ime intervals, reduces the satisfaction level of the commuters
nd reduces the ridership. This has a high potential for increasing
he usage of private vehicles. As the number of private vehicles
n traffic increases, air pollution also increases.
3) Social Aspect

C8. Income level of the population (benefit): If the income
evel of the population is high, public transportation management
djustments do not affect the people at great levels since it is
ikely that private vehicle ownership is high [34]. However, if the
ncome levels are low and people do not own private vehicles,
he adjustments have great importance. For example, when the
apacities are reduced, commuters have to wait for more to use
he public transportation services since they do not have another
ption.
C9. Disadvantaged and vulnerable groups (cost): This criterion

s related to the groups such as disabled people that had difficulty
n using public transportation even before the covid-19 pandemic.
hese groups are affected by the public transportation planning
djustments even more so than others.
C10. Public acceptance (benefit): If the alternative method

ncreases the waiting times and the number of service-denied
assengers, the citizens will probably be dissatisfied, so public
cceptance is not achieved, and eventually ridership decreases.
his also reduces the chances of the municipality being elected
gain in the following elections.
4) Transportation Aspect

C11. Personal mobility (benefit): This criterion is related to the
ffects of each alternative on the mobility of the commuters. The
apacity reduction has the potential to not be able to compensate
he demand, which increases waiting times and the number of
efused passengers. Adjustments according to work hours have
he potential to make passengers not be able to find a public
ransportation vehicle outside of the work hours. Do-nothing
5

alternative is costly in means of resource allocation and hav-
ing a risk to spread the virus, but has the potential to pro-
vide better mobility since demand is compensated better. Bicycle
sharing and scooter sharing alternatives are very beneficial in
terms of micro-mobility, but at long distances to travel, they lose
sufficiency.

C12. Traffic congestion (cost): If the alternatives are applied
properly and demands are compensated effectively, commuters
are likely to continue using public transportation. However, if
the alternatives are implemented without consideration, there
is a potential of not being able to compensate the demand,
which makes commuters shift to using private vehicles, which
eventually increases traffic congestion [35].

C13. Sustainability of the service (benefit): This criterion is re-
lated to the applied alternatives and them being environmentally
friendly or not. If the applied alternative makes the commuters
stop using public transportation and a shift to private vehicle use
takes place, the alternative is not a sustainable one. However, if
the applied alternative is efficient and commuters keep on using
public transportation, the alternative is sustainable.

4. Proposed methodology

The Fuzzy Einstein Combined Compromise Solution (CoCoSo)
framework (see Fig. 1) represents an improvement on the tradi-
tional CoCoSo methodology [9] by applying the Einstein T-norm
and T-conorm in a fuzzy environment. The application of Ein-
stein functions in the CoCoSo model improved the performance
of the traditional CoCoSo methodology. The traditional CoCoSo
method applies linear weighted functions to calculate a weighted
sequence of alternatives and define trade-off strategies. Linear
weighted functions can, in extreme values at the position of the
most influential criteria in the decision matrix, lead to radical
changes in the values of compromise significance of alternatives.
This feature of the traditional CoCoSo method can lead to a wrong
decision in such situations. The application of nonlinear weighted
Einstein functions eliminates this anomaly of the CoCoSo model,
which contributes to the objectification of decision making.

Besides the application of Einstein norms and fuzzy sets, the
fuzzy Einstein CoCoSo methodology has been improved by im-
plementing a novel methodology for determining the weight
coefficients of the criteria, that is based on defining the relation-
ship between the criteria using the fuzzy logarithmic additive
function, and this is an indispensable element of the fuzzy Ein-
stein CoCoSo framework. Fuzzy Einstein CoCoSo methodology
does not need to apply added models for determining the weight-
ing of criteria has been eliminated. The proposed methodology
for determining weight coefficients can be either a multi-criteria
decision-making (MCDM) tool itself or an adjunct to other MCDM
models for rational and objective decision-making. In the follow-
ing section, we have proposed the mathematical background of
the proposed fuzzy Einstein CoCoSo methodology.

4.1. Fuzzy Einstein Cocoso method

The Fuzzy Einstein CoCoSo methodology is based on process-
ing information in the initial home matrix. The information in the
home matrix is defined based on expert assessments of alterna-
tives under specified criteria. After determining the aggregated
home matrix, the expert estimates were normalized to translate
the information into an interval [0,1]. The next step defines the
weighting coefficients of the evaluation criteria used to calculate
the fuzzy Einstein nonlinear functions. Weighted strategies were
created based on the defined fuzzy Einstein functions, which
in the last step were aggregated into the final criterion func-
tion defined for each alternative. Based on the specified criteria
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unctions, the ranking of alternatives was performed. The fuzzy
instein CoCoSo method is realized through six steps which are
resented in the following part.
Suppose that in a multi-criteria problem, there are c alterna-

ives denoted by Gi (i = 1, 2, . . . , c) and k of the criterion Hj (j = 1,
2, . . . , k). Also, suppose that e experts Tb (b = 1, 2, . . . , e) take part
in the research. Then, based on Definitions 1–3 and arithmetic
operations with TFN, we can define an algorithm for applying the
fuzzy Einstein CoCoSo method.

Step 1. Based on the defined fuzzy scale, experts from the set Tb
(b = 1, 2, . . . , e) evaluated alternatives Gi (i = 1, 2, . . . , c). An
initial decision matrix Φ l

=
[̃
θ lij
]
c×k

(1 ≤ l ≤ e) was formed for

each expert Tl (1 ≤ l ≤ e). The values θ̃ lij =

(
θ
(d)l
ij , θ

(s)l
ij , θ

(g)l
ij

)
from

the matrix Φ l were obtained on the basis of the fuzzy linguistic
scale. Using the fuzzy Einstein weighted averaging (FEWAA) op-
erator, expression (13) calculates the aggregated initial decision
matrix Φ =

[̃
θij
]
c×k elements. Values θ̃ij =

(
θ
(d)
ij , θ

(s)
ij , θ

(g)
ij

)
from

the matrix obtained using fuzzy Einstein weighted geometric
aggregation (FEWGA), expression (13).

Step 2. Normalization of matrix elements Φ =
[̃
θij
]
c×k is per-

formed depending on whether the criterion Hj (j = 1, 2, . . . , k)
belongs to Benefit (B) or Cost (C) type, expression (10).

ζij = (ζ (d)ij , ζ
(s)
ij , ζ

(g)
ij ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ
(l)
ij =

θ
(d)
ij

θ+

j
; ζ

(m)
ij =

θ
(s)
ij

θ+

j
;

ζ
(u)
ij =

θ
(g)
ij

θ+

j
if j ∈ B,

ζ
(l)
ij =

θ−

j

θ
(d)
ij

; ζ
(m)
ij =

θ−

j

θ
(s)
ij

;

ζ
(u)
ij =

θ−

j

θ
(g)
ij

if j ∈ C .

(10)

where θ̃ij =

(
θ
(d)
ij , θ

(s)
ij , θ

(g)
ij

)
represent the elements of the initial

decision matrix Φ =
[̃
θij
]
c×k, ζ̃ij = (ζ (d)ij , ζ

(s)
ij , ζ

(g)
ij ) represent the

elements of the normalized matrix Ψ =
[̃
ζij
]
c×k.

The elements θ+

j and θ−

j from expression (10) are obtained by
applying the expression (11) and (12):

θ+

j = max
1≤j≤c

(θ (d)ij , θ
(s)
ij , θ

(g)
ij ) (11)

θ−

j = min
1≤j≤c

(θ (d)ij , θ
(s)
ij , θ

(g)
ij ) (12)

where θ (d)ij , θ
(s)
ij and θ

(g)
ij represent the elements of the initial

decision matrix Φ .

Step 3. Applying Definitions 1–3 define the weighted sequences
of alternatives. The fuzzy Einstein CoCoSo model defines two
weighted sequences, whose values are used to calculate alterna-
tive aggregation strategies. The first weighted sequence is defined
using the fuzzy Einstein weighted averaging function (EQ i), while
the second weighted sequence is determined using the fuzzy
Einstein weighted geometric averaging function (EP i).

Theorem 1. Let (̃ζ1, ζ̃2, . . . , ζ̃k) be a set of normalized elements
of the matrix Ψ =

[̃
ζij
]
c×k represented by fuzzy numbers ζ̃ij =

(ζ (d)ij , ζ
(s)
ij , ζ

(g)
ij ), (i = 1, 2, . . . , c; j = 1, 2, . . . , k), let ς > 0 and

let ϖj = (ϖ1,ϖ2, . . . ,ϖk)
T be a fuzzy vector of weight coefficients

of the criterion, then the fuzzy EQ i function can be defined:

EQ =
(
EQ (d), EQ (s), EQ (g))
i i i i

6

Fig. 1. Fuzzy Einstein CoCoSo framework.

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k∑
j=1

(
ζ
(d)
ij

) ∏k
j=1

(
1 + f

(
ζ
(d)
ij

))ϖ (d)
j

−
∏k

j=1

(
1 − f

(
ζ
(d)
ij

))ϖ (d)
j

∏k
j=1

(
1 + f

(
ζ
(d)
ij

))ϖ (d)
j

+
∏k

j=1

(
1 − f

(
ζ
(d)
ij

))ϖ (d)
j

,

k∑
j=1

(
ζ
(s)
ij

) ∏k
j=1

(
1 + f

(
ζ
(s)
ij

))ϖ (s)
j

−
∏k

j=1

(
1 − f

(
ζ
(s)
ij

))ϖ (s)
j

∏k
j=1

(
1 + f

(
ζ
(s)
ij

))ϖ (s)
j

+
∏k

j=1

(
1 − f

(
ζ
(s)
ij

))ϖ (s)
j

,

k∑
j=1

(
ζ
(g)
ij

) ∏k
j=1

(
1 + f

(
ζ
(g)
ij

))ϖ (g)
j

−
∏k

j=1

(
1 − f

(
ζ
(g)
ij

))ϖ (g)
j

∏k
j=1

(
1 + f

(
ζ
(g)
ij

))ϖ (g)
j

+
∏k

j=1

(
1 − f

(
ζ
(g)
ij

))ϖ (g)
j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(13)

here ϖj = (ϖ1,ϖ2, . . . ,ϖk)
T is the vector of the weight co-

fficients of the criteria, while f
(̃
ζj
)

=

(
ζ
(d)
j /

∑k
j=1 ζ

(d)
j , ζ

(s)
j /∑k

j=1 ζ
(s)
j , ζ

(g)
j /

∑k
j=1 ζ

(g)
j

)
. Then EQ i represents the fuzzy Einstein

weighted averaging function. The proof for Theorem 1 is presented
in Appendix.

Theorem 2. Let (̃ζ1, ζ̃2, . . . , ζ̃k) be a set of normalized elements
of the matrix Ψ =

[̃
ζij
]
c×k represented by fuzzy numbers ζ̃ij =

(ζ (d)ij , ζ
(s)
ij , ζ

(g)
ij ), (i = 1, 2, . . . , c; j = 1, 2, . . . , k), let ς > 0 and

let ϖj = (ϖ1,ϖ2, . . . ,ϖk)
T be a fuzzy vector of weight coefficients

of the criterion, then the fuzzy EP i function can be defined as
follows:

EP =
(
EP (d), EP (s), EP (g)

)

i i i i
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(
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) 2
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f
(
ζ
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(
ζ
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j

+
∏k
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(
f
(
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ij
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(
ζ
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) 2
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j=1

(
f
(
ζ
(g)
ij

))ϖ (g)
j

∏k
j=1

(
2 − f

(
ζ
(g)
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))ϖ (g)
j

+
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(
f
(
ζ
(g)
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))ϖ (g)
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,

(14)

here ϖj = (ϖ1,ϖ2, . . . ,ϖk)
T is the vector of the weight co-

fficients of the criteria, while f
(̃
ζj
)

=

(
ζ
(d)
j

/∑k
j=1 ζ

(d)
j , ζ

(s)
j

/
∑k

j=1 ζ
(s)
j , ζ

(g)
j

/∑k
j=1 ζ

(g)
j

)
. Then EP i represents the fuzzy Einstein

eighted geometric averaging function. The proof for Theorem 1 is
resented in Appendix.

tep 4. Determination of weight coefficients of criteria. Weight-
ng coefficients of criteria were defined by applying logarithmic
dditive evaluation of expert assessments.

tep 4.1. Defining priority vectors. The priority vector Ω l
=

ψ l
H1, ψ

l
H2, . . . , ψ

l
Hk

)
is formed based on expert preferences. Ex-

ert Tl (1 ≤ l ≤ e) assigns a value from the fuzzy scale to each
riterion from the set Hj (j = 1, 2, . . . , k), by assigning the highest
alue from the fuzzy scale to the criterion that has the greatest
ignificance, while to the criterion that has the lowest significance
ssigns the lowest value from the scale.

tep 4.2. Defining the absolute anti-ideal point (τAIP ). The absolute
nti-ideal point is defined by applying the expression (15).

AIP < min
(
ψ l

H1, ψ
l
H2, . . . , ψ

l
Hn

)
(15)

tep 4.3. Defining the ratio vector Θ l for the expert Tl (1 ≤ l ≤ e).
sing expression (16), the relationship between the elements of
he vector Ω l and τAIP is determined.

l
Hj =

ψ l
Hj

τAIP
(16)

here j = 1, 2, . . . , k, while ψ l
Hk represents the element of the

riority vector Ω l for the expert Tl (1 ≤ l ≤ e).
Thus we obtain the vector of the relation Θ l

=
(
ξ lH1, ξ

l
H2, . . . ,

ξ lHk
)
for the expert Tl (1 ≤ l ≤ e).

Step 4.4. Determination of weights vector ϖ̃j = (ϖ̃1, ϖ̃2, . . . ,

ϖ̃n)
T . By applying expression (17), we obtain the values of the

weighting coefficients of the criteria for the expert t (1 ≤ t ≤ k).

˜ l
j =

ln
(
ξ lHj
)

ln
(
ηl
) (17)

here ξ lHj represents the element of the relation vector Θ l for the
xpert Tl (1 ≤ l ≤ e), while ηl =

∏k
j=1 ξ

l
Hj.

By applying the fuzzy Einstein weighted averaging operator
(18), we obtain the aggregated fuzzy vector of weight coefficients
7

ϖ̃j = (ϖ̃1, ϖ̃2, . . . , ϖ̃n)
T .

ϖ̃j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e∑
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(
ϖ
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) ∏e
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(
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(
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) ∏e
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(
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ij
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(
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))1/e
∏e

j=1

(
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(
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ij

))1/e
+
∏e

j=1

(
1 − f

(
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))1/e ,
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(
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ij

) ∏e
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1 + f

(
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−
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(
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(
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))1/e
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

here 1 ≤ l ≤ e, while e represents the number of experts

tep 5. Using expressions (19)–(21), the aggregation strategies are
alculated as follows:
(a) Additive normalized strategy for combining Einstein func-

ions:

i =
EQi + EPi∑c

i=1(EQi + EPi)
(19)

b) Relative relations of the significance of Einstein functions:

i =
EQi

min1≤i≤c(EQi)
+

EPi
min1≤i≤c(EPi)

(20)

c) Compromising significance of Einstein functions:

i =
γ EQi + (1 − γ )EPi

γ max1≤i≤b (EQi)+ (1 − γ )max1≤i≤b (EPi)
; 0 ≤ γ ≤ 1. (21)

here the coefficient γ represents the corrective parameter for
the calculation of compromise values of Einstein functions.

The coefficient γ defines the intensity of the influence of EQ i
nd EP i functions on the final decision. The values of 0 ≤ γ ≤ 0.5
ncrease the intensity of the influence of the EP i function in the
ggregation strategy, while the values of 0.5 ≤ γ ≤ 1 increase the
ntensity of the influence of the EQ i function. From this analysis,
t is obvious that the value of the parameter γ affects the stability
f the proposed solution, so it is recommended to adopt the
alue of γ = 0.5 for the calculation of the initial solution in
xpression (21). This ensures equal intensity of influence of both
instein functions on the final decision. To eliminate the influence
f subjectivity on the final decision, it is necessary to analyze
he influence of the variation of the parameter γ in the interval
≤ γ ≤ 1 on the stability of the initial solution.

tep 6: The rank of alternatives is defined based on a compro-
ise index of alternatives (Υi). In the following section, a new

approach to integrating aggregate strategies is proposed, as the
classical approach proposed by Yazdani et al. [9] has anomalies
that can lead to wrong results. Based on expressions (19)–(21)
it is clear that χ̃i < 1, α̃i ≥ 2, and β̃i < 1. If we were to use
the classical approach to strategy integration [9], the value of α̃i
would have a greater impact on the final result than χ̃i and β̃i.
However, in practice, α̃i may be the least important of the three
trade-off strategies considered. By applying expression (22), the
mentioned inconsistencies are eliminated, and the compromise
index of alternatives is defined objectively and consistently:

Υi =
χ̃i + α̃i + β̃i

1 +

{
∂1

(
1−f (χ̃i)
f (χ̃i)

)δ
+ ∂2

(
1−f (̃αi)
f (̃αi)

)δ
+ ∂3

(
1−f (̃βi)
f (̃βi)

)δ}1/δ ;

δ ≥ 0 (22)

here ∂1, ∂2, ∂3 ∈ [0, 1] and ∂1 + ∂2 + ∂3 = 1. The optimal
lternative has the highest value of Υi.
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Table 1
The hierarchy of the evaluation criteria.
Main-criteria Sub-criteria Type

C1:Economic aspect
C11 Operation cost Cost
C12 Subsidy from the government Benefit
C13 Ridership of public transportation Cost

C2:Health and Environmental aspect
C21 Severity of the pandemic Cost
C22 Health of the drivers Benefit
C23 Spread of the COVID-19 virus Cost
C24 Air pollution Cost

C3:Social aspect
C31 Income level of the population Benefit
C32 Disadvantaged and vulnerable groups Cost
C33 Public acceptance Benefit

C4:Transportation aspect
C41 Personal mobility Benefit
C42 Traffic congestion Cost
C43 Sustainability of the service Benefit

5. Case study

Public transportation management and planning need to be
econsidered by the municipalities because of the COVID-19 pan-
emic regulations. New management methods are required to
dapt old management systems during pandemic times. Since
ommuter psychology and behavior have changed a lot from
he beginning of the pandemic because of safety aspects such
s avoiding crowded and closed areas, public transportation rid-
rship is decreasing sharply. This requires the need for public
ransportation systems to be re-planned.

As a case study, we consider the public transportation man-
gement efforts of a municipality of a metropolitan city with a
igh population is selected. In the selected city, the government
as taken strict measures such as stay-at-home restrictions to
low down the spreading of the coronavirus. However, both the
trict regulations and the travel behaviors of the citizens are
ffecting public transportation ridership negatively. Therefore,
he governing authority in the city is ready to take action, yet it
s required to prioritize the remedies. By conducting a thorough
iterature survey, operating costs, demand management, capac-
ty management, and health of the commuters and the drivers
re seen to be the most important aspects, which created a
ase for the creation of the alternatives. Do nothing alternative
efers to keeping the old management method. Adjusting public
ransportation schedule based on the work hours is the second
lternative, which proposes to concentrate the trips according
o the work hours. Capacity reduction in public transportation
s the third alternative, which aims to make commuters travel
hile keeping the social distance. Increasing the ridership in
haring-based modes such as bicycle sharing, scooter sharing, car
haring is the last alternative that aims to increase the isolation
f people while traveling. After the alternatives are set, criteria,
hich are selected as the most important aspects for the manage-
ent of public transportation in pandemic times, are determined
y conducting a thorough literature survey. Finally, experts are
onsulted to gather their opinions and assessments of the alter-
atives based on the criteria in order to determine the relative
mportance of each criterion and the advantage prioritization of
he alternatives through in-person interviews.

.1. Proposed model results

In the case study discussed in this paper, four alternatives
ere evaluated using the fuzzy Einstein CoCoSo model: Alterna-
ive 1 - Do nothing; Alternative 2 - Adjusting public transporta-
ion schedule based on the work hours; Alternative 3 - Capacity
8

Table 2
Fuzzy scale for evaluating alternatives [36].
Linguistic terms Membership function

Absolutely low (AL) (1, 1, 1)
Very low (VL) (1, 2, 3)
Low (L) (2, 3, 4)
Medium low (ML) (3, 4, 5)
Equal (E) (4, 5, 6)
Medium high (MH) (5, 6, 7)
High (H) (6, 7, 8)
Very high (VH) (7, 8, 9)
Absolutely high (AH) (8, 9, 9)

reduction in public transportation and Alternative 4 - Increasing
the ridership in sharing based modes such as bicycle sharing,
scooter sharing, car sharing. For evaluating alternatives in the
multi-criteria model, 13 criteria are identified and grouped within
four clusters as given in Table 1.

The evaluation of alternatives using the fuzzy Einstein CoCoSo
model is presented through the following steps:

Step 1: Seven experts Tb (b = 1, 2, . . . , 7) evaluated the alternatives
using the fuzzy scale given in Table 2.

Based on expert assessments, seven expert initial matrices
Φ l

=
[̃
θ lij
]
4×13

(1 ≤ l ≤ 7) were formed in which the evalua-
tion of alternatives concerning 13 criteria was presented. Expert
estimates of alternatives are given in Table 3.

Using the fuzzy Einstein weighting function, the expert pref-
erences were averaged, and an aggregated decision matrix was
formed in Table 4. Since seven experts participated in the re-
search, the value ϖj = 1/7 was adopted for the weighting
coefficients in the fuzzy Einstein weighting function.

The following section presents the fuzzy Einstein weighting
function for the fusion of expert preferences at the G2 − C11
position. Based on the fuzzy linguistic values from Tables 3 and
2, expert preferences were defined according to the following:
θ121 = (2, 3, 4), θ̃221 = (2, 3, 4), θ̃321 = (1, 2, 3), θ̃421 = (1, 1, 1),
θ521 = (2, 3, 4), θ̃621 = (2, 3, 4) and θ̃721 = (4, 5, 6). As previously
emphasized, since seven experts participated in the research, a
vector of expert weight coefficients was adopted according to the
following ϖb = 1/7 (b = 1, 2, . . . , 7). Then, by applying the fuzzy
Einstein weighting function, we get the value at position G2 −C11
according to the following:
EWA

(̃
θ21
)

=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̃
(d)
12 =

(
2 + 2 + 1+
1 + 2 + 2 + 4

)

×

(
(1 + 0.13)0.14 · (1 + 0.23)0.14 ·

(1 + 0.19)0.14 · . . . · (1 + 0.03)0.14

)
−

(
(1 − 0.13)0.14 · (1 − 0.23)0.14 ·

(1 − 0.19)0.14 · . . . · (1 − 0.03)0.14

)
(
(1 + 0.13)0.14 · (1 + 0.23)0.14 ·

(1 + 0.19)0.14 · . . . · (1 + 0.03)0.14

)
+

(
(1 − 0.13)0.14 · (1 − 0.23)0.14 ·

(1 − 0.19)0.14 · . . . · (1 − 0.03)0.14

)

θ̃
(s)
12 =

(
3 + 3 + 2+
1 + 3 + 3 + 5

)

×

(
(1 + 0.13)0.14 · (1 + 0.18)0.14 ·

(1 + 0.21)0.14 · . . . · (1 + 0.05)0.14

)
−

(
(1 − 0.13)0.14 · (1 − 0.18)0.14 ·

(1 − 0.21)0.14 · . . . · (1 − 0.05)0.14

)
(
(1 + 0.13)0.14 · (1 + 0.18)0.14 ·

(1 + 0.21)0.14 · . . . · (1 + 0.05)0.14

)
+

(
(1 − 0.13)0.14 · (1 − 0.18)0.14 ·

(1 − 0.21)0.14 · . . . · (1 − 0.05)0.14

)

θ̃
(g)
12 =

(
2 + 2 + 1+
1 + 2 + 2 + 4

)

×

(
(1 + 0.13)0.14 · (1 + 0.18)0.14 ·

(1 + 0.20)0.14 · . . . · (1 + 0.07)0.14

)
−

(
(1 − 0.13)0.14 · (1 − 0.18)0.14 ·

(1 − 0.20)0.14 · . . . · (1 − 0.07)0.14

)
(
(1 + 0.13)0.14 · (1 + 0.18)0.14 ·

(1 + 0.20)0.14 · . . . · (1 + 0.07)0.14

)
+

(
(1 − 0.13)0.14 · (1 − 0.18)0.14 ·

(1 − 0.20)0.14 · . . . · (1 − 0.07)0.14

)

= (2.01, 2.87, 3.72)

The aggregation of the remaining values from Table 4 was per-
formed in a similar manner.
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Table 3
Expert evaluation of alternatives.
Crit. G1 G2 G3 G4

C11 E; H; VH; H; E; ML; VL L; L; VL; AL; L; L; E VL; L; ML; MH; VL; VL; L MH; E; H; AH; ML; L; H
C12 AL; AL; AL; AL; E; ML; E H; AH; EH; H; H; MH; H H; H; VH; AH; VH; VH; VH E; H; MH; L; VH; AH; ML
C13 AL; ML; L; E; MH; H; H AL; VL; VL; L; VL; E; ML VL; VL; AL; ML; MH; AH; VL MH; L; ML; H; VH; VH; VH
C21 AL; L; AL; AL; VL; AL; VL L; AL; L; L; E; ML; L AL; AL; AL; AL; H; H; VL AL; VL; L; H; VH; AH; AL
C22 L; VL; AL; AL; VL; AL; AL AL; ML; L; L; MH; MH; H H; H; VH; AH; H; VH; VH H; VH; MH; MH; H; H; VL
C23 AL; AL; AL; AL; VL; AL; AL VL; L; E; AL; MH; H; VL VL; VL; AL; AL; H; AH; L L; L; MH; VH; H; MH; AL
C24 E; MH; VH; AH; E; E; AL MH; MH; VH; MH; L; ML; MH E; E; VH; L; MH; VL; MH ML; L; ML; MH; VH; VH; AL
C31 AL; AL; AL; AL; E; ML; E E; L; VL; E; E; MH; H MH; ML; VL; L; L; VL; VH VH; VH; MH; MH; H; H; VH
C32 E; H; AH; AH; H; MH; ML H; VH; L; H; L; E; L H; VH; H; H; VL; ML; AL H; AH; VH; H; VL; L; AH
C33 AL; AL; AL; AL; L; VL; H AH; H; AH; AH; VH; MH; MH H; H; MH; AH; VL; MH; E H; VH; L; VL; VH; H; VH
C41 VL; L; AL; AL; L; L; VH H; AH; AH; H; H; MH; E L; H; VH; H; L; VL; ML MH; H; L; E; VH; AH; AH
C42 VH; AH; H; MH; VL; AL; ML AL; AL; AL; AL; H; H; L L; VL; L; AL; AL; AL; H E; E; MH; MH; VH; AH; AL

C43 E; AL; AL; AL; L; VL; VL L; H; MH; AH; MH; MH; MH L; H; L; L; VL; VL; H H; VH; H; L; ML; L; AH

G
w
c
t

s
f
E
f

E

=

S

w

χ̃

Table 4
Aggregated decision matrix.
Crit. G1 G2 G3 G4

C11 (4.44,5.44,6.44) (2.01,2.87,3.72) (2.17,3.16,4.15) (4.87,5.87,6.72)
C12 (2.16,2.60,3.04) (6.29,7.29,8.14) (6.86,7.86,8.71) (5.02,6.01,6.87)
C13 (3.87,4.73,5.59) (1.87,2.73,3.58) (2.92,3.77,4.46) (5.30,6.30,7.30)
C21 (1.15,1.58,2.02) (2.29,3.15,4.01) (2.49,2.93,3.36) (3.77,4.48,5.05)
C22 (1.15,1.58,2.02) (3.45,4.30,5.16) (6.72,7.72,8.57) (5.15,6.15,7.15)
C23 (1.00,1.15,1.30) (2.89,3.74,4.60) (2.93,3.64,4.19) (4.02,4.88,5.74)
C24 (4.73,5.59,6.30) (4.58,5.58,6.58) (4.02,5.01,6.01) (4.03,4.88,5.74)
C31 (2.16,2.60,3.04) (3.73,4.72,5.72) (3.04,4.03,5.02) (6.15,7.14,8.14)
C32 (5.73,6.72,7.43) (4.16,5.16,6.16) (4.31,5.17,6.02) (5.45,6.45,7.16)
C33 (1.92,2.35,2.78) (6.72,7.72,8.29) (5.02,6.01,6.87) (5.16,6.16,7.16)
C41 (2.35,3.05,3.76) (6.15,7.15,7.86) (3.89,4.88,5.88) (5.73,6.73,7.44)
C42 (4.46,5.32,6.03) (2.62,3.06,3.50) (2.05,2.62,3.19) (4.88,5.73,6.45)
C43 (1.59,2.17,2.74) (5.15,6.15,7.01) (2.89,3.88,4.88) (4.88,5.88,6.73)

Step 2: Normalization of the decision matrix elements Φ =

θ̃ij
]
4×13 was performed using expression (10). The normalized

atrix Ψ =
[̃
ζij
]
4×13 is presented in Table 5. Normalization of

he element at position G2 − C11 in the matrix Ψ =
[̃
ζij
]
4×13 was

erformed using expression (10) as follows:

2,11 = (ζ (d)2,11, ζ
(s)
2,11, ζ

(g)
2,11) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ζ
(l)
2,11 =

θ−

C11

θ
(d)
2,11

=
2.01
6.44

= 0.31;

ζ
(m)
2,11 =

θ−

C11

θ
(s)
2,11

=
2.01
5.44

= 0.37;

ζ
(u)
2,11 =

θ−

C11

θ
(g)
2,11

=
2.01
4.44

= 0.45.

= (0.31, 0.37, 0.45)

The normalization of the remaining elements of the decision
matrix was performed similarly. The normalized matrix Ψ =

ζ̃ij
]
4×13 is presented in Table 5.

tep 3: The calculation of the weight coefficients of the criteria
as performed using the fuzzy logarithmic additive methodology
s follows.
Step 3.1: Based on expert assessments, a priority vector Ω l

=

ψ l
H1, ψ

l
H2, . . . , ψ

l
Hk

)
, 1 ≤ l ≤ 7, was defined for each expert. The

ive-point fuzzy scale presented in Table 6 was used to show
xpert estimates.
One priority criterion vector is defined for each expert as given

n Table 7.
Step 3.2: Absolute anti-ideal point γAIP = (0.4, 0.5, 0.6) is

efined using expression (15).
Step 3.3: Using expression (14), the vectors of the ratio Θ l

=

ξ lH1, ξ
l
H2, . . . , ξ

l
Hk

)
, (1 ≤ l ≤ 7) were defined for experts, Table 8.

Step 3.4: Using expressions (17) and (18), we obtain fuzzy
ectors of weight coefficients of the criteria as given in Table 9.
Local vectors of cluster/criterion weight coefficients represent

he significance of clusters/criteria within the considered group.
9

lobal weight values were obtained by multiplying the local
eight coefficients of the cluster by the local coefficients of the
riteria. Global weighting factors represent the significance of the
otal criteria within the global group of 13 criteria.

Step 4: The fuzzy Einstein CoCoSo model defines two weighted
equences obtained by applying the following fuzzy functions: (1)
uzzy Einstein weighted averaging function (EQ i) and (2) fuzzy
instein weighted geometric averaging function (EP i). EQ i and EP i
unctions were calculated using expressions (13) and (14):

Qi =

G1

G2

G3

G4

⎡⎢⎢⎢⎢⎣
(0.380, 0.435, 0.661)

(0.566, 0.714, 0.778)

(0.534, 0.661, 0.738)

(0.503, 0.629, 0.627)

⎤⎥⎥⎥⎥⎦ ;

EPi =

G1

G2

G3

G4

⎡⎢⎢⎢⎢⎣
(0.340, 0.399, 0.606)

(0.532, 0.680, 0.731)

(0.506, 0.630, 0.691)

(0.453, 0.568, 0.550)

⎤⎥⎥⎥⎥⎦
Global fuzzy vectors of criterion weight coefficients were

used to calculate EQ i and EP i functions. The calculation of the
EQ i function, expression (13), for alternative G3 is shown in
Box I. The value of the EP i function for alternative G3, expression
(14), is obtained as follows

EP3 =
(
EP3(d), EP3(s), EP3(g)

)
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EP3(d) =

(
2.17 + 6.86 + 2.92
+ · · · + 2.05 + 2.89

)
×

2
(
(0.076)0.018 · (0.108)0.0166 · (0.059)0.0199 · . . . · (0.066)0.0194

)(
(2 − 0.07)0.018 · (2 − 0.113)0.0166 ·

(2 − 0.061)0.0199 · . . . · (2 − 0.06)0.0194

)
+

(
(0.07)0.018 · (0.113)0.0166 ·

(0.061)0.0199 · . . . · (0.06)0.0194

)
EP3(s) =

(
3.16 + 7.86 + 3.77
+ · · · + 2.62 + 3.88

)
×

2
(
(0.13)0.074 · (0.18)0.077 · (0.21)0.077 · . . . · (0.05)0.068

)(
(2 − 0.13)0.074 · (2 − 0.18)0.077 ·

(2 − 0.21)0.077 · . . . · (2 − 0.05)0.068

)
+

(
(0.13)0.074 · (0.18)0.077 ·

(0.21)0.077 · . . . · (0.05)0.068

)
EP3(g) =

(
4.15 + 8.71 + 4.46
+ · · · + 3.19 + 4.88

)
×

2
(
(0.091)0.332 · (0.098)0.339 · (0.063)0.341 · . . . · (0.068)0.234

)(
(2 − 0.091)0.332 · (2 − 0.098)0.339 ·

(2 − 0.063)0.341 · . . . · (2 − 0.068)0.234

)
+

(
(0.091)0.332 · (0.098)0.339 ·

(0.063)0.341 · . . . · (0.068)0.234

)
(0.506, 0.63, 0.691)

tep 5: Using expressions (19)–(21), fuzzy aggregation strategies

ere calculated as follows:

i =

G1

G2

G3

⎡⎢⎢⎢⎢⎣
(0.134, 0.177, 0.332)

(0.204, 0.296, 0.396)

(0.193, 0.274, 0.375)

⎤⎥⎥⎥⎥⎦ ;
G4 (0.178, 0.254, 0.309)
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Table 5
Normalized matrix.
Crit. G1 G2 G3 G4

C11 (0.312,0.369,0.452) (0.54,0.701, 1.000) (0.484,0.637,0.928) (0.299,0.343,0.413)
C12 (0.248,0.299,0.349) (0.722,0.836,0.934) (0.787,0.902, 1.000) (0.576,0.690,0.788)
C13 (0.335,0.396,0.484) (0.523,0.687, 1.000) (0.420,0.498,0.641) (0.257,0.298,0.354)
C21 (0.568,0.725,1.000) (0.286,0.364,0.500) (0.341,0.392,0.460) (0.227,0.256,0.304)
C22 (0.134,0.184,0.235) (0.402,0.502,0.602) (0.783,0.900,1.000) (0.601,0.718,0.834)
C23 (0.771,0.873,1.000) (0.218,0.267,0.346) (0.238,0.275,0.341) (0.174,0.205,0.249)
C24 (0.637,0.719,0.849) (0.611,0.720,0.877) (0.668,0.801,1.000) (0.700,0.823,0.998)
C31 (0.266,0.319,0.373) (0.458,0.580,0.703) (0.373,0.494,0.616) (0.755,0.877,1.000)
C32 (0.560,0.619,0.727) (0.676,0.807,1.000) (0.691,0.806,0.966) (0.582,0.646,0.764)
C33 (0.231,0.283,0.336) (0.811,0.931,1.000) (0.605,0.726,0.828) (0.623,0.743,0.864)
C41 (0.298,0.388,0.478) (0.782,0.909,1. 000) (0.494,0.621,0.748) (0.729,0.856,0.946)
C42 (0.340,0.386,0.459) (0.586,0.669,0.781) (0.642,0.783,1.000) (0.318,0.357,0.420)
C43 (0.227,0.309,0.391) (0.736,0.878, 1.000) (0.413,0.554,0.696) (0.697,0.839,0.960)
EQ3 =
(
EQ3

(d), EQ3
(s), EQ3

(g))
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EQ3
(d)

=

(
2.17 + 6.86 + 2.92
+ · · · + 2.05 + 2.89

) ((1 + 0.076)0.018 · (1 + 0.108)0.0166 ·

(1 + 0.059)0.0199 · . . . · (1 + 0.066)0.0194

)
−

(
(1 − 0.07)0.018 · (1 − 0.113)0.0166 ·

(1 − 0.061)0.0199 · . . . · (1 − 0.06)0.0194

)
(
(1 + 0.07)0.018 · (1 + 0.113)0.0166 ·

(1 + 0.061)0.0199 · . . . · (1 + 0.06)0.0194

)
+

(
(1 − 0.07)0.018 · (1 − 0.113)0.0166 ·

(1 − 0.061)0.0199 · . . . · (1 − 0.06)0.0194

)

EQ3
(s)

=

(
3.16 + 7.86 + 3.77
+ · · · + 2.62 + 3.88

) ((1 + 0.13)0.074 · (1 + 0.18)0.077 ·

(1 + 0.21)0.077 · . . . · (1 + 0.05)0.068

)
−

(
(1 − 0.13)0.074 · (1 − 0.18)0.077 ·

(1 − 0.21)0.077 · . . . · (1 − 0.05)0.068

)
(
(1 + 0.13)0.074 · (1 + 0.18)0.077 ·

(1 + 0.21)0.077 · . . . · (1 + 0.05)0.068

)
+

(
(1 − 0.13)0.074 · (1 − 0.18)0.077 ·

(1 − 0.21)0.077 · . . . · (1 − 0.05)0.068

)

EQ3
(g)

=

(
4.15 + 8.71 + 4.46
+ · · · + 3.19 + 4.88

) ((1 + 0.091)0.332 · (1 + 0.098)0.339 ·

(1 + 0.063)0.341 · . . . · (1 + 0.068)0.234

)
−

(
(1 − 0.091)0.332 · (1 − 0.098)0.339 ·

(1 − 0.063)0.341 · . . . · (1 − 0.068)0.234

)
(
(1 + 0.091)0.332 · (1 + 0.098)0.339 ·

(1 + 0.063)0.341 · . . . · (1 + 0.068)0.234

)
+

(
(1 − 0.091)0.332 · (1 − 0.098)0.339 ·

(1 − 0.063)0.341 · . . . · (1 − 0.068)0.234

)
= (0.534, 0.661, 0.738)

Box I.
Table 6
Fuzzy scale for evaluating criteria.
Linguistic terms Membership function

Very low (VL) (1, 1, 2)
Low (L) (1, 2, 3)
Medium (M) (2, 3, 4)
High (H) (3, 4, 5)
Very high (VH) (4, 5, 5)

αi =

G1

G2

G3

G4

⎡⎢⎢⎢⎢⎣
(1.224, 2.000, 3.524)

(1.869, 3.346, 4.198)

(1.772, 3.100, 3.978)

(1.627, 2.870, 3.268)

⎤⎥⎥⎥⎥⎦ ;

βi =

G1

G2

G3

G4

⎡⎢⎢⎢⎢⎣
(0.467, 0.589, 1.143)

(0.728, 1.000, 1.374)

(0.692, 0.927, 1.301)

(0.623, 0.839, 1.041)

⎤⎥⎥⎥⎥⎦
10
Table 7
Priority vectors.
Clusters T1 T2 T3 T4 T5 T6 T7
C1: Economic aspect VH M VL H L L VL
C2: Health and Environmental aspect M L VH VL M VL L
C3: Social aspect H H M M H H M
C4: Transportation aspect L VL H L H M VH

C1: Economic aspect

C11 L VH M VL L H H
C12 M M L L VH M L
C13 VL L H M H VH M

C2: Health and Environmental aspect

C21 H M L M VL M M
C22 M H M H M H L
C23 L VL L L L VL H
C24 VH VH H VH H VH VH

C3: Social aspect

C31 H VH M VH H VH M
C32 M H VH M M H VH
C33 L L VL VL L L L

C4: Transportation aspect

C41 VH VH VH VH VH H L
C42 L L H L M L M
C43 M VL VL M VL M VH
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Table 8
The vectors of the ratio.
Clusters T1 T2 T3 T4 . . . T7
C1 (6.67,10,12.5) (3.33,6,10) (1.67,2.0,5.0) (5.0,8.0,12.5) . . . (1.67,2.0,5.0)
C2 (3.33,6.0,10) (1.67,4,7.5) (6.67,10,12.5) (1.67,2.0,5.0) . . . (1.67,4.0,7.5)
C3 (5.0,8.0,12.5) (5,8,12.5) (3.33,6.0,10.0) (3.33,6.0,10) . . . (3.33,6.0,10)
C4 (1.67,4.0,7.5) (1.67,2,5) (5.0,8.0,12.5) (1.67,4,7.5) . . . (6.67,10,12.5)

C1:Economic aspect

C11 (1.67,4.0,7.5) (6.67,10,12.5) (3.33,6,10) (1.67,2.0,5.0) . . . (5.0,8.0,12.5)
C12 (3.33,6.0,10) (3.33,6.0,10) (1.67,4.0,7.5) (1.67,4.0,7.5) . . . (1.67,4.0,7.5)
C13 (1.67,2.0,5.0) (1.67,4.0,7.5) (5.0,8.0,12.5.0) (3.33,6.0,10) . . . (3.33,6.0,10)

C2:Health and Environmental aspect

C21 (5.0,8.0,12.5) (3.33,6.0,10) (1.67,4.0,7.5) (3.33,6.0,10) . . . (3.33,6.0,10)
C22 (3.33,6.0,10.0) (5.0,8.0,12.5) (3.33,6.0,10) (5.0,8.0,12.5) . . . (1.67,4.0,7.5)
C23 (1.67,4.0,7.5) (1.67,2.0,5.0) (1.67,4.0,7.5) (1.67,4.0,7.5) . . . (5.0,8.0,12.5)
C24 (6.67,10,12.5) (6.67,10,12.5) (5.0,8.0,12.5) (6.67,10,12.5) . . . (6.67,10,12.5)

C3:Social aspect

C31 (5.0,8.0,12.5) (6.67,10,12.5) (3.33,6.0,10) (6.67,10,12.5) . . . (3.33,6.0,10)
C32 (3.33,6.0,10.0) (5.0,8.0,12.5) (6.67,10,12.5) (3.33,6.0,10) . . . (6.67,10,12.5)
C33 (1.67,4.0,7.5) (1.67,4.0,7.5) (1.67,2.0,5.0) (1.67,2.0,5.0) . . . (1.67,4.0,7.5)

C4:Transportation aspect

C41 (6.67,10,12.5) (6.67,10,12.5) (6.67,10,12.5) (6.67,10,12.5) . . . (1.67,4.0,7.5)
C42 (1.67,4.0,7.5) (1.67,4.0,7.5) (5.0,8.0,12.5) (1.67,4.0,7.5) . . . (3.33,6.0,10)
C43 (3.33,6.0,10) (1.67,2.0,5.0) (1.67,2.0,5.0) (3.33,6.0,10) . . . (6.67,10,12.5)
Table 9
Aggregated fuzzy vectors of weight coefficients of the criteria.
Criteria Local Global

C1:Economic aspect (0.11, 0.228, 0.483) –

C11 (0.165, 0.325, 0.689) (0.018, 0.074, 0.332)
C12 (0.150, 0.338, 0.702) (0.017, 0.077, 0.339)
C13 (0.181, 0.338, 0.705) (0.020, 0.077, 0.341)

C2:Health and Environmental aspect (0.102, 0.216, 0.464) –

C21 (0.117, 0.228, 0.456) (0.012, 0.049, 0.211)
C22 (0.142, 0.268, 0.497) (0.015, 0.058, 0.231)
C23 (0.074, 0.184, 0.418) (0.008, 0.04, 0.194)
C24 (0.200, 0.321, 0.534) (0.020, 0.069, 0.248)

C3:Social aspect (0.163, 0.301, 0.559) –

C31 (0.238, 0.396, 0.679) (0.039, 0.119, 0.380)
C32 (0.224, 0.383, 0.668) (0.037, 0.115, 0.374)
C33 (0.075, 0.222, 0.524) (0.012, 0.067, 0.293)

C4:Transportation aspect (0.128, 0.257, 0.506) –

C41 (0.251, 0.422, 0.702) (0.032, 0.108, 0.355)
C42 (0.131, 0.314, 0.617) (0.017, 0.081, 0.312)
C43 (0.150, 0.266, 0.581) (0.019, 0.068, 0.294)
5
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When calculating the compromise values of the Einstein function,
expression (21), the value γ = 0.5 was adopted. This ensured
qual intensity of the influence of both Einstein functions on the
inal decision.

tep 6: The ranking of alternatives was performed based on the
alue of the compromise index of alternatives (Υi). The compro-
ise index of alternatives is calculated based on the expression

22), where the value δ = 1 and ∂1 = ∂2 = ∂3 = 0.33.

Υ̃i Υi Rank
1

2

3

4

⎡⎢⎢⎢⎢⎣
(1.039, 1.521, 2.776)

(1.585, 2.544, 3.306)

(1.503, 2.357, 3.133)

(1.381, 2.183, 2.576)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
0.815

1.768

1.543

1.241

⎤⎥⎥⎥⎥⎦
4

1

2

3

ased on the results, we can define the initial ranking of alterna-
ives according to the following G > G > G > G .
2 3 4 1

11
.2. Checking the stability of the results

The stability of the obtained results was performed through
hree phases. In the first phase, the analysis of the influence of
he parameter γ on the final ranking results was performed. In
he second phase, the influence of changing the weights of the
riterion weights on the ranking results was analyzed, while in
he third phase, the results of the fuzzy Einstein CoCoSo model
ere compared with the results of the fuzzy CoCoSo model and
he crips CoCoSo model.

a) The impact of parameter γ on the ranking results
The parameter γ is used in expression (21) to determine the

ntensity of the influence of EQ i and EP i functions on the final
ecision. As previously emphasized, adopting values from the
nterval 0 ≤ γ ≤ 0.5 increases the intensity of the influence
f the EP i function in the aggregation strategy, while adopting
alues from the interval 0.5 ≤ γ ≤ 1 increases the intensity of
he influence of the EQ i function. When calculating the initial
ank (G > G > G > G ), the experts decided that in the final
2 3 4 1
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Fig. 2. The influence of the parameter γ on the results.
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ecision, both functions have equal influence, so the value γ =

.5 was adopted.
In the next part, 100 scenarios were formed in which the

hange of the parameter γ was simulated. In the first scenario,
he value of the parameter γ = 0 was adopted, which com-
letely eliminated the influence of EQ i; that is, the ranking was
erformed based on the EP i function. In each subsequent scenario,
he value of the parameter γ was increased by 0.01. Fig. 2 shows
the influence of the parameter γ on the change in the value of
he compromise index of alternatives.

The simulation of the change of the parameter γ in the interval
≤ γ ≤ 1 showed that the increase in the value of the parameter

γ affects the growth of Einstein functions (EQ i and EP i). The
extreme application of the influence of Einstein functions on the
ranking results was simulated through the presented scenarios.
Thus, in the first scenario (γ = 0), the impact of EQ i was
eliminated, i.e. the EP i function was favored. On the other hand,
in the last scenario (γ = 1), the impact of EP i was eliminated,
i.e., the EQ i function was favored. In the remaining scenarios
(S2–S99), the influence of EQ i was gradually increased while at
the same time, the influence of EP i was proportionally reduced.
Through this experiment, the influence of both functions on the
ranking results was observed. From Fig. 2, we notice that the
compromise values of the functions increase evenly with the
change of the parameter γ . There is no extreme growth in trade-
offs of alternatives that could cause changes in rankings. This
leads us to conclude that there is a sufficient advantage between
the compromise values of the alternatives, i.e., that the initial rank
is credible regardless of the adopted value of the parameter γ .

(b) Change of a vector of weight coefficients of criteria
In multi-criteria models, decisions are often made in dynamic

conditions during which there are significant changes in the
model’s input parameters. To simulate the dynamic environment,
the change of the value of the fuzzy vector of the weight coef-
ficients of the criteria is analyzed in the following part. Based
on the recommendations of Kahraman [37], new weight vectors
were generated, and their influence on changes in the rankings
of alternatives was analyzed. New vectors of weight coefficients
12
were obtained on the basis of variation of the value of the most
influential criterion (C31).

The amount of change in the generated vector of weight coef-
ficients was defined based on the methodology of Kahraman [37].
Since TFNs for uncertainty processing were used in this study, for
all three segments of the triangular fuzzy number, the limits of
change of the weight coefficient of the most influential criterion
C31 were defined, according to the following: (1) lower bound
−0.039 ≤ ∆ws ≤ 0.226; (2) modal value −0.119 ≤ ∆ws ≤ 0.883
and (3) upper bound −0.379 ≤ ∆ws ≤ 1.00. Each of the defined
ntervals is divided into 27 sequences that represent scenarios.
n each scenario, based on the obtained limit values and propor-
ions for defining the relationship between the weights of the
riteria [37], new vectors of weight coefficients were generated in
ig. 3.
After calculating the new vectors of weight coefficients, the

nfluence of each of the generated vectors on the change of
he compromise values of the alternatives was analyzed. The
nfluence of new vectors of weight coefficients on the change of
ompromise values of alternatives is shown in Fig. 4.
New vectors of criterion weight coefficients lead to a change in

he trade-offs of the alternatives. Such changes show a sufficient
ensitivity of the fuzzy Einstein CoCoSo model to changes in the
alues of the weighting coefficients of the criteria, which is one
f the significant characteristics of the MCDM model. The biggest
hanges occur in the third-ranked alternative (G4), which in sce-
nario S27 significantly approached the second-ranked alternative
(G3). In S27, the compromise significance of alternatives G4 and
G3 is Υ3 = 2.33 and Υ4 = 2.30. Ranks of alternatives through
scenarios are shown in Fig. 5.

The results from Figs. 4 and 5 confirm that the initial solution
is credible since the new vectors of the weight coefficients of the
criteria do not lead to changes in the ranks of the alternatives.

5.3. Comparison of results with Fuzzy and crisp CoCoSo method

As this is a new approach in the literature that analyzes the
possibilities of applying Einstein norms and Einstein functions
to improve the performance of the traditional CoCoSo method,
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G

he following compares the results with fuzzy and crip Co-
oSo models. When comparing the results of the fuzzy Ein-
tein CoCoSo method with crisp and fuzzy CoCoSo methods, the
ata from Table 4 were used. Since the crisp CoCoSo method
9] was used for comparison, the fuzzy values from Table 4
ere transformed into crisp values using the expression θ crispij =

θ
(d)
ij + 2θ (s)ij + θ

(g)
ij

)/
4, where θ̃ij =

(
θ
(d)
ij , θ

(s)
ij , θ

(g)
ij

)
. Using
13
fuzzy Einstein, fuzzy and crisp CoCoSo methods, the criterion
functions were obtained, which are given in Table 10.

A graphical representation of the fuzzy Einstein CoCoSo model
[38], fuzzy CoCoSo model, and crisp CoCoSo model alternatives is
shown in Fig. 6.

The comparative presentation shows that all three applied
methodologies suggest the same order of alternatives, i.e., G2 >

> G > G . The results obtained using the fuzzy Einstein
3 4 1
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Fig. 5. Rank alternatives through 27 scenarios.
Table 10
Results of application of different CoCoSo techniques.
Alt. Fuzzy Einstein CoCoSo Fuzzy CoCoSo Crisp CoCoSo

Υ (Gi) Rank Υ (Gi) Rank Υ (Gi) Rank

G1 0.815145 4 0.731351 4 1.494571 4
G2 1.767897 1 1.267929 1 2.687359 1
G3 1.542645 2 1.166991 2 2.463667 2
G4 1.241148 3 1.037057 3 2.181222 3

CoCoSo model and the fuzzy CoCoSo model have lower values
of the compromise significance of the alternatives compared to
the crisp CoCoSo model. Such changes are a consequence of fuzzy
numbers in fuzzy Einstein CoCoSo and fuzzy CoCoSo models.

In addition to the Einstein functions in the fuzzy Einstein
oCoSo model, the original fuzzy methodology for determining
he weight coefficients of the criteria was implemented. The
roposed methodology belongs to the group of subjective models
14
for determining the weight coefficients of the criteria and is based
on defining the relationship between the criteria using a fuzzy
logarithmic additive function. In this way, the performance of the
CoCoSo methodology has been significantly improved, and the
need to apply added subjective or objective models to determine
the weight coefficients of the criteria has been eliminated. The
characteristics of the fuzzy Einstein CoCoSo methodology com-
pared to traditional fuzzy and crisp CoCoSo models are presented
in Table 11.

Based on the presented comparisons between the proposed
method and the two existing methods, the following can be
pointed out:

(1) Based on the comparison with fuzzy and crip CoCoSo mod-
els, it can be concluded that: (i) the best alternative ac-
cording to all methodologies is the same, i.e., alternative
G2 is the best alternative; (ii) The aggregation functions
in the fuzzy and crip CoCoSo models are of a simple,
linear character, while in the fuzzy Einstein CoCoSo model
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Fig. 6. Comparative presentation of the results of compared approaches.
Table 11
Characteristics of fuzzy Einstein CoCoSo methodology and traditional CoCoSo models.
Characteristics CoCoSo method Fuzzy CoCoSo method Fuzzy Einstein CoCoSo method

Flexibility in real applications No No Yes
Determining weight coefficients of criteria No No Yes
Characteristics of functions for defining weighted sequences Linear form Linear form Nonlinear form
Processing of complex information Partially Partially Yes
Defined rank alternative Yes Yes Yes
Algorithm complexity No No Partially
nonlinear Einstein functions are used. That is why the
fuzzy Einstein CoCoSo method presented in this paper has
greater generality and flexibility. Because of this feature,
the presented fuzzy Einstein CoCoSo method can be applied
more widely.

(2) The ranking results are the same for all three methodolo-
gies used to solve the same illustrative example. However,
when extreme values appear in the initial decision matrix
at the most influential criteria, there are extreme changes
in the values of linear functions in the fuzzy and crisp Co-
CoSo models. This can cause a disproportionate increase in
the value of the trade-offs of the alternatives. This is a con-
sequence of the linear character of the weighted sum and
weighted product functions used in the traditional CoCoSo
method. The application of Einstein functions eliminates
this characteristic, which objectifies the decision-making
process.

(3) The Fuzzy Einstein CoCoSo model enables decision-makers
to determine weighting coefficients using a rational and
straightforward methodology. Since there is no need to
apply additional MCDM methods to determine the weights
of the criteria, the fuzzy Einstein CoCoSo model is a pow-
erful tool suitable for solving real-world decision-making
problems.

6. Results and discussion

During a pandemic, public transportation demands go through
sharp decrease when the public transportation time schedules
re kept the same. Hence, a good deal of public transportation
rips has the potential to be conducted for very few people, which
15
decreases revenues, and the financial burden of operating the
public transit vehicles increases to a great extent. As stated in a
study, public transportation demands decreased notably after the
COVID-19 outbreak, but demands are still concentrated at morn-
ing and evening peaks [5], which causes crowded public transit
vehicles. However, crowded and closed areas carry a large risk of
further increasing the spreading speed of a virus. Therefore, for all
these reasons taken into consideration, the do-nothing alternative
is chosen to be the least advantageous one.

Increasing the ridership in sharing-based modes such as bicy-
cle sharing, scooter sharing, and car-sharing is the second least
advantageous method. Micro-mobility systems, such as scooters
and bicycle sharing, are good traveling modes for short distances,
but very insufficient modes for long distances. Even though
sharing-based modes are isolated traveling modes, there is still
a need for frequent disinfection of the vehicles, since there is no
way of knowing if the previous user was infected or not. Also,
increasing the ridership of sharing-based modes decreases the
demands for public transportation, which is an undesired aspect
since the revenues of public transportation are very low. Hence,
decreasing the demand further by promoting micro-mobility
may damage the public transportation system seriously. Usage
of micro-mobility traveling modes can stay as a habit for the
passengers and public transportation demands may not reach
back to the levels present before the pandemic. Operation of
public transportation is carried out as a public service, but such
decreases in demand may make the operational costs unman-
ageable and the public transportation system may come to a
point of collapsing. This alternative is more advantageous than
the do-nothing alternative because the health of the passengers
is managed better.
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The primary reason behind the capacity reduction is related
to the application of social distancing in public transit vehicles.
Sustaining the social distance in the vehicles is very beneficial to
mitigate the speed of spreading of a virus and to provide a safer
trip for the commuters. However, as the capacities are reduced,
people might need to wait for long durations until they can get
on a public transit vehicle, which increases the waiting times
to a great extent. The increase in waiting times decreases the
passenger satisfaction levels and hence the public acceptance of
the management method. For example, at morning and evening
peak hours, the frequencies of the trips must be increased to a
great level to compensate for the high demand levels. Even if the
trips are at the original levels considering the reduced capacities,
revenues are decreased proportionally to the social distancing
restriction, which increases the financial burden on the operators.
Capacity reduction in public transportation alternatives provides
safer transportation for passengers. It has the potential to miti-
gate the spreading speed of a virus and also promotes the use of
public transit for people who are avoiding crowded areas. These
have made this alternative the second most advantageous one.

The public transportation demands are still larger during
morning and evening hours, which correspond to work hours
as well, even during pandemic conditions. This makes adjusting
the public transportation schedule based on the work hours
alternative very beneficial to meet the high demands faced at
these peaks. People who are traveling to work and people who are
leaving their work can find a public transit vehicle to use easily.
Hence, this is an aspect that increases commuters’ satisfaction
levels and public acceptance. Increasing the accessibility of public
transportation services decreases the use of private vehicles,
which eventually decreases traffic congestion and air pollution.
Taking all these aspects into consideration, experts selected this
alternative to be the most advantageous one.

7. Conclusion and future directions

This paper fills a gap concerning the selection of a public
transportation management method in times of a pandemic. Con-
sidering the presented case study, adjusting public transportation
schedules based on work hours is seen to be an effective public
transportation management method. For different case scenarios,
the results may vary, but the application of the methodology
of this paper creates a consensus for municipalities to select
the most optimum public transportation management method
among various methods. One other contribution of this paper
is that in the future, the world will most probably face new
epidemics, and having such a multi-criteria decision-making al-
gorithm to choose the best public transportation management
method helps the municipalities in reacting to the situation in
a faster and more ideal way.

The case study discussed in this paper has shown that the
fuzzy Einstein CoCoSo framework is a powerful tool for rational
and objective decision-making. Besides the obvious advantages
of the presented methodology, there are certain limitations. One
limitation of the fuzzy Einstein CoCoSo methodology is the in-
ability to represent the mutual relations between the criteria.
Therefore, it is necessary to direct future research toward imple-
menting Einstein norms and Bonferroni functions in the CoCoSo
methodology. The application of Einstein–Bonferroni functions
would enable the presentation of interrelationships between the
criteria and further improve the CoCoSo model’s flexibility. Also,
the evaluation of alternatives was performed, considering the
opinions of experts. Therefore, the findings based on one case
study cannot be generalized, but it is necessary to direct future
research to provide quantitative information. In addition, further
research should focus on improving the adaptability of the fuzzy
16
Einstein CoCoSo method by implementing Heronian, Dombi, and
Bonferroni functions. Also, an interesting direction for further
research is the implementation of neutrosophic, rough, and gray
sets in the Einstein CoCoSo methodology.

There are also limitations to the study. One limitation is that
if a pandemic continues for a long duration, alternatives might
change according to future conditions. Also, different cities have
different cultures and habits, which may make other alternatives
stand stronger against others. For example, if the population of
a city is more suitable for a sharing system, the alternative of
increasing the ridership in sharing-based modes such as bicy-
cle sharing, scooter sharing, and car-sharing may move forward
in the advantage prioritization. Therefore, assessments must be
done according to the individual dynamics of the cities.

The Fuzzy Einstein CoCoSo methodology is an effective, ra-
tional, and robust decision-making tool. However, in addition to
the obvious advantages, it is necessary to point out the potential
limitations of the improved CoCoSo model, which include (i) A
complex mathematical apparatus for calculating the relational
relationships between criteria, (ii) the complexity of Einstein
weighted nonlinear functions for budgeting maintenance strate-
gies, and (iii) computational load and acquisition of the infor-
mation in a fuzzy form. As this is a model that has an evident
potential for rational processing of complex, uncertain, and group
information, it is necessary to implement the fuzzy Einstein Co-
CoSo model in the decision support system. This eliminated the
presented limitations, which would make the presented model
acceptable for use by a larger number of users.

The fuzzy Einstein CoCoSo methodology has two limitations:
(1) The first limitation is the impossibility of representing the mu-
tual relations between the elements of the home matrix. There-
fore, it is necessary to direct further research toward implement-
ing Bonferroni and Heronian functions in the Einstein CoCoSo
methodology. Applying Bonferroni and Heronian functions with
Einstein norms would enable the presentation of interrelation-
ships between criteria and would further enhance the flexibility
of the Einstein CoCoSo model; (2) The second limitation of this
study is the lack of quantitative attributes in the home matrix.
Therefore, the findings based on one case study cannot be gener-
alized, but it is necessary to develop future research to provide
quantitative information. In the future, new modifications can
be made to the management methods and criteria based on
the prevailing conditions. With new virus threats and COVID-
19 persisting for an extended period, a demand analysis for
emerging alternative modes of transportation (such as e-scooters)
can also be conducted. According to the management of alter-
native transportation methods, then, new alternatives may be
developed. Then, new alternatives can be formed according to
the management of the alternative transportation methods. Fuzzy
sets such as Hesitant Fuzzy Linguistic Term Sets (HFLTS) can be
used to handle uncertainties and hesitations in human linguistic
assessments
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Appendix

Proof for Theorem 1.
Expression (8) is decomposed into segments in order to grad-

ually derive expression (13).
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hen, by applying expression (8) we obtain the fuzzy Einstein
eighted averaging function (13):
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Proof for Theorem 2. Expression (9) is decomposed into seg-
ments in order to gradually derive expression (14).

From expressions (7) and (9) we get that:
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Then, by applying expression (9) we obtain the fuzzy Einstein
weighted geometric averaging function (14):
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