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A B S T R A C T

During the multi-attribute group decision-making (MAGDM) processing, the individuals often hold different
opinions about the alternatives. It is necessary to aggregate the different individual opinions into a unified
group opinion. In the real world, experts sometimes use linguistic expressions to evaluate attributes in uncertain
environments. To address the problem of reducing the information loss of expert opinion aggregation in
MAGDM, this paper proposes a MAGDM approach based on linguistic concept lattices in the context of
uncertain linguistic expression. A linguistic concept lattice for multi-expert linguistic formal context is first
constructed based on linguistic truth-valued lattice implication algebra, which can express both comparable and
incomparable linguistic information in the decision-making process. Different expert opinions are aggregated
via the extent of fuzzy linguistic concepts, which can reduce information loss in the aggregation process.
Second, meet-irreducible elements in the linguistic concept lattice are introduced to reduce the computational
complexity of obtaining all fuzzy linguistic concepts in the decision-making process. the distance between
the intents of different fuzzy linguistic concepts is considered to enhance the rationality of linguistic decision
results. In addition, the expert’s decision-making process for each alternative is visualized via linguistic concept
lattices. Finally, the case study and comparative analysis illustrate the validity and rationality of the proposed
approach in MAGDM with linguistic information.
1. Introduction

Decision-making as a common activity occurs regularly in our
daily life. With the continuous development of society and economic
changes, the decision-making environment is becoming highly com-
plex. It is difficult for a single expert to obtain an optimal solution
to a complex decision-making problem. Multi-attribute group decision-
making (MAGDM) plays a crucial role as a valuable tool, where
multiple experts collectively evaluate and rank alternatives from a
set that encompasses diverse attributes. This methodology has demon-
strated its effectiveness across a spectrum of research domains, such as
investment decisions (Jiang & Hu, 2021), city construction (Meng et al.,
2021), and company recruitment (Zhan et al., 2019). However, the
MAGDM process encounters situations where experts grapple with the
intricacies of objective assessments, hindering their ability to provide
precise numerical information. In response, Zadeh (1965) introduced
fuzzy sets to deal with fuzzy information. This seminal work triggered
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a surge of interest in fuzzy decision-making within the scholarly com-
munity (Xiao et al., 2022). Numerous studies have proposed various
extended forms of fuzzy sets to be applied in MAGDM, including in-
terval fuzzy sets (Garg, 2021), intuitionistic fuzzy sets (Zhang & Wang,
2023), interval-valued intuitionistic fuzzy sets (Wang & Wan, 2020),
etc. Such innovations serve to refine the decision-making process,
enabling it to effectively accommodate and navigate the complexities
inherent in real-world scenarios.

In real-world MAGDM problems, experts frequently opt to con-
vey their preferences using linguistic evaluations, a mode adept at
accommodating vague and imprecise knowledge. Evaluative linguistic
expressions (Novák, 2008) are used to characterize positions on an
ordered scale in natural languages. For example, evaluative linguistic
expressions such as ‘‘very high’’, ‘‘more or less low’’, and ‘‘low’’ are
employed to assess the ‘‘innovation’’ of papers. Computing with words
(CW) (Zadeh, 1996) is commonly employed to fuse linguistic infor-
mation in MAGDM. Diverse models of linguistic representation have
vailable online 9 September 2023
957-4174/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2023.121485
Received 25 May 2023; Received in revised form 24 August 2023; Accepted 4 Sept
ember 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:pangkuo_p@dlum.edu.cn
mailto:martin@ujaen.es
mailto:Li-N1@ulster.ac.uk
mailto:j.liu@ulster.ac.uk
mailto:zouli20@sdjzu.edu.cn
mailto:lumingyu@dlum.edu.cn
https://doi.org/10.1016/j.eswa.2023.121485
https://doi.org/10.1016/j.eswa.2023.121485


Expert Systems With Applications 237 (2024) 121485K. Pang et al.
emerged, including linguistic term sets (Lin et al., 2021), linguistic
truth-valued lattice implication algebra (LTV-LIA) (Xu et al., 2006), 2-
tuple linguistic model (Herrera & Martínez, 2000), and type-2 fuzzy
sets (Wu & Mendel, 2011). To improve the flexibility of preference ex-
pressions, some researchers focused on the construction of expressions
in a closer way to human beings’ cognitive process, and developed
some complex linguistic expressions to elicit individuals’ preferences.
Hesitant fuzzy linguistic term set (HFLTS) (Rodriguez et al., 2011) and
linguistic distribution (Zhang, Yu, et al., 2019) are becoming popular
tools to model complex linguistic expressions and have been proposed
to grapple with the intricacies of MAGDM problems imbued with
linguistic information (Rodríguez et al., 2013; Wang, Jia, et al., 2023).
For example, Wang et al. (2018b) provided a systematic overview of
modeling techniques for complex linguistic representations in quali-
tative decision making. Wu et al. (2019) proposed flexible linguistic
expressions and developed a novel approach to linguistic MAGDM.
Since the same linguistic term has different meanings for different
experts, Li et al. (2017) proposed a personalized individual semantic
model. A notable contender, LTV-LIA, excels at concurrently handling
linguistic information marked by both comparable and incomparable
attributes. The integration of LTV-LIA within MAGDM stands as a
meaningful approach to harmoniously fuse the multifaceted linguistic
information advanced by experts.

In the MAGDM process, few experts in a group have the same opin-
ion about alternatives. This creates the need to gather all the different
expert opinions into one group opinion (Ben-Arieh & Chen, 2006; Hsu
& Chen, 1996). The applications of linguistic representation model to
MAGDM have evolved using various approaches that seek a group
decision from the individual opinions (Mao et al., 2019; Wu et al.,
2019). For example, to overcome the limitations of some existing 2-
tuple linguistic models, Akram, Niaz, and Feng (2023) proposed 2-tuple
linguistic Fermatean fuzzy Hamacher aggregation operators. Verma and
Álvarez-Miranda (2023) proposed two new aggregation operations to
aggregate 2-tuple linguistic Pythagorean fuzzy information. In the con-
text of linguistic decision environments, the adaptation of technique for
order preference by similarity to ideal solution (TOPSIS) necessitates
the incorporation of linguistic aggregation operators, which serve to
synthesize the intricate fabric of linguistic decision information (Pang
et al., 2016). It is important to note, however, that the prevalent
linguistic aggregation operators encounter challenges in effectively
managing decision information marked by both comparable and incom-
parable attributes. Consequently, the utilization of such aggregation
operators could inadvertently lead to the loss of information during the
aggregation process.

To tackle this problem, formal concept analysis (FCA) (Ganter &
Wille, 2012) provides a theoretical framework for designing and discov-
ering concept hierarchies from a relational information system. FCA has
been successfully applied in various research areas, including three-way
decision (Pang et al., 2023), decision-making (Liu et al., 2019; Yang
& Xu, 2010), and cognitive learning (Shi et al., 2021). Among those
work, Yang and Xu (2010) constructed a linguistic truth-valued concept
lattice and applied it to the decision-making process. Liu et al. (2019)
proposed a fuzzy linguistic concept lattice based on linguistic term sets
and applied it to teaching evaluation. To use the concept lattice in
MAGDM with linguistic information, this paper further researches a
linguistic concept lattice based on LTV-LIA, which can be utilized to
deal with the fuzziness and uncertainty in MAGDM. Harnessing the con-
cept’s inherent capacity to aggregate expert evaluations through extent,
this paper endeavors to introduce an innovative concept lattice-based
approach to MAGDM. The proposed approach draws inspiration from
the potential of FCA, aiming to fortify the decision-making process by
seamlessly integrating and synthesizing expert evaluation information.

To sum up, although there are several proposals for the aggregation
of expert opinions in MAGDM problems, there are still several issues
2

that require further improvement:
1. In existing linguistic MAGDM approaches, different linguistic
models are used to represent the linguistic evaluation informa-
tion of experts (Akram, Bibi, & Deveci, 2023; Gou et al., 2017;
Wang & Wang, 2022). These linguistic models can handle com-
parable linguistic information. However, when experts evaluate
attributes of alternatives, numerous linguistic expressions such
as ‘‘almost good’’, ‘‘rather bad’’, etc., are often not comparable.
Therefore, we introduce LTV-LIA in our linguistic MAGDM ap-
proach to handle both comparable and incomparable linguistic
information.

2. Despite the large amount of research dealing with linguistic
MAGDM, there is still a need to improve methods for aggre-
gating individual opinions into group opinions, especially when
there exist comparable and incomparable linguistic expressions
of these opinions. The existing LAAO and LIFFAA operators
are the basic aggregation tools for aggregating LTV-LIA (Diao
et al., 2022; Liu et al., 2020). However, these expert opinion
aggregation methods use approximation operations resulting in
information loss when using aggregation operators. Therefore,
we introduce the concept lattice theory into the expert opin-
ion aggregation method to reduce the information loss in the
aggregation process.

In real-world scenarios, experts prefer to express their preferences
by using linguistic information that is vague and incomparable, which
is more in line with people’s thinking patterns. This paper introduces
a linguistic approach to MAGDM centered around linguistic concept
lattices. The proposed approach serves to aggregate diverse linguistic
insights provided by multiple experts. The efficacy of this proposed
approach in tackling MAGDM quandaries embedded with linguistic
information is demonstrated through a comprehensive case study and
comparative analysis. The contributions of this paper are:

• The utilization of LTV-LIA for expressing expert linguistic eval-
uation information, enabling the concurrent handling of both
comparable and incomparable linguistic information.

• The expert opinions are aggregated by obtaining all the fuzzy
linguistic concepts corresponding to each alternative to reduce
the information loss. On this basis, the proposed approach re-
duces the computational complexity of obtaining all fuzzy linguis-
tic concepts by calculating the meet-irreducible elements in the
linguistic concept lattice.

• A novel linguistic concept lattice-based MAGDM approach is em-
ployed. The proposed approach empowers the visualization of
the decision-making process undertaken by all experts through
the construction of linguistic concept lattices. This visual repre-
sentation notably augments the interpretability of the MAGDM
approach.

The remainder of the paper is organized as follows. Section 2 briefly
recalls FCA and LTV-LIA. Section 3 proposes linguistic concept lattices
based on LTV-LIA. Section 4 defines meet-irreducible elements in the
linguistic concept lattice and discusses the distance between intents
in fuzzy linguistic concepts. Section 5 proposes the MAGDM approach
based on fuzzy linguistic concepts and gives the corresponding case
study and comparative analysis. Finally, Section 6 concludes the paper
and provides future work to be completed. An overall diagram of the
paper is given in Fig. 1.

2. Preliminaries
This section briefly recalls FCA and LTV-LIA.
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Fig. 1. The framework of the paper.
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.1. The basic of FCA

efinition 1 (Ganter & Wille, 2012). A formal context is a triple
𝐺,𝑀, 𝐼), where 𝐺 is a non-empty finite set of objects, 𝑀 is a non-

empty finite set of attributes, and 𝐼 ⊆ 𝐺×𝑀 is a binary relation between
𝐺 and 𝑀 . For 𝑔 ∈ 𝐺 and 𝑚 ∈ 𝑀 , (𝑔, 𝑚) ∈ 𝐼 means that the object 𝑔 has
he attribute 𝑚.

efinition 2 (Ganter & Wille, 2012). Let (𝐺,𝑀, 𝐼) be a formal context,
or 𝑋 ⊆ 𝐺 and 𝐵 ⊆ 𝑀 , two operators ‘‘↑’’ and ‘‘↓’’ can be defined as
ollows:

(∙)↑ ∶ 2𝐺 → 2𝑀 ,
↑ = {𝑚|𝑚 ∈ 𝑀, ∀𝑔 ∈ 𝑋, (𝑔, 𝑚) ∈ 𝐼} ,

(1)

(∙)↓ ∶ 2𝑀 → 2𝐺 ,
↓ = {𝑔|𝑔 ∈ 𝐺, ∀𝑚 ∈ 𝐵, (𝑔, 𝑚) ∈ 𝐼} .

(2)

Definition 3 (Ganter & Wille, 2012). Let (𝐺,𝑀, 𝐼) be a formal context,
for 𝑋 ⊆ 𝐺 and 𝐵 ⊆ 𝑀 , if there exist 𝑋↑ = 𝐵 and 𝑋 = 𝐵↓, then a pair
𝑋,𝐵) is called a concept of (𝐺,𝑀, 𝐼). 𝑋 and 𝐵 are called the extent
nd intent of the concept (𝑋,𝐵), respectively.

2.2. The basic of LTV-LIA

Definition 4 (Xu et al., 2003). Let (𝐿,∨,∧, ′) be a bounded lattice
with universal boundaries 𝑂 and 𝐼 respectively. For any 𝑥, 𝑦, 𝑧 ∈ 𝐿,
if mapping →∶ 𝐿 × 𝐿 → 𝐿 satisfies:

1. 𝑥 → (𝑦 → 𝑧) = 𝑦 → (𝑥 → 𝑧),
2. 𝑥 → 𝑥 = 𝐼 ,
3. 𝑥 → 𝑦 = 𝑦′ → 𝑥′,
4. If 𝑥 → 𝑦 = 𝑦 → 𝑥 = 𝐼 , then 𝑥 = 𝑦,
5. (𝑥 → 𝑦) → 𝑦 = (𝑦 → 𝑥) → 𝑥,
6. (𝑥 ∨ 𝑦) → 𝑧 = (𝑥 → 𝑧) ∧ (𝑦 → 𝑧),
7. (𝑥 ∧ 𝑦) → 𝑧 = (𝑥 → 𝑧) ∨ (𝑦 → 𝑧),

then (𝐿,∨,∧, ′,→) is called a lattice implication algebra.

Lattice implication algebra can handle both comparable and incom-
parable elements, to process linguistic information, Xu et al. (2006)
proposed LTV-LIA.

Definition 5 (Xu et al., 2006). Denote 𝑀𝑇 = {𝑐1, 𝑐2}, which is called as
the set of meta linguistic truth values. The lattice implication algebra
defined on the set of meta linguistic truth values is called a meta
linguistic truth-valued lattice implication algebra, where 𝑐1 < 𝑐2. The
operation ‘‘′’’ is defined as 𝑐′1 = 𝑐2 and 𝑐′2 = 𝑐1. The operation ‘‘→’’ is
defined as

→∶ 𝑀𝑇 ×𝑀𝑇 ⟶ 𝑀𝑇 ,
′

3

𝑥 → 𝑦 = 𝑥 ∨ 𝑦. e
Definition 6 (Xu et al., 2006). Let 𝐴𝐷𝑛 = {ℎ𝑘|𝑘 = 0, 1,… , 𝑛,n is an
even number} be a set of hedges and ℎ1 < ℎ2 < ⋯ < ℎ𝑛. For 0 ≤ 𝑙, 𝑚 ≤ 𝑛,
the operations are defined as follows:

ℎ𝑙 ∨ ℎ𝑚 = ℎ𝑚𝑎𝑥{𝑙,𝑚},

ℎ𝑙 ∧ ℎ𝑚 = ℎ𝑚𝑖𝑛{𝑙,𝑚},

ℎ′𝑙 = ℎ𝑛−𝑙 ,

ℎ𝑙 → ℎ𝑚 = ℎ𝑚𝑖𝑛{𝑛,𝑛−𝑙+𝑚}.

hen (𝐴𝐷𝑛,∨,∧, ′,→, ℎ0, ℎ𝑛) is called a lattice implication algebra with
hedges.

Definition 7 (Xu et al., 2006). Let 𝐴𝐷𝑛 = {ℎ𝑘|𝑘 = 0, 1,… , 𝑛,n is an
even number} be a set of hedges, 𝑀𝑇 = {𝑐1, 𝑐2} be the set of meta

linguistic truth values, denoted 𝑉 (𝑛×2) = 𝐴𝐷𝑛 × 𝑀𝑇 . Then 𝑉 (𝑛×2) =
(𝑉 (𝑛×2),∨,∧, ′,→, (ℎ𝑛, 𝑐1), (ℎ𝑛, 𝑐2)) is called a linguistic truth-valued lat-
tice implication algebra.

The Hasse diagram of the LTV-LIA is shown in Fig. 2. The ‘‘∨’’
operation is defined as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(ℎ𝑖, 𝑐1) ∨ (ℎ𝑗 , 𝑐1) = (ℎ𝑚𝑖𝑛{𝑖,𝑗}, 𝑐1)
(ℎ𝑖, 𝑐1) ∨ (ℎ𝑗 , 𝑐2) = (ℎ𝑚𝑎𝑥{𝑗,𝑛−𝑖+1}, 𝑐2)
(ℎ𝑖, 𝑐2) ∨ (ℎ𝑗 , 𝑐2) = (ℎ𝑚𝑎𝑥{𝑖,𝑗}, 𝑐2)

(ℎ𝑖, 𝑐2) ∨ (ℎ𝑗 , 𝑐1) = (ℎ𝑚𝑎𝑥{𝑖,𝑛−𝑗+1}, 𝑐2)

The ‘‘∧’’ operation is defined as:

(ℎ𝑖, 𝑐1) ∧ (ℎ𝑗 , 𝑐1) = (ℎ𝑚𝑎𝑥{𝑖,𝑗}, 𝑐1)
(ℎ𝑖, 𝑐1) ∧ (ℎ𝑗 , 𝑐2) = (ℎ𝑚𝑎𝑥{𝑖,𝑛−𝑗+1}, 𝑐1)
(ℎ𝑖, 𝑐2) ∧ (ℎ𝑗 , 𝑐2) = (ℎ𝑚𝑖𝑛{𝑖,𝑗}, 𝑐2)

(ℎ𝑖, 𝑐2) ∧ (ℎ𝑗 , 𝑐1) = (ℎ𝑚𝑎𝑥{𝑗,𝑛−𝑖+1}, 𝑐1)

The ‘‘→’’ operation is defined as:

(ℎ𝑖, 𝑐2) → (ℎ𝑗 , 𝑐1) = (ℎ𝑚𝑎𝑥{0,𝑖+𝑗−𝑛}, 𝑐1)
(ℎ𝑖, 𝑐1) → (ℎ𝑗 , 𝑐2) = (ℎ𝑚𝑖𝑛{𝑛,𝑖+𝑗}, 𝑐2)
(ℎ𝑖, 𝑐2) → (ℎ𝑗 , 𝑐2) = (ℎ𝑚𝑖𝑛{𝑛,𝑛−𝑖+𝑗}, 𝑐2)
(ℎ𝑖, 𝑐1) → (ℎ𝑗 , 𝑐1) = (ℎ𝑚𝑖𝑛{𝑛,𝑛−𝑗+𝑖}, 𝑐2)

The ‘‘′’’ operation is defined as:

(ℎ𝑖, 𝑐1)′ = (ℎ𝑖, 𝑐2)
(ℎ𝑗 , 𝑐2)′ = (ℎ𝑗 , 𝑐1)

The construction process of the lattice implication algebra uses
𝐷𝑛 × 𝑀𝑇 . The construction process is divided into two parts, (1)
onstructing lattice implication algebras on 𝐴𝐷𝑛 and 𝑀𝑇 respectively,
nd (2) inducing lattice implication algebras on the set of linguistic
ruth values based on the lattice implication algebras on 𝐴𝐷𝑛 and 𝑀𝑇 .

In the LTV-LIA, let 𝑀𝑇 = {𝑐1 = false, 𝑐2 = true} be the meta
inguistic truth-valued set. In the lattice implication algebra, the all
edges we consider can weaken the degree of truth or false to some

xtent, such as ‘‘roughly’’, ‘‘almost’’, ‘‘rather’’, ‘‘more or less’’, and so on.
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Fig. 2. Hasse diagram of 𝑉 (𝑛×2).

So the two chains in lattice implication algebra, namely the truth chain
and the false chain, have gradually weakened the degrees of truth and
false due to the hedges. With the different degrees of weakening, some
weakened linguistic expressions are incomparable intuitively, such as
‘‘almost true’’ and ‘‘rather false’’.

3. Expert opinion aggregation based on linguistic concept lattice

Experts tend to rely on linguistic expressions to evaluate each
alternative during the MAGDM process, given the intricate nature of
objective matters and the subjective nature of human thinking. To
aggregate information about the evaluation of different attributes by
different experts, this section proposes linguistic concept lattices based
on the LTV-LIA and aggregates the expert opinions through fuzzy
linguistic concepts.

For a MAGDM problem, suppose that 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑜} denotes
the set of alternatives, 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑟} denotes the set of experts and
𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑝} denotes the set of attributes.

When experts use evaluative linguistic expressions to describe at-
tributes, evaluative linguistic predications are obtained, which have the
following form syntactically

𝑎 is , (3)

where 𝑎 is an attribute and  is an evaluative linguistic expression.
In this paper, the LTV-LIA is used to represent evaluative linguistic
expressions. For (ℎ𝑘, 𝑐𝑙)(𝑘 = 1, 2,… , 𝑛; 𝑙 = 1, 2) ∈ 𝑉 (𝑛×2), the converted
evaluative linguistic predications can be represented by

𝑎 is (ℎ𝑘, 𝑐𝑙), (4)

the set of A can be represented by the set of evaluative linguistic predi-
cations A = {⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩|
(ℎ𝑘, 𝑐𝑙) ∈ 𝑉 (𝑛×2), 𝑎 ∈ 𝐴}. Based on the above discussion, we provide
the definition of multi-expert linguistic formal context.

Definition 8. A multi-expert linguistic formal context is a triple
(𝐸,A, I), where 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑟} is a set of experts, 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑝}
is a set of attributes, A = {⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩|(ℎ𝑘, 𝑐𝑙) ∈ 𝑉 (𝑛×2), 𝑎 ∈ 𝐴} is
a set of evaluative linguistic predications, and I ⊆ 𝐸 × A is a binary
relation between 𝐸 and A. For 𝑒 ∈ 𝐸 and ⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩ ∈ A,
(𝑒, ⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩) ∈ I means that expert 𝑒 has the evaluative linguistic
predication ⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩.

To derive the definition of the linguistic concept lattice from
(𝐸,A, I), we provide the definition of induction operators ‘‘⊲’’ and ‘‘⊳’’.

Definition 9. Let (𝐸,A, I) be a multi-expert linguistic formal context.
For 𝑊 ⊆ 𝐸 and 𝑌 ⊆ A, two operators ‘‘⊲’’ and ‘‘⊳’’ can be defined as
4

follows:
(∙)⊲ ∶ 2𝑊 → 2𝑌 ,

𝑊 ⊲ = {⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩ ∈ A|∀𝑒 ∈ 𝑊 ,
(𝑒, ⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩) ∈ I},

(5)

(∙)⊳ ∶ 2𝑌 → 2𝑊 ,
𝑌 ⊳ = {𝑒 ∈ 𝐸|∀⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩ ∈ 𝑌 ,

(𝑒, ⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩) ∈ I}.
(6)

Definition 10. Let (𝐸,A, I) be a multi-expert linguistic formal context.
For 𝑊 ⊆ 𝐸 and 𝑌 ⊆ A, if there exist 𝑊 ⊲ = 𝑌 and 𝑌 ⊳ = 𝑊 , then a
pair (𝑊 ,𝑌 ) is called a fuzzy linguistic concept of (𝐸,A, I). 𝑊 and 𝑌
are called the extent and intent of the fuzzy linguistic concept (𝑊 ,𝑌 ),
respectively.

In (𝐸,A, I), the set of all the fuzzy linguistic concepts is denoted as

𝐿(𝐸,A, I) = {(𝑊 ,𝑌 )|𝑊 ⊲ = 𝑌 , 𝑌 ⊳ = 𝑊 }.

For (𝑊1, 𝑌1), (𝑊2, 𝑌2) ∈ 𝐿(𝐸,A, I), the partial order ‘‘≤’’ between fuzzy
linguistic concept is denoted as

(𝑊1, 𝑌1) ≤ (𝑊2, 𝑌2) ⇔ 𝑊1 ⊆ 𝑊2(⇔ 𝑌2 ⊆ 𝑌1), (7)

then (𝐿(𝐸,A, I),≤) is a complete lattice, called a linguistic concept
lattice of (𝐸,A, I). The infimum and supremum can be defined as
follows:

(𝑊1, 𝑌1) ∨ (𝑊2, 𝑌2) = ((𝑊1 ∪𝑊2)⊲⊳, 𝑌1 ∩ 𝑌2),

(𝑊1, 𝑌1) ∧ (𝑊2, 𝑌2) = (𝑊1 ∩𝑊2, (𝑌1 ∪ 𝑌2)⊳⊲).

Theorem 1. Let (𝐸,A, I) be a multi-expert linguistic formal context. For
𝑊 ,𝑊1,𝑊2 ⊆ 𝐸 and 𝑌 , 𝑌1, 𝑌2 ⊆ A, the following properties hold.

1. 𝑊1 ⊆ 𝑊2 ⇒ 𝑊 ⊲
2 ⊆ 𝑊 ⊲

1 , 𝑌1 ⊆ 𝑌2 ⇒ 𝑌2⊳ ⊆ 𝑌1⊳;
2. 𝑊 ⊆ 𝑊 ⊲⊳, 𝑌 ⊆ 𝑌 ⊳⊲;
3. 𝑊 ⊲ = 𝑊 ⊲⊳⊲, 𝑌 ⊳ = 𝑌 ⊳⊲⊳;
4. (𝑊1 ∪𝑊2)⊲ = 𝑊 ⊲

1 ∩𝑊 ⊲
2 , (𝑌1 ∪ 𝑌2)⊳ = 𝑌 ⊳

1 ∩ 𝑌2⊳;
5. (𝑊1 ∩𝑊2)⊲ ⊇ 𝑊 ⊲

1 ∪𝑊 ⊲
2 , (𝑌1 ∩ 𝑌2)⊳ ⊇ 𝑌 ⊳

1 ∪ 𝑌2⊳;
6. Both (𝑊 ⊲⊳,𝑊 ⊲) and (𝑌 ⊳, 𝑌 ⊳⊲) are fuzzy linguistic concept.

Proof.

1. Suppose 𝑊1 ⊆ 𝑊2. According to Definition 9, we have 𝑊1 =
⋂

𝑒𝑖∈𝑊1
𝑒⊲𝑖 and 𝑊2 =

⋂

𝑒𝑗∈𝑊2
𝑒⊲𝑗 . 𝑊 ⊲

2 ⊆ 𝑊 ⊲
1 is obtained. There-

fore, 𝑊1 ⊆ 𝑊2 ⇒ 𝑊 ⊲
2 ⊆ 𝑊 ⊲

1 holds. Similarly, we can prove
𝑌1 ⊆ 𝑌2 ⇒ 𝑌2⊳ ⊆ 𝑌1⊳.

2. It can be proved by Definition 9.
3. According to properties 1 and 2, we have 𝑊 ⊲⊳⊲ ⊆ 𝑊 ⊲. Suppose

𝑊 ⊲ = 𝑌 . Then, 𝑊 ⊲ ⊆ 𝑊 ⊲⊳⊲ is obtained. Hence, 𝑊 ⊲ = 𝑊 ⊲⊳⊲

holds. Similarly, we can prove 𝑌 ⊳ = 𝑌 ⊳⊲⊳.
4. According to Definition 9, we have (𝑊1∪𝑊2)⊲ =

⋂

𝑒𝑖∈𝑊1∪𝑊2
𝑒⊲𝑖 =

(
⋂

𝑒𝑖∈𝑊1
𝑒⊲𝑖 ) ∩ (

⋂

𝑒𝑖∈𝑊2
𝑒⊲𝑖 ) = 𝑊 ⊲

1 ∩ 𝑊 ⊲
2 . Thus, (𝑊1 ∪ 𝑊2)⊲ =

𝑊 ⊲
1 ∩𝑊 ⊲

2 holds. Similarly, we can prove (𝑌1 ∪ 𝑌2)⊳ = 𝑌 ⊳
1 ∩ 𝑌2⊳

5. The proof is similar to property 1.
6. According to Definition 9 and property 3, we have 𝑊 = 𝑊 ⊲⊳

and 𝑊 ⊲ = 𝑌 . Therefore, (𝑊 ⊲⊳,𝑊 ⊲) is a fuzzy linguistic concept.

Example 1. We consider the multi-expert linguistic formal context
(𝐸,A, I) of Table 1, where 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7} denotes the set
of experts and 𝐴 = {𝑎1, 𝑎2, 𝑎3} denotes the set of attributes.

Let 𝐴𝐷3 = {ℎ1 = 𝑟𝑜𝑢𝑔ℎ𝑙𝑦, ℎ2 = 𝑣𝑒𝑟𝑦, ℎ3 = 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦} be the linguistic
hedges set and 𝑀𝑇 = {𝑐1 = 𝑏𝑎𝑑, 𝑐2 = 𝑔𝑜𝑜𝑑} be the meta linguistic
truth-valued set. The 6-element LTV-LIA 𝑉 (3×2) = (𝑉 (3×2),∨,∧, ′,→
, (ℎ3, 𝑐1), (ℎ3, 𝑐2)) is obtained as shown in Fig. 3.

The set of evaluative linguistic predications A = {⟨𝑎𝑖 is (ℎ𝑝, 𝑐𝑞)⟩|
(ℎ𝑝, 𝑐𝑞) ∈ 𝑉 (3×2), 𝑎𝑖 ∈ 𝐴} is obtained, and I is given in Table 1.
The clarified multi-expert linguistic formal context (𝐸,A, I) is obtained
𝑐
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Table 1
Multi-expert linguistic formal context (𝐸,A, I).
𝐸 𝑎1 𝑎2 𝑎3

EB RG VB VG RB EG EB RG VB VG RB EG EB RG VB VG RB EG

𝑒1 × × ×
𝑒2 × × ×
𝑒3 × × ×
𝑒4 × × ×
𝑒5 × × ×
𝑒6 × × ×
𝑒7 × × ×

Note: EB: (ℎ3 , 𝑐1), RG: (ℎ1 , 𝑐2), VB: (ℎ2 , 𝑐1), VG: (ℎ2 , 𝑐2), RB: (ℎ1 , 𝑐1), EG: (ℎ3 , 𝑐2).
𝑙

𝑙

Table 2
Clarified multi-expert linguistic formal context (𝐸,A, I)𝑐 .
𝐸 𝑎1 𝑎2 𝑎3

EB VB RB EG EB RG VB VG EG EB RG VB VG RB

𝑒1 × × ×
𝑒2 × × ×
𝑒3 × × ×
𝑒4 × × ×
𝑒5 × × ×
𝑒6 × × ×
𝑒7 × × ×

Fig. 3. Hasse diagram of 𝑉 (3×2).

through the clarification method (Ganter & Wille, 2012), as shown in
Table 2.

According to Definitions 9 and 10, all fuzzy linguistic concepts are
obtained in (𝐸,A, I) as follows. The linguistic concept lattice 𝐿(𝐸,A, I)
is depicted by Fig. 4.

𝑙𝑐1 ∶ (𝐸, ∅),

𝑙𝑐2 ∶ ({𝑒1, 𝑒2, 𝑒5}, {⟨𝑎3 is (ℎ1, 𝑐2)⟩}),

𝑙𝑐3 ∶ ({𝑒4, 𝑒5, 𝑒7}, {⟨𝑎2 is (ℎ3, 𝑐2)⟩}),

𝑙𝑐4 ∶ ({𝑒1, 𝑒5, 𝑒7}, {⟨𝑎1 is (ℎ3, 𝑐2)⟩}),

𝑙𝑐5 ∶ ({𝑒1, 𝑒5}, {⟨𝑎1 is (ℎ3, 𝑐2)⟩, ⟨𝑎3 is (ℎ1, 𝑐2)⟩}),

𝑙𝑐6 ∶ ({𝑒5, 𝑒7}, {⟨𝑎1 is (ℎ3, 𝑐2)⟩, ⟨𝑎2 is (ℎ3, 𝑐2)⟩}),

𝑙𝑐7 ∶ ({𝑒7}, {⟨𝑎1 is (ℎ3, 𝑐2)⟩, ⟨𝑎2 is (ℎ3, 𝑐2)⟩, ⟨𝑎3 is (ℎ2, 𝑐2)⟩}),

𝑙𝑐8 ∶ ({𝑒5}, {⟨𝑎1 is (ℎ3, 𝑐2)⟩, ⟨𝑎2 is (ℎ3, 𝑐2)⟩, ⟨𝑎3 is (ℎ1, 𝑐2)⟩}),

𝑙𝑐9 ∶ ({𝑒1}, {⟨𝑎1 is (ℎ3, 𝑐2)⟩, ⟨𝑎2 is (ℎ1, 𝑐2)⟩, ⟨𝑎3 is (ℎ1, 𝑐2)⟩}),
5

𝑙𝑐10 ∶ ({𝑒6}, {⟨𝑎1 is (ℎ1, 𝑐1)⟩, ⟨𝑎2 is (ℎ2, 𝑐1)⟩, ⟨𝑎3 is (ℎ1, 𝑐1)⟩}),
Fig. 4. Linguistic concept lattice 𝐿(𝐸,A, I).

𝑙𝑐11 ∶ ({𝑒2, 𝑒3}, {⟨𝑎1 is (ℎ2, 𝑐1)⟩}),

𝑙𝑐12 ∶ ({𝑒3}, {⟨𝑎1 is (ℎ1, 𝑐1)⟩, ⟨𝑎2 is (ℎ2, 𝑐2)⟩, ⟨𝑎3 is (ℎ3, 𝑐1)⟩}),

𝑐13 ∶ ({𝑒2}, {⟨𝑎1 is (ℎ1, 𝑐1)⟩, ⟨𝑎2 is (ℎ3, 𝑐1)⟩, ⟨𝑎3 is (ℎ1, 𝑐2)⟩}),

𝑐14 ∶ ({𝑒4}, {⟨𝑎1 is (ℎ3, 𝑐1)⟩, ⟨𝑎2 is (ℎ3, 𝑐2)⟩, ⟨𝑎3 is (ℎ2, 𝑐1)⟩}),

𝑙𝑐15 ∶ (∅,A).

Taking the fuzzy linguistic concept 𝑙𝑐5 as an example, according to
the extent of 𝑙𝑐5, experts 𝑒1 and 𝑒5 are aggregated. According to the
extent of 𝑙𝑐5, the reason for such an aggregation result is that these
two experts evaluated attribute 𝑎1 of a specific alternative extremely
good and evaluated attribute 𝑎3 of a specific alternative roughly good.

4. Distance between intents under the fuzzy linguistic concept

4.1. Meet-irreducible elements in the linguistic concept lattice

During the aggregation of MAGDM, any fuzzy linguistic concept
can be represented as the meet of some meet-irreducible elements in
the linguistic concept lattice. Therefore, this subsection proposes meet-
irreducible fuzzy linguistic concepts as concept knowledge spaces to
avoid computing the entire linguistic concept lattice.

Definition 11. Let (𝐸,A, I) be a multi-expert linguistic formal context.
For any 𝑒 ∈ 𝐸 and ⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩ ∈ A, (⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩⊳, ⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩⊳⊲)
and (𝑒⊲⊳, 𝑒⊲) are called evaluative linguistic predication concept and
fuzzy expert concept, respectively.
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Definition 12 (Davey & Priestley, 2002). Given a lattice (𝐿,⪯), an
lement 𝑤 ∈ 𝐿 verifying:

1. If 𝐿 has a top element ⊤, then 𝑤 ≠ ⊤.
2. If 𝑤 = 𝑦 ∧ 𝑧, then 𝑤 = 𝑦 or 𝑤 = 𝑧, for all 𝑦, 𝑧 ∈ 𝐿.

hen 𝑤 is called meet-irreducible element of 𝐿.

heorem 2 (Davey & Priestley, 2002). Let (𝐿,⪯) be a lattice, then every
element in 𝐿 is the meet of the meet-irreducible elements.

Let (𝐸,A, I) be a multi-expert linguistic formal context and write
A0 = {⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩ ∈ A|(⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩⊳, ⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩⊳⊲)
is meet-irreducible element}. For any (𝑊 ,𝑌 ) ∈ 𝐿(𝐸,A, I),

(𝑌 ,𝑊 ) =
⋀

⟨𝑎 is (ℎ𝑘 ,𝑐𝑙 )⟩∈𝑊 ∩A0

(⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩⊳, ⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩⊳⊲),

where (⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩⊳, ⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩⊳⊲) is meet-irreducible element.

Lemma 1. Let (𝐸,A, I) be a multi-expert linguistic formal context. For any
⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩ ∈ A, (⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩⊳, ⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩⊳⊲) is meet-irreducible
element if and only if

{⟨𝑏 is (ℎ𝑝, 𝑐𝑞)⟩ ∈ A|⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩⊳ ⊂ ⟨𝑏 is (ℎ𝑝, 𝑐𝑞)⟩⊳} = ∅

or

⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩⊳ ⊂
⋂

⟨𝑎 is (ℎ𝑘 ,𝑐𝑙 )⟩⊳⊂⟨𝑏 is (ℎ𝑝 ,𝑐𝑞 )⟩⊳
⟨𝑏 is (ℎ𝑝, 𝑐𝑞)⟩⊳.

4.2. Intent distance under the fuzzy linguistic concept

This subsection proposes a method to calculate the intent distance
of different fuzzy linguistic concepts.

We first provide the definition of distances for different evaluative
linguistic expressions under the same attribute.

Definition 13. Let (𝐸,A, I) be a multi-expert linguistic formal context.
For any ⟨𝑎 is (ℎ𝑘, 𝑐𝑙)⟩ ∈ A, the distance between two different
evaluative linguistic expressions (ℎ𝑘, 𝑐𝑙) and (ℎ𝑝, 𝑐𝑞) under 𝑎 is defined
as follows

𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) =
{

|𝑘 − 𝑝|, 𝑙 = 𝑞,
|𝑘 − (𝑛 − 𝑝)|, 𝑙 ≠ 𝑞.

(8)

Theorem 3. Let (𝐸,A, I) be a multi-expert linguistic formal context,
(ℎ𝑘, 𝑐𝑙), (ℎ𝑢, 𝑐𝑣) and (ℎ𝑝, 𝑐𝑞) be different evaluative linguistic expressions
under the same attribute. The distance 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) between (ℎ𝑘, 𝑐𝑙)
and (ℎ𝑝, 𝑐𝑞) satisfies the following properties.

1. 0 ≤ 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) ≤ 𝑛.
2. 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) = 0 if and only if (ℎ𝑘, 𝑐𝑙) = (ℎ𝑝, 𝑐𝑞).
3. 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) = 𝑑((ℎ𝑝, 𝑐𝑞), (ℎ𝑘, 𝑐𝑙)).
4. 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) ≤ 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑢, 𝑐𝑣)) + 𝑑((ℎ𝑢, 𝑐𝑣), (ℎ𝑝, 𝑐𝑞)).

Proof.

1. According to Definition 7, (ℎ𝑛, 𝑐2) and (ℎ𝑛, 𝑐1) are the max-
imum and minimum elements in the LTV-LIA. According to
Definition 13, the distance between any evaluative linguistic
expression and itself is minimum, i.e.

𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑘, 𝑐𝑙)) = |𝑘 − 𝑘| = 0.

The distance between the minimum element (ℎ𝑛, 𝑐1) and the
maximum element (ℎ𝑛, 𝑐2) is maximum, i.e.

𝑑((ℎ𝑛, 𝑐1), (ℎ𝑛, 𝑐2)) = |𝑛 − (𝑛 − 𝑛)| = 𝑛.
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Therefore, 0 ≤ 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) ≤ 𝑛 holds.
2. Necessity. Suppose 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) = 0, then 𝑘 = 𝑝 and 𝑙 = 𝑞,
i.e., (ℎ𝑘, 𝑐𝑙) = (ℎ𝑝, 𝑐𝑞).
Sufficiency. Suppose (ℎ𝑘, 𝑐𝑙) = (ℎ𝑝, 𝑐𝑞), then

𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) = 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑘, 𝑐𝑙)) = |𝑘 − 𝑘| = 0.

3. According to Definition 13, when 𝑙 = 𝑞, we have

𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) = |𝑘 − 𝑝|,

𝑑((ℎ𝑝, 𝑐𝑞), (ℎ𝑘, 𝑐𝑙)) = |𝑝 − 𝑘|.

Since |𝑘 − 𝑝| = |𝑝 − 𝑘|, we can get 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝,
𝑐𝑞)) = 𝑑((ℎ𝑝, 𝑐𝑞), (ℎ𝑘, 𝑐𝑙)). When 𝑙 ≠ 𝑞, we have

𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) = |𝑘 − (𝑛 − 𝑝)|,

𝑑((ℎ𝑝, 𝑐𝑞), (ℎ𝑘, 𝑐𝑙)) = |𝑝 − (𝑛 − 𝑘)|.

Since |𝑘 − (𝑛 − 𝑝)| = |𝑝 − (𝑛 − 𝑘)|, we can get 𝑑((ℎ𝑘, 𝑐𝑙),
(ℎ𝑝, 𝑐𝑞)) = 𝑑((ℎ𝑝, 𝑐𝑞), (ℎ𝑘, 𝑐𝑙)). Combining the above arguments,
we obtain that 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) = 𝑑((ℎ𝑝, 𝑐𝑞), (ℎ𝑘, 𝑐𝑙)).

4. Case 1: Suppose 𝑣 = 𝑞 = 𝑙, then we have

𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) = |𝑘 − 𝑝|

= |𝑘 − 𝑢 + 𝑢 − 𝑝|

≤ |𝑘 − 𝑢| + |𝑢 − 𝑝|.

This implies that 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) ≤ 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑢, 𝑐𝑣)) +
𝑑((ℎ𝑢, 𝑐𝑣), (ℎ𝑝, 𝑐𝑞)).
Case 2: Suppose 𝑣 = 𝑞 ≠ 𝑙, then we have

𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) = |𝑘 + 𝑝 − 𝑛|

= |𝑘 + 𝑢 − 𝑛 + 𝑝 − 𝑢|

≤ |𝑘 + 𝑢 − 𝑛| + |𝑢 − 𝑝|.

This implies that 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) ≤ 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑢, 𝑐𝑣)) +
𝑑((ℎ𝑢, 𝑐𝑣), (ℎ𝑝, 𝑐𝑞)).
Case 3: Suppose 𝑣 ≠ 𝑞 = 𝑙, then we have

𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) = |𝑘 − 𝑝|

= |𝑘 − 𝑢 + 𝑢 − 𝑝|

≤ |𝑘 + 𝑢 − 𝑛| + |𝑢 + 𝑝 − 𝑛|.

This implies that 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) ≤ 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑢, 𝑐𝑣))+𝑑((ℎ𝑢, 𝑐𝑣),
(ℎ𝑝, 𝑐𝑞)).

Definition 14. Let (𝐸,A, I) be a multi-expert linguistic formal context
and 𝐿(𝐸,A, I) be the linguistic concept lattice corresponding to (𝐸,A, I).
For any (𝑌𝑏,𝑊𝑏), (𝑌𝑔 ,𝑊𝑔) ∈ 𝐿(𝐸,A, I), the distance between two intents
𝑊𝑏 and 𝑊𝑔 is defined as follows

𝑑(𝑊𝑏,𝑊𝑔) =
1
𝑡

𝑡
∑

𝑢=1
𝑑𝑢((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)), (9)

where 𝑡 represents the number of attributes in (𝐸,A, I), (ℎ𝑘, 𝑐𝑙) and
ℎ𝑝, 𝑐𝑞) are different evaluative linguistic expressions under the same
ttribute.

heorem 4. Let (𝐸,A, I) be a multi-expert linguistic formal context and
(𝐸,A, I) be the linguistic concept lattice corresponding to (𝐸,A, I). For any
𝑌𝑏,𝑊𝑏), (𝑌𝑐 ,𝑊𝑐 ), (𝑌𝑔 ,𝑊𝑔) ∈ 𝐿(𝐸,A, I), the distance 𝑑(𝑊𝑏,𝑊𝑔) between𝑊𝑏
and 𝑊𝑔 satisfies the following properties.

1. 0 ≤ 𝑑(𝑊𝑏,𝑊𝑔) ≤ 𝑛.
2. 𝑑(𝑊𝑏,𝑊𝑔) = 0 if and only if 𝑊𝑏 = 𝑊𝑔 .
3. 𝑑(𝑊𝑏,𝑊𝑔) = 𝑑(𝑊𝑔 ,𝑊𝑏).
4. 𝑑(𝑊𝑏,𝑊𝑔) ≤ 𝑑(𝑊𝑏,𝑊𝑐 ) + 𝑑(𝑊𝑐 ,𝑊𝑔).

Proof. Theorem 4 is similarly provable to Theorem 3.
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Fig. 5. The flow chart of the MAGDM approach based on fuzzy linguistic concepts.
5. An approach for MAGDM based on fuzzy linguistic concepts

This section proposes an approach for MAGDM based on meet-
irreducible element in linguistic concept lattice.

5.1. Model construction

Considering a linguistic MAGDM problem, let 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑜}
be a set of alternatives, 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑝} be a set of attributes,
𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑟} be a set of experts, and 𝑉 (𝑛×2) = (𝑉 (𝑛×2),∨,∧, ′,→
, (ℎ𝑛, 𝑐1), (ℎ𝑛, 𝑐2)) be a LTV-LIA. Let 𝑤 = (𝑤1, 𝑤2,… , 𝑤𝑝) be a weight
vector of attributes, where 𝑤𝜁 > 0 and ∑𝑝

𝜁 𝑤𝜁 = 1. 𝛺𝑏 and 𝛺𝑐 denote the
sets of benefit attribute and cost attribute, respectively. The flow chart
of the MAGDM approach based on fuzzy linguistic concepts is shown
in Fig. 5. The steps of MAGDM can be described as follows.

Step 1: Given decision matrices 𝑀 (𝑧) = (𝑚(𝑧)
𝑖𝑗 )𝑜×𝑝(1 ≤ 𝑧 ≤ 𝑟) as follows

𝑀 (𝑧) = (𝑚(𝑧)
𝑖𝑗 )𝑜×𝑝 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑚11 𝑚12 ⋯ 𝑚1𝑝
𝑚21 𝑚22 ⋯ 𝑚2𝑝
⋮ ⋮ ⋱ ⋮
𝑚𝑜1 𝑚𝑜2 ⋯ 𝑚𝑜𝑝

⎤

⎥

⎥

⎥

⎥

⎦

,

here 𝑚(𝑧)
𝑖𝑗 = (ℎ𝑘, 𝑐𝑙) ∈ 𝑉 (𝑛×2).

Step 2: Determine positive and negative ideal solutions for linguistic
xpressions.
7

1. Linguistic truth-valued positive ideal solution (LTV-PIS):

𝑃 (𝑧)+ = (𝑚(𝑧)+
𝑖1 , 𝑚(𝑧)+

𝑖2 ,… , 𝑚(𝑧)+
𝑖𝑝 ), (10)

where

𝑚(𝑧)+
𝑖𝑗 = (𝑚𝑎𝑥𝑖𝑚

(𝑧)
𝑖𝑗 , 𝑗 ∈ 𝛺𝑏;𝑚𝑖𝑛𝑖𝑚

(𝑧)
𝑖𝑗 , 𝑗 ∈ 𝛺𝑐 ).

Then we have

𝑃+ = (𝑚+
𝑖1, 𝑚

+
𝑖2,… , 𝑚+

𝑖𝑝), (11)

where

𝑚+
𝑖𝑗 = (𝑚𝑎𝑥𝑧𝑚

(𝑧)+
𝑖𝑗 , 𝑗 ∈ 𝛺𝑏;𝑚𝑖𝑛𝑧𝑚

(𝑧)+
𝑖𝑗 , 𝑗 ∈ 𝛺𝑐 ).

2. Linguistic truth-valued negative ideal solution (LTV-NIS):

𝑃 (𝑧)− = (𝑚(𝑧)−
𝑖1 , 𝑚(𝑧)−

𝑖2 ,… , 𝑚(𝑧)−
𝑖𝑝 ), (12)

where

𝑚(𝑧)−
𝑖𝑗 = (𝑚𝑖𝑛𝑖𝑚

(𝑧)
𝑖𝑗 , 𝑗 ∈ 𝛺𝑏;𝑚𝑎𝑥𝑖𝑚

(𝑧)
𝑖𝑗 , 𝑗 ∈ 𝛺𝑐 ).

Then we have

𝑃− = (𝑚−
𝑖1, 𝑚

−
𝑖2,… , 𝑚−

𝑖𝑝), (13)

where

𝑚− = (𝑚𝑖𝑛 𝑚(𝑧)+, 𝑗 ∈ 𝛺 ;𝑚𝑎𝑥 𝑚(𝑧)+, 𝑗 ∈ 𝛺 ).
𝑖𝑗 𝑧 𝑖𝑗 𝑏 𝑧 𝑖𝑗 𝑐
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Step 3: Convert 𝑟 decision matrices 𝑀 (𝑧) into multi-expert linguistic
ormal contexts (𝐸,A, I)𝑠(1 ≤ 𝑠 ≤ 𝑜) corresponding to each alternative
ccording to the method given in Section 3.
Step 4: Construct linguistic concept lattices 𝐿(𝐸,A, I)𝑠 correspond-

ing to (𝐸,A, I)𝑠 according to concept induction operators ‘‘⊲’’ and
‘‘⊳’’.

Step 5: Calculate 𝜅 meet-irreducible elements and their intents
𝑊𝛷(𝛷 = 1, 2,… , 𝜅) in 𝐿(𝐸,A, I)𝑠 corresponding to each alternative
according to the method given in Section 4.1.

Step 6: Calculate the weighted distance 𝑑𝑤(𝑊𝛷, 𝑃+)𝑠 between 𝑊𝛷
and the LTV-PIS 𝑃+, respectively. Obtain the average value 𝑑𝑤(𝑊 ,
𝑃+)𝑠𝑎𝑣𝑔 of 𝑑𝑤(𝑊𝛷, 𝑃+)𝑠 for each alternative,

𝑑𝑤(𝑊𝛷, 𝑃
+)𝑠 = 1

𝑡

𝑡
∑

𝑢=1
𝑤𝑢𝑑𝑢((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)), (14)

𝑑𝑤(𝑊 ,𝑃+)𝑠𝑎𝑣𝑔 = 1
𝜅

𝜅
∑

𝛷=1
𝑑𝑤(𝑊𝛷, 𝑃

+), (15)

where 𝑡 represents the number of attributes in (𝐸,A, I), (ℎ𝑘, 𝑐𝑙) and
(ℎ𝑝, 𝑐𝑞) are different evaluative linguistic expressions under the same
attribute.

Step 7: Calculate the weighted distance 𝑑𝑤(𝑊𝛷, 𝑃−)𝑠 between 𝑊𝛷
and the LTV-NIS 𝑃−, respectively. Obtain the average value 𝑑𝑤(𝑊 ,
𝑃−)𝑠𝑎𝑣𝑔 of 𝑑𝑤(𝑊𝛷, 𝑃−)𝑠 for each alternative,

𝑑𝑤(𝑊𝛷, 𝑃
−)𝑠 = 1

𝑡

𝑡
∑

𝑢=1
𝑤𝑢𝑑𝑢((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)), (16)

𝑑𝑤(𝑊 ,𝑃−)𝑠𝑎𝑣𝑔 = 1
𝜅

𝜅
∑

𝛷=1
𝑑𝑤(𝑊𝛷, 𝑃

−). (17)

Step 8: Calculate the closeness coefficient 𝐶(𝑥𝑠) for the alternative
𝑥𝑠,

𝐶(𝑥𝑠) =
𝑑𝑤(𝑊 ,𝑃−)𝑠𝑎𝑣𝑔

𝑑𝑤(𝑊 ,𝑃+)𝑠𝑎𝑣𝑔 + 𝑑𝑤(𝑊 ,𝑃−)𝑠𝑎𝑣𝑔
. (18)

Step 9: The alternatives 𝑥𝑠(𝑠 = 1, 2,… , 𝑜) are ranked according to
the order of the closeness coefficient 𝐶(𝑥𝑠) from largest to smallest.

5.2. Case study

To illustrate the practicality of our proposed approach, we provide
a concrete example adapted from previous works by Pang et al. (2016),
Parreiras et al. (2010).

Suppose the board of directors of a company will plan the develop-
ment of large projects for the following five years. In order to prioritize
and make the best decision which projects 𝑥𝑠(𝑠 = 1, 2, 3) is the best,
five members 𝑒𝑧(𝑧 = 1, 2, 3, 4, 5) of the board make decisions on all
projects based on the four attributes 𝑎𝑗 (𝑗 = 1, 2, 3, 4). The weights of
all four attributes are set to 𝑤 = 0.25. The meanings of each of these
four attributes are represented below:

• 𝑎1: Financial perspective,
• 𝑎2: The customer satisfaction,
• 𝑎3: Internal business process perspective,
• 𝑎4: Learning and growth perspective.

Since LTV-LIA can handle both comparable and incomparable lin-
guistic evaluation information expressed by experts in MAGDM, we use
6-element LTV-LIA 𝑉 (3×2) in this paper. Table 3 shows the fundamental
linguistic scale, and Fig. 3 shows a Hasse diagram of 𝑉 (3×2).

Based on the evaluation of the different projects by the board
members, their original decision matrices are as follows.

𝑀 (1) =
⎡

⎢

⎢

⎣

(ℎ2, 𝑐1) (ℎ2, 𝑐2) (ℎ2, 𝑐2) (ℎ1, 𝑐1)
(ℎ2, 𝑐1) (ℎ2, 𝑐1) (ℎ1, 𝑐2) (ℎ2, 𝑐1)
(ℎ2, 𝑐2) (ℎ2, 𝑐1) (ℎ2, 𝑐1) (ℎ2, 𝑐2)

⎤

⎥

⎥

⎦

,

𝑀 (2) =
⎡

⎢

⎢

(ℎ2, 𝑐2) (ℎ1, 𝑐2) (ℎ2, 𝑐2) (ℎ1, 𝑐1)
(ℎ2, 𝑐1) (ℎ2, 𝑐1) (ℎ3, 𝑐1) (ℎ2, 𝑐1)

⎤

⎥

⎥

,

8

⎣ (ℎ2, 𝑐2) (ℎ2, 𝑐1) (ℎ1, 𝑐1) (ℎ2, 𝑐2) ⎦

c

Table 3
6-element linguistic truth-valued fundamen-
tal scale.

Scale Meaning

(ℎ3 , 𝑐2) Extremely high (EH)
(ℎ1 , 𝑐1) Roughly low (RL)
(ℎ2 , 𝑐2) Very high (VH)
(ℎ2 , 𝑐1) Very low (VL)
(ℎ1 , 𝑐2) Roughly high (RH)
(ℎ3 , 𝑐1) Extremely low (EL)

𝑀 (3) =
⎡

⎢

⎢

⎣

(ℎ2, 𝑐2) (ℎ2, 𝑐2) (ℎ2, 𝑐2) (ℎ2, 𝑐1)
(ℎ1, 𝑐1) (ℎ1, 𝑐2) (ℎ2, 𝑐2) (ℎ2, 𝑐2)
(ℎ2, 𝑐1) (ℎ2, 𝑐1) (ℎ2, 𝑐2) (ℎ3, 𝑐2)

⎤

⎥

⎥

⎦

,

(4) =
⎡

⎢

⎢

⎣

(ℎ2, 𝑐2) (ℎ2, 𝑐2) (ℎ2, 𝑐2) (ℎ2, 𝑐1)
(ℎ2, 𝑐1) (ℎ2, 𝑐2) (ℎ2, 𝑐1) (ℎ2, 𝑐1)
(ℎ2, 𝑐1) (ℎ2, 𝑐2) (ℎ2, 𝑐1) (ℎ2, 𝑐2)

⎤

⎥

⎥

⎦

,

(5) =
⎡

⎢

⎢

⎣

(ℎ2, 𝑐1) (ℎ2, 𝑐2) (ℎ2, 𝑐1) (ℎ1, 𝑐1)
(ℎ2, 𝑐1) (ℎ2, 𝑐1) (ℎ1, 𝑐2) (ℎ2, 𝑐1)
(ℎ2, 𝑐1) (ℎ2, 𝑐2) (ℎ1, 𝑐2) (ℎ2, 𝑐2)

⎤

⎥

⎥

⎦

.

All four attributes in this decision problem are efficiency attributes.
he LTV-PIS of each decision matrix can be calculated by Eq. (10) as
ollows
(1)+ = ((ℎ2, 𝑐2), (ℎ2, 𝑐2), (ℎ2, 𝑐2), (ℎ1, 𝑐1)),

(2)+ = ((ℎ2, 𝑐2), (ℎ2, 𝑐1), (ℎ1, 𝑐1), (ℎ1, 𝑐1)),

(3)+ = ((ℎ1, 𝑐1), (ℎ2, 𝑐2), (ℎ2, 𝑐2), (ℎ3, 𝑐2)),

(4)+ = ((ℎ2, 𝑐2), (ℎ2, 𝑐2), (ℎ2, 𝑐2), (ℎ2, 𝑐2)),

(5)+ = ((ℎ2, 𝑐1), (ℎ2, 𝑐2), (ℎ2, 𝑐1), (ℎ1, 𝑐1)).

The LTV-PIS is determined by Eq. (11) as follows
+ = ((ℎ1, 𝑐1), (ℎ2, 𝑐2), (ℎ1, 𝑐1), (ℎ3, 𝑐2)).

Similarly, the LTV-NIS of each decision matrix can be calculated
y Eq. (12) as follows
(1)− = ((ℎ2, 𝑐1), (ℎ2, 𝑐1), (ℎ1, 𝑐2), (ℎ2, 𝑐1)),

(2)− = ((ℎ2, 𝑐1), (ℎ1, 𝑐2), (ℎ3, 𝑐1), (ℎ2, 𝑐1)),

(3)− = ((ℎ2, 𝑐1), (ℎ1, 𝑐2), (ℎ2, 𝑐2), (ℎ2, 𝑐1)),

(4)− = ((ℎ2, 𝑐1), (ℎ2, 𝑐2), (ℎ2, 𝑐1), (ℎ2, 𝑐1)),

(5)− = ((ℎ2, 𝑐1), (ℎ2, 𝑐1), (ℎ1, 𝑐2), (ℎ2, 𝑐1)).

The LTV-NIS is determined by Eq. (13) as follows
− = ((ℎ2, 𝑐1), (ℎ1, 𝑐2), (ℎ3, 𝑐1), (ℎ2, 𝑐1)).

The five decision matrices are transformed into three multi-expert
inguistic formal contexts ((𝐸,A, I)1, (𝐸,A, I)2, (𝐸,A, I)3) as shown in
ables 4–6. Linguistic evaluation information on the project is collected
rom all experts through the multi-expert linguistic formal context
orresponding to each project.

To aggregate different members’ opinions and visualize the project
ecision-making process through fuzzy linguistic concepts, the corre-
ponding linguistic concept lattices (𝐿(𝐸,A, I)1, 𝐿(𝐸,A, I)2, 𝐿(𝐸,A, I)3)
re constructed according to the multi-expert linguistic formal contexts
s shown in Fig. 6. The concepts in the purple circles are the meet-
rreducible elements in the linguistic concept lattice. All fuzzy linguistic
oncepts and meet-irreducible elements contained in the linguistic

oncept lattices are shown in Tables 7–9.
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Table 4
Multi-expert linguistic formal context (𝐸,A, I)1 corresponding to project 𝑥1.
𝐸 𝑎1 𝑎2 𝑎3 𝑎4

EH RL VH VL RH EL EH RL VH VL RH EL EH RL VH VL RH EL EH RL VH VL RH EL

𝑒1 × × × ×
𝑒2 × × × ×
𝑒3 × × × ×
𝑒4 × × × ×
𝑒5 × × × ×
Table 5
Multi-expert linguistic formal context (𝐸,A, I)2 corresponding to project 𝑥2.
𝐸 𝑎1 𝑎2 𝑎3 𝑎4

EH RL VH VL RH EL EH RL VH VL RH EL EH RL VH VL RH EL EH RL VH VL RH EL

𝑒1 × × × ×
𝑒2 × × × ×
𝑒3 × × × ×
𝑒4 × × × ×
𝑒5 × × × ×
Table 6
Multi-expert linguistic formal context (𝐸,A, I)3 corresponding to project 𝑥3.
𝐸 𝑎1 𝑎2 𝑎3 𝑎4

EH RL VH VL RH EL EH RL VH VL RH EL EH RL VH VL RH EL EH RL VH VL RH EL

𝑒1 × × × ×
𝑒2 × × × ×
𝑒3 × × × ×
𝑒4 × × × ×
𝑒5 × × × ×
Table 7
All fuzzy linguistic concepts contained in 𝐿(𝐸,A, I)1.

Index Fuzzy linguistic concept Meet-irreducible
element

𝑙𝑐1 (𝐸, ∅) ×
𝑙𝑐2 ({𝑒1 , 𝑒2 , 𝑒5}, {⟨𝑎4 is (ℎ1 , 𝑐1)⟩}) ✓

𝑙𝑐3 ({𝑒1 , 𝑒2 , 𝑒3 , 𝑒4}, {⟨𝑎3 is (ℎ2 , 𝑐2)⟩}) ✓

𝑙𝑐4 ({𝑒1 , 𝑒2}, {⟨𝑎3 is (ℎ2 , 𝑐2)⟩, ⟨𝑎4 is (ℎ1 , 𝑐1)⟩}) ×
𝑙𝑐5 ({𝑒1 , 𝑒3 , 𝑒4 , 𝑒5}, {⟨𝑎2 is (ℎ2 , 𝑐2)⟩}) ✓

𝑙𝑐6 ({𝑒1 , 𝑒3 , 𝑒4}, {⟨𝑎2 is (ℎ2 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐2)⟩}) ×
𝑙𝑐7 ({𝑒1 , 𝑒5}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐2)⟩, ⟨𝑎4 is (ℎ1 , 𝑐1)⟩}) ×
𝑙𝑐8 ({𝑒5}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐1)⟩, ⟨𝑎4 is (ℎ1 , 𝑐1)⟩}) ✓

𝑙𝑐9 ({𝑒1}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐2)⟩, ⟨𝑎4 is (ℎ1 , 𝑐1)⟩}) ×
𝑙𝑐10 ({𝑒2 , 𝑒3 , 𝑒4}, {⟨𝑎1 is (ℎ2 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐2)⟩}) ✓

𝑙𝑐11 ({𝑒2}, {⟨𝑎1 is (ℎ2 , 𝑐2)⟩, ⟨𝑎2 is (ℎ1 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐2)⟩, ⟨𝑎4 is (ℎ1 , 𝑐1)⟩}) ×
𝑙𝑐12 ({𝑒3 , 𝑒4}, {⟨𝑎1 is (ℎ2 , 𝑐2)⟩, ⟨𝑎2 is (ℎ2 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐2)⟩, ⟨𝑎4 is (ℎ2 , 𝑐1)⟩}) ×
𝑙𝑐13 (∅,A) ×
Table 8
All fuzzy linguistic concepts contained in 𝐿(𝐸,A, I)2.

Index Fuzzy linguistic concept Meet-irreducible
element

𝑙𝑐1 (𝐸, ∅) ×
𝑙𝑐2 ({𝑒1 , 𝑒3}, {⟨𝑎4 is (ℎ2 , 𝑐2)⟩}) ✓

𝑙𝑐3 ({𝑒1 , 𝑒2 , 𝑒4 , 𝑒5}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩}) ✓

𝑙𝑐4 ({𝑒2 , 𝑒4 , 𝑒5}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐1)⟩}) ✓

𝑙𝑐5 ({𝑒1 , 𝑒2 , 𝑒5}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩}) ✓

𝑙𝑐6 ({𝑒2 , 𝑒5}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐1)⟩}) ×
𝑙𝑐7 ({𝑒2}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩, ⟨𝑎3 is (ℎ3 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐1)⟩}) ✓

𝑙𝑐8 ({𝑒1 , 𝑒5}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩, ⟨𝑎3 is (ℎ1 , 𝑐2)}⟩) ✓

𝑙𝑐9 ({𝑒5}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩, ⟨𝑎3 is (ℎ1 , 𝑐2)⟩, ⟨𝑎4 is (ℎ2 , 𝑐1)⟩}) ×
𝑙𝑐10 ({𝑒1}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩, ⟨𝑎3 is (ℎ1 , 𝑐2)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩}) ×
𝑙𝑐11 ({𝑒4}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐1)⟩}) ✓

𝑙𝑐12 ({𝑒3}, {⟨𝑎1 is (ℎ1 , 𝑐1)⟩, ⟨𝑎2 is (ℎ1 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐2)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩}) ✓

𝑙𝑐13 (∅,A) ×
9
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Table 9
All fuzzy linguistic concepts contained in 𝐿(𝐸,A, I)3.

Index Fuzzy linguistic concept Meet-irreducible
element

𝑙𝑐1 (𝐸, ∅) ×
𝑙𝑐2 ({𝑒1 , 𝑒2 , 𝑒4 , 𝑒5}, {⟨𝑎4 is (ℎ2 , 𝑐2)⟩}) ✓

𝑙𝑐3 ({𝑒1 , 𝑒4}, {⟨𝑎3 is (ℎ2 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩}) ✓

𝑙𝑐4 ({𝑒1 , 𝑒2 , 𝑒3}, {⟨𝑎2 is (ℎ2 , 𝑐1)⟩}) ✓

𝑙𝑐5 ({𝑒3 , 𝑒4 , 𝑒5}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩}) ✓

𝑙𝑐6 ({𝑒3}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩, ⟨𝑎3 is (ℎ2 , 𝑐2)⟩, ⟨𝑎4 is (ℎ3 , 𝑐2)⟩}) ×
𝑙𝑐7 ({𝑒4 , 𝑒5}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐2)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩}) ×
𝑙𝑐8 ({𝑒5}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐2)⟩, ⟨𝑎3 is (ℎ1 , 𝑐2)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩}) ✓

𝑙𝑐9 ({𝑒4}, {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩}) ×
𝑙𝑐10 ({𝑒1 , 𝑒2}, {⟨𝑎1 is (ℎ2 , 𝑐2)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩}) ×
𝑙𝑐11 ({𝑒1}, {⟨𝑎1 is (ℎ2 , 𝑐2)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩, ⟨𝑎3 is (ℎ2 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩}) ×
𝑙𝑐12 ({𝑒2}, {⟨𝑎1 is (ℎ2 , 𝑐2)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩, ⟨𝑎3 is (ℎ1 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩}) ✓

𝑙𝑐13 (∅,A) ×
Table 10
The distances between the intents of the meet-irreducible elements contained in 𝐿(𝐸,A, I)1 and 𝑃 +(𝑃 −).

Index Intent 𝑑𝑤(𝑊 ,𝑃 +)1 𝑑𝑤(𝑊 ,𝑃 −)1

𝑙𝑐2 {⟨𝑎4 is (ℎ1 , 𝑐1)⟩} 1 1
𝑙𝑐3 {⟨𝑎3 is (ℎ2 , 𝑐2)⟩} 1 2
𝑙𝑐5 {⟨𝑎2 is (ℎ2 , 𝑐2)⟩} 0 1
𝑙𝑐8 {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐1)⟩, ⟨𝑎4 is (ℎ1 , 𝑐1)⟩} 0.75 0.75
𝑙𝑐10 {⟨𝑎1 is (ℎ2 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐2)⟩} 0 1.5
Table 11
The distances between the intents of the meet-irreducible elements contained in 𝐿(𝐸,A, I)2 and 𝑃 +(𝑃 −).

Index Intent 𝑑𝑤(𝑊 ,𝑃 +)2 𝑑𝑤(𝑊 ,𝑃 −)2

𝑙𝑐2 {⟨𝑎4 is (ℎ2 , 𝑐2)⟩} 1 1
𝑙𝑐3 {⟨𝑎1 is (ℎ2 , 𝑐1)⟩} 1 0
𝑙𝑐4 {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐1)⟩} 1.5 0
𝑙𝑐5 {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩} 1 0
𝑙𝑐7 {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩, ⟨𝑎3 is (ℎ3 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐1)⟩} 1.5 0
𝑙𝑐8 {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩, ⟨𝑎3 is (ℎ1 , 𝑐2)⟩} 1 0.33
𝑙𝑐11 {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐1)⟩} 1 0.5
𝑙𝑐12 {⟨𝑎1 is (ℎ1 , 𝑐1)⟩, ⟨𝑎2 is (ℎ1 , 𝑐2)⟩, ⟨𝑎3 is (ℎ2 , 𝑐2)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩} 0.5 1
Table 12
The distances between the intents of the meet-irreducible elements contained in 𝐿(𝐸,A, I)3 and 𝑃 +(𝑃 −).

Index Intent 𝑑𝑤(𝑊 ,𝑃 +)3 𝑑𝑤(𝑊 ,𝑃 −)3

𝑙𝑐2 {⟨𝑎4 is (ℎ2 , 𝑐2)⟩} 1 1
𝑙𝑐3 {⟨𝑎3 is (ℎ2 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩} 1 1
𝑙𝑐4 {⟨𝑎2 is (ℎ2 , 𝑐1)⟩} 1 0
𝑙𝑐5 {⟨𝑎1 is (ℎ2 , 𝑐1)⟩} 1 0
𝑙𝑐8 {⟨𝑎1 is (ℎ2 , 𝑐1)⟩, ⟨𝑎2 is (ℎ2 , 𝑐2)⟩, ⟨𝑎3 is (ℎ1 , 𝑐2)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩} 0.75 0.75
𝑙𝑐12 {⟨𝑎1 is (ℎ2 , 𝑐2)⟩, ⟨𝑎2 is (ℎ2 , 𝑐1)⟩, ⟨𝑎3 is (ℎ1 , 𝑐1)⟩, ⟨𝑎4 is (ℎ2 , 𝑐2)⟩} 0.5 1
t
t

5

According to Eqs. (14) and (16), the distances between the intents of
he meet-irreducible elements contained in the linguistic concept lattice
nd the LTV-PIS (LTV-NIS) are calculated as shown in Tables 10–12,
espectively.

The average value of the distances between the intents and the
TV-PIS is as follows.

𝑤(𝑊 ,𝑃+)1𝑎𝑣𝑔 = 0.3500,

𝑤(𝑊 ,𝑃+)2𝑎𝑣𝑔 = 1.0625,

𝑤(𝑊 ,𝑃+)3𝑎𝑣𝑔 = 0.8750.

The average value of the distances between the intents and the
TV-NIS is as follows.

(𝑊 ,𝑃−)1𝑎𝑣𝑔 = 1.2500,

(𝑊 ,𝑃−)2𝑎𝑣𝑔 = 0.3537,

(𝑊 ,𝑃−)3 = 0.6250.
10

𝑎𝑣𝑔 i
Note that since the range of distances between the evaluative lin-
guistic expressions (ℎ𝑘, 𝑐𝑙) and (ℎ𝑝, 𝑐𝑞) can be expressed as

0 ≤ 𝑑((ℎ𝑘, 𝑐𝑙), (ℎ𝑝, 𝑐𝑞)) ≤ 𝑛.

Therefore, the distance between the intents of the meet-irreducible
elements contained in the linguistic concept lattice and the LTV-PIS
(LTV-NIS) satisfies

0 ≤ 𝑑(𝑊 ,𝑃+) ≤ 𝑝𝑛, 0 ≤ 𝑑(𝑊 ,𝑃−) ≤ 𝑝𝑛.

The closeness coefficient 𝐶(𝑥𝑠) for each project can be obtained
according to Eq. (18) as follows.

𝐶(𝑥1) = 0.7813, 𝐶(𝑥2) = 0.2497, 𝐶(𝑥3) = 0.4166.

By comparing the closeness coefficient of all projects 𝑥𝑠(𝑠 = 1, 2, 3),
he priority of the projects can be obtained as 𝑥1 ≻ 𝑥3 ≻ 𝑥2. Therefore,
he project 𝑥1 should be selected as the optimal alternative.

.3. Parameter sensitivity analysis

To consider the possibility of different DMs presenting personalized

ndividual semantics (Li et al., 2017, 2018; Liang et al., 2020; Zhang, Li,
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Fig. 6. Linguistic concept lattices constructed from multi-expert linguistic formal
contexts.

et al., 2019) in a linguistic context, inspired by Li et al. (2017), Pang
et al. (2023), we introduce a hyperparameter called fuzzy linguistic-
valued trust degree 𝜆 to capture the different semantics of different
DMs. In this subsection, for the enterprise project selection problem,
we explore the fuzzy linguistic-valued trust degree 𝜆 to analyze the
11
decision-making results of this case study and the construction of
linguistic concept lattices.

In the following, we add the fuzzy linguistic-valued trust degree 𝜆
in Step 3 and set the hyperparameter 𝜆 as 𝜆 = {(ℎ3, 𝑐1), (ℎ1, 𝑐2), (ℎ2, 𝑐1),
(ℎ2, 𝑐2), (ℎ1, 𝑐1), (ℎ3, 𝑐2)}. According to our proposed method, the ranking
results based on different linguistic expressions of 𝜆 are obtained and
represented by Fig. 7.

From Fig. 7, it is clear that the ranking results of the alternatives
do not change when the two fuzzy linguistic-valued trust degrees is
not comparable. As 𝜆 gradually increases, the ranking results of all
alternatives change. Specifically, as 𝜆 changes from (ℎ2, 𝑐1) to (ℎ2, 𝑐2),
𝑥1 decreases from the first to the second ranking and 𝑥3 increases from
the second to the first ranking. As 𝜆 changes from (ℎ1, 𝑐1) to (ℎ3, 𝑐2), 𝑥3
is ranked the same as 𝑥2.

We analyze the effect of fuzzy linguistic-valued trust degree on
the construction of linguistic concept lattices in the decision-making
process as shown in Table 13.

As listed in Table 13, when two fuzzy linguistic-valued trust degree
𝜆 are the same, the linguistic concept lattice corresponding to each
alternative is the same. The structure of the linguistic concept lattice is
gradually simplified as 𝜆 keeps increasing, which indicates an increase
in linguistic granularity, reflecting the uncertainty characterizing the
linguistic preferences of different experts.

5.4. Comparative analysis and discussion

In this subsection, we analyze our proposed approach in comparison
with existing approaches and compare the complexity of different
approaches. The former is to illustrate the effectiveness of the proposed
approach, while the latter is to illustrate the advantages of the proposed
model in reducing computational complexity.

5.4.1. A comparison analysis with existing MAGDM approaches
We compare the proposed approach with the existing MAGDM ap-

proaches as shown in Table 14. The ranking of alternatives is consistent
with the ranking results obtained by the approach proposed by Pang
et al. (2016). This shows the correctness and validity of our proposed
approach.

As listed in Table 14, we can draw the following conclusions on four
dimensions.

• PIS and NIS: In calculating PIS and NIS, Pang’s approach (Pang
et al., 2016) uses virtual linguistic terms (Liao et al., 2014) for
calculation, and the obtained results have no actual semantics.
Xu’s approach (Xu & Zhang, 2013) uses the HFLTS-based TOP-
SIS method for decision making. In order to make all HFLTSs
have the same number of linguistic expressions, we extend the
HFLTSs with relatively few linguistic expressions. The extended
linguistic expressions are the smallest linguistic expressions in
the original HFLTS, which in a certain way will change the
linguistic preferences of the experts. The Fu’s approach (Fu et al.,
2023) makes decisions based on the TOPSIS method of hesi-
tant fuzzy 𝛽-covering rough set models, which can deal with
hesitant fuzzy information without needing additional informa-
tion outside the dataset. However, the approach can only deal
with numerical information and cannot deal with the uncer-
tainty of the linguistic expression itself to get the optimal ranking
result. The proposed approach uses evaluative linguistic expres-
sions for calculation. The LTV-LIA can handle both comparable
and incomparable linguistic information. The evaluative linguis-
tic expressions are more interpretable than the virtual linguistic
terms.

• The distance (similarity) between each alternative and the PIS
(NIS): After aggregating all expert information, Pang’s approach
(Pang et al., 2016) and Xu’s approach (Xu & Zhang, 2013) di-
rectly calculate the distance between each alternative and the
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Fig. 7. The ranking results with different fuzzy linguistic-valued trust degree 𝜆.
Table 13
The effect of 𝜆 on the construction of linguistic concept lattices.
PIS (NIS). Fu’s approach (Fu et al., 2023) proposes hesitation
fuzzy similarity, which can only calculate the similarity between
12
each alternative and the PIS (NIS), and the obtained similarity
calculation results are hesitation fuzzy elements.
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Table 14
Quantitative comparison of MAGDM approaches.

Dimension Pang’s approach (Pang et al.,
2016)

Xu’s approach (Xu & Zhang,
2013)

Fu’s approach (Fu et al., 2023) Our approach

PIS 𝑃 + = ({𝑠2.4 , 𝑠1.6 , 𝑠0}, {𝑠3.2 , 𝑠1 , 𝑠0.5},
{𝑠3.2 , 𝑠1.32 , 𝑠0.99}, {𝑠3.2 , 𝑠1.2 , 𝑠0})

𝑃 + = ({𝑠5 , 𝑠3 , 𝑠3}, {𝑠4 , 𝑠3 , 𝑠3},
{𝑠5 , 𝑠4 , 𝑠3}, {𝑠6 , 𝑠4 , 𝑠4})

𝑃 + = ({0.5, 0.3, 0.3}, {0.4, 0.3, 0.3},
{0.5, 0.4, 0.3}, {0.6, 0.4, 0.4})

𝑃 + = ((ℎ1 , 𝑐1), (ℎ2 , 𝑐2),
(ℎ1 , 𝑐1), (ℎ3 , 𝑐2))

NIS 𝑃 − = ({𝑠1.8 , 𝑠1 , 𝑠0}, {𝑠1.5 , 𝑠0.4 , 𝑠0},
{𝑠1 , 𝑠0.6 , 𝑠0}, {𝑠2.4 , 𝑠0.8 , 𝑠0})

𝑃 − = ({𝑠4 , 𝑠3 , 𝑠3}, {𝑠4 , 𝑠2 , 𝑠2},
{𝑠3 , 𝑠2 , 𝑠1}, {𝑠4 , 𝑠3 , 𝑠3})

𝑃 − = ({0.4, 0.3, 0.3}, {0.4, 0.2, 0.2},
{0.3, 0.2, 0.1}, {0.4, 0.3, 0.3})

𝑃 − = ((ℎ2 , 𝑐1), (ℎ1 , 𝑐2),
(ℎ3 , 𝑐1), (ℎ2 , 𝑐1))

The distance (similarity) between
each alternative and the PIS

𝑑(𝑥1 , 𝑃 +) = 0.479,
𝑑(𝑥2 , 𝑃 +) = 0.993,
𝑑(𝑥3 , 𝑃 +) = 0.608

𝑑(𝑥1 , 𝑃 +) = 0.843,
𝑑(𝑥2 , 𝑃 +) = 1.337,
𝑑(𝑥3 , 𝑃 +) = 0.065

𝑠(𝑥1 , 𝑃 +) = {1, 1, 0.7459},
𝑠(𝑥2 , 𝑃 +) = {1, 1, 1},
𝑠(𝑥3 , 𝑃 +) = {1, 1, 1}

–

The distance (similarity) between
each alternative and the NIS

𝑑(𝑥1 , 𝑃 −) = 0.935,
𝑑(𝑥2 , 𝑃 −) = 0.225,
𝑑(𝑥3 , 𝑃 −) = 0.623

𝑑(𝑥1 , 𝑃 −) = 0.745,
𝑑(𝑥2 , 𝑃 −) = 0.175,
𝑑(𝑥3 , 𝑃 −) = 1.382

𝑠(𝑥1 , 𝑃 −) = {1, 1, 1},
𝑠(𝑥2 , 𝑃 −) = {1, 1, 1},
𝑠(𝑥3 , 𝑃 −) = {1, 1, 1}

–

The average of the distances
between the intents of
all fuzzy linguistic concepts
corresponding to each alternative
and the PIS

– – – 𝑑(𝑊 ,𝑃 +)1𝑎𝑣𝑔 = 0.3500,
𝑑(𝑊 ,𝑃 +)2𝑎𝑣𝑔 = 1.0625,
𝑑(𝑊 ,𝑃 +)3𝑎𝑣𝑔 = 0.8750

The average of the distances
between the intents of
all fuzzy linguistic concepts
corresponding to each alternative
and the NIS

– – – 𝑑(𝑊 ,𝑃 −)1𝑎𝑣𝑔 = 1.2500,
𝑑(𝑊 ,𝑃 −)2𝑎𝑣𝑔 = 0.3537,
𝑑(𝑊 ,𝑃 −)3𝑎𝑣𝑔 = 0.6250

Closeness coefficient for
each alternative

𝐶(𝑥1) = 0,
𝐶(𝑥2) = −1.8,
𝐶(𝑥3) = −0.6

𝐶(𝑥1) = −12.43,
𝐶(𝑥2) = −20.4,
𝐶(𝑥3) = 0

𝐶(𝑥1) = 1,
𝐶(𝑥2) = 1,
𝐶(𝑥3) = 1

𝐶(𝑥1) = 0.7813,
𝐶(𝑥2) = 0.2497,
𝐶(𝑥3) = 0.4166

Ranking of alternatives 𝑥1 ≻ 𝑥3 ≻ 𝑥2 𝑥3 ≻ 𝑥1 ≻ 𝑥2 𝑥1 ≈ 𝑥3 ≈ 𝑥2 𝑥1 ≻ 𝑥3 ≻ 𝑥2
The proposed approach does not require direct calculation of the
distance between the alternative and the PIS (NIS). Since the
fuzzy linguistic concepts corresponding to each alternative can
aggregate common information from different experts’ opinions,
the proposed approach can obtain the ranking results by calcu-
lating the distance between the intents of the fuzzy linguistic
concepts corresponding to each alternative and the PIS (NIS).

• Closeness coefficient for each alternative: Pang’s method (Pang
et al., 2016) and Xu’s approach (Xu & Zhang, 2013) calculate
the closeness coefficient of each alternative by considering the
distance between each alternative and the PIS (NIS) together.
Fu’s approach (Fu et al., 2023) calculates the closeness coefficient
of each alternative by considering the similarity between each
alternative and the PIS (NIS). The proposed approach calculates
the closeness coefficient by obtaining the meet-irreducible ele-
ments in the linguistic concept lattice and integrating the distance
between the intent of the fuzzy linguistic concept and the PIS
(NIS).

• Ranking results of alternatives: The ranking results of our pro-
posed method and the other three MAGDM approaches are not
exactly the same, which is because different MAGDM approaches
have different ranking principles. The ranking result of Xu’s ap-
proach (Xu & Zhang, 2013) is 𝑥3 ≻ 𝑥1 ≻ 𝑥2, which is dif-
ferent from the ranking result of our proposed approach since
the comparable and incomparable information between linguistic
expressions cannot be reflected when using HFLTSs, which leads
to different decision results. In addition, different HFLTSs have
different numbers of linguistic terms, and we will change the orig-
inal information when expanding the linguistic terms. The reason
Fu’s approach (Fu et al., 2023) cannot rank these three alterna-
tives is that Fu’s approach can handle expert opinions in a hesitant
fuzzy environment, but cannot handle uncertainty in linguistic
expressions. Our proposed approach and Pang’s approach (Pang
et al., 2016) obtain the same ranking of alternatives and the same
optimal alternative 𝑥1. Compared with Fu’s approach and Xu’s
approach, our proposed method is more effective and feasible.

5.4.2. A comparison analysis with expert opinion aggregation methods
To validate the effectiveness of our proposed expert opinion aggre-
13

gation method, we consider different linguistic aggregation operators,
Table 15
Comparison of alternative ranking results for different aggregation methods.

Aggregation method 𝑥1 𝑥2 𝑥3 The optimal
project

PLWA 1 3 2 𝑥1
LTV-LIAWAA 2 3 1 𝑥3
Min_upper 2 3 1 𝑥3
LIFFAA 2 3 1 𝑥3
Our proposed method (Case 1)a 1 3 2 𝑥1
Our proposed method (Case 2)b 1 3 2 𝑥1

a Considering all fuzzy linguistic concepts.
b Considering meet-irreducible elements in a linguistic concept lattice.

i.e., the PLWA operator (Pang et al., 2016), the LTV-LIAWAA opera-
tor (Diao et al., 2022), Min_upper operator (Rodriguez et al., 2011)
and the LIFFAA operator (Liu et al., 2020). We apply our proposed
linguistic concept lattice-based expert opinion aggregation method and
the above linguistic aggregation operators to the case study, and the
ranking results of the corresponding alternatives are shown in Table 15.

As listed in Table 15, our proposed aggregation method has the
same ranking results as the PLWA operator, thus proving the effective-
ness of the proposed aggregation method. The comparison between our
proposed aggregation method and other linguistic aggregation methods
is as follows:

1. The LTV-LIAWAA and the LIFFAA are two LTV-LIA-based lin-
guistic aggregation operators that differ from the ranking results
of the alternatives to our proposed aggregation method. Similar
to LTV-LIAWAA and LIFFAA, our proposed method uses LTV-
LIA to represent experts’ linguistic evaluation information. There
exists a loss of information in obtaining the ranking results of
the alternatives since LTV-LIAWAA and LIFFAA use rounding
𝑟𝑜𝑢𝑛𝑑(⋅) and integrating 𝐼𝑁𝑇 (⋅) in aggregating the different
expert opinions, respectively. Our proposed method aggregates
the common information of expert opinions by forming differ-
ent fuzzy linguistic concepts without involving approximation
operations.

2. The ranking results of the alternatives obtained by considering
all fuzzy linguistic concepts corresponding to each alternative
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Table 16
The running time (s) of the second part.
𝜆 Case 1a Case 2b

𝑥1 𝑥2 𝑥3 𝑥1 𝑥2 𝑥3
(ℎ3 , 𝑐1) 0.6388 0.6173 0.4711 0.2984 0.3278 0.3894
(ℎ1 , 𝑐2) 0.8541 0.5872 0.5169 0.3098 0.3987 0.4192
(ℎ2 , 𝑐1) 0.4582 0.6648 0.4523 0.3869 0.4258 0.3212
(ℎ2 , 𝑐2) 1.0642 0.7963 0.8211 0.2741 0.1109 0.4306
(ℎ1 , 𝑐1) 1.0585 0.8431 0.7742 0.3186 0.1682 0.2874
(ℎ3 , 𝑐2) 0.8803 0.6919 0.6811 <0.01 <0.01 <0.01

a Considering all fuzzy linguistic concepts.
b Considering meet-irreducible elements in a linguistic concept lattice.

(Case 1) and the meet-irreducible elements of the linguistic
concept lattice corresponding to each alternative (Case 2) are
the same. This indicates that using meet-irreducible elements in
the linguistic concept lattice reduces computational complexity
while reducing information loss.

3. Min_upper is a linguistic aggregation operator based on HFLTS,
and its ranking results for the alternatives are different from
the ranking results of our proposed aggregation method. The
adoption of Min_upper needs to fully utilize the original linguis-
tic information provided by the experts and thus may produce
distorted decision results. Min_upper needs to apply the upper
bound of each HFLTS and obtain the minimum linguistic terms
for the attribute set of each alternative when aggregating the
expert opinions, which causes the problem of information loss.
Our proposed method not only considers comparable and incom-
parable linguistic information, but also eliminates the need for
approximation operations on linguistic expressions.

5.4.3. Time complexity analysis
The proposed approach is divided into three parts. The first part is

data preprocessing, which spends lots of time and we need to process
data manually. This step is a preparation for ranking alternatives. We
will analyze the complexity of our proposed approach in terms of
the construction of the linguistic concept lattice and the ranking of
alternatives in second part and third part.

Suppose that there are 𝑟 experts and 𝑝 attributes in the MAGDM
problem and that the linguistic representation is modeled as a 2𝑛-
element LTV-LIA. For each alternative, the time complexity of obtaining
all fuzzy linguistic concepts is 𝑂(22𝑛𝑝) when the meet-irreducible el-
ements of the linguistic concept lattice are not considered. The time
complexity of obtaining all fuzzy linguistic concepts is 𝑂(2𝑛 ⋅ 𝑝 ⋅ 𝑟) if
only the meet-irreducible elements of the linguistic concept lattice are
considered. In case study, 𝑟 = 5, 𝑝 = 4, the linguistic representation
model used is 6-element LTV-LIA, and the computing time of the second
part is shown in Table 16.

As listed in Table 16, the running time required to consider the
meet-irreducible elements in the linguistic concept lattice correspond-
ing to each alternative is shorter than the running time required to
consider all fuzzy linguistic concepts corresponding to each alternative.

In the third part, it is assumed that there are a total of 𝑜 alternatives,
the number of all fuzzy linguistic concepts corresponding to each
alternative is 𝑐, and the number of meet-irreducible elements in the
linguistic concept lattice corresponding to each alternative is 𝜅. The
time complexity of ranking alternatives is 𝑂(𝑜 ⋅ 𝑝 ⋅ 𝜅) when only the
meet-irreducible elements in each alternative’s corresponding linguistic
concept lattice are considered. Considering all the fuzzy linguistic
concepts corresponding to each alternative, the time complexity of
ranking alternatives is 𝑂(𝑜⋅𝑝⋅𝑐). Since 𝜅 ≤ 𝑐, we have 𝑜⋅𝑝⋅𝜅 ≤ 𝑜⋅𝑝⋅𝑐. As a
result, the time complexity of using all fuzzy linguistic concept ranking
alternatives is higher than the time complexity of ranking alternatives
using the meet-irreducible elements in the linguistic concept lattice.

The comparison of time complexity with other MAGDM approaches
14

is as follows:
1. The time complexity of Fu’s approach (Fu et al., 2023) in ranking
alternatives is 𝑂(𝑜2 + 𝑜𝑝). In constructing the optimal decision
object 𝐻+ and the worst decision object 𝐻− respectively, Fu’s
approach needs to compute the upper and lower approximations
of 𝐻+ and 𝐻−, which results in high computational complexity
because Fu’s approach is based on the hesitant fuzzy 𝛽-covering
rough set. Our proposed approach does not need to find the
optimal and worst decision objects. Our proposed approach only
needs to compute LTV-PIS and LTV-NIS based on LTV-LIA.

2. The time complexity required by Peng’s approach (Peng et al.,
2022) in ranking alternatives is 𝑂(𝑜2𝑝). In the MAGDM process,
Peng’s approach needs to set the similarity threshold 𝐿 and
compute the 𝐿-level probabilistic similarity class. Our proposed
approach does not need to set a similarity threshold. It can
obtain public information about expert opinions through the
extents of fuzzy linguistic concepts and provide semantic inter-
pretations of expert opinion aggregation based on the intents of
fuzzy linguistic concepts.

3. Wang’s approach (Wang, Zhan, et al., 2023) requires the time
complexity of 𝑂(𝑜3𝑝) in ranking the alternatives. The main com-
putational complexity of the approach comes from obtaining a
priori probability tolerance dominance classes for each alterna-
tive. Our proposed approach does not require prior probability
tolerant dominance relations to deal with the binary relation-
ships between the evaluation values. After obtaining the decision
matrices, our proposed approach handles the relationship be-
tween each alternative and attribute by converting the decision
matrices into multi-expert linguistic formal contexts.

.5. Further discussion of the effectiveness of the proposed approach

Table 17 further shows the difference between our proposed ap-
roach and existing MAGDM approaches. As listed in Table 17, existing
AGDM approaches are cited to illustrate the strength of our proposed

pproach on two aspects.

(1) Differences in linguistic representation models

1. Most of the existing methods are based on linguistic term
sets when dealing with the linguistic evaluation information
of experts in MAGDM problems. Herrera’s approach (Herrera
& Martínez, 2000) reduces the information loss in obtaining
ranking results by expanding linguistic terms into a 2-tuple
linguistic model. Xu’s approach (Xu & Zhang, 2013) consid-
ers the situation where an expert would hesitate between
several linguistic terms when evaluating alternatives. Rao’s
approach (Rao et al., 2022) and Akram’s approach (Akram,
Bibi, & Deveci, 2023) convert the linguistic variables into
dual uncertain Z-number and 2-tuple linguistic Fermatean fuzzy
sets, respectively. The essence of these approaches is to apply
linguistic symbolic models to linguistic evaluation information.
The linguistic symbolic model cannot handle the ambiguity of
linguistic expressions.

2. Fan’s approach (Fan et al., 2022) uses flexible linguistic
expressions to represent expert evaluation information, which
can effectively deal with the ambiguity of linguistic expres-
sions. Garg’s approach (Garg & Kumar, 2019) and Meng’s
approach (Meng et al., 2016) use linguistic interval-valued
Atanassov intuitionistic fuzzy set and linguistic interval hesitant
fuzzy set, respectively, to represent the expert’s linguistic
evaluation information. These two approaches can effectively
reflect the uncertainty and inconsistency of experts in the
decision-making process. However, the above approaches have
difficulty in dealing with the incomparable linguistic knowledge

prevalent in natural languages.
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Table 17
Qualitative comparison of MAGDM approaches.

Approach Linguistic representation model Visualization of the
MAGDM process

Fan et al. (2022) Flexible linguistic expression No
Herrera and Martínez (2000) 2-tuple linguistic model No
Rao et al. (2022) Dual uncertain Z-number No
Akram, Bibi, and Deveci (2023) 2-tuple linguistic Fermatean fuzzy set No
Xu and Zhang (2013) Hesitant fuzzy linguistic term set No
Gou et al. (2017) Double hierarchy hesitant fuzzy linguistic term set No
Garg and Kumar (2019) Linguistic interval-valued Atanassov intuitionistic fuzzy set No
Meng et al. (2016) Linguistic interval hesitant fuzzy set No
Wang and Wang (2022) Linguistic term with weakened hedge No
Our approach Linguistic truth-valued lattice implication algebra Yes
3. By taking advantage of lattice implication algebra, one can
better perform decision-making with incomparable elements.
Therefore, our proposed approach uses lattice implication al-
gebra, which is applied to represent imprecise information and
deal with both comparable and incomparable linguistic informa-
tion.

Compared with the double hierarchy hesitant fuzzy linguistic term
et (DHHFLTS) (Gou et al., 2017) and linguistic term with weakened
edge (LTWH) (Wang & Wang, 2022; Wang et al., 2018a), the LTV-LIA
s an algebra model with linguistic terms based on a logical algebraic
tructure with the following advantages.

1. For a LTWH, it begins with a linguistic term modified by a
weakened hedge. DHHFLTS allows for a more accurate and com-
prehensive description of the hesitancy of linguistic information
by means of a dual hierarchy of linguistic terms. In LTV-LIA,
hedges are used to weaken the true or false degree. There are
incomparable linguistic expressions in the true and false chains
in the lattice implication algebra.

2. Unlike LTWH and DHHFLTS, in LTV-LIA, the semantics of lin-
guistic expressions is embodied in the algebraic structure, mak-
ing linguistic expressions processed in the logic system not only
symbolic but also have the semantic properties of natural lan-
guage.

(2) Visualization of the MAGDM process
For each alternative, the proposed approach can visualize the deci-

ion process of all experts by constructing a linguistic concept lattice,
hich improves the interpretability of the decision approach.

.6. Managerial insights

When a company’s board of directors selects large-scale projects
o develop over the next five years, it usually weighs the pros and
ons of implementing each project from different aspects to deter-
ine the strategic direction of the company’s stage-by-stage positioning

nd goals. Based on the results of the calculations and the decision-
aking process, we can conclude the following recommendations to

he company’s board of directors:

1. In this case study, the best project is 𝑥1. As shown by the multi-
expert linguistic formal context (𝐸,A, I)1, most experts rated
𝑥1 better in the perspective of learning and growth as well as
customer satisfaction. This indicates that the company will need
to implement project 𝑥1 to ensure high customer satisfaction
while continuing to learn and revise the project to adapt to
market trends.

2. When making a selection of projects, the board of directors
can rank projects that consider a combination of attributes and
provide the company with a wider range of choices to select the
right project based on the risk preferences of the directors.
15
3. The company should provide an apparent reason for ranking
different projects so that all employees know why a specific
project was chosen as the strategic plan for the next five years.
Analyzing the strengths and weaknesses of different projects will
also help to synthesize the strengths of different projects to come
up with new projects that are more comprehensive and effective.
In contrast to most existing MAGDM methods, our proposed
approach can provide the board of directors with reasons for
choosing a project by visualizing the decision-making process
through linguistic concept lattices.

6. Conclusions

Expert opinion aggregation and processing of linguistic evaluation
information from experts play an important role in MAGDM. In this
paper, we propose a novel method for dealing with MAGDM in a
linguistic environment based on the linguistic concept lattice. Based on
the lattice implication algebra, LTV-LIA is used to represent the lin-
guistic evaluation information of experts, and a new distance measure
based on LTV-LIA is proposed. The comparative analysis demonstrates
that the proposed approach can effectively improve the interpretability
in the decision-making process and reduce the information loss arising
from the aggregation of expert opinion. In terms of MAGDM, the main
advantages of the proposed approach can be described as follows:

1. The proposed approach represents experts as objects and lin-
guistic evaluation information as attributes, and the adoption of
LTV-LIA-based multi-expert linguistic formal context facilitates
the expression of different linguistic preferences of experts for
the same alternative.

2. Since experts come from different fields and have different back-
ground knowledge, they may have different opinions about the
uncertainty of a decision problem. Considering that the use
of aggregation operators to aggregate individual opinions into
group opinions causes certain information loss, the proposed
approach aggregates expert opinions through fuzzy linguistic
concepts, and comparative analyses with existing expert opinion
aggregation methods show that the proposed approach reduces
the information loss in the aggregation process.

3. Due to the high computational complexity of obtaining all fuzzy
linguistic concepts, the proposed approach introduces meet-
irreducible elements in the linguistic concept lattice and applies
them to the decision-making process, and the time complexity
analysis demonstrates that the proposed approach can effectively
reduce the computational complexity.

4. The construction of a linguistic concept lattice corresponding to
each alternative visualizes the partial order relationships inher-
ent in fuzzy linguistic concepts and improves the interpretability
of the proposed approach in the decision-making process.

5. The problem of subjective uncertainty arising from time con-
straints and experts’ domain-specific limitations can be effec-
tively addressed through the calculation of distances between
the intent of fuzzy linguistic concepts and the PIS (NIS), thereby
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testing for inconsistency between expert preference information
and distinct criteria.

As avenues for future exploration, two prominent areas have been
dentified. Firstly, a pivotal inquiry pertains to devising methodologies
hat streamline the computation of meet-irreducible elements within
he linguistic concept lattice, particularly when confronted with nu-
erous fuzzy linguistic concepts, thus enabling their application to

arger-scale MAGDM scenarios. Secondly, while our current study has
aid a foundation for MAGDM using linguistic concept lattices, the
ubsequent phase necessitates a comprehensive investigation into the
etermination and application of attributes and expert weights within
he context of large-scale MAGDM scenarios.
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