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Abstract

Ordered Weighted Averaging (OWA) operators are some of the most widely
used aggregation functions in classic literature, but their application to fuzzy
numbers has been limited due to the complexity of defining a total order in
fuzzy contexts. However, the recent notion of admissible order for fuzzy num-
bers provides an effective method to totally order them by refining a given
partial order. Therefore, this paper is devoted to defining OWA operators for
fuzzy numbers with respect to admissible orders and investigating their prop-
erties. Firstly, we define the OWA operators associated with such admissible
orders and then we show their main properties. Afterward, an example is
presented to illustrate the applicability of these AOWA operators in linguis-
tic decision-making. In this regard, we also develop an admissible order for
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trapezoidal fuzzy numbers that can be efficiently applied in practice.

Keywords: OWA operators, fuzzy numbers, admissible orders, ranking for
fuzzy numbers.

1. Introduction

The ordered weighted averaging (OWA) operator came to light by Yager
[25] to solve multicriteria decision-making problems. In this regard, Yager’s
idea was to provide a family of functions whose decision lies between the case
in which all the criteria must be satisfied (“and” operators), and the case in5

which the satisfaction of any criteria is enough (“or” operators). To do so,
Yager defined the OWA operators as a normalized weighted average where
the input vector is decreasingly ordered. Consequently, their coefficients are
not associated directly with particular attributes, but with the magnitude of
the inputs [25].10

Many extensions and applications of OWA operators can be found in the
decision-making literature and they continue being investigated and applied
nowadays [4, 12, 24]. The classical OWA operator, as well as most of its
extensions, typically operates with real numbers [8, 13, 21], but this approach
may not be convenient for capturing people’s perceptions in practice. Indeed,15

in real-world scenarios, experts usually feel much more comfortable providing
their opinions using linguistic terms, which are much closer to their way of
thinking [16]. To model linguistic information, the fuzzy linguistic approach
has emerged as a methodology able to model the uncertainty inherent to
linguistic terms by means of fuzzy linguistic variables [26]. In particular, one20

of the most popular approaches consists of the use of fuzzy numbers, which
are a specific class of fuzzy sets, to account for the vagueness and imprecision
inherent in our perceptions [7]. Even though there are some attempts to
define OWA operators for fuzzy numbers in the specialized literature [11, 18],
all of them neglect a fundamental aspect: in the definition of the classical25

OWA operator, a total order relationship, such as the one defined on the real
line, is essential for its good performance.

For instance, some proposals [27, 28] rely on the fuzzy extension princi-
ple [23] to define a fuzzy OWA operator. However, this presents two major
shortcomings. On the one hand, it is hard to determine if the thus-defined30

OWA operators result in ordering the inputs and then computing the corre-
sponding weighted average [28]. On the other hand, it has been shown that
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such OWA operators may return the same result as an OWA operator based
on a partial order, implying that some fuzzy numbers cannot be compared
and, therefore, the domain of definition of such an OWA operator is not the35

entire family of fuzzy numbers [29].
Other proposals define the fuzzy OWA operator using an index-based

ranking method for fuzzy sets [18]. However, such ranking methods are
not based on a total order defined on the set of fuzzy numbers and usually
require computing a certain scalar index [16]. The main disadvantage of the40

use of ranking indexes is that different fuzzy numbers could be completely
indistinguishable, as it would occur with any other ranking method based
on a non-antisymmetric binary relation. This is fatal for the OWA operator
because, in the case of two different inputs having the same ranking index,
it is not possible to decide which one goes first in the aggregation, resulting45

in two different possible values for the output of the OWA aggregation.
Additionally, another extended shortcoming of fuzzy OWA operators in

the literature is the fact that they are exclusively defined for a specific class of
fuzzy numbers such as trapezoidal fuzzy numbers (TrFN for short) or discrete
fuzzy numbers [11, 28], which limits its applicability in other domains.50

Therefore, to address all these limitations this proposal aims to define an
OWA operator for fuzzy numbers based on the notion of admissible order
introduced by Zumelzu et al. [30], which provides a total order relation that
makes it possible, with a solid mathematical base, to univocally rank any
family of elements within this class of fuzzy sets [30]. Hence, our goal is to55

obtain an OWA operator with the following characteristics:

• The inputs can be any family of fuzzy numbers, without being con-
strained to any specific subfamily;

• It is well-defined, i.e., for each input there is one and only one possible
output;60

• It performs an actual ordered weighted average with respect to the
corresponding order;

• The traditional properties of OWA operators for real numbers are also
satisfied by the OWA operator for fuzzy numbers.

Notice that without a total order relation on fuzzy numbers it is not pos-65

sible to obtain an extension of the OWA operator with these characteristics
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and, until now, the only reasonable total order relation for fuzzy numbers
is the notion of admissible order [30]. Thus, first, we study the necessary
axioms to guarantee that the admissible order-based extension of OWA op-
erators, the so-called Admissible OWA (AOWA) operator, is well-defined.70

Subsequently, we show that AOWA operators satisfy the key properties of
the original OWA operators related to their averaging nature. Additionally,
we introduce a general method to construct admissible orders for TrFNs. On
the one hand, with this method, it is possible to overcome the limitations
of traditional ranking methods and then order TrFNs according to a total75

order that refines the standard partial order for fuzzy numbers. On the other
hand, unlike existing admissible orders [30], with our methodology it is not
necessary to rely on an upper-dense sequence, which is extremely helpful
from the computational point of view. Finally, we illustrate the performance
of the AOWA operator for fuzzy numbers in the resolution of a linguistic80

multi-criteria decision problem which is modeled using TrFNs.
The remainder of this paper is as follows. In Section 2, we introduce

some basic notions regarding admissible orders and fuzzy numbers. Section
3 introduces a huge family of admissible orders for TrFNs. We then define
the OWA operators associated with admissible orders in Section 4, and we85

investigate their main properties in Section 5. In Section 6, we develop an
illustrative example in which fuzzy OWA operators are applied in linguistic
decision-making. Finally, in Section 7 we provide some final comments and
conclusions.

2. Preliminaries90

In this section, we present some definitions and results related to OWA
operators, fuzzy numbers, and admissible orders.

2.1. OWA operators

The purpose of an aggregation function is to summarize several inputs
to a singular output regarding the monotonicity in each variable and certain95

boundary conditions [9]. A special type of an n–ary aggregation function on
[0, 1] is the ordered weighted averaging (OWA) operator, whose definition is
given as follows.

Definition 2.1. [25] Let ω = (ω1, . . . , ωn) be a weight vector, i.e., ωi ∈ [0, 1],
for all i ∈ {1, . . . , n}, and

∑n
i=1 ωi = 1. The OWA operator associated to ω
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is the mapping OWAω : [0, 1]n → [0, 1] defined by

OWAω(x1, . . . , xn) =
n∑

n=1

ωix(i) (1)

where x(i) denotes the i-th largest value among x1, . . . , xn.

Example 2.1. The mappings Min(n),Max(n) : [0, 1]n → [0, 1], given by100

Min(n)(x) = min{x1, . . . , xn} and Max(n)(x) = max{x1, . . . , xn} are OWA
operators whose weight vectors are, respectively, (0, . . . , 0, 1) and (1, 0, . . . , 0).
The arithmetic mean M (n) : [0, 1]n → [0, 1], given by M (n)(x) = (1/n) ·∑n

i=1 xi is an OWA operator with weight vector (1/n, . . . , 1/n).

2.2. Fuzzy numbers105

Fuzzy subsets of R extend the classic idea of a subset by considering
characteristic functions whose codomain can be any subset of [0, 1]. Formally,

Definition 2.2 ([19]). A fuzzy subset of R is a mapping A : R → [0, 1]. In
addition, for α ∈]0, 1]:

1. the support of A is the set supp(A) = {x ∈ R : A(x) > 0};110

2. the α-cut (or α-level set) of A is the set Aα = {x ∈ R : A(x) ≥ α}.

The most interesting subset of fuzzy sets is the class of fuzzy numbers,
which extends the idea of real numbers.

Definition 2.3. [14, 30]1 A fuzzy number A : R → [0, 1] is a fuzzy subset of
R that satisfies the following conditions:115

1. A is normal (i.e. there exists x ∈ R such that A(x) = 1).

2. The support of A is bounded.

3. The α-cuts of A are closed intervals for all α > 0.

From now on, F(R) will denote the family of all fuzzy numbers.

1Recently, there has been a debate about this notion (see [20]). In this paper, we recall
the definition used in [14].
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Therefore, the following statements hold:120

1. Real numbers can be seen as fuzzy numbers [19].

2. A fuzzy number is upper semicontinuous [2].

3. If A is a fuzzy number with A(r) = 1 for a certain r ∈ R, then A is
non-decreasing on (−∞, r] and non-increasing on [r,+∞) [14].

Below, we introduce some examples of fuzzy numbers.125

Example 2.2. Given a closed and bounded real interval I, the lower bound
will be denoted by I and the upper bound by I, i.e. I = [I, I]. The family of
all closed and bounded real intervals will be represented by I(R), i.e.

I(R) = {[I, I] : I, I ∈ R and I ≤ I}.

Note that each I ∈ I(R) can be identified with the fuzzy number Ĩ : R →
[0, 1] defined by,

Ĩ(x) =

{
1, if x ∈ I,

0, otherwise.
(2)

Because of its shape, Ĩ is called a rectangular fuzzy number whenever I < I
(see the number Ĩ in Figure 1). Moreover, if I = I = r ∈ R, the resulting

fuzzy number Ĩ = r̃, so-called crisp fuzzy number, represents the characteris-
tic function of the real number r (see the fuzzy number r̃ in Figure 1), i.e.,

r̃(x) =

{
1, if x = r,

0, otherwise.
(3)

CFN will denote the family of all crisp fuzzy numbers.

Figure 1: Plots of a crisp fuzzy number (left) and a rectangular fuzzy number (right).
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Figure 2: Plots of some fuzzy numbers.

Example 2.3. T ∈ F(R) is said to be a TrFN if its membership function is
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defined by

T (a/b/c/d)(x) =



x− a

b− a
, if a ≤ x < b,

1, if b ≤ x ≤ c,

d− x

d− c
, if c < x ≤ d,

0, if x < a or x > d,

for some a ≤ b ≤ c ≤ d. A TrFN T will be denoted by T (a/b/c/d) (see the fuzzy
number E plotted in Fig. 2). Note that if b = c, then the TrFN will have a
triangular shape (see the fuzzy number A plotted in Fig. 2). Also, if a = b and

c = d, then TrFN will have a rectangular shape (see fuzzy number Ĩ plotted130

in Fig. 1). Hereinafter, T stands for the set of all the TrFN whose support
is contained in [0, 1], i.e., T =

{
T (a/b/c/d) : 0 ≤ a ≤ b ≤ c ≤ d ≤ 1

}
.

The classic algebraic operations defined in the real line can be extended
to fuzzy numbers as follows.

Definition 2.4. [14, 19] Let A,B ∈ F(R). Define A⊕B,A⊙B,A∨B,A∧B ∈135

F(R) by

(A⊕B)(z) = sup
x+y=z

min{A(x), B(y)} (4)

(A⊙B)(z) = sup
x·y=z

min{A(x), B(y)} (5)

(A ∨B)(z) = sup
max{x,y}=z

min{A(x), B(y)} (6)

(A ∧B)(z) = sup
min{x,y}=z

min{A(x), B(y)} (7)

for all z ∈ R.

Let us define the partial order ‘≤’ on F(R) as A ≤ B ⇐⇒ A(x) ≤
B(x) for all x ∈ R. Then, the operations ⊕ and ⊙ defined above satisfy
commutativity, associativity and ⊙ subdistributes over ⊕, i.e., A⊙(B⊕C) ≤140

(A⊙B)⊕ (A⊙C) (see [14, 19]). In addition, these operations present some
desirable properties when dealing with crisp fuzzy numbers.

Proposition 2.1. [19] Let A,B ∈ F(R) and r̃ ∈ CFN . Then:

8



1. A⊙ 1̃ = A;

2. r̃ ⊙ (A⊕B) = (r̃ ⊙ A)⊕ (r̃ ⊙B).145

2.3. Admissible orders on fuzzy numbers

Given a set X, an order on X is a binary relation R which satisfies
reflexivity, anti-symmetry and transitivity. Moreover, if, for any x1, x2 ∈ X,
x1Rx2 or x2Rx1, R is said to be a total order. Otherwise, R is called a partial
order.150

In this context, Bustince et al. [3] introduced the admissible orders for
closed subintervals of [0, 1] as total orders that refine the Kulisch and Mi-
ranker (KM) order [15] restricted to this set of intervals. This notion can
be easily generalized for I(R) [30]. Formally, a total order ≤I(R) is called an

admisible order on I(R), if, for all I, J ∈ I(R), I ≤I(R) J whenever I ≤I(R)
KM J ,

where

I ≤I(R)
KM J ⇐⇒ I ≤ J and I ≤ J. (8)

for all I, J ∈ I(R).
De Miguel et al. [5] defined admissible orders on n-tuples to construct

OWA operators for a special class of fuzzy sets. Finally, Zumelzu et al. [30]
defined admissible orders on fuzzy numbers as follows.

Definition 2.5 (Admissible order [30]). Let Z ⊆ F(R) be a class of fuzzy155

numbers, and consider a partial order ⪯ on Z. Then a total order ⊴ on Z
is called an admisible order w.r.t. ⪯, if for all A,B ∈ Z, A ⊴ B whenever
A ⪯ B.

A specific admissible order on fuzzy numbers was constructed under the
notion of an upper-dense sequence.160

Definition 2.6. [22] Let S = (αi)i∈N be a sequence in (0, 1]. S is said to be
upper-dense if, for every point x ∈ (0, 1] and any ϵ > 0, there exists i ∈ N
such that αi ∈ [x, x+ ϵ).

Example 2.4. The following sequences are upper-dense sequences in (0, 1]:

1. The sequence Sb = (dbi)i∈N defined by

dbi = 2− 2i− 1

2⌈log2(i)⌉
,

9



where ⌈t⌉ denotes the value of the ceiling function at real number t,165

i.e., the smallest integer greater than or equal to t. Some terms of this
sequence are db1 = 1, db2 = 1/2 = 0.5, db3 = 3/4 = 0.75, db4 = 1/4 =
0.25, db5 = 7/8 = 0.875, db6 = 5/8 = 0.625, db7 = 3/8 = 0.375, db8 =
1/8 = 0.125, db9 = 15/16 = 0.9375, . . .

2. Let Sm = (mi)i∈N be the sequence defined by mi = max{j ∈ N :170

j(j+1)
2

≤ i}, i ∈ N. Then, the sequence St = (ti)i∈N defined by ti =
i
mi

− mi−1
2

, i ∈ N is upper-dense. In this case, the first terms of St are

as follows: 1
1
, 1
2
, 2
2
, 1
3
, 2
3
, 3
3
, 1
4
, 2
4
, 3
4
, 4
4
, ...

Using upper-dense sequences, it is possible to state a decomposition for-
mula for fuzzy numbers.175

Proposition 2.2. [30] Let A,B ∈ F(R) and S = (αi)i∈N be an upper-dense
sequence in (0, 1]. Then, A = B if and only if Aαi

= Bαi
, for all i ∈ N.

The above result guarantees that the following value is well-defined.

Definition 2.7. [30] Let A,B ∈ F(R) and S = (αi)i∈N be an upper-dense
sequence in (0, 1]. Then, define m(A,B) by

m(A,B) =

{
min{i ∈ N : Aαi

̸= Bαi
}, if A ̸= B,

0, otherwise.

Given two fuzzy numbers A,B ∈ F(R), the value m(A,B) allows defining
a binary relation w.r.t. a certain order for intervals.180

Definition 2.8. [30] Let S = (αi)i∈N be an upper-dense sequence in (0, 1]
and let ⪯ be an order on I(R). Then, define the binary relation ⊴S on F(R)
by

A⊴S B ⇐⇒ A = B or Aαm(A,B)
<I(R) Bαm(A,B)

. (9)

The following theorem states a sufficient condition on the interval order
⪯ to guarantee that the corresponding relation ⊴S is an admissible order on
F(R) w.r.t. the Klir and Yuan (KY) partial order ⪯KY [14] defined as

A ⪯KY B ⇐⇒ A ∧B = A (10)

for A,B ∈ F(R).
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Theorem 2.1. [30] Let S = (αi)i∈N be an upper-dense sequence in (0, 1]. If
⪯ is an admissible order, then ⊴S is an admissible order on F(R) w.r.t. the
KY partial order.

In other words, any admissible order ⊴S refines the order ≤KY on F(R).185

Hereinafter, we will abuse the notation and call admissible order on F(R) to
any admissible order w.r.t. the KY order.

The following result provides a characterization of the KY order through
the KM ordering of α-cuts.

Proposition 2.3. [14] Given two fuzzy numbers A,B ∈ F(R), the following190

assertions are equivalent:

1. A ⪯KY B;

2. A ∨B = B;

3. Aα ≤I(R)
KM Bα for each α ∈ (0, 1].

Example 2.5. Firstly, it is observed that the fuzzy numbers A and B, C and195

D, E and F , G and H, D and H from Example 2.3 are not comparable w.r.t.
to KY partial order. However, consider an upper-dense sequence S = (αi)i∈N
in (0, 1] and the admissible orders ≤I(R)

Lex1, ≤
I(R)
Lex2 and ≤I(R)

XY , given by [30]:

1. [I, I] ≤I(R)
Lex1 [J, J ] ⇔ I < J or (I = J and I ≤ J); and

2. [I, I] ≤I(R)
Lex2 [J, J ] ⇔ I < J or (I = J and I ≤ J); and200

3. [I, I] ≤I(R)
XY [J, J ] ⇔ I+I < J+J or (I+I = J+J and I−I ≤ J−J),

then for any P,Q ∈ F(R), we have that ⊴S
Lex1, ⊴

S
Lex2 and ⊴S

XY given by:

P ⊴S
Lex1 Q ⇐⇒ P = Q or Pαm(P,Q)

≤I(R)
Lex1 Qαm(P,Q)

(11)

P ⊴S
Lex2 Q ⇐⇒ P = Q or Pαm(P,Q)

≤I(R)
Lex2 Qαm(P,Q)

(12)

P ⊴S
XY Q ⇐⇒ P = Q or Pαm(P,Q)

≤I(R)
XY Qαm(P,Q)

(13)
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are admissible orders on F(R). Therefore, if S is any sequence of the Exam-
ple 2.4, it follows that

B ⊴S
Lex1 A and B ⊴S

Lex2 A and B ⊴S
XY A

D ⊴S
Lex1 C and D ⊴S

Lex2 C and D ⊴S
XY C

F ⊴S
Lex1 E and F ⊴S

Lex2 E and F ⊴S
XY E

H ⊴S
Lex1 G and H ⊴S

Lex2 G and H ⊴S
XY G

D ⊴S
Lex1 G and D ⊴S

Lex2 G and D ⊴S
XY G

H ⊴S
Lex1 D and D ⊴S

Lex2 H and D ⊴S
XY H

Notice that admissible orders generated by distinct upper-dense sequences
may produce different rankings, even under the same interval admissible or-
ders. Let us consider the sequence S∗

t = (ti+1)i∈N, where ti, i ∈ N is defined as
in Example 2.4. The first terms of S∗

t are as follows: 1
2
, 2
2
, 1
3
, 2
3
, 3
3
, 1
4
, 2
4
, 3
4
, 4
4
, ....205

Under these conditions, it is easy to see that G⊴S∗
t

Lex1 D and A⊴S∗
t

Lex2 B.

3. Admissible orders for trapezoidal fuzzy numbers

This section aims to present a general method to define admissible orders
for the class of TrFNs. To do so, we use as a basis an interval admissible order
≤I(R), and we will see that when we are restricted to TrFNs it is not necessary210

to rely on upper-dense sequences on (0, 1] to define admissible orders.
First, note that if T (a/b/c/d) ∈ T and α ∈ (0, 1], then each α-cut is deter-

mined as follows:

Aα = [a+ α(b− a), d− α(d− c)].

Bellow, we use this fact to show that any TrFN T (a/b/c/d) can be univocally
determined by any two different α-cuts:

Lemma 3.1. Let T (a/b/c/d) ∈ T and denote T
(a/b/c/d)
α1 = [x1, y1], T

(a/b/c/d)
α2 =

[x2, y2] for α1 ̸= α2, α1, α2 ∈ (0, 1]. Then,

a =
α2x1 − α1x2

α2 − α1

, b =
(1− α1)x2 − (1− α2)x1

α2 − α1

c =
(1− α1)y2 − (1− α2)y1

α2 − α1

, d =
α2y1 − α1y2
α2 − α1

.

12



Proof. The definition of α-cut yields:

x1 = a+ α1(b− a), x2 = a+ α2(b− a),

y1 = d− α1(d− c), y2 = d− α2(d− c).

Therefore,

b− a =
x1 − x2

α1 − α2

, d− c =
y1 − y2
α2 − α1

,

and, subsequently,

a = x1 − α1
x1 − x2

α1 − α2

=
α1x2 − α2x1

α1 − α2

b = a+
x1 − x2

α1 − α2

=
(1− α2)x1 − (1− α1)x2

α1 − α2

d = y1 + α1
y1 − y2
α2 − α1

=
α2y1 − α1y2
α2 − α1

c = d− y1 − y2
α2 − α1

=
(1− α1)y2 − (1− α2)y1

α2 − α1

.

The strength of the previous lemma relies on the possibility of charac-215

terizing any TrFN by using only two distinct α-cuts. Let us state this in a
formal way.

Lemma 3.2. Let A,B ∈ T be two TrFN satisfying that Aα1 = Bα1 and
Aα2 = Bα2 for α1 ̸= α2, α1, α2 ∈ (0, 1], then A = B.

Proof. This result follows immediately from the previous Lemma. If the α1-220

cuts and the α2-cuts of A and B are equal, then the values of the parameters
a, b, c and d for A and B must be also equal, and thus A = B.

Finally, the above result can be used to define admissible orders for TrFN
w.r.t. a given admissible order for intervals.

Theorem 3.1. Let T (a/b/c/d), T (a′/b′/c′/d′) ∈ T and consider an admissible
order for intervals ≤I(R)

∗ . Then, the binary relation ⊴∗ on TrFN defined by:

T (a/b/c/d) ⊴∗ T
(a′/b′/c′/d′) ⇐⇒

a = a′, b = b′, c = c′, d = d′ or

[b, c] <
I(R)
∗ [b′, c′] or

b = b′, c = c′, [a+b
2
, c+d

2
] <

I(R)
∗ [a

′+b′

2
, c

′+d′

2
]

is an admissible order on T .225
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Proof. Consider an upper-dense sequence (α̃i)i∈N on (0, 1]. Also, consider the
upper dense sequence S = (αi)i∈N defined by:

αi =


1 if i = 1
1
2

if i = 2

α̃i−2 if i ≥ 3

At this stage, we can apply Theorem 2.1 to obtain an admissible order ⊴S

on F(R) associated to S and ≤I(R)
∗ .

Now, let us analyze the restriction of the admissible order ⊴S to the class
of TrFN T . Note that for T (a/b/c/d), T (a′/b′/c′/d′) ∈ T we have

m(T (a/b/c/d), T (a′/b′/c′/d′)) ≤ 2.

Indeed, if m(T (a/b/c/d), T (a′/b′/c′/d′)) ≥ 3, then the α-cuts corresponding to

α1 = 1 and α2 = 1
2
would be equal, i.e., T

(a/b/c/d)
1 = T

(a′/b′/c′/d′)
1 and

T
(a/b/c/d)
1
2

= T
(a′/b′/c′/d′)
1
2

, which, by Lemma 3.2, implies T (a/b/c/d) = T (a′/b′/c′/d′)
230

and thus m(T (a/b/c/d), T (a′/b′/c′/d′)) = 0, which is contradictory with the as-
sumption of m(T (a/b/c/d), T (a′/b′/c′/d′)) ≥ 3. This leads to the following mutu-
ally disjoint scenarios:

• m(T (a/b/c/d), T (a′/b′/c′/d′)) = 0. This is equivalent to a = a′, b = b′, c =
c′, d = d′;235

• m(T (a/b/c/d), T (a′/b′/c′/d′)) = 1, which holds if and only if [b, c] <
I(R)
∗ [b′, c′]

or [b′, c′] <
I(R)
∗ [b, c];

• m(T (a/b/c/d), T (a′/b′/c′/d′)) = 2, which means that b = b′, c = c′ and

[a+b
2
, c+d

2
] <

I(R)
∗ [a

′+b′

2
, c

′+d′

2
] or [a

′+b′

2
, c

′+d′

2
] <

I(R)
∗ [a+b

2
, c+d

2
].

Hence, the restriction of ⊴S to the class of TrFN T is precisely the binary240

relation defined in the statement of this theorem, which completes the proof.

Note that admissible orders for fuzzy numbers require checking the order
of many α-cuts according to a dense sequence S that obviously has infinite
terms. In practice, this can be computationally unfeasible. However, using245

the previous theorem we can construct admissible orders for TrFNs that only
require a few comprobations on the 1-cuts and the 1

2
-cuts.
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Example 3.1. To show the superiority of the admissible orders for TrFN
defined using this method, let us reflect on the admissible order ⊴XY defined
on T associated with the interval admissible order ≤I(R)

XY . Below, we compare
the ranking provided by ⊴XY with the one provided by the notion of magnitude
[1], which is a ranking index for TrFNs defined as

Mag(T (a/b/c/d)) =
a+ 5b+ 5c+ d

12
, ∀ T (a/b/c/d) ∈ T .

Let us consider the following TrFNs, which are graphically represented in
Figure 3.

T1 = T (0.3/0.5/0.6/0.8)

T2 = T (0.3/0.45/0.65/0.8)

T3 = T (0.4/0.5/0.6/0.7)

T4 = T (0.4/0.45/0.65/0.7).

A simple computation reveals that the magnitudes of these TrFNs are equal,

Figure 3: Graph of the TrFNs T1, T2, T3 and T4

i.e., Mag(T1) = Mag(T2) = Mag(T3) = Mag(T4) = 0.55. This implies that
they are completely indistinguishable from the point of view of their magni-250

tudes and, consequently, it would not be possible to define an OWA operator
using such a ranking index. Meanwhile, assume the admissible orders ⊴XY ,
⊴Lex1 and ⊴Lex2 respectively associated with the interval admissible orders

≤I(R)
XY , ≤

I(R)
Lex1

and ≤I(R)
Lex2

. A few comparisons lead to T2▷XY T4▷XY T1▷XY T3,
T3 ▷Lex1 T1 ▷Lex1 T4 ▷Lex1 T2, and T2 ▷Lex2 T4 ▷Lex2 T1 ▷Lex2 T3. This em-255

phasizes the versatility of the proposed method. As final notes, let us remark
that these TrFN are not even comparable when using the partial order ⪯KY.
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4. OWA operators for fuzzy numbers

This section applies the idea of admissible order to define OWA operators
for fuzzy numbers.260

Firstly, let us make some previous considerations. Regarding the weight
vector, this paper considers that they are given as crisp fuzzy numbers. Oth-
erwise, in case of an arbitrary fuzzy number is used as a weight vector, the
associated OWA operator would present some undesired behaviors, i.e. some
classical properties of the original OWA operator could not be satisfied.265

Definition 4.1. A vector ω̂ = (ω̃1, . . . , ω̃n) is called a weight vector of crisp
fuzzy numbers, whenever, for all j ∈ {1, 2, .., n}:

1. ω̃j is a crisp fuzzy number such that ωj ∈ [0, 1],

2. ω̃1 ⊕ · · · ⊕ ω̃n = 1̃.

Example 4.1. ω̂ = (ω̃1, ω̃2, ω̃3, ω̃4) such that ωj = j · 10−1, for all j ∈270

{1, 2, 3, 4}, is a weight vector of crisp fuzzy numbers.

Furthermore, since the goal of this paper is to define OWA operators for
fuzzy numbers, it is necessary to guarantee some monotonicity conditions
with respect to addition and multiplication. This was discussed for the case
of addition in [30] and here also is included the case of multiplication by275

scalars.

Definition 4.2. An admissible order ≤I(R) is said to be compatible with the
addition and the positive scalar multiplication if for any I1, I2, J1, J2 ∈ I(R)
and r > 0, I1 <

I(R) I2 and J1 <
I(R) J2 implies:

1. [I1 + J1, I1 + J1] <
I(R) [I2 + J2, I2 + J2]; and280

2. [I1 · r, I1 · r] <I(R) [I2 · r, I2 · r].

Definition 4.3. Let ⊴ be an admissible order on F(R). ⊴ is said to be com-
patible with the addition (⊕) and positive crisp fuzzy number multiplication
(⊙) if, for any A1, A2, B1, B2 ∈ F(R) and r̃ ∈ CFN , then A1◁A2, B1◁B2,
and r > 0 implies:285

1. A1 ⊕B1 ◁ A2 ⊕B2; and

2. A1 ⊙ r̃ ◁ A2 ⊙ r̃.
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Proposition 4.1. Under the same hypotheses of Theorem 2.1, the order ⊴S

is compatible with the addition and the positive crisp fuzzy number multi-
plication if the order ≤I(R) is compatible with the addition and the positive290

scalar multiplication.

Proof. The proof is analogous to the one shown in [30](prop. III.3).

Example 4.2. The admissible orders ⊴S
Lex1 and ⊴S

XY showed in Example
2.5 are compatible with the addition and the positive crisp fuzzy number mul-
tiplication.295

Now, OWA operators for fuzzy numbers based on admissible orders may
be defined as follows.

Definition 4.4. Let ω̂ = (ω̃1, . . . , ω̃n) be a weight vector of crisp fuzzy num-
bers. Also consider an admissible order ⊴ which is compatible with the ad-
dition and the positive crisp fuzzy number multiplication. Then, the AOWA
operator associated to ⊴ and ω̃ is the mapping AOWAω̂

⊴ : F(R)n → F(R)
defined by

AOWAω̂
⊴(A1, . . . , An) =

(
ω̃1 ⊙ A(1)

)
⊕ · · · ⊕

(
ω̃n ⊙ A(n)

)
(14)

for all A1, . . . , An ∈ F(R), where A(i) stands for i-th largest element in
{A1, ..., An} according to the order ⊴.

Note that Definition 2.4 guarantees that the AOWA operator is well-300

defined.

Example 4.3. The mappings Min⊴,Max⊴,Mω̂ : F(R)n → F(R) defined by

1. Min⊴(A1, . . . , An) = A(n),

2. Max⊴(A1, . . . , An) = A(1), and

3. Mω̂(A1, . . . , An) =
(
ω̃1 ⊙ A(1)

)
⊕ · · · ⊕

(
ω̃n ⊙ A(n)

)
305

are AOWA operators for ω̂∗ = (0̃, 0̃, . . . , 1̃), ω̂∗ = (1̃, 0̃ . . . , 0̃), and ω̂ =(
1̃/n, . . . , 1̃/n

)
respectively, i.e.:

1. Min⊴ = AOWAω̂∗
⊴ ,

2. Max⊴ = AOWAω̂∗

⊴ , and

3. Mω̂ = AOWAω̂
⊴.310
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5. Main properties of AOWA operators on fuzzy numbers

In this section, some classic properties of crisp OWA operators are shown
in the case of AOWAs. So, in view of the original Yager’s idea of this op-
erator, we show that AOWA operators on fuzzy numbers are symmetric,
monotonic, idempotent, and limited by the minimum and maximum opera-315

tors. Further, other properties of OWA operators, like shift-invariance and
positive homogeneity, are also demonstrated for AOWAs.

Firstly, it is shown that AOWA operators satisfy the monotonicity prop-
erty. Beforehand, we clarify the relationship between monotonicity and com-
patibility of ⊴ with respect to addition and positive crisp fuzzy number320

multiplication.

Lemma 5.1. Let A,B,A1, A2, B1, B2 ∈ F(R) and r̃ ∈ CFN . Consider an
admissible order ⊴ compatible with addition and positive crisp fuzzy number
multiplication. Then, it holds that:

1. If A ⊴ B, then r̃ ⊕ A ⊴ r̃ ⊕B;325

2. If A ⊴ B and r ≥ 0, then r̃ ⊙ A ⊴ r̃ ⊙B;

3. If A1 ⊴ B1 and A2 ⊴ B2, then A1 ⊕ A2 ⊴ B1 ⊕B2.

Proof. Directly from the compatibility of ⊴ with the addition and the posi-
tive crisp fuzzy number multiplication.

Consequently, we obtain the monotonicity of AOWA operators with re-330

spect to the order ⊴.

Theorem 5.1. Under the same hypotheses of Definition 4.4. Let (A1, . . . , An) ∈
F(R)n and (B1, . . . , Bn) ∈ F(R)n be two ordered vectors, i.e. Ai ⊵ Aj and
Bi ⊵Bj for each i < j. If Bk ⊵ Ak, for each k then

AOWAω̂
⊴ (A1, . . . , An) ⊴ AOWAω̂

⊴(B1, . . . , Bn).

Proof. Since A(j) ⊴ B(j), for all 1 ≤ j ≤ n, then, by Lemma 5.1(2), (r̃j ⊙
A(j)) ⊴ (r̃j ⊙B(j)), for all 1 ≤ j ≤ n. Hence, by Lemma 5.1(3),

(r̃1 ⊙ A(1))⊕ · · · ⊕ (r̃n ⊙ A(n)) ⊴ (r̃1 ⊙B(1))⊕ · · · ⊕ (r̃n ⊙B(n)),

i.e., AOWAω̂
⊴(A1, . . . , An) ⊴ AOWAω̂

⊴(B1, . . . , Bn).
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Corollary 5.1. Under the same hypotheses of Definition 4.4. Let A1, . . . , An ∈
F(R) and B1, . . . , Bn ∈ F(R). If Bk ⊵ Ak, for each k then

AOWAω̂
⊴ (A1, . . . , An) ⊴ AOWAω̂

⊴(B1, . . . , Bn).

Proof. Let Â = (A(1), . . . , A(n)) and B̂ = (B(1), . . . , B(n)). Then it can be

easily shown that Âi ⊴ B̂i.

It is also possible to obtain a monotonicity result for AOWA operators335

with respect to the order ≤ as follows.

Lemma 5.2. The partial order ≤ on fuzzy numbers is compatible with addi-
tion and positive crisp fuzzy numbers multiplication.

Proof. Directly from Equations (4) and (5).

Theorem 5.2. Under the same hypotheses of Definition 4.4. Let Aj, Bj ∈
F(R), and Aj ≤ Bj, for all j ∈ {1, ..., n}, then

AOWAω̂
⊴(A1, . . . , An) ≤ AOWAω̂

⊴(B1, . . . , Bn).

Proof. Analogous to the proof of Corollary 5.1, considering the Lemma 5.2.340

Notice that the previous results show that if the monotonicity with re-
spect to the order ⊴ presented in Corollary 5.1 is required, then such order
must be compatible with addition and positive fuzzy numbers multiplication.
This paper considers that such monotonicity is a key property for OWA oper-345

ators and for this reason we included the compatibility axioms in the AOWA
definition.

In addition, averaging operators must provide an output between the
minimum and the maximum. The following result states that this important
property of means defined on [0, 1] is also maintained for AOWA operators.350

Theorem 5.3. The least and the greatest AOWA operators, w.r.t. the ad-
missible order ⊴, are Min⊴ and Max⊴ , respectively. Formally, for any tuple
(A1, . . . , An) ∈ F(R)n

Min⊴(A1, . . . , An)⊴ AOWAω̂
⊴(A1, . . . , An)

⊴Max⊴ (A1, . . . , An),

for every n-ary weight vector ω̂.
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Proof. Let (A1, . . . , An) ∈ F(R)n and consider an n-ary weight vector ω̂.
First, let us prove that the AOWA operator is lower than the maximum
operator. Since A(n) ⊴ . . .⊴A(1), by Lemma 5.1(2) ω̃j⊙A(j) ⊴ ω̃j⊙A(1) for all

j ∈ {1, ..., n}. Then, by Lemma 5.1(3), AOWAω̂
⊴(A1, . . . , An) = (ω̃1⊙A(1))⊕

· · ·⊕(ω̃n⊙A(n)) ⊴ (ω̃1⊙A(1))⊕· · ·⊕(ω̃n⊙A(1)) = AOWAω̂
⊴(A(1), . . . , A(1)) =

A(1), which is the maximum operator. Therefore, AOWAω̂
⊴(A1, . . . , An) ⊴

Max⊴ (A1, . . . , An).A similar argument leads to the inequality

Min⊴ (A1, . . . , An) ⊴ AOWAω̂
⊴(A1, . . . , An).

Theorem 5.4. The least and the greatest AOWA operators, w.r.t. the par-
tial order ≤, are Min⊴ and Max⊴ , respectively. Formally, for any tuple
(A1, . . . , An) ∈ F(R)n

Min⊴(A1, . . . , An) ≤ AOWAω̂
⊴(A1, . . . , An)

≤ Max⊴ (A1, . . . , An),

for every n-ary weight vector ω̂.

Proof. Analogous to the previous result, considering Lemma 5.2.

The following statement points out that AOWAs are symmetric, i.e., in-355

variant under permutations. This property is fundamental because the initial
idea of OWA operators presumes its satisfaction.

Theorem 5.5. Under the same hypotheses of Definition 4.4,

AOWAω̂
⊴(A1, . . . , An) = AOWAω̂

⊴(Aσ(1), . . . , Aσ(n)),

for all permutation σ : {1, . . . , n} → {1, . . . , n} and for any tuple (A1, . . . , An) ∈
F(R)n.

Proof. Directly from Definition 4.4.360

Another expected property for averaging aggregation operators is the
idempotency. Let us introduce a previous lemma.

Lemma 5.3. Let A ∈ F(R) and r̃, s̃ ∈ CFN . Then,

A⊙ (r̃ ⊕ s̃) = (A⊙ r̃)⊕ (A⊙ s̃) .
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Proof. For any z ∈ R, it follows that

[A⊙ (r̃ ⊕ s̃)] (z) =[A⊙ r̃ + s](z)

= sup
x·y=z

min{A(x), r̃ + s(y)}

= sup
x·(r+s)=z

min{A(x), r̃ + s(r + s)}

= sup
xr+xs=z

A(x)

= sup
xr+xs=z

min{A(x), A(x)}

= sup
xr+xs=z

min

{[
sup

x·u=xr
min{A(x), r̃(u)}

]
,[

sup
x·v=xs

min{A(x), s̃(v)}
]}

= sup
xr+xs=z

min {(A⊙ r̃)(xr), (A⊙ s̃)(xs)}

= [(A⊙ r̃)⊕ (A⊙ s̃)] (z).

Corollary 5.2. Let A ∈ F(R) and r̃1, . . . , r̃n ∈ CFN . Then,

A⊙ (r̃1 ⊕ · · · ⊕ r̃n) = (A⊙ r̃1)⊕ · · · ⊕ (A⊙ r̃n) .

Finally, we show that AOWA operators are idempotent.

Theorem 5.6. Let AOWAω̂
⊴ be the operator defined in Definition 4.4. Then,

AOWAω̂
⊴(A, . . . , A) = A,

for all A ∈ F(R).365

Proof. It holds that

AOWAω̂
⊴(A, . . . , A) = (ω̃1 ⊙ A)⊕ · · · ⊕ (ω̃n ⊙ A) (by Def. 4.4)

= (A⊙ ω̃1)⊕ · · · ⊕ (A⊙ ω̃n) (by the commutativity of ⊙)

= A⊙ (ω̃1 ⊕ · · · ⊕ ω̃n) (by Cor. 5.2)

= A⊙ 1̃ (by Def. 4.1)

= A (by Prop. 2.1(1)).

Hence AOWA operators are idempotent.
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Next, it is shown that the properties describing the stability of aggregation
functions with respect to changes in the used scale, i.e., shift-invariance and
homogeneity, remain valid for the AOWA operators.

Theorem 5.7. In the hypothesis of Definition 4.4,

AOWAω̂
⊴(A1 ⊕ λ̃, . . . , An ⊕ λ̃) = AOWAω̂

⊴(A1, . . . , An)⊕ λ̃,

for all λ̃ ∈ CFN and for any tuple (A1, . . . , An) ∈ F(R)n.370

Proof. Proposition 2.1(2) guarantees that ω̃j ⊙
(
A(j) ⊕ λ̃

)
=

(
ω̃j ⊙ A(j)

)
⊕(

ω̃j ⊙ λ̃
)
, for all j ∈ {1, ..., n}. Considering Equation 14, Propositions 2.1(1)

and associativity of ⊕ and Corollary 5.2, we have:

AOWAω̂
⊴(A1 ⊕ λ̃, . . . , An ⊕ λ̃) =

=
[
ω̃1 ⊙

(
A(1) ⊕ λ̃

)]
⊕ · · · ⊕

[
ω̃n ⊙

(
A(n) ⊕ λ̃

)]
=

[(
ω̃1 ⊙ A(1)

)
⊕

(
ω̃1 ⊙ λ̃

)]
⊕ · · · ⊕

[(
ω̃n ⊙ A(n)

)
⊕
(
ω̃n ⊙ λ̃

)]
=

[(
ω̃1 ⊙ A(1)

)
⊕ · · · ⊕

(
ω̃n ⊙ A(n)

)]
⊕
[(

ω̃1 ⊙ λ̃
)
⊕ · · · ⊕

(
ω̃n ⊙ λ̃

)]
=

[(
ω̃1 ⊙ A(1)

)
⊕ · · · ⊕

(
ω̃n ⊙ A(n)

)]
⊕
[
λ̃⊙ (ω̃1 ⊕ · · · ⊕ ω̃1)

]
= AOWAω̂

⊴(A1, . . . , An)⊕ λ̃.

Hence, AOWAω̂
⊴ is shift-invariant.

Theorem 5.8. Under the same hypotheses of Definition 4.4,

AOWAω̂
⊴(λ̃⊙ A1, . . . , λ̃⊙ An) = λ̃⊙ AOWAω̂

⊴(A1, . . . , An),

for all λ̃ ∈ CFN and for any tuple (A1, . . . , An) ∈ F(R)n.

Proof. Commutativity and associativity of⊙ guarantees that ω̃j⊙
(
λ̃⊙ Aj

)
=

λ̃⊙ (ω̃j ⊙ Aj), for all j ∈ {1, ..., n}. Therefore, by Lemma 5.1(2)

AOWAω̂
⊴(λ̃⊙ A1, . . . , λ̃⊙ An) =

[
ω̃1 ⊙

(
λ̃⊙ A(1)

)]
⊕ · · · ⊕

[
ω̃n ⊙

(
λ̃⊙ A(n)

)]
=

[
λ̃⊙

(
ω̃1 ⊙ A(1)

)]
⊕ · · · ⊕

[
λ̃⊙

(
ω̃n ⊙ A(n)

)]
= λ̃⊙

[(
ω̃1 ⊙ A(1)

)
⊕ · · · ⊕

(
ω̃n ⊙ A(n)

)]
= λ̃⊙ AOWAω̂

⊴(A1, . . . , An).

Hence, AOWAω̂
⊴ is homogeneous.
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6. Admissible orders for trapezoidal fuzzy numbers and an appli-
cation to multi-criteria decision making375

This section proposes an illustrative example related to sustainability in
which the AOWA operators are used in multi-criteria decision-making. To do
so, we start by introducing ELICIT (Extended Comparative Linguistic Ex-
pressions with Symbolic Translation) information, which relies on the fuzzy
linguistic approach [26] to model the linguistic information provided by ex-380

perts. Since ELICIT information induces a bijection between the linguistic
expressions and the set of TrFNs T , we will apply the novel construction
method introduced in Section 3 to generate admissible orders on T . Finally,
we show the feasibility of AOWA operators by conducting a case study.

6.1. ELICIT information385

From a theoretical point of view, ELICIT expressions are generated by
a context-free grammar that models comparative linguistic expressions such
as “between good and very good” or “at least good” [16]. Formally, ELICIT
information relies on the 2-tuple linguistic model [17], which was intro-
duced to precisely manipulate the linguistic values by representing them as390

a (si, α) ∈ S := {s0}× [0, 0.5)∪{s1}× [−0.5, 0.5)∪{s2}× [−0.5, 0.5)∪ . . .∪
{sg−1}× [−0.5, 0.5)∪{sg}× [−0.5, 0], where si is a linguistic term in the lin-
guistic term set S = {s0, s1, . . . , sg} (g ∈ N even) and α ∈ [−0.5, 0.5[ stands
for the deviation of the fuzzy membership function of the 2-tuple expression
with respect to the membership function of the term si. The main feature395

of the 2-tuple linguistic approach is that any 2-tuple linguistic expression
may be univocally remapped into the real interval [0, g] using the bijection
∆−1 : S → [0, g] defined as ∆−1

S (si, α) = i+ α, ∀ (si, α) ∈ S [17].
Even though the 2-tuple linguistic model succeeds at modeling linguistic

expressions by using the fuzzy linguistic approach, it fails at dealing with the400

hesitancy between different linguistic terms. For this reason, Labella et al.
[16] proposed ELICIT information as a generalization of the 2-tuple approach
that improves its flexibility when modeling hesitation. Formally, an ELICIT
expression is denoted as [si, sj]γ1,γ2 , where si, sj ∈ S , i ≤ j are two 2-tuple
terms and γ1, γ2 are two parameters that ensure that there is no information405

loss when manipulating the ELICIT expression [7]. Note that any ELICIT
expression may be univocally remapped into a TrFN [7]:
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Proposition 6.1 ([7]). Let S be the set of all the ELICIT values. Then,

the mapping ζ : T → S defined as:

ζ(T (a/b/c/d)) = [s1, s2]γ1,γ2 ,

where

s1 = ∆S(gb), γ1 = a−max

{
b− 1

g
, 0

}
,

s2 = ∆S(gc) and γ2 = d−min

{
c+

1

g
, 1

}
is a bijection.

In order to adapt OWA operators to ELICIT information, for a real num-
ber ω ∈ [0, 1], let us consider the associated membership function ω̃ : [0, 1] →
[0, 1] defined as

ω̃(x) =

{
1 if x = ω

0 otherwise
∀ x ∈ [0, 1].

In this case, for a weight vector ω̂ = (ω̃1, ω̃2, ..., ω̃n), n ∈ N, a family of
ELICIT values T (a1/b1/c1/d1), ..., T (an/bn/cn/dn) may be aggregated according
to an AOWA operator as follows:

AOWAω̂
⊴

(
T (a1/b1/c1/d1), ..., T (an/bn/cn/dn)

)
=

= T (
∑m

i=1 ωia(i)/
∑m

i=1 ωib(i)/
∑n

i=1 ωic(i)/
∑n

i=1 ωid(i))

where T (a(i),b(i),c(i),d(i)) is the i-th largest value in T (a1/b1/c1/d1), ..., T (an/bn/cn/dn)

according to a certain admissible order⊴. Note that the construction method410

for deriving admissible orders for TrFNs introduced in Section 3 allows in-
ducing a total order for ELICIT values.

6.2. Case study

Sustainability aims for a regenerative production process that minimizes
adverse outcomes and exploits the source material as much as possible [10]. In415

the implementation process of a sustainable production model, it is necessary
to make decisions based on experts’ recommendations that may be vague or
imprecise. In this case, we consider the fast food company EasyLunch, that
desires to introduce a new sustainability policy among the following:
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• A1 ∼ Use electric vehicles for deliveries.420

• A2 ∼ Replace disposable plastic cutlery with reusable steel cutlery.

• A3 ∼ Install solar panels in all the restaurants.

• A4 ∼ Replace the natural gas heating system with an electric heat
pump.

In order to select the best alternative, the company wants to consider its C1 ∼
Environmental, C2 ∼ Social, and C3 ∼ Economical impact [6] and, conse-
quently, they ask an expert to evaluate the different alternatives according
to these criteria by using the linguistic term set

S = {s0 ∼ Very inadequate, s1 ∼ Inadequate,

s2 ∼ Slightly inadequate, s3 ∼ Irrelevant,

s4 ∼ Slightly adequate,

s5 ∼ Adequate, s6 ∼ Very adequate} .

Therefore, the expert provides her opinion about the suitability of each alter-
native according to the above-mentioned criteria using comparative linguistic
expressions. The corresponding decision matrix is as follows:

[(s3, 0.0), (s3, 0.0)]0.0,0.0 [(s0, 0.0), (s2, 0.0)]0.0,0.0 [(s2, 0.0), (s4, 0.0)]0.0,0.0
[(s2, 0.0), (s5, 0.0)]0.0,0.0 [(s0, 0.0), (s5, 0.0)]0.0,0.0 [(s0, 0.0), (s0, 0.0)]0.0,0.0
[(s0, 0.0), (s6, 0.0)]0.0,0.0 [(s2, 0.0), (s6, 0.0)]0.0,0.0 [(s3, 0.0), (s5, 0.0)]0.0,0.0
[(s2, 0.0), (s5, 0.0)]0.0,0.0 [(s0, 0.0), (s4, 0.0)]0.0,0.0 [(s5, 0.0), (s5, 0.0)]0.0,0.0

 ,

where the item in the i-th row and j-th column corresponds to the evalu-
ation of the alternative Ai under the criteria Cj. Note that, in spite of its
notation, preference values such as [(s0, 0.0), (s1, 0.0)]0.0,0.0 stand for the lin-
guistic comparative expression less than inadequate, whereas values such as
[(s1, 0.0), (s3, 0.0)]0.0,0.0 correspond to the expression between inadequate and
irrelevant. Using the ELICIT framework, these preferences are transformed
into TrFN, obtaining the following decision matrix:

T =


T (0.33/0.5/0.5/0.67) T (0.0/0.0/0.33/0.5) T (0.17/0.33/0.67/0.83)

T (0.17/0.33/0.83/1.0) T (0.0/0.0/0.83/1.0) T (0.0/0.0/0.0/0.17)

T (0.0/0.0/1.0/1.0) T (0.17/0.33/1.0/1.0) T (0.33/0.5/0.83/1.0)

T (0.17/0.33/0.83/1.0) T (0.0/0.0/0.67/0.83) T (0.67/0.83/0.83/1.0)


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Following the initial idea used by Yager to apply OWA operators in
MCDM problems [25], we assume that the final score of the alternative should
depend on how much it satisfies all the criteria. Therefore, we use the afore-
mentioned AOWA operator associated with the weights ω̂ = (0̃.5, 0̃.3, 0̃.2) to
aggregate, for each alternative, the rating of the criteria. Note that, for the
TrFNs in the matrix T , the following holds:

T1,3 ⊵XY T1,1 ⊵XY T1,2

T2,1 ⊵XY T2,2 ⊵XY T2,3

T3,3 ⊵XY T3,2 ⊵XY T3,1

T4,3 ⊵XY T4,1 ⊵XY T4,2.

It must be highlighted that ⊴XY is a total order constructed according to the425

procedure developed in Section 3 and thus the order in which these values
are aggregated using the AOWA does not depend on the applied sorting
algorithm.

Consequently, the TrFNs obtained after using the AOWAω̂
⊴XY

are as fol-
lows. 

T (0.18/0.32/0.55/0.72)

T (0.08/0.17/0.67/0.83)

T (0.22/0.35/0.92/1.0)

T (0.38/0.52/0.8/0.97)

,

and the corresponding ELICIT version is
[(s2,−0.1), (s3, 0.3)]0.03,0.0
[(s1, 0.0), (s4, 0.0)]0.08,0.0
[(s2, 0.1), (s6,−0.5)]0.03,0.0
[(s3, 0.1), (s5,−0.2)]0.03,0.0

 .

Here, it should be remarked that when making the aggregation, this AOWA
operator prioritizes the highest (according to the order) rating of the alter-430

natives in any criteria, in the same way as the crisp OWA operator with
weights (0.5,0.3,0.2). In other words, an alternative is considered to have a
good overall performance if it has a very good performance for any of the
criteria.

Finally, we can use the ELICIT XY-order induced by ⊴XY on the above435

matrix to conclude that A4 ≻ A3 ≻ A1 ≻ A2 (see Fig. 4).
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Figure 4: Membership functions of the final ELICIT ratings for the alternatives when
using XY-order

7. Conclusions

The definition of a reasonable ordering method for fuzzy numbers has
been an open problem for many years. However, the recently introduced
notion of admissible order for fuzzy numbers provides a total order relation440

that allows their ranking. In this paper, we have applied this admissible
order idea to extend OWA operators, which is a classic family of aggregation
functions that, as we have shown in this paper, need a total order relation
to be well-defined. In this perspective, we have carried out a deep study
regarding the necessary axioms required to define such an OWA operator445

from admissible orders on fuzzy numbers. In addition, we have shown that
the classic properties of OWA operators for crisp numbers remain valid in the
fuzzy numbers domain. Finally, we have illustrated that our proposal can be
easily applied to properly solve decision-making problems under uncertain
environments. Additionally, we have provided a generic method to define450

admissible orders on TrFNs from admissible orders for intervals. The main
advantage of this methodology is the fact that it does not need to compare
α-cuts according to an upper-dense sequence, unlike in the already proposed
admissible orders [30].

For future studies, we will investigate the extension of OWA operators455

to interval-valued fuzzy numbers. This would allow for a more comprehen-
sive handling of uncertainty, as interval-valued fuzzy numbers can capture a
wider range of possibilities. Additionally, we will focus on the application
of the concept of admissible order to broaden the scope of other aggregation
operators into the domain of fuzzy numbers, such as the Sugeno and Cho-460

quet integrals. Finally, from the application point of view, we will study the
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integration of AOWA operators into big data analytics and machine learning
algorithms to enhance data fusion, feature selection, and model combination
in large and complex datasets.
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[16] A. Labella, R. M. Rodŕıguez, and L. Mart́ınez, “Computing with com-
parative linguistic expressions and symbolic translation for decision
making: ELICIT information,” IEEE Transactions on Fuzzy Systems,
vol. 28, no. 10, pp. 2510–2522, 2019.535
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