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A B S T R A C T

The notion of linguistic interval-valued intuitionistic fuzzy set (LIVIFS) is one of the best tools in order
to deal with the qualitative decision making problems. Therefore, in this paper a linguistic interval-valued
intuitionistic fuzzy (LIVIF) QUALIFLEX method with a likelihood-based comparison approach is proposed.
First, the notion of likelihood of fuzzy preference relation (FPRs) to compare the linguistic interval valued
intuitionistic fuzzy numbers (LIVIFNs). By employing a criterion-wise preference assessment of alternatives
through the comparison of likelihoods, we introduce a novel QUALIFLEX-based model. This model aims to
quantify the degree of concordance in the complete preference order for effective management of decisions
involving multiple criteria. We demonstrate the practicality and applicability of the proposed methods through
an illustrative example, specifically focusing on the context of Supplier Selection Problems. To validate the
efficacy of the proposed methodology, a comparative analysis is performed against other existing methods.

1. Introduction

The advancement of the economy and society has shifted the dynamics of competition among enterprises. It is no longer a one-sided battle
focused solely on price and quality; rather, it has become a competition centered around supply chains (Gokasar, Pamucar, Decevi, & Ding,
2023). At the origin of the supply chain, the supplier plays a pivotal role in its entirety (Rahimi, Kumar, Moomivand, & Yari, 2021; Sahoo,
Tripathy, Pati, & Parida, 2023). Selecting the appropriate supplier (Gergin, Peker, & Gök Kısa, 2022; Gerogiannis, Kazantzi, & Anthopoulos, 2012)
forms a solid foundation for the development of the enterprise. The process of evaluating and selecting suppliers is not merely the individual
decision of purchasers; rather, it is a complex multi-attribute group decision-making problem Pamucar, Torkayesh, Deveci, and Simic (2022),
Qahtan et al. (2023). Overall, the selection of suppliers is a intricate decision-making task that encompasses both objective (quantitative) and
subjective (qualitative) evaluation criteria Rahnamay Bonab, Haseli, Rajabzadeh, Jafarzadeh Ghoushchi, Hajiaghaei-Keshteli, and Tomaskova
(2023). Traditional decision-making tools and techniques are well-suited for handling quantitative criteria. In contrast, decision-making information
related to ill-defined subjective criteria is inherently vague and poses a challenge. To overcome such a challenge, the notion of intuitionistic fuzzy
set (IFS) was first initiated by Atanassov (1986) as a generalization of fuzzy sets (FSs) (Zadeh, 1965) and afterwards extended to the concept
interval-valued intuitionistic fuzzy set (IVIFS) (Atanassov & Gargov, 1989), has demonstrated its effectiveness in addressing imprecise and vague
information within ambiguous decision environments (Gou & Xu, 2017; Jamkhaneh & Garg, 2018; Luo, Xu, & Gou, 2018).

In spite of the different decision making approaches proposed to deal with the selection of suppliers (Jana, Garg, Pal, Sarkar, & Wei, 2023;
Riaz, Athar Farid, Jana, Pal, & Sarkar, 2023; Shahrokhi, Bernard, & Shidpour, 2011; Song, Zhang, & Zhou, 2006; Wang & Lv, 2015; Wang, Wang,
& Zhao, 2013), there is still a necessity to model and properly compute with qualitative information and its inherent uncertainty and vagueness
together a more comprehensive MCDM method able to outrank alternatives in such decision contexts.

∗ Corresponding author.
E-mail addresses: jana.chiranjibe7@gmail.com (C. Jana), afrasiab8413@gmail.com (A. Siab), sajjadalimath@yahoo.com (M.S.A. Khan),

mmpalvu@gmail.com (M. Pal), martin@ujaen.es (L. Martinez), janmathpk@gmail.com (M.A. Jan).
1 1st and 2nd authors contribute equally.
vailable online 9 May 2024
957-4174/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
c/4.0/).

https://doi.org/10.1016/j.eswa.2024.124136
Received 3 April 2023; Received in revised form 1 April 2024; Accepted 29 April 2024

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
mailto:jana.chiranjibe7@gmail.com
mailto:afrasiab8413@gmail.com
mailto:sajjadalimath@yahoo.com
mailto:mmpalvu@gmail.com
mailto:martin@ujaen.es
mailto:janmathpk@gmail.com
https://doi.org/10.1016/j.eswa.2024.124136
https://doi.org/10.1016/j.eswa.2024.124136
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Expert Systems With Applications 252 (2024) 124136C. Jana et al.

b
m
o
p
a
a

2

b
s

2

D
i

w

Among the different MCDM methods that can be considered to accomplish the previous necessity, QUALIFLEX (qualitative flexible multiple
criteria tool) method introduced by Paelinck (1977, 1978), it is a well-known outranking structure for solving MCDM models with crisp numbers,
and one of the most sophisticated outranking decision making approach to deal with the real life decision making problems. Although, initially
was proposed to deal with crisp numbers, several extensions have been proposed in the literature. Griffith, Paelinck, Griffith, and Paelinck (2011)
considered the qualitative regression method (QUALIREG) based on the QUALIFLEX method. Chen and Tsui (2012) presented a model using IFSs
to calculate the whole preference order’s concordance level with permutation methods. In this way, they used to undertake cardinal or ordinal
assessments of alternatives. Chen, Chang, and Lu (2013) also employed the QUALIFLEX approach to relate optimism and pessimism in an IFS
decision environment. An interval type-2 fuzzy environment has also been included in the QUALIFLEX method (Mendel, 2007). Chen et al. (2013)
used a type-2 fuzzy structure and considered an expanded QUALIFLEX approach for dealing with MCDM problems in the presence of interval type-2
trapezoidal fuzzy numbers (Chen, 2013). Even though, in decision making problems, the usefulness and applicability of the QUALIFLEX approach
have been thoroughly explored, and the integration of QUALIFLEX method to the IVIF decision environment has been successfully applied, Chen
(2014) presented a QUALIFLEX method with likelihood-based comparisons for solving MCDM problems based on IVIFS. But there are still important
aspects to explore and improve because for instance, IVIFS are not suitable in order to deal with the qualitative information. Thereby, to deal with
this type of information LIVIFS, the proposal of Deveci, Pamucar, Gokasar, Delen, and Martinez (2022), Garg and Kumar (2019a) is more fixable
and suitable.

Therefore, this paper aims at introducing a new QUALIFLEX technique for solving MCDM problems using likelihood-based comparisons in a
LIVIFSs environment. The key aspect of such an outranking approach involves assessing all possible alternatives in pairs, utilizing likelihood-based
preference functions established on LIVIFSs. Subsequently, the preference functions are leveraged through measures of concordance and discordance
to derive both partial and complete rankings for the alternatives.

Consequently, the main novelties introduced by the proposal, of a LIVIFS QUALIFLEX approach for MCDM problems that is complemented by
a likelihood-based comparison procedure, are the below ones:

• To develop new QUALIFLEX technique for solving MCDM problems using likelihood-based comparisons in a LIVIFSs environment.
• To establish a new model of outranking, i.e., under the LIVIFS environment, QUALIFLEX technique, which requires likelihood-based

comparisons for addressing MCDM results.
• To define the concepts of lower and upper likelihood concepts for FPRs between LIVIFNs and a likelihood measure for FPR in LIVIF situations.
• To calculate the concordance/discordance index, we develop a likelihood-based comparison idea. Furthermore, to employ incomplete or

partial information, this research considers different kinds of preference arrangement decision-makers. For each permutation. We determine
the optimal criteria weight vector and the optimal value for concordance/discordance index options by solving a linear programming model for
consistent weighted data and conflicting weighted data. We obtain the above values by solving an integrated nonlinear programming model.
We finally sort out the permutation having the maximal index for complete concordance/discordance and achieve the needed alternatives
ranking order.

Eventually, the method will be applied to a supplier selection scenario to validate and show its validity and soundness.
The rest of the article is arranged as follows. In Section 2, some of the concepts of LIVIFSs are briefly provided, an MCDM problem is formulated

ased on LIVIFSs. The likelihood of FPRs in the LIVIFS environment is discussed in Section 3. Section 4 establishes a likelihood-based QUALIFLEX
ethod for handling decision making difficulties with incomplete preference results under the LIVIF environment. Furthermore, in the absence

f appropriate weight information, this part creates a linear programming model to determine the criterion weights. In Section 5, we look at the
roposed method’s viability and application, and we put it to the test in a scenario where the best supplier is chosen. In Section 5, we compare
nd contrast the suggested method to the IFS QUALIFLEX method and the widely utilized TOPSIS approach. Lastly, Section 6 provides sensitivity
nalysis along with conclusions and gives directions for future research.

. Preliminaries

Here some vital operations and definitions of LIVIFSs theory are concisely discussed in this section. This section also includes a decision making
ased on LIVIFSs. The evaluations of alternative assessments in MCDM can be given using LIVIFSs because the decision-makers procedures are
ubject to their judgments.

.1. Fundamental ideas of LIVIFSs theory

efinition 1 (Garg & Kumar, 2019b). Let 𝑆[0,𝑙] = {𝑠𝑘 ∣ 𝑠0 ≤ 𝑠𝑙} be denote a continuous linguistic term set (where 𝑠0 ≤ 𝑠𝑘 ≤ 𝑠𝑙 and 𝑙 is any positive
nteger, and for each pair 𝑠𝜃 , 𝑠𝜙 ∈ 𝑆[0,𝑙], 𝑠𝜃 > 𝑠𝜙 iff 𝜃 > 𝜙). A LIVIFS 𝐴 in a finite universe of discourse 𝑋 is defined as

𝐴 = {⟨𝑥, 𝑠𝜃(𝑥), 𝑠𝜙(𝑥)⟩|𝑥 ∈ 𝑋}. (1)

here 𝑠𝜃(𝑥) = [𝑠−𝜃 (𝑥), 𝑠
+
𝜃 (𝑥)] and 𝑠𝜙(𝑥) = [𝑠−𝜙(𝑥), 𝑠

+
𝜙(𝑥)] are subsets of [𝑠0, 𝑠𝑙] and known as MD and NMD of 𝑥 to the set 𝐴 and for every 𝑥 ∈ 𝑋,

𝑠+𝜃 (𝑥) + 𝑠
+
𝜙(𝑥) ≤ 𝑠𝑙 (i.e., 𝜃+(𝑥) + 𝜙+(𝑥) ≤ 𝑙). Therefore, the following can be expressed as 𝐴:

𝐴 = {⟨𝑥, [𝑠−𝜃 (𝑥), 𝑠
+
𝜃 (𝑥)], [𝑠

−
𝜙(𝑥), 𝑠

+
𝜙(𝑥)]⟩|𝑥 ∈ 𝑋} (2)

Definition 2 (Garg & Kumar, 2019b). The linguistic intuitionist index (degree of indeterminacy) of 𝑥 to 𝐴 is computed as

𝑠 (𝑥) = [𝑠−(𝑥), 𝑠+(𝑥)] = [𝑙 − 𝑠+(𝑥) − 𝑠+(𝑥), 𝑙 − 𝑠−(𝑥) − 𝑠−(𝑥)] (3)
2

𝜋 𝜋 𝜋 𝜃 𝜙 𝜃 𝜙
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The given LIVIFS 𝐴 reduces to an ordinary LIFS, if 𝑠−𝜃 (𝑥) = 𝑠+𝜃 (𝑥) and 𝑠−𝜙(𝑥) = 𝑠+𝜙(𝑥). Further for convenience, the set of all LIVIFSs in 𝑋 is denoted

y LIVIFS(𝑋).
Garg and Kumar (2019a) defined the LIVIFNs. Let 𝐴𝑥 denote a LIVIFN which is defined as:

𝐴𝑥 = (𝑠𝜃
𝐴
(𝑥), 𝑠𝜙

𝐴
(𝑥)) = ([𝑠−𝜃𝐴

(𝑥), 𝑠+𝜃𝐴
(𝑥)], [𝑠−𝜙𝐴

(𝑥), 𝑠+𝜙𝐴
(𝑥)]). (4)

Definition 3 (Xian, Dong, Liu, & Jing, 2018). Let 𝛼1 = ([𝑠𝜃1 , 𝑠𝜙1 ], [𝑠𝜉1 , 𝑠𝜓1 ]), 𝛼2 = ([𝑠𝜃2 , 𝑠𝜙2 ], [𝑠𝜉2 , 𝑠𝜓2 ]) be two LIVIFNs, then

(a) If 𝜃1 = 𝜃2, 𝜙1 = 𝜙2, 𝜉1 = 𝜉2, 𝜓1 = 𝜓2, then 𝛼1 = 𝛼2;
(b) If 𝜃1 ≤ 𝜃2, 𝜙1 ≤ 𝜙2 and 𝜉1 ≥ 𝜉2, 𝜓1 ≥ 𝜓2, then 𝛼1 ≤ 𝛼2;
(c) the negation (Complementation) of 𝛼1 is defined as 𝛼𝑐1 = ([𝑠𝜉1 , 𝑠𝜓1 ], [𝑠𝜃1 , 𝑠𝜙1 ]).

2.2. Decision environment defined on LIVIFSs

Suppose to an MCDM problem. LIVIFSs represent the alternative evaluations ratings. Let denote the feasible alternatives by A1, A2, . . . , and A𝑚
from which a DM can select, here 𝑚 is a number of choices. Let A = {A1, A2, . . . , A𝑚} represent an choice set and 𝑐1, 𝑐2,… and 𝑐𝑛 set for criteria
which calculate the performances of options, where 𝑛 is a criteria numbers. The criterion set can be divided into two sets, 𝐶𝑏 and 𝐶𝑐 , where 𝐶𝑏
treats as benefit criteria and 𝐶𝑐 represents a set of cost criteria, 𝐶𝑏∩𝐶𝑐 = 𝜙 and 𝐶𝑏∪𝐶𝑐 = 𝐶. Let 𝐴𝑏𝑖𝑗 and 𝐴𝑐𝑖𝑗 denote the ratings of alternative A𝑖 ∈ A

(where 𝑖 = 1, 2,… , 𝑚) for the criteria 𝑐𝑗 ∈ 𝐶𝑏 and 𝐶𝑐 (where 𝑗 = 1, 2,… , 𝑛), respectively. Thus, 𝐴𝑏𝑖𝑗 and 𝐴𝑐𝑖𝑗 can be symbolized as the following:

𝐴𝑏𝑖𝑗 = (𝑠𝑏𝜃𝑖𝑗 , 𝑠
𝑏
𝜙𝑖𝑗

) = ([𝑠𝑏−𝜃𝑖𝑗 , 𝑠
𝑏+
𝜃𝑖𝑗
], [𝑠𝑏−𝜙𝑖𝑗

, 𝑠𝑏+𝜙
𝑖𝑗
]) for 𝑐𝑗 ∈ 𝐶𝑏 (5)

and

𝐴𝑐𝑖𝑗 = (𝑠𝑐𝜃𝑖𝑗 , 𝑠
𝑐
𝜙𝑖𝑗

) = ([𝑠𝑐−𝜃𝑖𝑗 , 𝑠
𝑐+
𝜃𝑖𝑗
], [𝑠𝑐−𝜙𝑖𝑗

, 𝑠𝑐+𝜙
𝑖𝑗
]) for 𝑐𝑗 ∈ 𝐶𝑐 (6)

where 𝑠𝑏𝜃𝑖𝑗 = [𝑠𝑏−𝜃𝑖𝑗 , 𝑠
𝑏+
𝜃𝑖𝑗
] and 𝑠𝑐𝜃𝑖𝑗 = [𝑠𝑐−𝜃𝑖𝑗 , 𝑠

𝑐+
𝜃𝑖𝑗
] denote the intervals of membership degree (degree of satisfaction) of alternative A𝑖 for criteria 𝑐𝑗 and

𝑠𝑏𝜙𝑖𝑗 = [𝑠𝑏−𝜙𝑖𝑗
, 𝑠𝑏+𝜙

𝑖𝑗
] and 𝑠𝑐𝜙𝑖𝑗 = [𝑠𝑐−𝜙𝑖𝑗

, 𝑠𝑐+𝜙
𝑖𝑗
] represent the intervals of MD (NMD) of alternative A𝑖 for criteria 𝑐𝑗 specified by the decision-maker.

To maintain the regularity, for criteria with the identical desired direction, we can take the complement of 𝐴𝑐𝑖𝑗 to handle the cost criteria as a
benefit criteria. Let the LIVIFN 𝐴𝑖𝑗 represent the rating of the choice A𝑖 ∈ 𝐴 regarding criteria 𝑐𝑗 ∈ 𝐶, and let

𝐴𝑖𝑗 =

{

𝐴𝑏𝑖𝑗 (= (𝑠𝑏𝜃𝑖𝑗 , 𝑠
𝑏
𝜙𝑖𝑗

)) when 𝑐𝑖 ∈ 𝐶𝑏
(𝐴𝑐𝑖𝑗 )

𝑐 (= (𝑠𝑐𝜙𝑖𝑗 , 𝑠
𝑐
𝜃𝑖𝑗
)) when 𝑐𝑖 ∈ 𝐶𝑐

(7)

Therefore, the rating of alternative A𝑖 regarding criterion 𝑐𝑗 can be denoted as the following:

𝐴𝑖𝑗 = (𝑠𝜃𝑖𝑗 , 𝑠𝜙𝑖𝑗 ) = ([𝑠−𝜃𝑖𝑗 , 𝑠
+
𝜃𝑖𝑗
], [𝑠−𝜙𝑖𝑗

, 𝑠+𝜙
𝑖𝑗
]) (8)

where

([𝑠−𝜃𝑖𝑗 , 𝑠
+
𝜃𝑖𝑗
], [𝑠−𝜙𝑖𝑗

, 𝑠+𝜙
𝑖𝑗
]) =

⎧

⎪

⎨

⎪

⎩

([𝑠𝑏−𝜃𝑖𝑗 , 𝑠
𝑏+
𝜃𝑖𝑗
], [𝑠𝑏−𝜙𝑖𝑗

, 𝑠𝑏+𝜙
𝑖𝑗
]) when 𝑐𝑗 ∈ 𝐶𝑏

([𝑠𝑐−𝜙𝑖𝑗
, 𝑠𝑐+𝜙

𝑖𝑗
], [𝑠𝑐−𝜃𝑖𝑗 , 𝑠

𝑐+
𝜃𝑖𝑗
]) when 𝑐𝑗 ∈ 𝐶𝑐

(9)

For every alternative A𝑖 and criteria 𝑐𝑗 , the hesitation interval of 𝐴𝑖𝑗 is calculated as

𝑠𝜋𝑖𝑗 = [𝑠−𝜋𝑖𝑗 , 𝑠
+
𝜋𝑖𝑗

] = [𝑙 − 𝑠+𝜃𝑖𝑗 − 𝑠
+
𝜙𝑖𝑗
, 𝑙 − 𝑠−𝜃𝑖𝑗 − 𝑠

−
𝜙𝑖𝑗

] (10)

The LIVIFS can denote the features for the alternative A𝑖 in the manner shown below:

𝐴𝑖 = {⟨𝑐1, (𝑠𝜃𝑖1 , 𝑠𝜙𝑖1 )⟩, ⟨𝑐2, (𝑠𝜃𝑖2 , 𝑠𝜙𝑖2 )⟩,… , ⟨𝑐𝑛, (𝑠𝜃𝑖𝑛 , 𝑠𝜙𝑖𝑛 )⟩} (11)
= {⟨𝑐𝑗 , ([𝑠−𝜃𝑖𝑗 , 𝑠

+
𝜃𝑖𝑗
], [𝑠−𝜙𝑖𝑗

, 𝑠+𝜙
𝑖𝑗
])⟩ ∣ 𝑐𝑗 ∈ 𝐶, 𝑗 = 1, 2,… , 𝑛}, 𝑖 = 1, 2,… , 𝑚.

3. Likelihood of LPRs between LIVIFNs

Chen (2014) proposed the notion of likelihood approach for FPRs between IVIFNs in the context of IVIFS. We propose, to extend the likelihood
idea for FPRs between LIVIFNs in the context of IVIFSs in a decision environment.

Consider the two LIVIFNs, 𝐴𝛽𝑗 and 𝐴𝛽⋆𝑗 signify the values of choices A𝛽 and A𝛽⋆ , respectively, with respect to criterion 𝑐𝑗 , and

𝐴𝛽𝑗 = ([𝑠−𝜃𝛽𝑗 , 𝑠
+
𝜃𝛽𝑗

], [𝑠−𝜙𝛽𝑗
, 𝑠+𝜙

𝛽𝑗
]), (12)

and

𝐴𝛽⋆𝑗 = ([𝑠−𝜃𝛽⋆𝑗 , 𝑠
+
𝜃𝛽⋆𝑗

], [𝑠−𝜙
𝛽⋆𝑗
, 𝑠+𝜙𝛽⋆𝑗

]). (13)

Suppose an event “A𝛽𝑗 ≥ A𝛽⋆𝑗” indicates the “option A𝛽 , with respect to criterion 𝑐𝑗 is not inferior to option A𝛽⋆”. For calculating the probability
of the event “A𝛽𝑗 ≥ A𝛽⋆𝑗”, we make use of concept of LIFS preference relation 𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗, which is correspondingly written as 𝑠−𝜃𝛽𝑗 ⩾ 𝑠−𝜃𝛽⋆𝑗

,
𝑠+𝜃𝛽𝑗 ⩾ 𝑠+𝜃

𝛽⋆𝑗
, 𝑠−𝜙𝛽𝑗

⩽ 𝑠−𝜙
𝛽⋆𝑗

and 𝑠+𝜙
𝛽𝑗

⩽ 𝑠+𝜙
𝛽⋆𝑗

according to the inclusion relation of the LIVIFSs. Let for the LIVIFSs, (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) used the likelihood

fuzzy preference relation (LFPR) 𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 . We calculate (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗,) lower LFPR and upper LFPR −(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗,) and +(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗,),
̃ ̃
3

respectively, of the relation 𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗,.
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Definition 4. Let 𝐴𝛽𝑗 = ([𝑠−𝜃𝛽𝑗 , 𝑠
+
𝜃𝛽𝑗

], [𝑠−𝜙𝛽𝑗
, 𝑠+𝜙

𝛽𝑗
]) and 𝐴𝛽⋆𝑗 = ([𝑠−𝜃𝛽⋆𝑗

, 𝑠+𝜃
𝛽⋆𝑗

], [𝑠−𝜙𝛽⋆𝑗
, 𝑠+𝜙

𝛽⋆𝑗
]) be any two LIVIFNs defined on 𝐶, where 0 ≤ 𝑠+𝜃𝛽𝑗+ 𝑠+𝜙

𝛽𝑗
≤ 𝑙

nd 0 ≤ 𝑠+𝜃𝛽⋆𝑗
+ 𝑠+𝜙𝛽⋆𝑗

≤ 𝑙. The lower likelihood −(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗,) of FPR 𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗, on LIVIFSs is defined as

−(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗, ) = max

⎧

⎪

⎨

⎪

⎩

𝑙 − max

⎧

⎪

⎨

⎪

⎩

𝑙.
(𝑙 − 𝑠−𝜙

𝛽⋆𝑗
) − 𝑠−𝜃𝛽𝑗

(𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙
𝛽𝑗
) + (𝑙 − 𝑠+𝜃𝛽⋆𝑗

− 𝑠−𝜙
𝛽⋆𝑗

)
, 0

⎫

⎪

⎬

⎪

⎭

, 0

⎫

⎪

⎬

⎪

⎭

(14)

The upper LFPR +(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) of a FPR 𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗on LIVIFSs is defined as

+(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) = max

⎧

⎪

⎨

⎪

⎩

𝑙 − max

⎧

⎪

⎨

⎪

⎩

𝑙.
(𝑙 − 𝑠+𝜙

𝛽⋆𝑗
) − 𝑠+𝜃𝛽𝑗

(𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
−
𝜙𝛽𝑗

) + (𝑙 − 𝑠−𝜃𝛽⋆𝑗
− 𝑠+𝜙

𝛽⋆𝑗
)
, 0

⎫

⎪

⎬

⎪

⎭

, 0

⎫

⎪

⎬

⎪

⎭

(15)

Property. Let 𝐴𝛽𝑗 = ([𝑠−𝜃𝛽𝑗 , 𝑠
+
𝜃𝛽𝑗

], [𝑠−𝜙𝛽𝑗
, 𝑠+𝜙

𝛽𝑗
]) and 𝐴𝛽⋆𝑗 = ([𝑠−𝜃𝛽⋆𝑗

, 𝑠+𝜃
𝛽⋆𝑗

], [𝑠−𝜙𝛽⋆𝑗
, 𝑠+𝜙

𝛽⋆𝑗
]) be any two LIVIFNs defined on 𝐶. The lower LFPR

−(𝐴𝛽𝑗 ≥ 𝐴𝛽⋆𝑗 ) and upper LFPR +(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) of FPR 𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 , satisfy the following properties:

(𝐿𝐹𝑃𝑅.1) 0 ≤ −(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) ≤ 𝑙;

(𝐿𝐹𝑃𝑅.2) 0 ≤ +(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) ≤ 𝑙 ;

(𝐿𝐹𝑃𝑅1.3) −(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) ≤ +(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 );

(𝐿𝐹𝑃𝑅1.4) −(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) + +(𝐴𝛽∗𝑗 ≥ 𝐴𝛽𝑗 ) = 𝑙

Proof. We will only prove (LFPR1.4). Regarding to the situations of 𝑙 − 𝑠−𝜙𝛽∗𝑗 ≤ 𝑠−𝜃𝛽𝑗 and 𝑙 − 𝑠+𝜙𝛽𝑗 ≤ 𝑠+𝜃𝛽∗𝑗 , we combine these two inequalities
and obtain 𝑠−𝜃𝛽𝑗 + 𝑠+𝜙𝛽𝑗+ 𝑠+𝜃𝛽∗𝑗 + 𝑠−𝜙𝛽∗𝑗 ⩾ 2𝑙. But, this result is not sanctioned because of the postulates 𝑠+𝜃𝛽𝑗 + 𝑠+𝜙𝛽𝑗 ≤ 𝑙 and 𝑠+𝜃𝛽∗𝑗 + 𝑠+𝜙𝛽∗𝑗 ≤ 𝑙. So the
discussion of situation 𝑙 − 𝑠−𝜙𝛽∗𝑗 ≤ 𝑠−𝜃𝛽𝑗 and 𝑙 − 𝑠+𝜙𝛽𝑗 ≤ 𝑠+𝜃𝛽∗𝑗 is unnecessary. Therefore, only three cases are considered in this proof, comprise with:
(a) 𝑙 − 𝑠−𝜙𝛽∗𝑗 ⩾ 𝑠−𝜃𝛽∗𝑗 and 𝑙 − 𝑠+𝜙𝛽𝑗

⩾ 𝑠+𝜃
𝛽∗𝑗

; (b) 𝑙 − 𝑠−𝜙𝛽∗𝑗 ⩾ 𝑠−𝜃𝛽𝑗 and 𝑙 − 𝑠+𝜙𝛽𝑗 ≤ 𝑠+𝜃𝛽∗𝑗 ; and (c) 𝑙 − 𝑠−𝜙𝛽∗𝑗 ≤ 𝑠−𝜃𝛽𝑗 and 𝑙 − 𝑠+𝜙𝛽𝑗 ⩾ 𝑠+𝜃𝛽∗𝑗 .
For case (a), since 𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠

+
𝜙𝛽𝑗

⩾ 0, 𝑙− 𝑠+𝜃
𝛽∗𝑗

− 𝑠−𝜙𝛽∗𝑗 ⩾ 0, and (𝑙 − 𝑠−𝜙𝛽∗𝑗 ) − 𝑠
−
𝜃𝛽𝑗

⩾ 0, we know that

max

⎧

⎪

⎨

⎪

⎩

𝑙.
(𝑙 − 𝑠−𝜙𝛽∗𝑗 ) − 𝑠−𝜃𝛽𝑗

(𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

) + (𝑙 − 𝑠+𝜃𝛽∗𝑗 − 𝑠
−
𝜙𝛽∗𝑗

)
, 0

⎫

⎪

⎬

⎪

⎭

= 𝑙.
(𝑙 − 𝑠−𝜙𝛽∗𝑗 ) − 𝑠−𝜃𝛽𝑗

(𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

) + (𝑙 − 𝑠+𝜃𝛽∗𝑗 − 𝑠
−
𝜙𝛽∗𝑗

)

Moreover, since 𝑙 − 𝑠+𝜙𝛽𝑗 ⩾ 𝑠+𝜃𝛽∗𝑗 ,

𝑙 − 𝑙.
(𝑙 − 𝑠−𝜙𝛽∗𝑗 ) − 𝑠−𝜃𝛽𝑗

(𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

) + (𝑙 − 𝑠+𝜃𝛽∗𝑗 − 𝑠
−
𝜙𝛽∗𝑗

)

= 𝑙.
𝑙 − 𝑠+𝜙𝛽𝑗 − 𝑠

+
𝜃𝛽∗𝑗

(𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

) + (𝑙 − 𝑠+𝜃𝛽∗𝑗 − 𝑠
−
𝜙𝛽∗𝑗

)
⩾ 0.

Thus, we attain

−(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 )

= 𝑙.
𝑙 − 𝑠+𝜙𝛽𝑗 − 𝑠

+
𝜃𝛽∗𝑗

(𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

) + (𝑙 − 𝑠+𝜃𝛽∗𝑗 − 𝑠
−
𝜙𝛽∗𝑗

)
.

Similarly, we obtain

+(𝐴𝛽⋆𝑗 ⩾ 𝐴𝛽𝑗 )

= 𝑙.
𝑙 − 𝑠−𝜙𝛽∗𝑗 − 𝑠

−
𝜃𝛽𝑗

(𝑙 − 𝑠+𝜃𝛽∗𝑗 − 𝑠
−
𝜙𝛽∗𝑗

) + (𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

)
.

It can be easily understand from Case (a) that −(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) + +(𝐴𝛽∗𝑗 ≥ 𝐴𝛽𝑗 ) = 𝑙. According to the situation in Case (b), we possess

𝑙 − max

⎧

⎪

⎨

⎪

⎩

𝑙.
(𝑙 − 𝑠−𝜙𝛽∗𝑗 ) − 𝑠−𝜃𝛽𝑗

(𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

) + (𝑙 − 𝑠+𝜃𝛽∗𝑗 − 𝑠
−
𝜙𝛽∗𝑗

)
, 0

⎫

⎪

⎬

⎪

⎭

= 𝑙.
𝑙 − 𝑠+𝜙𝛽𝑗 − 𝑠

+
𝜃𝛽∗𝑗

(𝑙 − 𝑠− − 𝑠+ ) + (𝑙 − 𝑠+ − 𝑠− )
.

4
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𝑙

T

Since in Case (b) 𝑙 − 𝑠+𝜙𝛽𝑗 ≤ 𝑠+𝜃𝛽∗𝑗 , we get −(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) = 0. Moreover,

max

⎧

⎪

⎨

⎪

⎩

𝑙.
(𝑙 − 𝑠+𝜙𝛽𝑗 ) − 𝑠

+
𝜃𝛽∗𝑗

(𝑙 − 𝑠+𝜃𝛽∗𝑗 − 𝑠
−
𝜙𝛽∗𝑗

) + (𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

)
, 0

⎫

⎪

⎬

⎪

⎭

= 0.

Which implies, +(𝐴𝛽∗𝑗 ≥ 𝐴𝛽𝑗 ) = 𝑙, and thus it is proved, that in Case (b) −(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) + +(𝐴𝛽∗𝑗 ≥ 𝐴𝛽𝑗 ) = 𝑙. Now Consider the condition
− 𝑠−𝜙𝛽∗𝑗 ≤ 𝑠−𝜃𝛽𝑗 of Case (c), we get

𝑙.
(𝑙 − 𝑠−𝜙𝛽∗𝑗 ) − 𝑠−𝜃𝛽𝑗

(𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

) + (𝑙 − 𝑠+𝜃𝛽∗𝑗 − 𝑠
−
𝜙𝛽∗𝑗

)
≤ 0.

herefore, −(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) = 𝑙. Further, for condition 𝑙 − 𝑠+𝜃𝛽𝑗 ⩾ 𝑠+𝜃𝛽∗𝑗 ,

𝑙.
(𝑙 − 𝑠+𝜙𝛽𝑗 ) − 𝑠

+
𝜃𝛽∗𝑗

(𝑙 − 𝑠+𝜃𝛽∗𝑗 − 𝑠
−
𝜙𝛽∗𝑗

) + (𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

)
⩾ 0.

To apply the situation that 𝑙 − 𝑠−𝜙𝛽∗𝑗 ≤ 𝑠−𝜃𝛽𝑗 , we get

+(𝐴𝛽∗𝑗 ≥ 𝐴𝛽𝑗 ) = max

⎧

⎪

⎨

⎪

⎩

𝑙 − 𝑙.
(𝑙 − 𝑠+𝜙𝛽𝑗 ) − 𝑠

+
𝜃𝛽∗𝑗

(𝑙 − 𝑠+𝜃𝛽∗𝑗 − 𝑠
−
𝜙𝛽∗𝑗

) + (𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

)
, 0

⎫

⎪

⎬

⎪

⎭

= max

⎧

⎪

⎨

⎪

⎩

𝑙.
𝑙 − 𝑠−𝜙𝛽∗𝑗 − 𝑠

−
𝜃𝛽𝑗

(𝑙 − 𝑠+𝜃𝛽∗𝑗 − 𝑠
−
𝜙𝛽∗𝑗

) + (𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

)
, 0

⎫

⎪

⎬

⎪

⎭

= 0.

Therefore, it is easily proved that −(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) + +(𝐴𝛽∗𝑗 ≥ 𝐴𝛽𝑗 ) = 𝑙 in Case(c). Hence, we proved that (LFPR1.4) is valid. □

Example 1. Consider that the evaluations of two hotels (𝐵1 and 𝐵2) in Karachi with respect to the criteria of good service (𝑐1), and 𝑙 = 8, are
given by the following:

𝐵11 = ([𝑠−𝜃11 , 𝑠
+
𝜃11

], [𝑠−𝜙11 , 𝑠
+
𝜙11

]) = ([𝑠3, 𝑠5], [𝑠1, 𝑠3]), and

𝐵21 = ([𝑠−𝜃21 , 𝑠
+
𝜃21

], [𝑠−𝜙21 , 𝑠
+
𝜙21

]) = ([𝑠2, 𝑠4], [𝑠2, 𝑠3]).

Using (15) and (16), we get

−(𝐵11 ≥ 𝐵21) = max

{

𝑙 − max

{

𝑙.
(𝑙 − 𝑠−𝜙21 ) − 𝑠

−
𝜃11

(𝑙 − 𝑠−𝜃11 − 𝑠
+
𝜙11) + (𝑙 − 𝑠+𝜃21 − 𝑠

−
𝜙21

)
, 0

}

, 0

}

= max
{

8 − max
{

8.
(8 − 2) − 3

(8 − 3 − 3) + (8 − 4 − 2)
, 0
}

, 0
}

= 2

+(𝐵11 ≥ 𝐵21) = max

{

𝑙 − max

{

𝑙.
(𝑙 − 𝑠+𝜙21 ) − 𝑠

+
𝜃11

(𝑙 − 𝑠+𝜃11 − 𝑠
−
𝜙11

) + (𝑙 − 𝑠−𝜃21 − 𝑠
+
𝜙21

)
, 0

}

, 0

}

= max
{

8 − max
{

8.
(8 − 3) − 5

(8 − 5 − 1) + (8 − 2 − 3)
, 0
}

, 0
}

= 8

It is clear that −(𝐵11 ≥ 𝐵21) ≤ +(𝐵11 ≥ 𝐵21). Moreover,

+(𝐵21 ≥ 𝐵11) = max
{

8 − max
{

8.
(8 − 3) − 4

(8 − 4 − 2) + (8 − 3 − 3)
, 0
}

, 0
}

= 6

Thus, we have −(𝐵11 ≥ 𝐵21) + +(𝐵21 ≥ 𝐵11) = 8 = 𝑙.

Definition 5. Let 𝐴𝛽𝑗 = ([𝑠−𝜃𝛽𝑗 , 𝑠
+
𝜃𝛽𝑗

], [𝑠−𝜙𝛽𝑗 , 𝑠
+
𝜙𝛽𝑗

]) and 𝐴𝛽∗𝑗 = ([𝑠−𝜃𝛽∗𝑗 , 𝑠
+
𝜃𝛽∗𝑗

], [𝑠−𝜙𝛽∗𝑗 , 𝑠
+
𝜙𝛽∗𝑗

]) be any two LIVIFNs defined on 𝐶. The likelihood 𝐿(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 )

of a FPR 𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 on the LIVIFSs is defined as follows:

(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) =
1
2
(−(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) + +(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 )) (16)

which means that, A𝛽 is not inferior to alternative A𝛽⋆ with respect to criterion 𝑐𝑗 ∈ 𝐶 to the degree of (𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ).

Corollary 1. Let 𝐴𝛽𝑗 = ([𝑠−𝜃𝛽𝑗 , 𝑠
+
𝜃𝛽𝑗

], [𝑠−𝜙𝛽𝑗 , 𝑠
+
𝜙𝛽𝑗

]) and 𝐴𝛽⋆𝑗 = ([𝑠−𝜃𝛽∗𝑗 , 𝑠
+
𝜃𝛽∗𝑗

], [𝑠−𝜙𝛽∗𝑗 , 𝑠
+
𝜙𝛽∗𝑗

]) be any two LIVIFNs defined on 𝐶. The Likelihood (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 )

of 𝐴 ⩾ 𝐴 satisfies the following properties:
5
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

𝑙

⩾

𝐿

d

𝐿

(LFPR2.1) 0 ≤ (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ≤ 𝑙;
(LFPR2.2) (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) = 0; if 𝑙 − 𝑠−𝜙𝛽𝑗 ≤ 𝑠−𝜃𝛽⋆𝑗

;

(LFPR2.3) (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) = 𝑙 if 𝑠−𝜃𝛽𝑗 ⩾ 𝑙 − 𝑠−𝜙𝛽⋆𝑗
;

(LFPR2.4) (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) + (𝐴𝛽𝑗 ⩽ 𝐴𝛽⋆𝑗 ) = 𝑙;
(LFPR2.5) (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) = (𝐴𝛽𝑗 ⩽ 𝐴𝛽⋆𝑗 ) =

𝑙
2 if (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) = (𝐴𝛽𝑗 ⩽ 𝐴𝛽⋆𝑗 );

(LFPR2.6) (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ⩾
𝑙
2 if (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ⩾

𝑙
2 and (𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ⩾

𝑙
2 .

Proof. We will only prove (LFPR2.6). Suppose to the contrary, (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ⩾
𝑙
2 and (𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ⩾

𝑙
2 but not (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ⩾

𝑙
2 . Then,

(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) <
𝑙
2

(17)

If 𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠+𝜙𝛽⋆⋆𝑗
< 0, we have +(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) = 𝑙. Following to (LFPR1.1) in Property 1, we have 𝐿−(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ⩾ 0, and therefore,

(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ⩾
𝑙
2 . As opposed, if 𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠

+
𝜙𝛽⋆⋆𝑗

⩾ 0, then (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ⩾
𝑙
2 which implies that 1

2 (
−(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) + +(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 )) ⩾

𝑙
2 .

Thus, 𝐿−(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) + +(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ⩾ 𝑙. Since −(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ≤ +(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) by utilizing (P1.3) in Property 1, by necessary situation
(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ⩾

𝑙
2 is as follows:

+(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ⩾
𝑙
2 . Since, 𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠

+
𝜙𝛽⋆⋆𝑗

⩾ 0; hence,

𝑙 − 𝑙.
(𝑙 − 𝑠+𝜙𝛽⋆⋆𝑗

) − 𝑠+𝜃𝛽𝑗
(𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠

−
𝜙𝛽𝑗

) + (𝑙 − 𝑠−𝜃
𝛽⋆⋆𝑗

− 𝑠+𝜙𝛽⋆⋆𝑗
)
⩾ 𝑙

2
.

It follows that

𝑙.
𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠

−
𝜃
𝛽⋆⋆𝑗

(𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆⋆𝑗

) + (𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆⋆𝑗

)
⩾ 𝑙

2
.

Thus we get

0 ≤ 𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆⋆𝑗

≤ 𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆⋆𝑗

(18)

If 𝑙 − 𝑠+𝜙𝛽∗𝑗 − 𝑠+𝜃𝛽⋆⋆𝑗
< 0, we have 𝐿+(𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽⋆𝑗 ) = 𝑙. Implies that (𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ⩾

𝑙
2 because −(𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ⩾ 0. As opposed, if

−𝑠+𝜙𝛽∗𝑗 −𝑠
+
𝜃𝛽⋆⋆𝑗

⩾ 0, the given supposition that 𝐿(𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ⩾
𝑙
2 shows that 1

2 .(
−(𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽⋆𝑗 )++(𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽⋆𝑗 )) ⩾

𝑙
2 and +(𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽⋆𝑗 )

𝑙
2 . Similarly, we can obtain

0 ≤ 𝑙 − 𝑠+𝜃𝛽⋆⋆𝑗
− 𝑠+𝜙𝛽∗𝑗 ≤ 𝑙 − 𝑠−𝜙𝛽⋆⋆𝑗 − 𝑠

−
𝜃𝛽⋆𝑗

(19)

Supposition that (𝐴𝛽𝑗 ≥ 𝐴𝛽⋆⋆𝑗 ) ⩾ 𝑙
2 . Following to (P2.4) in Property 2, we have (𝐴𝛽𝑗 ≥ 𝐴𝛽⋆⋆𝑗 ) + 𝐿(𝐴𝛽𝑗 ≤ 𝐴𝛽⋆⋆𝑗 ) = 𝑙. Because

(𝐴𝛽𝑗 ≥ 𝐴𝛽⋆⋆𝑗 ) ⩾ 𝑙
2 , we attain (𝐴𝛽𝑗 ≤ 𝐴𝛽⋆⋆𝑗 ) = (𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽𝑗 ) ≤ 𝑙

2 . When 𝑙− 𝑠+𝜙𝛽𝑗− 𝑠+𝜃𝛽⋆⋆𝑗
< 0, also we have +(𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽𝑗 ) = 𝑙, which

isagree with 𝐿(𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽𝑗 ) ≤
𝑙
2 . Hence, it is logical that 𝑙− 𝑠+𝜙𝛽𝑗− 𝑠+𝜃𝛽⋆⋆𝑗

⩾ 0. Thus, the sufficient status that (𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽𝑗 ) ≤
𝑙
2 is asserted as

follows: +(𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽𝑗 ) ≤
𝑙
2 . It obeys that

𝑙 − 𝑙.
(𝑙 − 𝑠+𝜙𝛽𝑗 ) − 𝑠

+
𝜃𝛽⋆⋆𝑗

(𝑙 − 𝑠+𝜃𝛽⋆⋆𝑗
− 𝑠−𝜙𝛽⋆⋆𝑗

) + (𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽𝑗

)
≤ 𝑙

2
. □

Thus, we get

𝑙.
𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠

−
𝜙𝛽⋆⋆𝑗

(𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
−
𝜙𝛽⋆⋆𝑗

) + (𝑙 − 𝑠+𝜃𝛽⋆⋆𝑗
− 𝑠+𝜙𝛽𝑗 )

≤ 𝑙
2
.

Because 𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
−
𝜙𝛽⋆⋆𝑗

⩾ 𝑙− 𝑠+𝜃𝛽𝑗− 𝑠+𝜙𝛽⋆⋆𝑗
⩾ 0, we have

0 ≤ 𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
−
𝜙𝛽⋆⋆𝑗

≤ 𝑙 − 𝑠+𝜃
𝛽⋆⋆𝑗

− 𝑠+𝜙𝛽𝑗 (20)

Supposition that 𝐿(𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ⩾
𝑙
2 . We get (𝐴𝛽⋆𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ≤

𝑙
2 because (𝐴𝛽⋆⋆𝑗 ⩾ 𝐴𝛽⋆𝑗 )+(𝐴𝛽⋆𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) = 𝑙. If 𝑙− 𝑠+𝜙𝛽⋆⋆𝑗

− 𝑠+𝜃
𝛽⋆𝑗

< 0, then
+(𝐴𝛽⋆𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) = 𝑙, which disagree with 𝐿(𝐴𝛽⋆𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ≤

𝑙
2 . Hence, the state 𝑙 − 𝑠+𝜙𝛽⋆⋆𝑗 − 𝑠+𝜃

𝛽⋆𝑗
⩾ 0 is well founded. The condition sufficient of

𝐿(𝐴𝛽⋆𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ≤
𝑙
2 is as follows:

𝐿+(𝐴𝛽⋆𝑗 ⩾ 𝐴𝛽⋆⋆𝑗 ) ≤
𝑙
2 . Similarly, we obtain

0 ≤ 𝑙 − 𝑠−𝜃
𝛽⋆⋆𝑗

− 𝑠−𝜙𝛽⋆𝑗 ≤ 𝑙 − 𝑠+𝜃
𝛽⋆𝑗

− 𝑠+𝜙𝛽⋆⋆𝑗
.

Summating the inequalities from (19)–(21), we get

0 ≤ 𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆⋆𝑗

+ 𝑙 − 𝑠+𝜃
𝛽⋆⋆𝑗

− 𝑠+𝜙𝛽⋆𝑗
+ 𝑙 − 𝑠−𝜃

𝛽⋆⋆𝑗
− 𝑠−𝜙𝛽⋆𝑗

≤ 𝑙 − 𝑠− − 𝑠− + 𝑙 − 𝑠− − 𝑠− +
6

𝜙𝛽𝑗 𝜃
𝛽⋆⋆𝑗

𝜙𝛽⋆⋆𝑗 𝜃
𝛽⋆𝑗
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𝑙 − 𝑠+𝜃
𝛽⋆⋆𝑗

− 𝑠+𝜙𝛽𝑗 + 𝑙 − 𝑠
+
𝜃
𝛽⋆𝑗

− 𝑠+𝜙𝛽⋆⋆𝑗
.

Accordingly

𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆𝑗

+ 𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
−
𝜙𝛽⋆𝑗

≤ 𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆𝑗

+ 𝑙 − 𝑠+𝜙𝛽𝑗 − 𝑠
+
𝜃
𝛽⋆𝑗

(21)

Note that

𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆𝑗

+ 𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠
−
𝜙𝛽⋆𝑗

≥ 𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆𝑗

+ 𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆𝑗

= 2.(𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆𝑗

)

nd

𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆𝑗

+ 𝑙 − 𝑠+𝜙𝛽𝑗 − 𝑠
+
𝜃
𝛽⋆𝑗

≤ 𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆𝑗

+ 𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆𝑗

= 2.(𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆𝑗

).

Hence, the inequality in (22) creates

2.(𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆𝑗

) ≤ 2.(𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆𝑗

).

r equivalently 𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆𝑗

≤ 𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆𝑗

.

If 𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆𝑗

≥ 0, then we have (𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆𝑗

)+ (𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆𝑗

) ≤ 2.(𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆𝑗

). The above inequality can be rewritten as follows:

𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆𝑗

(𝑙 − 𝑠−𝜙𝛽𝑗 − 𝑠
−
𝜃
𝛽⋆𝑗

) + (𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠
+
𝜙𝛽⋆𝑗

)
≥ 1

2

Or equivalently,

𝑙 − 𝑙.
(𝑙 − 𝑠+𝜙𝛽⋆𝑗

) − 𝑠+𝜃𝛽𝑗
(𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠

−
𝜙𝛽𝑗

) + (𝑙 − 𝑠−𝜃
𝛽⋆𝑗

− 𝑠+𝜙𝛽⋆𝑗
)
≥ 𝑙

2
,

hich implies that 𝐿+(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ≥ 𝑙
2 . If 𝑙 − 𝑠+𝜃𝛽𝑗 − 𝑠+𝜙𝛽⋆𝑗

< 0, then we have 𝐿+(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) = 𝑙. Therefore, the necessary condition that

(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ≥
𝑙
2 is satisfied.

Conversely, if 𝑠+𝜙𝛽𝑗 + 𝑠
+
𝜃
𝛽⋆𝑗

≤ 𝑠−𝜃𝛽𝑗 + 𝑠
−
𝜙𝛽⋆𝑗

, we have 𝑙 − 𝑠−𝜙𝛽⋆𝑗 − 𝑠
−
𝜃𝛽𝑗

≤ 𝑙 − 𝑠+𝜃
𝛽⋆𝑗

− 𝑠+𝜙𝛽𝑗 . Then, it follows that

2.(𝑙 − 𝑠−𝜙𝛽⋆𝑗 − 𝑠
−
𝜃𝛽𝑗

) ≤ (𝑙 − 𝑠−𝜙𝛽⋆𝑗 − 𝑠
−
𝜃𝛽𝑗

) + (𝑙 − 𝑠+𝜃
𝛽⋆𝑗

− 𝑠+𝜙𝛽𝑗 ).

Thus, the above inequality can be rewritten as follows:

𝑙 − 𝑠−𝜙𝛽⋆𝑗
− 𝑠−𝜃𝛽𝑗

(𝑙 − 𝑠−𝜙𝛽⋆𝑗
− 𝑠−𝜃𝛽𝑗 ) + (𝑙 − 𝑠+𝜃

𝛽⋆𝑗
− 𝑠+𝜙𝛽𝑗 )

≤ 1
2
.

r equivalently,

𝑙 − 𝑙.
(𝑙 − 𝑠+𝜙𝛽𝑗 ) − 𝑠

+
𝜃
𝛽⋆𝑗

(𝑙 − 𝑠+𝜃
𝛽⋆𝑗

− 𝑠−𝜙𝛽⋆𝑗
) + (𝑙 − 𝑠−𝜃𝛽𝑗 − 𝑠

+
𝜙𝛽𝑗

)
≤ 𝑙

2
,

hich produce that +(𝐴𝛽⋆𝑗 ⩾ 𝐴𝛽𝑗 ) ≤
𝑙
2 . Thus, follows sufficient condition as (𝐴𝛽⋆𝑗 ⩾ 𝐴𝛽𝑗 ) ≤

𝑙
2 is fulfilled. When 𝑠+𝜙𝛽𝑗 + 𝑠

+
𝜃
𝛽⋆𝑗

> 𝑠−𝜃𝛽𝑗 + 𝑠
−
𝜙𝛽⋆𝑗

, the

ondition necessary as (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ≥
𝑙
2 is satisfied still. It is shown that (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) ≥

𝑙
2 ; which contradict Eq. (19). Hence, (LFPR2.6) is

alid.

xample 2. Once again Consider, Example 1, the likelihood (𝐵11 ≥ 𝐵21) of a FPR 𝐵11 ≥ 𝐵21 is calculated as follows:

(𝐵11 ≥ 𝐵21) =
1
2
(𝐿−(𝐵11 ≥ 𝐵21) + +(𝐵21 ≥ 𝐵11)) =

1
2
(2 + 8) = 5.

Suppose the evaluation of the third hotel (𝐵3) on good service(𝑐1) is given by

𝐵31 = ([𝑠−𝜃31 , 𝑠
+
𝜃31

], [𝑠−𝜙31 , 𝑠
+
𝜙31

]) = ([𝑠4, 𝑠6], [𝑠1, 𝑠2])

Using (15), (16) and (21), we get (𝐵31 ≥ 𝐵11) = 5 and (𝐵31 ≥ 𝐵21) = 6. We note that (𝐵31 ≥ 𝐵11) ≥
𝑙
2 and (𝐵11 ≥ 𝐵21) ≥

𝑙
2 . It follows that

𝐿(𝐵31 ≥ 𝐵21) ≥
𝑙
2 .

. Linguistic IVIF QUALIFLEX method

This section compares LIVIFN rating values and uses the concept of Likelihood of FPR to provide a QUALIFLEX technique using a linear
rogramming model for solving MCDM issues in a LIVIFS environment with partial preference data.
7
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4.1. Proposed method

Here, LIVIFN decision matrix 𝐷̃𝑙 in (22), which hands over to 𝑚 options on 𝑛 criteria when 𝑚! permutations of the ordering of the options exist.
The LIVIF decision matrix 𝐷̃𝑙 can be succinctly denoted as follows:

𝐷̃𝑙 =

𝑐1 𝑐2 … 𝑐𝑛
A1 𝐴11 𝐴12 … 𝐴1𝑛
A2 𝐴21 𝐴22 … 𝐴2𝑛
⋮ ⋮ ⋮ ⋱ ⋮
A𝑚 𝐴𝑚1 𝐴𝑚2 … 𝐴𝑚𝑛

(22)

Assume 𝑃𝑡 denotes the 𝑡th permutation:

𝑃𝑡 = (… , 𝐴𝛽 ,… , 𝐴𝛽⋆ ,…), for 𝑡 = 1, 2,… , 𝑚!, (23)

Concordance occur when A𝛽 ranked is greater than or equal to A𝛽⋆ . If A𝛽 and A𝛽⋆ concordance takes place when the two pre-orders are ranked
imilarly. Discordance happens if they hold opposite demand positions in the two pre-orders.

Since the LIVIFN ratings 𝐴𝛽𝑗 and 𝐴𝛽∗𝑗 of the alternatives A𝛽 and A𝛽⋆ , respectively, are represented as 𝐴𝛽𝑗 = ([𝑠−𝜃𝛽𝑗 , 𝑠
+
𝜃𝛽𝑗

], [𝑠−𝜙𝛽𝑗 , 𝑠
+
𝜙𝛽𝑗

]) and

𝛽̃∗𝑗 = ([𝑠−𝜃𝛽∗𝑗 , 𝑠
+
𝜃𝛽∗𝑗

], [𝑠−𝜙𝛽∗𝑗 , 𝑠
+
𝜙𝛽∗𝑗

]), regarding to each criterion 𝑐𝑗 ∈ 𝐶. As described above, the likelihood (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) of the LIVIFNs 𝐴𝛽𝑗 and

𝛽̃∗𝑗 has many significant characteristics, some of which are already covered in Properties 1 and 2. The likelihood of the FPR linkages between
he LIVIFN ratings can then be used to build a comparison. Because of the ranking results of LIVIFNs, where likelihood-based comparison for the
omputation of the concordance/discordance index.

We computed (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) for each pair of options (A𝛽 ,A𝛽⋆ ) (A𝛽 ,A𝛽⋆ ∈ A ) to conduct a comparison between 𝐴𝛽𝑗 and 𝐴𝛽∗𝑗 . Follows (LFPR2.5)
of Property 2, if (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) = 𝐿(𝐴𝛽𝑗 ≤ 𝐴𝛽⋆𝑗 ), indicates that 𝐿(𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) = 𝐿(𝐴𝛽𝑗 ≤ 𝐴𝛽⋆𝑗 ) =

𝑙
2 . Thus, for every pair of options (A𝛽 ,A𝛽⋆ ) at the

evel of pre-order as per for 𝑐𝑗 ∈ 𝐶 and the ordering analogous to 𝑃𝑡, the concordance/discordance index 𝐼 𝑡𝑗 (A𝛽 ,A𝛽⋆ ) is expressed as follows:

𝐼 𝑡𝑗 (A𝛽 ,A𝛽⋆ ) = (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) −
𝑙
2
, (24)

Implies 𝐼 𝑡𝑗 (𝛽 ,𝛽⋆ ) ∈ [− 𝑙
2 ,

𝑙
2 ]. The concordance exists If (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) >

𝑙
2 , and we obtain 𝐼 𝑡𝑗 (A𝛽 ,A𝛽⋆ ) > 0. If (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) =

𝑙
2 , exaequo exists

nd 𝐼 𝑡𝑗 (A𝛽 ,A𝛽⋆ ) = 0. If (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ) <
𝑙
2 discordance occurs, and we attain 𝐼 𝑡𝑗 (A𝛽 ,A𝛽⋆ ) < 0. Moreover, for the options at the level of pre-order

for 𝑐𝑗 ∈ 𝐶 and the ranking analogous to 𝑃𝑡, the concordance/discordance index 𝐼 𝑡𝑗 is defined as:

𝐼 𝑡𝑗 =
∑

𝐴𝛽 ,𝐴𝛽⋆∈𝐴
𝐼 𝑡𝑗 (𝐴𝛽 , 𝐴𝛽⋆ ). (25)

While for the pair of alternatives (𝐴𝛽 , 𝐴𝛽⋆ ) in 𝑃𝑡 the index value 𝐼 𝑡𝑗 (𝐴𝛽 , 𝐴𝛽⋆ ), according to the criterion 𝑐𝑗 , can be entertained as an evaluation
alue. In practical application, there is no objection on allocating unbalanced importance to each criteria. Let the importance weight of each
riterion 𝑐𝑗 ∈ 𝐶 corresponding to the permutation 𝑃𝑡 is denoted by 𝑤𝑡𝑗 , which satisfies the normalize conditions 𝑤𝑡𝑗 ∈ [0, 1](𝑗 = 1, 2,… , 𝑛) and
𝑛
𝑗=1𝑤

𝑡
𝑗 = 1. Let represent the set of all weight vectors by 𝜌0, and

𝜌0 =

{

(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡𝑛)|𝑤

𝑡
𝑗 ≥ 0(𝑗 = 1, 2,… , 𝑛),

𝑛
∑

𝑗=1
𝑤𝑡𝑗 = 1

}

(26)

We can be used primary basic ranking forms [18, 19] for the construction of incomplete data on the criterion weights given by the DM. We
pply the five basic ranking forms to handle incomplete data on the criterion weights for a decision-making problem containing incomplete weight
nformation.

(i) weak ranking:

𝜌1 =
{

(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡𝑛) ∈ 𝜌0|𝑤

𝑡
𝑗1

≥ 𝑤𝑡𝑗2 for all 𝑗1 ∈ 𝛤1 and 𝑗2 ∈ 𝛬1

}

, (27)

here 𝛤1 and 𝛬1 are disjoint and subsets of the subscript index set 𝑁 = {1, 2,… , 𝑛} of all criteria.
(ii) strict ranking:

𝜌2 =
{

(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡𝑛) ∈ 𝜌0|𝑤

𝑡
𝑗1
−𝑤𝑡𝑗2 ≥ 𝜓𝑗1𝑗2 for all 𝑗1 ∈ 𝛤2 and 𝑗2 ∈ 𝛬2

}

(28)

where 𝜓𝑗1𝑗2 which satisfies the condition 𝜓𝑗1𝑗2 > 0, is a constant, and 𝛤2 and 𝛬2 are disjoint subsets of N.
(iii) ranking of difference (or strength of preference):

𝜌3 =
{

(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡𝑛) ∈ 𝜌0|𝑤

𝑡
𝑗1
−𝑤𝑡𝑗2 ≥ 𝑤𝑡𝑗2 −𝑤

𝑡
𝑗3

for all 𝑗1 ∈ 𝛤3, 𝑗2 ∈ 𝛬3 and 𝑗3 ∈ 𝜂3
}

(29)

where 𝛤3, 𝛬3 and 𝜂3 are disjoint, and 𝛤3, 𝛬3, 𝜂3 ⊂ 𝑁 .
(iv) The interval bound:

𝜌4 =
{

(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡𝑛) ∈ 𝜌0|𝜎𝑗1 + 𝜀𝑗1 ≥ 𝑤𝑡𝑗1 ≥ 𝜎𝑗1 for all 𝑗1 ∈ 𝛤4

}

, (30)

where 𝜎𝑗1 ≥ 0 and 𝜀𝑗1 ≥ 0 along with the condition 0 ≤ 𝜎𝑗1 ≤ 𝜎𝑗1 + 𝜀𝑗1 ≤ 1 are constants and 𝛤4 ⊂ 𝑁 .
(v) ratio bound (or ranking with multiples):

𝜌5 =
{

(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡𝑛) ∈ 𝜌0|𝑤

𝑡
𝑗1

≥ 𝜎𝑗1𝑗2 .𝑤
𝑡
𝑗2 for all 𝑗1 ∈ 𝛤5 and 𝑗2 ∈ 𝛬5

}

, (31)

and the requirement is satisfied by 𝜎𝑗12 , and 0 ≤ 𝜎𝑗12 ≤ 1 where 𝛤5 and 𝛬5 are disjoint subsets of N. Assume that 𝜌 is a collection of the weights of
the criteria that are known, and
8

𝜌 = 𝜌1 ∪ 𝜌2 ∪ 𝜌3 ∪ 𝜌4 ∪ 𝜌5. (32)
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With the given conditions in 𝜌, for each pair of alternatives (A𝛽 ,A𝛽⋆ ) (A𝛽 ,A𝛽⋆ ∈ A ) the ranking corresponding to 𝑃𝑡 and the weighted
concordance/discordance index at the level of the pre-order with regard to the 𝑛 criteria in 𝐶 𝐼 𝑡(A𝛽 ,A𝛽⋆ ) is expressed as:

𝐼 𝑡(A𝛽 ,A𝛽⋆ ) =
𝑛
∑

𝑗=1
𝐼 𝑡𝑗 (A𝛽 ,A𝛽⋆ ).𝑤𝑡𝑗 , (33)

where (𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡𝑛) ∈ 𝜌.

The comprehensive concordance/discordance index 𝐼 𝑡 for the permutation 𝑃𝑡 by combining 𝐼 𝑡𝑗 and 𝐼 𝑡(A𝛽 ,A𝛽⋆ ) becomes

𝐼 𝑡 =
𝑛
∑

𝑗=1

∑

A𝛽 ,A𝛽⋆∈A

𝐼 𝑡𝑗 (A𝛽 ,A𝛽⋆ ).𝑤𝑡𝑗 . (34)

The arithmetic weighted sum of the anchor value ( 𝑙2 ) and the likelihood of an FPR in a tied scenario serves as the evaluation criterion for the
hypothesis for the ranking of the options.

The optimal weight values, for each 𝑃𝑡 = (𝑡 = 1, 2,… , 𝑚!) can be computed by the following linear programming model (LPM):

(𝑀1) max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐼 𝑡 =
𝑛
∑

𝑗=1

𝑛
∑

A𝛽 ,A𝛽⋆∈A

𝐼 𝑡𝑗 (A𝛽 ,A𝛽⋆ ).𝑤𝑡𝑗

s.t. (𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡𝑛) ∈ 𝜌,

for each 𝑡 = 1, 2,… , 𝑚!.

(35)

After solving the LPM (𝑀1) each of the solutions produces an optimal weight vector
_
𝑤𝑡 = (

_
𝑤𝑡1,

_
𝑤𝑡2,… ,

_
𝑤𝑡𝑛) and an optimal objective value

_
𝐼
𝑡
for

ach 𝑡 = 1, 2,… , 𝑚!. There exist 𝑚! of the choices, so 𝑚! LPMs must be solved. In general, these 𝑚! models are capable of producing many optimal
esults. To put it another way, not every permutation results in the same ideal weight vectors. The permutation with the best value out of all the_ 𝑡

values is then chosen. The chosen permutation can be used to determine the best priority order for the options in the following phase.
In the presence of uncertainty, the decision-maker may render conflicting judgments regarding the importance of the criteria and preferences.

here are no such solutions that would satisfy all of the 𝜌 conditions in that situation. So, using goal programming, we create a multi-objective
onlinear programming model to solve the issues with inconsistent information. By introducing a number of non-negative deviation variables, the
onditions in 𝜌 are changed to 𝜌∗, as shown below:

𝜌∗ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡𝑛) ∈ 𝜌0|𝑤𝑡𝑗1 + 𝑒

−
(𝑖)𝑗1𝑗2

≥ 𝑤𝑡𝑗2 forall 𝑗1 ∈ 𝛤1 and 𝑗2 ∈ 𝛬1;
𝑤𝑡𝑗1 −𝑤

𝑡
𝑗2
+ 𝑒−(𝑖𝑖)𝑗1𝑗2 ≥ 𝜓𝑗1𝑗2 for all 𝑗1 ∈ 𝛤2 and 𝑗2 ∈ 𝛬2;

𝑤𝑡𝑗1 − 2𝑤𝑡𝑗2 +𝑤
𝑡
𝑗3
+ 𝑒−(𝑖𝑖𝑖)𝑗1𝑗2𝑗3 ≥ 0 for all 𝑗1 ∈ 𝛤3, 𝑗2 ∈ 𝛬3 and 𝑗3 ∈ 𝜂3;

𝑤𝑡𝑗1 + 𝑒
−
(𝑖𝑣)𝑗1

≥ 𝜎𝑗1 , 𝑤
𝑡
𝑗1
− 𝑒+(𝑖𝑣)𝑗1 ≤ 𝜎𝑗1 + 𝜀𝑗1 for all 𝑗1 ∈ 𝛤4;

𝑤𝑡𝑗1
𝑤𝑡𝑗2

+ 𝑒−(𝑣)𝑗1𝑗2 ≥ 𝜎𝑗1𝑗2 for all 𝑗1 ∈ 𝛤5 and 𝑗2 ∈ 𝛬5.

(36)

For the case of inconsistent preference information, the bi-objective NLP is designed as follows:

[𝑀2] max

⎧

⎪

⎨

⎪

⎩

𝐼 𝑡 =
𝑛
∑

𝑗=1

∑

𝐴𝛽 ,𝐴𝛽⋆∈𝐴
𝐼 𝑡𝑗 (𝐴𝛽 , 𝐴𝛽⋆ ).𝑤

𝑡
𝑗

⎫

⎪

⎬

⎪

⎭

min

{ 𝑛
∑

𝑗1 ,𝑗2 ,𝑗3∈𝑁
(𝑒−(𝑖)𝑗1𝑗2 + 𝑒

−
(𝑖𝑖)𝑗1𝑗2

+ 𝑒−(𝑖𝑖𝑖)𝑗1𝑗2𝑗3 + 𝑒
−
(𝑖𝑣)𝑗1

+ 𝑒+(𝑖𝑣)𝑗1 + 𝑒
−
(𝑣)𝑗1𝑗2

) (37)

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡𝑛) ∈ 𝜌∗

𝑒−(𝑖)𝑗1𝑗2 ≥ 0 𝑗1 ∈ 𝛤1 and 𝑗2 ∈ 𝛬1,
𝑒−(𝑖𝑖)𝑗1𝑗2 ≥ 0 𝑗1 ∈ 𝛤2 and 𝑗2 ∈ 𝛬2,

𝑒−(𝑖𝑖𝑖)𝑗1𝑗2𝑗3 ≥ 0 𝑗1 ∈ 𝛤3, 𝑗2 ∈ 𝛬3 and 𝑗3 ∈ 𝜂3,
𝑒−(𝑖𝑣)𝑗1 ≥ 0, 𝑒+(𝑖𝑣)𝑗1 ≥ 0 𝑗1 ∈ 𝛤4,

𝑒−(𝑣)𝑗1𝑗2 ≥ 0 𝑗1 ∈ 𝛤5 and 𝑗2 ∈ 𝛬5,

Using the max–min operator, the model [M2], for each 𝑡 = 1, 2,… , 𝑚!, may be incorporated into the following single-objective NLP:

[𝑀3] max 𝛼 (38)

𝑠.𝑡

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

𝑛
∑

𝑗=1

∑

A𝛽 ,A𝛽⋆∈A

𝐼 𝑡𝑗 (A𝛽 ,A𝛽⋆ ).𝑤𝑡𝑗 ≥ 𝛼,

−
𝑛
∑

𝑗1 ,𝑗2 ,𝑗3∈𝑁
(𝑒−(𝑖)𝑗1𝑗2 + 𝑒

−
(𝑖𝑖)𝑗1𝑗2

+ 𝑒−(𝑖𝑖𝑖)𝑗1𝑗2𝑗3 + 𝑒
−
(𝑖𝑣)𝑗1

+ 𝑒+(𝑖𝑣)𝑗1 + 𝑒
−
(𝑣)𝑗1𝑗2

) ≥ 𝛼,

(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡𝑛) ∈ 𝜌∗

𝑒−(𝑖)𝑗1𝑗2 ≥ 0 𝑗1 ∈ 𝛤1 𝑎𝑛𝑑 𝑗2 ∈ 𝛬1,
𝑒−(𝑖𝑖)𝑗1𝑗2 ≥ 0 𝑗1 ∈ 𝛤2 𝑎𝑛𝑑 𝑗2 ∈ 𝛬2,

𝑒−(𝑖𝑖𝑖)𝑗1𝑗2𝑗3 ≥ 0 𝑗1 ∈ 𝛤3, 𝑗2 ∈ 𝛬3 𝑎𝑛𝑑 𝑗3 ∈ 𝜂3,
𝑒−(𝑖𝑣)𝑗1 ≥ 0, 𝑒+(𝑖𝑣)𝑗1 ≥ 0 𝑗1 ∈ 𝛤4,

𝑒− ≥ 0 𝑗 ∈ 𝛤 𝑎𝑛𝑑 𝑗 ∈ 𝛬 ,
9

⎩ (𝑣)𝑗1𝑗2 1 5 2 5
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Fig. 1. Flow chart of the proposed method.

Each solution of the NLPM [M3] for each permutation 𝑡, where 𝑡 = 1, 2,… , 𝑚!, gives vector of optimal weight
_
𝑤𝑡 = (

_
𝑤𝑡1,

_
𝑤𝑡2,… ,

_
𝑤𝑡𝑛), and

the optimal deviation values
−
𝑒
−
(𝑖)𝑗1𝑗2

,
−
𝑒
−
(𝑖𝑖)𝑗1𝑗2

,
−
𝑒
−
(𝑖𝑖𝑖)𝑗1𝑗2𝑗3

,
−
𝑒
−
(𝑖𝑣)𝑗1

,
−
𝑒
+
(𝑖𝑣)𝑗1

and
−
𝑒
−
(𝑣)𝑗1𝑗2

(𝑗1, 𝑗2, 𝑗3 ∈ 𝑁) for each 𝑡 = 1, 2,… , 𝑚!. The correlate comprehensive

concordance/discordance index
𝐼
𝑡 may then be obtained for the permutation 𝑃𝑡. When all of the 𝑚! integrated NLP problem have been resolved,

the best way to rank the options is to compare the
_
𝐼
𝑡

values of each permutation.

4.2. Computational complexity

Consider the MCDM problem having consistent and incomplete preference information. The vector for optimal weight and comprehensive
concordance/discordance can be find out by index for all m! using the LPM [M1]. Let the number of conditions in 𝜌 is denoted by 𝛶 . And the
LPM [M1] has 𝛶 constraints with n decision variables (consist of 𝑤𝑡1, 𝑤

𝑡
2,… , 𝑤𝑡𝑛). The simplex method can be used to solve the model [M1], where

computational complexity degree is shallowed. Since permutations rapidly increases with an increase in the number of choices. Still, the complexity
of the model [M1] concerning each 𝑃𝑡 is relatively easy to solve. Additionally, the number of decision variables and constraints for each optimization
model remains the same, i.e. 𝑛 and 𝛶 , respectively. Thus, the computational complexity of the individual LPMs in [M1] cannot be affected due to
the number of permutations.

We can employ the integrated [M3] model to obtain the optimum solutions for all 𝑚! permutations. Suppose that there are 𝛶 ⋆ several conditions
in 𝜌∗, then the number of deviation variables is also 𝛶 ⋆ in 𝜌∗. So in the NLPM [M3], the total decision variables are (𝑛+𝛶 ⋆) (including 𝑤𝑡1, 𝑤

𝑡
2,… , 𝑤𝑡𝑛,

and all deviation variables), and several constraints are 𝛶 ⋆. As compare to model [M1], the model [M3] is more complex; however finding
its solution is not difficult because we can quickly obtain the optimal solutions using powerful computer hardware and software. The decision
variables and constraints in [M3] that correspond to each 𝑃𝑡 is the same for any number of permutations if the criteria and weight conditions
remain unchanged for a given MCDM problems. Therefore, the increase in the number of permutations does not change the model’s computational
complexity [M3].

4.3. Proposed algorithm

The new algorithm is known as ‘‘The LIVIF QUALIFLEX outranking approach connected with likelihood-based comparison method for resolving
an MCDM problem’’ undergoing incomplete information can be obtained as (see the graphical flowchart in Fig. 1):

Algorithm:
Step 1: Formulate a MCDM problem: Generate feasible alternatives (𝐴 = {𝐴1, 𝐴2,… , 𝐴𝑛}) and specify the evaluation criteria (𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑛}).
Step 2: List all the possible 𝑚! permutations of 𝑚 alternatives, which must be tested. Let 𝑃𝑡(𝑡 = 1, 2,… , 𝑚!) denote the 𝑡th permutation.
Step 3: Determine the decision-maker’s preferences regarding criteria by assessing weak order, strict order, difference order, interval bound, or

ratio bound, in order to gain knowledge of the criterion weights. Formulate set 𝜌 based on the available information.
Step 4: Conduct a survey of the decision-maker’s viewpoints to acquire evaluative ratings for the alternatives concerning each criterion. i.e., the

LIVIN ratings 𝐴𝑏𝑘𝑗 and 𝐴𝑐𝑘𝑗 , for the benefit and cost criteria, respectively. Later, convert these evaluative ratings into 𝐴𝑘𝑗 for each A𝑘 ∈ A and 𝑐𝑗 ∈ 𝐶
to construct the LIVIF decision matrix 𝐷̃𝑙.

Step 5: Calculate (
∼
𝐴𝛽𝑗 ⩾

∼
𝐴𝛽⋆𝑗 ) using each 𝑐𝑗 ∈ 𝐶 and each pair of options (A𝛽 ,A𝛽⋆ ) where A𝛽 ,A𝛽⋆ ∈ A .

Step 6: Using each pair of choices (A𝛽 ,A𝛽⋆ ) in permutation 𝑃𝑡 evaluate the concordance/discordance index 𝐼 𝑡𝑗 (A𝛽 ,A𝛽⋆ ), concerning each
criterion based on (𝐴𝛽𝑗 ⩾ 𝐴𝛽⋆𝑗 ).

Step 7: For each permutation 𝑃𝑡 specify the concordance/discordance index 𝐼 𝑡. Then, construct a LPM [M1] with consistent weight information,
or the NLPM [M3] with inconsistent weighted data for each 𝑃𝑡.

Step 8: Solve [M1] or [M3] for each 𝑃𝑡 to obtain the vector of optimal weight
_
𝑤𝑡 and the optimal concordance/discordance index

_
𝐼
𝑡
. The order

of options in the permutation with the optimal
_
𝐼
𝑡

value is the best options.
10
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5. Case instance and discussions

The following case instance, which was adapted from Ilyas, Carpitella, and Zoubir (2021), assume an MCDM problem for selection of the most
appropriate supplier using an execution of the proposed methods.

5.1. Instance of the algorithm

The company faced the collapse of its major activities in the north of Morocco for a period of six weeks due to supply chain interference caused
by COVID-19 (Ilyas et al., 2021) without having recognized a comprehensive plan to handle the issue. The organization is currently concentrating
on reviewing its prior suppliers in an effort to make progress from the current predicament. The case study, which was developed from Ilyas et al.
(2021), examines the issue of how to choose the best provider to aid the organization in such a circumstance. This study examine four suppliers,
including Supplier 1 (A1), Supplier 2 (A2), Supplier 3 (A3) and Supplier 4 (A4). The criteria for formatting the suppliers include price/cost (𝑐1),
xperience (𝑐2), punctuality (𝑐3), quality (𝑐4), delivery performance and reliability (𝑐5) and reputation (𝑐6). In this problem, 𝑐1 designate the cost

criteria, while all the remaining variables represent the benefit criteria. So the evaluation criteria set is indicated by 𝐶 =
{

𝑐1, 𝑐2,… , 𝑐6
}

with
𝐶𝑏 =

{

𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6
}

and 𝐶𝑐 = {𝑐1}. In the suppliers selection problem, four suppliers are available, and A = {A1,A2,A3,A4} represent the set of
all candidate suppliers, the three experts were proposed in the evaluation to make use of LIVIFNs. The available linguistic variables are extremely
low (𝑠0), very low (𝑠1), low (𝑠2), slightly low (𝑠3), medium (𝑠4), slightly high (𝑠5), high (𝑠6), very high (𝑠7), and extremely high (𝑠8). The evaluation
results of the three experts are listed in the Tables 1–3.

Step 2: By utilizing the linguistic intuitionist fuzzy weighted averaging operator (Ma, Zhu, Ponnambalam, & Zhang, 2019) with known experts
weights 0.2429, 0.5142 and 0.2429 respectively we obtain the aggregated matrix as presented in Table 4.

In step 2: Using (32), we create 4! (=24) permutations of the ranking of the alternatives which must be tested and are expressed in the following:

𝑃1 = (A1,A2,A3,A4), 𝑃2 = (A1,A2,A4,A3), 𝑃3 = (A1,A3,A2,A4), 𝑃4 = (A1,A3,A4,A2),

𝑃5 = (A1,A4,A2,A3), 𝑃6 = (A1,A4,A3,A2), 𝑃7 = (A2,A1,A3,A4), 𝑃8 = (A2,A1,A4,A3),

𝑃9 = (A2,A3,A1,A4), 𝑃10 = (A2,A3,A4,A1), 𝑃11 = (A2,A4,A1,A3), 𝑃12 = (A2,A4,A3,A1),

𝑃13 = (A3,A1,A2,A4), 𝑃14 = (A3,A1,A4,A2), 𝑃15 = (A3,A2,A1,A4), 𝑃16 = (A3,A2,A4, 𝐴1),

𝑃17 = (A3,A4,A1,A2), 𝑃18 = (A3,A4,A2,A1), 𝑃19 = (A4,A1,A2,A3), 𝑃20 = (A4,A1,A3,A2),

𝑃21 = (A4,A2,A1,A3), 𝑃22 = (A4,A2,A3,A1), 𝑃23 = (A4,A3,A1,A2), 𝑃24 = (A4,A3,A2,A1),

Step 4: Using (35), let 𝜌0 =
{

(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡6)|𝑤

𝑡
𝑗 ≥ 0(𝑗 = 1, 2,… , 6),

∑6
𝑗=1𝑤

𝑡
𝑗 = 1

}

. According to all criteria, the authorities have provided their
choices, and the given data for the criterion weights are given by the following:

𝜌1 = {(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡6) ∈ 𝜌0|𝑤

𝑡
3 ≥ 𝑤𝑡5},

𝜌2 = {(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡6) ∈ 𝜌0|0.12 ≥ 𝑤𝑡6 −𝑤

𝑡
2 ≥ 0.08},

𝜌3 = {(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡6) ∈ 𝜌0|𝑤

𝑡
5 −𝑤

𝑡
2 ≥ 𝑤𝑡2 −𝑤

𝑡
4},

𝜌4 = {(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡6) ∈ 𝜌0|0.20 ≥ 𝑤𝑡1 ≥ 0.15, 0.16 ≥ 𝑤𝑡5 ≥ 0.11},

𝜌5 = {(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡6) ∈ 𝜌0|𝑤

𝑡
2 ≥ 0.6 ⋅𝑤𝑡4}.

Step 5: Using (41), for the known criterion information of weights, the set 𝜌 is given as follows: 𝜌 = {(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡6) ∈ 𝜌0|𝑤𝑡3 ≥ 𝑤𝑡5, 0.12 ≥

𝑤𝑡6 − 𝑤
𝑡
2 ≥ 0.08, 𝑤𝑡5 − 𝑤

𝑡
2 ≥ 𝑤𝑡2 − 𝑤

𝑡
4, 0.20 ≥ 𝑤𝑡1 ≥ 0.15, 0.16 ≥ 𝑤𝑡5 ≥ 0.11, 𝑤𝑡2 ≥ 0.6 ⋅ 𝑤𝑡4}. The step 4 involves the evaluation of the suppliers by the

company based on the eight criteria, and converted the data into the LIVIF format. Using the provided ratings, we constructed the LIVIF matrix
𝐷̃𝑙 in (12), as shown in Table 1.

Step 6: Using (15) and (16), we calculated the lower likelihood −(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) and upper likelihood +(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ), for each criterion 𝑐𝑗 ∈ 𝐶
and each pair of (A𝛽 ,A𝛽⋆ ) where A𝛽 ,A𝛽⋆ ∈ A . Next we calculated the likelihood value 𝐿(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) of the fuzzy preference relation 𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ,
the corresponding results are presented in Table 5.

Step 7: Using (25) we determine the concordance/discordance index 𝐼 𝑡𝑗 (A𝛽 ,A𝛽⋆ ) each pair of (A𝛽 ,A𝛽⋆ ) of options as per criterion 𝑐𝑗 , to 𝑃𝑡, are
provided in Table 6.

Step 8: using (43), for each permutation 𝑃𝑡 we recognized the concordance/ discordance index, as given in Table 7, consider for the 𝑃6 =
(A1,A4,A3,A2),the index 𝐼6 is given as follows:

𝐼6 =
6
∑

𝑗=1

∑

A𝛽 ,A𝛽⋆∈A

𝐼6𝑗 (A𝛽 ,A𝛽⋆ ).𝑤6
𝑗

= (−2.1279 − 0.1684 − 0.0920 + 5.9903 + 5.8873 + 0.0735) ⋅𝑤6
1

+ (1.2131 − 0.9619 + 1.3596 − 1.6810 + 1.1009 + 2.0214) ⋅𝑤6
2

+ (3.4790 + 1.1773 − 1.6977 + 1.4933 − 1.1998 − 2.5141) ⋅𝑤6
3

+ (−1.7169 + 0.1002 − 2.4497 + 1.6639 − 1.0578 + 1.4678) ⋅𝑤6
4

+ (1.0876 − 1.2809 + 2.1678 − 1.7756 + 0.3590 + 2.8315) ⋅𝑤6
5

+ (1.3356 + 0.2681 + 1.5471 − 0.2858 + 0.3590 + 0.6054) ⋅𝑤6
6

11

= 1.5628𝑤1 + 3.0521𝑤2 + 0.7380𝑤3 − 5.9925𝑤4 + 4.7560𝑤5 + 3.8294𝑤6
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Table 1
LIV-IF decision matrix 𝐷̃1

𝑙 .

A1 A2 A3 A4

𝑐1
(

[𝑠3 , 𝑠5][𝑠2 , 𝑠3]
)

([𝑠1 , 𝑠2][𝑠3 , 𝑠4])
(

[𝑠2 , 𝑠3][𝑠4 , 𝑠5]
) (

[𝑠3 , 𝑠4][𝑠1 , 𝑠2]
)

𝑐2
(

[𝑠2 , 𝑠3][𝑠3 , 𝑠4]
) (

[𝑠1 , 𝑠3][𝑠3 , 𝑠5]
) (

[𝑠3 , 𝑠4][𝑠1 , 𝑠2]
) (

[𝑠2 , 𝑠4][𝑠1 , 𝑠3]
)

𝑐3
(

[𝑠1 , 𝑠3][𝑠2 , 𝑠4]
) (

[𝑠2 , 𝑠3][𝑠3 , 𝑠4]
) (

[𝑠2 , 𝑠4][𝑠1 , 𝑠3]
) (

[𝑠3 , 𝑠4][𝑠2 , 𝑠3]
)

𝑐4
(

[𝑠2 , 𝑠4][𝑠3 , 𝑠4]
) (

[𝑠3 , 𝑠5][𝑠1 , 𝑠2]
) (

[𝑠2 , 𝑠5][𝑠1 , 𝑠3]
) (

[𝑠2 , 𝑠5][𝑠2 , 𝑠3]
)

𝑐5
(

[𝑠2 , 𝑠5][𝑠1 , 𝑠2]
) (

[𝑠1 , 𝑠2][𝑠3 , 𝑠5]
) (

[𝑠3 , 𝑠4][𝑠2 , 𝑠3]
) (

[𝑠1 , 𝑠3][𝑠2 , 𝑠4]
)

𝑐6
(

[𝑠4 , 𝑠5][𝑠1 , 𝑠2]
) (

[𝑠2 , 𝑠4][𝑠1 , 𝑠3]
) (

[𝑠3 , 𝑠4][𝑠2 , 𝑠3]
) (

[𝑠2 , 𝑠3][𝑠3 , 𝑠4]
)

Table 2
LIV-IF decision matrix 𝐷̃2

𝑙 .

A1 A2 A3 A4

𝑐1
(

[𝑠1 , 𝑠2][𝑠3 , 𝑠4]
) (

[𝑠2 , 𝑠3][𝑠3 , 𝑠5]
) (

[𝑠2 , 𝑠3][𝑠3 , 𝑠4]
) (

[𝑠3 , 𝑠4][𝑠1 , 𝑠2]
)

𝑐2
(

[𝑠3 , 𝑠4][𝑠2 , 𝑠3]
) (

[𝑠1 , 𝑠2][𝑠4 , 𝑠5]
) (

[𝑠3 , 𝑠4][𝑠2 , 𝑠3]
) (

[𝑠1 , 𝑠3][𝑠2 , 𝑠5]
)

𝑐3
(

[𝑠3 , 𝑠5][𝑠1 , 𝑠2]
) (

[𝑠5 , 𝑠6][𝑠1 , 𝑠2]
) (

[𝑠2 , 𝑠3][𝑠3 , 𝑠4]
) (

[𝑠2 , 𝑠5][𝑠1 , 𝑠2]
)

𝑐4
(

[𝑠1 , 𝑠2][𝑠4 , 𝑠5]
) (

[𝑠4 , 𝑠5][𝑠1 , 𝑠3]
) (

[𝑠1 , 𝑠2][𝑠5 , 𝑠6]
) (

[𝑠3 , 𝑠4][𝑠1 , 𝑠3]
)

𝑐5
(

[𝑠2 , 𝑠4][𝑠3 , 𝑠4]
) (

[𝑠1 , 𝑠2][𝑠3 , 𝑠4]
) (

[𝑠4 , 𝑠6][𝑠1 , 𝑠2]
) (

[𝑠1 , 𝑠3][𝑠2 , 𝑠4]
)

𝑐6
(

[𝑠3 , 𝑠5][𝑠1 , 𝑠3]
) (

[𝑠2 , 𝑠3][𝑠3 , 𝑠4]
) (

[𝑠3 , 𝑠4][𝑠1 , 𝑠2]
) (

[𝑠2 , 𝑠4][𝑠1 , 𝑠3]
)

Table 3
LIV-IF decision matrix 𝐷̃3

𝑙 .

A1 A2 A3 A4

𝑐1
(

[𝑠2 , 𝑠3][𝑠3 , 𝑠5]
) (

[𝑠3 , 𝑠5][𝑠1 , 𝑠3]
) (

[𝑠2 , 𝑠4][𝑠1 , 𝑠3]
) (

[𝑠2 , 𝑠5][𝑠1 , 𝑠2]
)

𝑐2
(

[𝑠3 , 𝑠4][𝑠1 , 𝑠3]
) (

[𝑠4 , 𝑠5][𝑠1 , 𝑠2]
) (

[𝑠3 , 𝑠5][𝑠1 , 𝑠2]
) (

[𝑠1 , 𝑠3][𝑠3 , 𝑠4]
)

𝑐3
(

[𝑠1 , 𝑠3][𝑠3 , 𝑠4]
) (

[𝑠5 , 𝑠6][𝑠1 , 𝑠2]
) (

[𝑠2 , 𝑠4][𝑠3 , 𝑠4]
) (

[𝑠2 , 𝑠4][𝑠1 , 𝑠3]
)

𝑐4
(

[𝑠2 , 𝑠4][𝑠1 , 𝑠3]
) (

[𝑠4 , 𝑠6][𝑠1 , 𝑠2]
) (

[𝑠2 , 𝑠4][𝑠3 , 𝑠4]
) (

[𝑠3 , 𝑠5][𝑠2 , 𝑠3]
)

𝑐5
(

[𝑠4 , 𝑠5][𝑠1 , 𝑠2]
) (

[𝑠2 , 𝑠3][𝑠3 , 𝑠5]
) (

[𝑠3 , 𝑠5][𝑠1 , 𝑠2]
) (

[𝑠4 , 𝑠5][𝑠1 , 𝑠2]
)

𝑐6
(

[𝑠4 , 𝑠6][𝑠1 , 𝑠2]
) (

[𝑠4 , 𝑠5][𝑠1 , 𝑠3]
) (

[𝑠2 , 𝑠3][𝑠3 , 𝑠4]
) (

[𝑠3 , 𝑠5][𝑠2 , 𝑠3]
)

Table 4
Aggregated LIV-IF decision matrix.

A1 A2 A3 A4

𝑐1
(

[𝑠1.7864 , 𝑠3.1494][𝑠2.7186 , 𝑠3.9378]
) (

[𝑠2.0409 , 𝑠3.3835][𝑠2.2974 , 𝑠4.1835]
) (

[𝑠2 , 𝑠3.2638][𝑠2.4636 , 𝑠3.9378]
) (

[𝑠2.7736 , 𝑠4.2700][𝑠1 , 𝑠2]
)

𝑐2
(

[𝑠2.7736 , 𝑠3.7772][𝑠1.8650 , 𝑠3.2171]
) (

[𝑠1.8897 , 𝑠3.1494][𝑠2.6636 , 𝑠4.0023]
) (

[𝑠3 , 𝑠4.2700][𝑠1.4282 , 𝑠2.4636]
) (

[𝑠1.2573 , 𝑠3.2638][𝑠1.8650 , 𝑠4.1835]
)

𝑐3
(

[𝑠2.1121 , 𝑠4.1550][𝑠1.5453 , 𝑠2.8007]
) (

[𝑠4.4499 , 𝑠5.5014][𝑠1.3058 , 𝑠2.3667]
) (

[𝑠2 , 𝑠3.5137][𝑠2.2974 , 𝑠3.7300]
) (

[𝑠2.2599 , 𝑠4.5500][𝑠1.1834 , 𝑠2.4354]
)

𝑐4
(

[𝑠1.5051 , 𝑠3.0727][𝑠2.6636 , 𝑠4.1835]
) (

[𝑠3.7772 , 𝑠5.2814][𝑠1 , 𝑠2.4636]
) (

[𝑠1.5051 , 𝑠3.4053][𝑠2.9875 , 𝑠4.5947]
) (

[𝑠2.7736 , 𝑠4.5217][𝑠1.4004 , 𝑠3]
)

𝑐5
(

[𝑠2.5628 , 𝑠4.5217][𝑠1.7593 , 𝑠2.8564]
) (

[𝑠1.2573 , 𝑠2.2599][𝑠3 , 𝑠4.4580]
) (

[𝑠3.5420 , 𝑠5.3883][𝑠1.1834 , 𝑠2.2070]
) (

[𝑠1.8897 , 𝑠3.5835][𝑠1.6901 , 𝑠3.3802]
)

𝑐6
(

[𝑠3.5137 , 𝑠5.2814][𝑠1 , 𝑠2.4636]
) (

[𝑠2.5628 , 𝑠3.8165][𝑠1.7593 , 𝑠3.4783]
) (

[𝑠2.7736 , 𝑠3.7772][𝑠1.5453 , 𝑠2.6117]
) (

[𝑠2.2599 , 𝑠4.0622][𝑠1.5453 , 𝑠3.2171]
)

Since there is no inconsistent weighted data as per authorities choices, applying [M1] to erect the LPM for each 𝑃𝑡. For the following LPM was
onstructed for 𝑃6:

max

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐼6 = 1.5628𝑤1 + 3.0521𝑤2 + 0.7380𝑤3 − 5.9925𝑤4 + 4.7560𝑤5 + 3.8294𝑤6

subject to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑤6
3 ≥ 𝑤6

5, 0.12 ≥ 𝑤6
6 −𝑤

6
2 ≥ 0.08, 𝑤6

5 −𝑤
6
2 ≥ 𝑤6

2 −𝑤
6
4,

0.20 ≥ 𝑤6
1 ≥ 0.15, 0.16 ≥ 𝑤6

5 ≥ 0.11, 𝑤6
2 ≥ 0.6 ⋅𝑤6

4

𝑤6
1 +𝑤

6
2 +𝑤

6
3 +𝑤

6
4 +𝑤

6
5 +𝑤

6
6 = 1,

𝑤6
𝑗 ≥ 0 for all 𝑗.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

Step 8: For each permutation 𝑃𝑡, we obtained the vector of optimal weight
_
𝑤𝑡 and the optimal concordance/discordance index

_
𝐼
𝑡

by
solving the LPM. For example, applying 𝑃6, we observed that the optimal objective value is 1.3065 having weight vector that is

_
𝑤6 = (0.2,

0.13, 0.16, 0.1, 0.16, 0.25) optimal. Since it is found that
_
𝐼
11
(=3.0911) produce the maximal value, therefore the favorable of the candidate suppliers

is 𝑃11 = (A2,A4,A1,A3) with the optimal
Results of the comprehensive concordance/discordance indices

𝐼1 = −6.3394𝑤1 + 1.2978𝑤2 + 1.1792𝑤3 − 2.1403𝑤4 − 0.8070𝑤5 + 2.4722𝑤6

𝐼2 = −2.3588𝑤1 − 2.0642𝑤2 + 4.1658𝑤3 + 1.1875𝑤4 − 4.3582𝑤5 + 1.9006𝑤6

𝐼3 = −6.1924𝑤1 + 5.3406𝑤2 − 3.8490𝑤3 − 7.2047𝑤4 + 4.8560𝑤5 + 3.6830𝑤6

𝐼4 = −2.4178𝑤1 + 6.4141𝑤2 − 6.2486𝑤3 − 9.3203𝑤4 + 8.3072𝑤5 + 4.4010𝑤6

𝐼5 = 1.4158𝑤1 − 0.9907𝑤2 + 1.7662𝑤3 − 0.9281𝑤4 − 0.9070𝑤5 + 2.6186𝑤6

𝐼6 = 1.5628𝑤1 + 3.0521𝑤2 − 3.2620𝑤3 − 5.9925𝑤4 + 4.7560𝑤5 + 3.8294𝑤6

𝐼7 = −5.5645𝑤1 − 1.4214𝑤2 + 4.5746𝑤3 + 2.7591𝑤4 − 5.1426𝑤5 − 0.6220𝑤6

𝐼8 = −1.5839𝑤 − 4.7834𝑤 + 7.5612𝑤 + 6.0869𝑤 − 8.6938𝑤 − 1.1936𝑤
12

1 2 3 4 5 6
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Table 5
Results of the likelihoods of the FPRs.

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6

(𝐴1𝑗 ≥ 𝐴2𝑗 ) 3.9080 5.3596 2.3023 1.5503 6.1678 5.5471
(𝐴1𝑗 ≥ 𝐴3𝑗 ) 3.8316 3.0381 5.1773 4.1002 2.7191 4.2681
(𝐴1𝑗 ≥ 𝐴4𝑗 ) 1.8721 5.2131 3.4790 2.2831 5.0876 5.3356
𝐿(𝐴2𝑗 ≥ 𝐴1𝑗 ) 4.6829 2.6404 5.6977 6.4497 1.8322 2.4529
(𝐴2𝑗 ≥ 𝐴3𝑗 ) 3.9265 1.9786 6.5141 6.5322 1.1685 3.3946
(𝐴2𝑗 ≥ 𝐴4𝑗 ) 2.1127 4.0274 5.1998 5.0578 2.2744 3.6410
(𝐴3𝑗 ≥ 𝐴1𝑗 ) 4.1684 4.9619 2.8227 3.8998 5.2809 2.6015
(𝐴3𝑗 ≥ 𝐴2𝑗 ) 4.0735 6.0214 1.4859 1.4678 6.8315 4.6054
(𝐴3𝑗 ≥ 𝐴4𝑗 ) 2.0097 5.6810 2.5067 2.3361 5.7756 4.2858
(𝐴4𝑗 ≥ 𝐴1𝑗 ) 6.1279 2.7869 4.5210 5.7169 2.9124 2.6644
(𝐴4𝑗 ≥ 𝐴2𝑗 ) 5.8873 5.1009 2.8002 2.9422 5.7256 4.3590
(𝐴4𝑗 ≥ 𝐴3𝑗 ) 5.9903 2.3190 5.4933 5.6639 2.2244 3.7142

Table 6
Results of the concordance/discordance indices.

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6
𝐼 𝑙𝑗 (A1 ,A2) −0.0920 1.3596 −1.6977 −2.4497 2.1678 1.5471
𝐼 𝑙𝑗 (A1 ,A3) −0.1684 −0.9619 1.1773 0.1002 −1.2809 0.2681
𝐼 𝑙𝑗 (A1 ,A4) −2.1279 1.2131 −0.5210 −1.7169 1.0876 1.3356
𝐼 𝑙𝑗 (A2 ,A1) 0.6829 −1.3596 1.6977 2.4497 −2.1678 −1.5471
𝐼 𝑙𝑗 (A2 ,A3) −0.0735 −2.0214 2.5141 2.5322 −2.8315 −0.6054
𝐼 𝑙𝑗 (A2 ,A4) −1.8873 0.0274 1.1998 1.0578 −1.7256 −0.3590
𝐼 𝑙𝑗 (A3 ,A1) 0.1684 0.9619 −1.1773 −0.1002 1.2809 −1.3985
𝐼 𝑙𝑗 (A3 ,A2) 0.0735 2.0214 −2.5141 −2.5322 2.8315 0.6054
𝐼 𝑙𝑗 (A3 ,A4) −1.9903 1.6810 −1.4933 −1.6639 1.7756 0.2858
𝐼 𝑙𝑗 (A4 ,A1) 2.1279 −1.2131 0.5210 1.7169 −1.0876 −1.3356
𝐼 𝑙𝑗 (A4 ,A2) 1.8873 1.1009 −1.1998 −1.0578 1.7256 0.3590
𝐼 𝑙𝑗 (A4 ,A3) 1.9903 −1.6810 1.4933 1.6639 −1.7756 −0.2858

Table 7
Comparison of values of comprehensive concordance/discordance indices.

𝐼
1

𝐼
2

𝐼
3

𝐼
4

LIF-QULIFLEX 0.7946 2.1060 0.0487 0.5142
Proposed method 0.0082 1.4420 0.0595 0.8709

𝐼
5

𝐼
6

𝐼
7

𝐼
8

LIF-QULIFLEX 1.5944 4.4541 1.6874 3.3429
Proposed method 1.3369 1.3064 0.7905 2.2760

𝐼
9

𝐼
10

𝐼
11

𝐼
12

LIF-QULIFLEX 1.0041 2.4950 5.2004 4.9646
Proposed method −0.0553 1.3436 3.0911 2.9643

𝐼
13

𝐼
14

𝐼
15

𝐼
16

LIF-QULIFLEX −0.1913 0.3225 0.0709 −0.4145
Proposed method −0.0452 0.7662 −0.6390 −0.2378

𝐼
17

𝐼
18

𝐼
19

𝐼
20

LIF-QULIFLEX 0.3654 −0.1913 2.3218 1.0255
Proposed method 0.7918 0.2583 1.8977 2.3359

𝐼
21

𝐼
22

𝐼
23

𝐼
24

LIF-QULIFLEX 4.7298 4.4940 0.8337 1.7501
Proposed method 3.0643 2.0507 1.2504 1.5955

𝐼9 = −5.2277𝑤1 + 0.5024𝑤2 + 2.2200𝑤3 + 2.5587𝑤4 − 2.5808𝑤5 − 2.2886𝑤6

𝐼10 = −0.9719𝑤1 − 1.9238𝑤2 + 3.2620𝑤3 + 5.9925𝑤4 − 4.7560𝑤5 − 4.9598𝑤6

𝐼11 = 2.6719𝑤1 − 7.2096𝑤2 + 8.6032𝑤3 + 9.5207𝑤4 − 10.8690𝑤5 − 3.8648𝑤6

𝐼12 = 3.0087𝑤1 − 5.2858𝑤2 + 6.2486𝑤3 + 9.3203𝑤4 − 8.3072𝑤5 − 5.5314𝑤6

𝐼13 = −5.8556𝑤1 + 7.2644𝑤2 − 6.2036𝑤3 − 7.4051𝑤4 + 7.4178𝑤5 + 2.0164𝑤6

𝐼14 = −2.0810𝑤1 + 8.3379𝑤2 − 8.6032𝑤3 − 9.5207𝑤4 + 10.8690𝑤5 + 2.7344𝑤6

𝐼15 = −5.0807𝑤1 + 4.5452𝑤2 − 2.8082𝑤3 − 2.5057𝑤4 + 3.0822𝑤5 − 1.0778𝑤6

𝐼16 = −0.8249𝑤1 + 2.1190𝑤2 − 1.7662𝑤3 + 0.9281𝑤4 + 0.9070𝑤5 − 3.7490𝑤6

𝐼17 = 2.1748𝑤1 + 5.9117𝑤2 − 7.5612𝑤3 − 6.0869𝑤4 + 8.6938𝑤5 + 0.0632𝑤6
13
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𝐼18 = 2.9497𝑤1 + 3.1925𝑤2 − 4.1658𝑤3 − 1.1875𝑤4 + 4.3582𝑤5 − 3.0310𝑤6

𝐼19 = 5.6716𝑤1 − 3.4169𝑤2 + 2.8082𝑤3 + 2.5057𝑤4 − 3.0822𝑤5 − 0.0526𝑤6

𝐼20 = 5.8186𝑤1 + 0.6259𝑤2 − 2.2200𝑤3 + 2.5057𝑤4 + 2.5808𝑤5 + 1.1582𝑤6

𝐼21 = 6.4465𝑤1 − 6.1361𝑤2 + 6.2036𝑤3 + 7.4051𝑤4 − 7.4178𝑤5 − 3.1468𝑤6

𝐼22 = 6.7833𝑤1 − 4.2123𝑤2 − 4.2123𝑤3 + 7.2047𝑤4 − 4.8560𝑤5 − 4.8134𝑤6

𝐼23 = 6.1554𝑤1 + 2.5497𝑤2 − 4.5746𝑤3 − 2.7591𝑤4 + 5.1426𝑤5 − 0.5084𝑤6

𝐼24 = 6.9303𝑤1 − 0.1695𝑤2 − 1.1792𝑤3 + 2.1403𝑤4 + 0.8070𝑤5 − 3.6026𝑤6

weight vector
_
𝑤11 = (0.15, 0.066, 0.11, 0.418, 0.11, 0.146). Moreover the best supplier is supplier 2 (𝐴2).

In practical decision-making problems the incomplete preference information is more realistic, mostly in complex and uncertain circumstances.
ecause of this, on the basis of criterion significance our proposed method also allow the incomplete information. For this circumstances, the
ecision-maker can apply the five basic ranking forms in (27) − (31) to give his/her preferences for any criteria. For example in step 3, we cannot
ecognize the relation of 𝑤4 with other criterion weights, like 𝑤1, 𝑤3, 𝑤6, according to the preference information given in 𝜌. Despite of incomplete
nformation, in step 7, the linear programming model can be used, to obtain the optimal weights for each permutation 𝑃𝑡. Thus, our proposed
ethod is adjustable because it needs only partial information based on the five basic ranking forms and not compulsorily complete information.

.2. Discussion of related inconsistent data

Here, addressed the issue of inconsistency preference in this work, which might arise when measuring data in terms of criteria importance. As
result, we may create deviation variables to regulate the conditions in 𝜌, and then we can create an integrated nonlinear programming model

M3] to deal with MCDM with incomplete and inconsistent weighted results.
Suppose to the same most suitable supplier selection problem. Let us assume that we add the condition 0.05 ≥ 𝑤5 −𝑤3 ≥ 0.01 to the set 𝜌2. The

pdated form of the sets 𝜌2 and 𝜌 are given as:

𝜌(𝑛𝑒𝑤)2 = {(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡6) ∈ 𝜌0|0.12 ≥ 𝑤𝑡6 −𝑤

𝑡
2 ≥ 0.08, 0.05 ≥ 𝑤5 −𝑤3 ≥ 0.01},

𝜌(𝑛𝑒𝑤) = {(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡6) ∈ 𝜌0|𝑤𝑡3 ≥ 𝑤𝑡5, 0.12 ≥ 𝑤𝑡6 −𝑤

𝑡
2 ≥ 0.08, 0.05 ≥ 𝑤5 −𝑤3 ≥ 0.01, 𝑤𝑡5 −𝑤

𝑡
2 ≥ 𝑤𝑡2 −𝑤

𝑡
4, 0.20 ≥ 𝑤𝑡1 ≥ 0.15, 0.16 ≥ 𝑤𝑡5 ≥ 0.11, 𝑤𝑡2 ≥

.6 ⋅𝑤𝑡4}
Since the conditions 𝑤𝑡3 ≥ 𝑤𝑡5 and 0.05 ≥ 𝑤5 −𝑤3 ≥ 0.01 in 𝜌1 and 𝜌(𝑛𝑒𝑤)2 respectively are in conflict, and therefore, the weighted data in 𝜌(𝑛𝑒𝑤) is

artially inconsistent. We used [M3] to build the integrated NLPM for each 𝑃𝑡 due to the inconsistent weight results in the choice. The conditions
n 𝜌(𝑛𝑒𝑤) were moderated to 𝜌∗(𝑛𝑒𝑤) by incorporating selected deviation variables in it, as shown below:

𝜌∗(𝑛𝑒𝑤) = {(𝑤𝑡1, 𝑤
𝑡
2,… , 𝑤𝑡6) ∈ 𝜌0|𝑤

𝑡
3 + 𝑒

−
(i)35 ≥ 𝑤𝑡5, 𝑤

𝑡
6 −𝑤

𝑡
2 + 𝑒

−
(ii)62 ≥ 0.08,

𝑤𝑡5 −𝑤
𝑡
3 + 𝑒

−
(ii)53 ≥ 0.01, 𝑤𝑡6 −𝑤

𝑡
2 − 𝑒

+
(ii)62 ≤ 0.12, 𝑤𝑡5 −𝑤

𝑡
3 − 𝑒

+
(ii)53 ≤ 0.05,

𝑤𝑡5 − 2𝑤𝑡2 +𝑤
𝑡
4 + 𝑒

−
(iii)524 ≥ 0, 𝑤𝑡1 + 𝑒

−
(iv)1 ≥ 0.15, 𝑤𝑡5 + 𝑒

−
(iv)5 ≥ 0.11,

𝑤𝑡1 − 𝑒
+
(iv)1 ≤ 0.20, 𝑤𝑡5 − 𝑒

+
(iv)5 ≤ 0.16,

𝑤𝑡2
𝑤𝑡4

+ 𝑒−(v)24 ≥ 0.6},

where the deviation variables 𝑒−(i)35, 𝑒
−
(ii)62, 𝑒

−
(ii)53, 𝑒

+
(ii)62, 𝑒

+
(ii)53, 𝑒

−
(iii)524, 𝑒

−
(iv)1, 𝑒

−
(iv)5, 𝑒

+
(iv)1, 𝑒

+
(iv)5, 𝑒

−
(v)24 are non-negative real numbers.

The integrated NLPM for 𝑃6 was established as follows:

max 𝛾

such that.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1.5628𝑤6
1 + 3.0521𝑤6

2 − 3.2620𝑤6
3 − 5.9925𝑤6

4 + 4.7560𝑤6
5 + 3.8294𝑤6

6 ≥ 𝛾,
−(𝑒−(i)35 + 𝑒

−
(ii)62 + 𝑒

−
(ii)53 + 𝑒

+
( ii)62 + 𝑒

+
(ii)53 + 𝑒

−
(iii)524 + 𝑒

−
(iv)1 + 𝑒

−
(iv)5+

𝑒+(iv)1 + 𝑒
+
(iv)5 + 𝑒

−
(v)24) ≥ 𝜆,

𝑤6
3 + 𝑒

−
(i)35 ≥ 𝑤6

5, 𝑤
6
6 −𝑤

6
2 + 𝑒

−
(ii )62 ≥ 0.08, 𝑤6

5 −𝑤
6
3 + 𝑒

−
(ii)53 ≥ 0.01,

𝑤6
6 −𝑤

6
2 − 𝑒

+
(ii)62 ≤ 0.12, 𝑤6

5 −𝑤
6
3 − 𝑒

+
(ii)53 ≤ 0.05, 𝑤6

5 − 2𝑤6
2 +𝑤

6
4+

𝑒−(iii)524 ≥ 0, 𝑤6
1 + 𝑒

−
(iv)1 ≥ 0.15,

𝑤6
5 + 𝑒

−
(iv)5 ≥ 0.11, 𝑤6

1 − 𝑒
+
(iv)1 ≤ 0.20, 𝑤6

5 − 𝑒
+
(iv)5 ≤ 0.16,

𝑤6
2

𝑤6
4
+ 𝑒−(v)24 ≥ 0.6,

𝑤6
1 +𝑤

6
2 +𝑤

6
3 +𝑤

6
4 +𝑤

6
5 +𝑤

6
6 = 1, 𝑤6

𝑗 ≥ 0 for all 𝑗.
𝑒−(i)35, 𝑒

−
(ii)62, 𝑒

−
(ii)53, 𝑒

+
(ii )62, 𝑒

+
(ii)53, 𝑒

−
(iii)524, 𝑒

−
(iv)1, 𝑒

−
(iv)5, 𝑒

+
(iv)1, 𝑒

+
(iv)5, 𝑒

−
(v)24 ≥ 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (39)

We solved the above NLPM with the help of LINGO 19.0 and obtained the optimal objective value, 𝛾 = −0.01, with the weight vector that optimal,
𝑤6 = (0.15, 0.1527, 0.1, 0.2545, 0.11, 0.2327), and 𝑒−(i)35 = 0.01 and 𝑒−(ii)62 = 𝑒−(ii)53 = 𝑒+(ii)62 = 𝑒+(ii)53 = 𝑒−(iii)524 = 𝑒−(iv)1 = 𝑒−(iv)5 = 𝑒+(iv)1 = 𝑒−(iv )5 = 𝑒−(v)24 = 0,
re the corresponding optimal deviation values where the concern concordance/discordance indexes is 𝐼

6
= 0.2634. We calculated all the 𝐼

𝑡
values

and found that 𝐼
20

generated the maximum value 1.7360. From this, we can conclude that 𝑃20 = {A4,A1,A3,A2} is the best order of the suppliers
under inconsistent weight information, which is significantly different from the result obtained for consistent weight information. The cause of this
difference is the distinct weight distribution to the six criteria, for choice structures that are both consistent and inconsistent.

5.3. Comparative analysis

We have done a comparative study with various other approaches, such as the LIF-QUALIFLEX and fuzzy-TOPSIS method, to validate the results
14

of the proposed algorithm.
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𝑑

The LIF-QUALIFLEX approach is first considered. Since LIVIFN ratings to solve MCDM problem of finding the best supplier. For this we first
convert the LIVIFN into LIFN ratings. Since the LIVIFN rating of a option A𝑖 as per 𝑥𝑗 criterion that proved as 𝐴𝑖𝑗 = (𝑠𝜃𝑖𝑗 , 𝑠𝜙𝑖𝑗 ) = ([𝑠−𝜃𝑖𝑗 , 𝑠

+
𝜃𝑖𝑗
], [𝑠−𝜙𝑖𝑗

, 𝑠+𝜙𝑖𝑗
]).

The LIFN rating 𝐴𝑖𝑗 is defined as:

𝐴𝑖𝑗 = (
−
𝑠𝜃𝑖𝑗 ,

−
𝑠𝜙𝑖𝑗 ) =

⎛

⎜

⎜

⎝

𝑠−𝜃𝑖𝑗 + 𝑠
+
𝜃𝑖𝑗

2
,
𝑠−𝜙𝑖𝑗

+ 𝑠+𝜙𝑖𝑗
2

⎞

⎟

⎟

⎠

(40)

The likelihood of a FPR 𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 is calculated in LIFS as follows:

𝐿(𝐴𝛽𝑗 ≥ 𝐴𝛽∗𝑗 ) = max

⎧

⎪

⎨

⎪

⎩

𝑙 − max

⎧

⎪

⎨

⎪

⎩

𝑙.
(𝑙 −

_
𝑠𝜙𝛽∗𝑗 ) −

_
𝑠
𝜃𝛽𝑗

(𝑙 −
_
𝑠𝜃𝛽𝑗 −

_
𝑠
𝜙𝛽𝑗

) + (𝑙 −
_
𝑠𝜃𝛽∗𝑗 −

_
𝑠𝜙𝛽∗𝑗 )

, 0

⎫

⎪

⎬

⎪

⎭

, 0

⎫

⎪

⎬

⎪

⎭

(41)

Next, for each 𝑃𝑡 we determined concordance/discordance index 𝐼
𝑡
, which is shown in Table 7. It is follows that 𝐼

11
(= 5.2004) gives the largest

value, As a result, the following is the best order for the four suppliers: A2 > A4 > A1 > A3, and vector of optimal weight in this case is
𝑤11 = (0.15, 0.066, 0.11, 0.418, 0.11, 0.146). This ranking result is identical to that produced using the LIVIF-QUALIFLEX method for the four options.
As a result, the proposed method and the LIF-QUALIFLEX method produce the same results for ranking of options. Thus, we may conclude that
the proposed method can also be implemented in a LIF environment.

The fuzzy TOPSIS is a next comparative method. The TOPSIS technique determines the shortest distance between alternative and PIS is for
positive ideal solution, as well as the greatest distance between the chosen option and NIS stand for negative ideal solution (Zhu, Shuai, & Zhang,
2020) where 𝐴+ and 𝐴− denote the LIVIF-PIS and LIVIF-NIS respectively, and are defined as follows:

𝐴+ = {
⟨

𝑥𝑗 , [𝑠𝑙 , 𝑠𝑙], [𝑠0, 𝑠0]
⟩

∣ 𝑥𝑗 ∈ 𝑋, 𝑗 = 1, 2,… , 𝑛}, (42)

𝐴− = {
⟨

𝑥𝑗 , [𝑠0, 𝑠0], [𝑠𝑙 , 𝑠𝑙]
⟩

∣ 𝑥𝑗 ∈ 𝑋, 𝑗 = 1, 2,… , 𝑛}. (43)

The weighted distances (Hwang, Yoon, Hwang, & Yoon, 1981), of each alternative from the LIVIF-PIS and NIS are denoted by 𝑑(𝐴𝑖, 𝐴+) and
(𝐴𝑖, 𝐴−) respectively, and calculated as follows:

𝑑(𝐴𝑖, 𝐴+) =

[

1
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𝑛
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𝜂
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𝜂 + (𝑠+𝜑𝑖𝑗 )

𝜂
)
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1
𝜂

(44)

𝑑(𝐴𝑖, 𝐴−) =

[
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𝜂
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]
1
𝜂

(45)

Here 𝜂 is the distance parameter, if 𝜂 = 1, then (44),(45) become the weighted Hamming distances. If 𝜂 = 2, then they reduce to the weighted
Euclidean distances.

In the TOPSIS method, each closeness coefficient 𝐶𝐶𝑖 of the characteristic 𝐴𝑖 for the alternative 𝐴𝑖 is defined by the formula:

𝐶𝐶𝑖 =
𝑑(𝐴𝑖, 𝐴−)

𝑑(𝐴𝑖, 𝐴+) + 𝑑(𝐴𝑖, 𝐴−)
, (46)

where 0 ≤ 𝐶𝐶𝑖 ≤ 𝑙
Then, under the circumstance of incomplete weight information, we created a multiple-objective programming model as follows:

[𝑀4] 𝑚𝑎𝑥{𝐶𝐶1, 𝐶𝐶2,… , 𝐶𝐶𝑚}

𝑠.𝑡 (𝑤1, 𝑤2,… , 𝑤𝑛) ∈ 𝜌.

Using the max–min operator, the model in [M4] can be integrated into the following single-objective programming model:

[𝑀5] max 𝜆
𝑠.𝑡 𝐶𝐶𝑖 ≥ 𝜆, 𝑖 = 1, 2,… , 𝑚,

(𝑤1, 𝑤2,… , 𝑤𝑛) ∈ 𝜌

Consider to the same problem of selection of four suppliers under incomplete choices information. We used [M5] with 𝜂 = 2 (the weighted
Euclidean distance) to create the following NLPM based on the LIVIF decision matrix 𝐷̃𝑙 in Table 4:

max 𝜆

𝑠.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

𝐶𝐶𝑖 ≥ 𝜆, 𝑖 = 1, 2, 3, 4,
𝑤3 ≥ 𝑤5, 0.12 ≥ 𝑤6 −𝑤2 ≥ 0.08, 𝑤5 −𝑤2 ≥ 𝑤2 −𝑤4,
0.20 ≥ 𝑤1 ≥ 0.15, 0.16 ≥ 𝑤5 ≥ 0.11, 𝑤2 ≥ 0.6 ⋅𝑤4

𝑤1 +𝑤2 +𝑤3 +𝑤4 +𝑤5 +𝑤6 = 1,

⎫

⎪

⎪

⎬

⎪

⎪
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⎩
𝑤𝑗 ≥ 0 for all 𝑗.

⎭
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where

𝐶𝐶1 = (1.7970𝑤1 + 2.5773𝑤2 + 2.8256𝑤3 + 1.7109𝑤4 + 2.8880𝑤5 + 3.7465𝑤6)0.5∕

[(2.6573𝑤1 + 1.8429𝑤2 + 1.8651𝑤3 + 3.4051𝑤4 + 1.6536𝑤5 + 1.0808𝑤6)0.5

+ (1.7970𝑤1 + 2.5773𝑤2 + 2.8256𝑤3 + 1.7109𝑤4 + 2.8880𝑤5 + 3.7465𝑤6)0.5]

𝐶𝐶2 = (1.9593𝑤1 + 1.8108𝑤2 + 3.9566𝑤3 + 3.8066𝑤4 + 1.3823𝑤5 + 2.5164𝑤6)0.5∕

[(2.4875𝑤1 + 2.6243𝑤2 + 0.8173𝑤3 + 1.0091𝑤4 + 3.3527𝑤5 + 1.9455𝑤6)0.5

+ (1.9593𝑤1 + 1.8108𝑤2 + 3.9566𝑤3 + 3.8066𝑤4 + 1.3823𝑤5 + 2.5164𝑤6)0.5]

𝐶𝐶3 = (1.9314𝑤1 + 3.1585𝑤2 + 2.0968𝑤3 + 1.5807𝑤4 + 3.8001𝑤5 + 2.8955𝑤6)0.5∕

[(2.5002𝑤1 + 1.4694𝑤2 + 2.3536𝑤3 + 2.9166𝑤4 + 1.0301𝑤5 + 1.6986𝑤6)0.5

+ (1.9314𝑤1 + 3.1585𝑤2 + 2.0968𝑤3 + 1.5807𝑤4 + 3.8001𝑤5 + 2.8955𝑤6)0.5]

𝐶𝐶4 = (3.4664𝑤1 + 2.0136𝑤2 + 3.2262𝑤3 + 3.0216𝑤4 + 2.4241𝑤5 + 2.6921𝑤6)0.5∕

[(1.4446𝑤1 + 2.7773𝑤2 + 1.6307𝑤3 + 1.5742𝑤4 + 2.2226𝑤5 + 1.9122𝑤6)0.5

+ (3.4664𝑤1 + 2.0136𝑤2 + 3.2262𝑤3 + 3.0216𝑤4 + 2.4241𝑤5 + 2.6921𝑤6)0.5].

We solved the above NLPM for each closeness coefficient 𝐶𝐶𝑖, which deliver the values 𝐶𝐶1 = 0.5575, 𝐶𝐶2 = 0.6009, 𝐶𝐶3 = 0.5387 and
𝐶𝐶4 = 0.5775. The optimal objective value is 0.6009 with the optimal weight vector (0.15, 0, 0.66, 0, 0.11, 0.08). Hence, the best order of the four
suppliers is 𝑃11 = (A2,A4,A1, 𝐴3).

We consider the case of the weighted Hamming distances with 𝜂 = 1. The optimal value is 𝐶𝐶2 = 0.6138 with optimal weight vector
𝑤2 = (0.15, 0, 0.66, 0, 0.11, 0.08). The corresponding other objective values are 𝐶𝐶1 = 0.5702, 𝐶𝐶3 = 0.5440, 𝐶𝐶4 = 0.5914. The best ranking is
11 = (A2,A4,A1,A3). So in both cases (Euclidean distances and Hamming distances) we achieved the same result.

Hence we conclude that, the LIVIF-QUALIFLEX method, LIF-QUALIFLEX method and fuzzy-TOPSIS method produce the same order ranking
or the alternatives. One the one hand, the proposed method proves to be more effective in addressing problems where the number of criteria
ignificantly exceeding the number of alternatives. This is because the computational results are derived based on permutations of alternatives in
he proposed method, resulting in the integration of all criteria into a specific concordance/discordance index. The proposed method is highly
uitable for situations where the number of criteria significantly exceeds the number of alternatives. Certainly, real-world examples of such
hallenges encompass decision-making scenarios related to public or government policies, the management of energy or natural resources, high-
isk decision activities, problems characterized by extensive stakeholder involvement, and other complex or large-scale decisions that require the
valuation of multiple criteria for a restricted number of alternatives. High-risk perceivers are frequently characterized as narrow categorizers,
s they tend to restrict their choices to a few secure alternatives. In contrast, low-risk perceivers are often labeled as broad categorizers because
hey have a tendency to select from a much wider range of alternatives. In high-risk scenarios, the proposed QUALIFLEX-based model serves as a
aluable analytical tool for navigating multiple criteria decision-making processes. Decision makers who are highly involved tend to employ a more
xtensive set of criteria for the meticulous evaluation of a limited number of alternatives. In contrast, those who are less involved utilize simpler
ecision criteria to assess a broader range of alternatives. Hence, it is highly fitting to employ the suggested QUALIFLEX-based model in situations
haracterized by a high level of involvement. In essence, the suggested QUALIFLEX-based method proves valuable for addressing complex group
ecision-making problems characterized by comprehensive criteria and a restricted set of alternatives within the LIVIFS context.

.4. Sensitivity analysis

In this section we analyzed the proposed method by applying two types of test criterion. To apply the first test criteria we changed the values
f the alternative 𝐴1 with respect to all criterion as shown in the following table:

𝑐1 [2.3451, 4][1.7186, 3.9378]
𝑐2 [2, 3.8745][1.8650, 2.5000]
𝑐3 [2.5, 4][1.5453, 2.8007]
𝑐4 [1.5051, 3.0727][2.6636, 4.1213]
𝑐5 [2.5643, 4.5217][1.7593, 2.8564]
𝑐6 [2, 5.2814][1, 2.4636]

After solving the corresponding linear programming problems, we obtained the optimal value
_
𝐼
11

= 3.18146 with weight vector 𝑤11 =
0.15, 0.066, 0.11, 0.418, 0.11, 0.146) for the same permutation 𝑃11 as that of the original problem and hence the ranking of alternatives (A2,A4,A1,A3)
s the same as for the original problem. From this we can conclude that, by changing the information of one of the alternative, does not effect
he original order of the alternatives. For the second test criteria we converted the given problem into three subproblems. In each subproblem
e considered the set of three alternatives, i.e {A1,A2,A3} for the first subproblem, {A1,A2,A4} for the second and {A2,A3,A4} for the third

ubproblem. In each case there are six permutations, each of which is distinct from those of the original problem. Considering the first subproblem,
e apply the proposed algorithm as follows:
𝑃 1 = ( , , ), 𝑃 2 = ( ,A ,A ), 𝑃 3 = (A ,A ,A ), 𝑃 4 = (A ,A ,A ), 𝑃 5 = (A ,A ,A ), 𝑃 6 = (A ,A ,A )
16

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1



Expert Systems With Applications 252 (2024) 124136C. Jana et al.

0

Results of Likelihood of fuzzy preference relations

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6
(𝐴1𝑗 ≥ 𝐴2𝑗 ) 3.9080 5.3596 2.3023 1.5503 6.1678 5.5471
(𝐴1𝑗 ≥ 𝐴3𝑗 ) 3.8316 3.0381 5.1773 4.1002 2.7191 4.2681
(𝐴2𝑗 ≥ 𝐴1𝑗 ) 4.6829 2.6404 5.6977 6.4497 1.8322 2.4529
(𝐴2𝑗 ≥ 𝐴3𝑗 ) 3.9265 1.9786 6.5141 6.5322 1.1685 3.3946
(𝐴3𝑗 ≥ 𝐴1𝑗 ) 4.1684 4.9619 2.8227 3.8998 5.2809 2.6015
(𝐴3𝑗 ≥ 𝐴2𝑗 ) 4.0735 6.0214 1.4859 1.4678 6.8315 4.6054

Results for concordance/discordance indices

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6
𝐼 𝑙𝑗 (A1,A2) −0.0920 1.3596 −1.6977 −2.4497 2.1678 1.5471
𝐼 𝑙𝑗 (A1,A3) −0.1684 −0.9619 1.1773 0.1002 −1.2809 0.2681
𝐼 𝑙𝑗 (A2,A1) 0.6829 −1.3596 1.6977 2.4497 −2.1678 −1.5471
𝐼 𝑙𝑗 (A2,A3) −0.0735 −2.0214 2.5141 2.5322 −2.8315 −0.6054
𝐼 𝑙𝑗 (A3,A1) 0.1684 0.9619 −1.1773 −0.1002 1.2809 −1.3985
𝐼 𝑙𝑗 (A3,A2) 0.0735 2.0214 −2.5141 −2.5322 2.8315 0.6054

Results of the comprehensive concordance/discordance indices

𝐼1 = −0.3339𝑤1 − 1.6237𝑤2 + 1.9937𝑤3 + 0.1827𝑤4 − 1.9446𝑤5 + 1.2098𝑤6

𝐼2 = −0.1869𝑤1 + 2.4191𝑤2 − 3.0345𝑤3 − 4.8817𝑤4 + 3.7184𝑤5 + 2.4206𝑤6

𝐼3 = 0.4410𝑤1 − 4.3429𝑤2 + 5.3891𝑤3 + 5.0821𝑤4 − 6.2802𝑤5 − 1.8844𝑤6

𝐼4 = 0.7778𝑤1 − 2.4191𝑤2 + 3.0345𝑤3 + 4.8817𝑤4 − 3.7184𝑤5 − 3.5510𝑤6

𝐼5 = 0.1499𝑤1 + 4.3429𝑤2 − 5.3891𝑤3 − 5.0821𝑤4 + 6.2802𝑤5 + 0.7540𝑤6

𝐼6 = 0.9248𝑤1 + 1.6237𝑤2 − 1.9937𝑤3 − 0.1827𝑤4 + 1.9446𝑤5 − 2.3402𝑤6

After solving all the corresponding LMP we obtained the maximal value
_
𝐼
3
= 1.65226, with optimal weight vector 𝑤3 = (0.15, 0.066, 0.506, 0.022,

.11, 0.146). Similarly for the subproblem 2 and subproblem 3 we obtained the optimal values
_
𝐼
6

= 1.56186 with weight vector 𝑤6 =
(0.2, 0.066, 0.11, 0.368, 0.11, 0.146) and

_
𝐼
5
= 1.65819, with weight vector 𝑤5 = (0.2, 0.066, 0.11, 0.368, 0.11, 0.146) respectively.

In the first case A2 is the most desirable alternative as in the original problem, but in the remaining cases the alternative A4 is the leading one.

5.5. Practical implication

In linguistic intuitionistic fuzzy set theory, a linguistic intuitionistic fuzzy number is defined by both a linguistic membership degree and
linguistic non-membership degree. Whereas, in linguistic interval-valued intuitionistic fuzzy set theory, a linguistic interval-valued intuitionistic
fuzzy number is defined by both linguistic interval-valued membership degree and linguistic interval-valued non-membership degree, in order to
address more effectively the imperfections inherent in subjective human judgment, particularly when contrasted with uncertain environment. To
assess the applicability of decision-making tools in an linguistic interval-valued intuitionistic fuzzy environment, a case study on supplier selection
is conducted for validation purposes, the work attempt linguistic interval-valued intuitionistic fuzzy (LIVIF) QUALIFLEX approach with a likelihood-
based comparison method, LIF-QUALIFLEX method and TOPSIS method (Zhu et al., 2020). The LIVIF-QUALIFLEX method, LIF-QUALIFLEX method
and TOPSIS method produce the same order ranking for the alternatives. The consistency of these methods is demonstrated by the same ranking
order of candidate suppliers obtained in the aforementioned three decision-making approaches. Practitioners are recommended to embrace the
methodological pathways outlined here for the purpose of achieving effective supplier selection. Practitioners are encouraged to engage in group
decision-making processes by incorporating subjective evaluation criteria within the linguistic interval-valued intuitionistic fuzzy domain. This
approach helps address real-world decision-making problems effectively. The selection of experts for participation in decision-making groups should
be done judiciously to ensure a thoughtful and informed decision-making process.

6. Conclusions

New decision-making techniques are proposed in this work that are based on likelihood comparisons and the QUALIFLEX method in a LIVIF
scenario. We started with upper and lower likelihood before proposing likelihood for LIVIFN comparison. We spoke about several positive aspects of
the suggested likelihood technique. In the LIFS environment, we presented the concordance/discordance index, and calculated the terms using the
likelihood-based comparison principle. Additionally, using the likelihood-based comparison notion and the QUALIFLEX method, built a decision-
making strategy. To demonstrate the use and efficacy of the suggested strategy, presented a real-world decision-making problem involving supplier
selection in a LIVIFS context. Additionally, contrasted the suggested strategy with other ways, demonstrating that it is well suited to handle
decision-making issues in a LIVIF scenario. Investigated is the proposed approach’s sensitivity.

The contributions of the aforementioned research are outlined below.
1. Due to the advantages of LIVIFS, an attempt has been made to apply the likelihood-based QUALIFLEX method with linguistic interval-valued

intuitionistic fuzzy information to address a supplier selection problem. The consistent ranking order of candidate suppliers obtained through the
three decision support tools, namely the LIF-QUALIFLEX method, LIVIF-TOPSIS method, and LIVIF-QUALIFLEX method, supports their reliability
in a linguistic interval-valued intuitionistic fuzzy setting. While a variety of decision support tools based on the concept of LIVIFS can be thoroughly
17

articulated from existing literature, the application of these tools in the context of supplier selection has seldom been explored.
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2. The unique characteristic of the decision support tools utilized in the current study lies in their incorporation of the importance (weight)
assigned by decision-makers. In many decision-making approaches, decision-makers are often assumed to have equal weights, implying that their
opinions are considered equally important.

3. Regarding incomplete and inconsistent preference information, this paper developed a linear programming model to determine the optimal
weight vector and the optimal comprehensive concordance/discordance indices. This approach aims to obtain the priority order of the alternatives.
Moreover, a comprehensive nonlinear programming model was formulated to tackle challenges associated with incomplete and inconsistent
information regarding criterion importance.

4. The practicality and applicability of the proposed method were validated through its implementation in addressing the real-world problem
of selecting an appropriate supplier. As illustrated in the comparative analysis, the proposed method does not necessitate complicated computation
procedures but still produces a reasonable and credible solution.

The limitations of the aforementioned research are outlined below.
1. The study has presented a conceptual illustrative example, specifically an empirical case study, rather than a real-world application. It is

essential to investigate the validity and accuracy of these decision-making modules.
2. Another concern is related to the operational feasibility of these methodologies. The availability of decision-making information and the

uncertain data required for the application of these methodologies seem to pose potential barriers to operational feasibility.
3. Over time, decision-makers should be encouraged to gather this type of data by conducting discussions and surveys facilitated by the selected

decision-making group. This practice is crucial not only for the application of these methodologies but also for making important managerial
decisions for their organization.

Future research will extend the proposed likelihood-based QUALIFLEX method to render it suitable for a decision environment of linguistic
interval valued Pythagorean fuzzy set (LIVPFS) and linguistic interval valued Q-rung orthopair fuzzy set (LIV-q-ROFS) respectively. LIVPFS and
LIV-q-ROFS can be applied to work with circumstances that have a high degree of uncertainty. On the other hand, we will combine the granular
computing techniques with our developed method to address practical MCDM problems, such as the evaluation of green supply chain initiatives.
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