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Abstract. Dynamic Instance Activation (DIA) is a newly developed data-driven
classification algorithm. It was designed to minimise the negative impact in situa‐
tions of data incompleteness and inconsistency. To achieve this, the proposed
methodology attempts to maximise the accuracy of the classification process in
a way that does not compromise the overall computational effort.

In this research, DIA was evaluated in the context of Human Activity Recog‐
nition (HAR) for Smart Environments, using datasets consisting of binary sensor
data and their associated class labels (activities). This scenario was selected as an
ideal case study to illustrate the usefulness of DIA considering the wide range of
domains in which HAR is applied. It was also considered adequate given the
simplicity of the data involved in the process, which allows using relatively simple
similarity functions, therefore placing the main focus on DIA’s performance.

In this context, DIA was compared with other state-of-the-art classifiers,
delivering promising results in terms of percentage of activities correctly identi‐
fied over the total. It is important to note that these results could be further
improved if other similarity functions or data representation schemes were
selected.

Keywords: Activity recognition · Classification · Smart environments ·
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1 Introduction

Over the last decade, Human Activity Recognition (HAR) has emerged as a prominent
field of study from which several research areas have directly benefited. These areas
include pervasive, mobile and context-aware computing, surveillance and ambient-
assisted living, to name but a few. This increased attention in the study of HAR has been
driven by two main aspects: technological advances in sensor devices and application-
domain demands [1]. On the one hand, innovations in miniaturization, wired and wire‐
less communications, reduced costs, decrease in energy consumption and increased
capacity have increased the use of sensing devices.
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One particular application domain that has greatly benefited from the advances in
sensor devices is that of Smart Environments, which often require extensive sensor-
based monitoring across a particular scenario [1]. Among all the types of Smart Envi‐
ronments, the scenarios consisting solely of binary sensors can be considered as one of
the simplest. In this regard, Binary Smart Environments (BSEs) provide an ideal frame‐
work in which to test new concepts and procedures that can be applied in the entire HAR
field. The research presented in this paper can be considered as an example of research
within this BSE domain.

The activities performed in BSE scenarios in a certain period of time are described
as sequences of one or more sensors. The status of a sensor is represented as a binary
variable that takes the value 1 if the sensor was activated and 0 otherwise. When these
sequences of sensor statuses (state sequences) and their associated class label (the
activity performed when the sequence of sensor activations occurred) are collected
within a dataset, a data-driven machine learning (ML) algorithm can be used to classify
new sequences of events and identify the activity being performed [1, 2].

In this regard, HAR can be described as a classification problem. As such, it can be
negatively impacted by situations of incompleteness and inconsistency of instances (in
this case, sequences of binary sensor state sequences). On the one hand, a situation of
incompleteness occurs when the data does not contain an exact match for a new instance
that needs to be classified, and therefore a new activity cannot be identified. On the other
hand, a situation of incompleteness arises when a group of similar instances included in
the dataset are labelled with different activities. In this case, when a new instance that
needs to be classified is assessed, the classification algorithm is prone to misclassify the
new activity.

Situations of incompleteness and inconsistency can be considered as opposite: while
the former occurs due to a lack of data, the latter can originate due to an excess of data.
The proposed Dynamic Instance Activation (DIA) approach in the current work balances
these two situations by finding a non-empty set of instances similar to the one being
classified and with minimum inconsistency between them [2]. Hence, only the most
relevant and consistent observations are then aggregated, therefore producing a more
clear output. DIA can be considered as a generalization of the recently-proposed
Dynamic Rule Activation (DRA) algorithm [3], which was designed to work solely on
Extended Belief Rule-Based systems (E-BRB) [4]. DIA removes the need for rule-based
datasets that DRA had, and is able to operate over any type of dataset, provided that a
similarity and an aggregation function are provided.

The following Section illustrates the concepts of incompleteness and inconsistency
of information in a BSE and Sect. 3 details the DIA process. Section 4 briefly introduces
several BSE case studies where DIA and other popular ML classifiers were applied and
in Sect. 5 their results are highlighted. Finally, the conclusions are outlined in Sect. 6.

2 Data Incompleteness and Inconsistency

In a BSE, incomplete and inconsistent situations are likely to occur due to the nature of
the data and the elements related to its generation. For example, a human might perform
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the different tasks of an activity in a different order, timescale or miss an optional task.
Also, a sensor device might be faulty, out of battery, misplaced or not connected to the
network. Any of these situations introduce some noise in the dataset being compiled
which affects the quality of the data. Therefore, an HAR algorithm should be designed
to acknowledge these situations and have the capability to minimise their impact in the
activity recognition process. Two of the undesirable data issues commonly encountered
are incompleteness and inconsistency, which are briefly detailed in an BSE context in
the following Sections.

2.1 Incompleteness

In a BSE, a situation of incompleteness occurs when the sensor state sequence analyzed
to determine the activity performed does not exactly match any instance of the BSE
training dataset. This can be due to some noise which was induced in the data as previ‐
ously mentioned, or due to the activity which was being performed having not been
recorded previously.

For example, in a basic BSE consisting of two sensors placed in a bathroom: one of
them activates when the door is open (Bathroom Door Sensor) and another one when
the toilet is flushed (Toilet Sensor). Consider the dataset presented in Table 1, consisting
of three instances.

Table 1. Example of a basic BSE dataset

Instance number Bathroom door sensor status Toilet sensor status Activity
1 1 1 Use toilet
2 1 0 Use toilet
3 1 1 Clean toilet

Considering the BSE dataset illustrated in Table 1, and the sensor state sequence:
{(Bathroom Door Sensor, 0), (Toilet Sensor, 1)}. Since such a sequence is not repre‐
sented in the BSE dataset, which is being used for training a HAR algorithm, will not
be able to exactly match any instance in order to confidently identify an activity based
on the examples. Hence, the BSE dataset can be considered as incomplete.

2.2 Inconsistency

A situation of inconsistency occurs when the sensor state sequence of an activity needs
to be recognized matches two or more different activities recorded in the dataset. In such
a situation, a HAR algorithm would typically be unable to select between the range of
matched activities.

In the example represented in Table 1, the sensor state sequence {(Bathroom Door
Sensor, 1), (Toilet Sensor, 1)} matches two instances labelled with different activities
(Use Toilet and Clean Toilet). These two instances are said to be inconsistent between
them, and it will be difficult for a HAR algorithm to discern which one of the two activ‐
ities was the one performed.
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The following Section describes the DIA algorithm, which aims to address these two
situations simultaneously, subsequently minimizing their impact.

3 Dynamic Instance Activation

In many classification algorithms, two differentiated steps can be identified: similarity
evaluation and aggregation. In the first step, the similarities between the instances in the
training dataset and the unlabelled instance (the one being classified) are measured in
order to select the most relevant instances from the dataset. In the second step, these
relevant instances and their similarities are aggregated in a certain way in order to assign
a label to the unlabelled instance. In terms of HAR, this process is used to assign an
activity to the unlabelled instance (i.e. sensor state sequence).

The DIA process sits between these two steps. Its main aim is to minimize the
incompleteness and inconsistency in the set of instances obtained after the similarity
evaluation step. Therefore, a more suitable set of instances is aggregated in the subse‐
quent step, eventually increasing the accuracy of the classifier.

As illustrated in Fig. 1, DIA focuses on the set of relevant instances obtained from
the similarity step. It increases the size of this set if incompleteness is found, and reduces
it when a situation of inconsistency occurs. This is how DIA attempts to minimize
incompleteness and inconsistency simultaneously. Once a suitable size of relevant
instances is identified, it can be processed in the final aggregation step.

Fig. 1. The function of DIA embedded in a classification process. Example elements added for
clarification are contained within dotted rectangles.

The increase and reduction process in which DIA is based is achieved by optimizing
one single parameter, named λ. This parameter modifies the original similarities
provided by a similarity function as follows:

S
𝜆
(X, I

i
) = (S(X, I

i
))𝜆 (1)
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where X is the unlabelled sensor state sequence being classified, and Ii is the sensor state
sequence of the ith instance of the BSE dataset. S is a similarity function that retrieves
values within the [0, 1] range when comparing two sensor state sequences, where 0 and
1 denote total dissimilarity and exact match, respectively.

By augmenting the value of λ, the set of relevant instances is reduced as an attempt
to minimize inconsistency. Likewise, as the value of λ is decreased, the set of instances
is enlarged, reducing the effects of incompleteness. For each λ value, an agreement
function is necessary to compare the sets produced against other λ values. In this
research, the agreement function is defined as the highest percentage of instances whose
label is the same over the total set of instances contained in the set. Once a series of λ
values is evaluated, the set of instances with the highest agreement is passed onto the
aggregation step.

DIA allows the modification of the similarity and aggregation functions of the clas‐
sifier where it is being used. Nevertheless, for Eq. 1 to function correctly, the selected
similarity function S needs to return values within the interval [0, 1], as previously
described.

4 Case Studies

The Hamming distance [5, 6], was selected as the similarity function since it is designed
to compare different sequences of binary values. Therefore, it is ideal in order to compare
sensor state sequences for different activities stored in a BSE.

In addition, in order to place the main focus on DIA, the aggregation function selected
was the average of the similarity values (after being tuned by DIA) per each activity
included in the set of instances retrieved by DIA. The activity with the highest average
is chosen as the classification result. Average was selected as it is probably one of the
simplest aggregation functions to work on.

This simple DIA-focused classifier was called Dynamic Instance Activation with
Hamming and Average (DIAHA). Hence, its equivalent without using DIA can be
named HA.

A total of 4 datasets collected from distinct BSEs were inputted into DIA in order
to measure its accuracy, in terms of percentage of instances correctly predicted.

The first activity recognition dataset tested has been widely used in research publi‐
cations and it was presented in [7]. It was compiled in a house environment consisting
of three rooms in which a male participant performed 7 types of ADLs during 25 days.
The information about each one of the 245 observations recorded was generated using
14 binary sensors placed across the home setting.

The second dataset (WSU) utilized in this study was collected from the smart apart‐
ment test-bed of the Washington State University (WSU) by 24 participants who
completed five activities [8]. These activities consisted of the following: Make a phone
call, Wash hands, Cook, Eat and Clean. Activities were annotated by the participants
while performing each activity. In this paper, the original dataset was transformed into
a set of activity binary vectors where each vector was an activity and each component
of the vector represented the sensor state sequence during the performance of the activity.
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As for the rest of the datasets generated from BSEs, a sensor status with a value of one
indicates that the sensor was activated at least once, while a value of zero indicates that
the sensor was not activated. The number of sensors was 39, and can be categorized as:
M01… M26: motion sensor, I01: item sensors for oatmeal, I02: raisins, I03: brown
sugar, I04: bowl, I05: measuring spoon, I06: medicine container sensor, I07: pot sensor,
I08: phone book sensor, D01: cabinet sensor, AD1-A: water sensor, AD1-B: water
sensor, AD1-C: burner sensor, asterisk: phone usage.

The remaining two datasets were generated thanks to the Open Data Initiative (ODI)
for Activity Recognition consortium, which currently consists of researchers from Ulster
University (UK), Luleå Technical University (Sweden), Halmstad University (Sweden),
University of Jaén (Spain), and the University of Twente (The Netherlands) [9]. The
consortium was recently created recognising that the development of novel activity
recognition approaches requires access to high quality, annotated datasets capturing
activity performance through sensor data. Large amounts of efforts have been put in
place internationally for the designing of experiments, collecting and analyzing data.
Nevertheless, the size, diversity and availability of datasets is limited due to significant
financial and time costs associated with running experiments within intelligent envi‐
ronments. There is a general appreciation that further efforts should be made to stream‐
line existing approaches to define common data formats, data collection protocols, data
aggregation platforms and approaches for comparison of analysis techniques. The ODI
has been established to address this, by aiming to create a structured approach to provide
annotated datasets in an accessible format.

The first ODI dataset (ODI_1), consisted of sensor data generated by 4 participants
within the IE Sim intelligent environment simulation tool [10]. Each participant
completed 11 activities 7 times (having a total of 308 observations). These activities
consisted of the following typical household activities: Go to Bed, Use toilet, Watch
Television, Prepare Breakfast, Take Shower, Leave House, Get Cold Drink, Get Hot
Drink, Prepare Dinner, Get Dressed and Use Telephone. These activities were annotated
by the participants, while performing them. The dataset was provided in 2 formats:
MySQL database entry and activity vector. The latter version is the one being utilized
in this study, given that it matches the format of the datasets previously presented. The
second dataset generated by the ODI (ODI_2) consists of the previous dataset with an
additional 4 participants performing the same 11 activities 7 times each (having a total
of 616 observations). Using these four datasets, DIAHA, HA and four popular state-of-
the-art classifiers were tested running a series of 50 10-fold cross-validation (CV) tests.
In each test of the series of 50, the observations in each dataset were randomly permuted.
In this way, the CV tests in each series are based on different training/testing instances.

A selection of some of the most popular classifiers used in literature was used to
compare the performance of HA with and without the DIA boost. The selected classifiers
were: Naive Bayes classifier (NB) [11], Nearest Neighbor (NN) [12], Decision Table
(DT) [13] and Support Vector Machines (SVM) [14].
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5 Results

After running the series of tests specified in Sect. 4, the accuracy of each method, meas‐
ured as the percentage of activities correctly classified over the total, was used to measure
the performance of each classification method used for HAR. Table 2 summarizes the
results obtained from the tests, with the results of the two best classifiers in each dataset
highlighted in bold.

Table 2. Average accuracy results obtained from the 50 10-fold cross-validation tests for all the
classifiers and datasets evaluated.

Method Dataset Mean
Van Kasteren WSU ODI_1 ODI_2

HA 46.53 % 55.03 % 70.04 % 79.72 % 62.83 %
DIAHA 96.26 % 94.51 % 95.38 % 93.28 % 94.85 %
DT 95.19 % 88.22 % 95.24 % 93.26 % 92.08 %
NN 95.94 % 93.40 % 95.01 % 91.65 % 94.00 %
NB 96.78 % 94.18 % 96.37 % 94.04 % 95.34 %
SVM 96.05 % 93.08 % 95.36 % 94.55 % 94.76 %

As illustrated in Table 2, when the HA method is complemented with the DIA
enhancement, its results considerably increase. Note that, even if HA initially produces
considerably worse results than the rest of classifiers, its performance is brought into
competitive levels when it is boosted with DIA. This difference in performance helps
quantifying the amount of incompleteness and inconsistency that the DIA boost is able
to eliminate from a classifier (in this case: HA). In fact, this is the same reason why
DIAHA is slightly better than NN on every occasion: DIAHA is able to detect when a
nearest neighbor is an inconsistent sample, so it always looks to other surrounding
neighbors for a greater agreement level. Such an agreement level is measured by an
agreement function, as explained in Sect. 4.

One of the reasons why DIAHA outperforms DT and SVM in most cases is because
DIA does not produce boundaries within the data set. Therefore, it does not classify
based on the region in which a new observation falls, like DT and SVM do [13, 14]
(although in different ways). On the contrary, DIA can be considered as an NN-based
booster algorithm that dynamically selects the optimal number of neighbors to be
considered when classifying each new observation.

A possible reason why DIAHA was slightly outperformed by NB in many cases is
because NB considers the class probabilities in addition to the distribution of the values
for each feature when producing a classification probability [12]. This suggests that one
of the ways to improve DIA is to assume either or both of these factors in the selection
of the λ parameter. A possible way of doing so is by use of either of those probabilities/
distributions to weight the relevant samples obtained for each λ value and produce a
distribution of class probabilities as a result; as opposed to the single class value being
produced at the moment. Another possibility to improve the results provided by this
research is to use a base classifier slightly more complex than HA. In this situation, DIA
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would have better initial predictions to optimise/boost, instead of those rather low accu‐
racies provided by HA.

Taking these results into consideration, the DIA booster will outperform other
conventional classification methods in situations where the classes of the dataset (in this
case activities to be recognised) cannot be separated in regions, taking their features as
coordinates. This is the reason why DIAHA was able to improve the results of both DT
and SVM. However, it was just slightly better than NN. In this regard, DIA is ideal in
situations where NN already performs well, however, it still misclassifies observations
due to high inconsistency levels.

In summary, it can be considered that the optimal situation for use of DIA is when
similar instances have associated different classes and the dataset classes are not easily
divided into regions by one or more features (in our case, binary sensor values).

It is important to note, however, that despite the simplicity of both the distance and
aggregation functions utilized in HA, the DIAHA algorithm performs better than any
other classifier in the WSU dataset. In addition, it obtains the second best result in the
van Kasteren and ODI_1 dataset and it ranks second when the results from all the datasets
are averaged, only behind the NB method.

6 Conclusion

This research demonstrated the value of the DIA method as an algorithm able to outper‐
form the performance of other classifiers based on similarity and aggregation functions.
Such an enhancement is based on identifying and minimising situations of incomplete‐
ness and/or inconsistency in the data being considered.

In order to illustrate these capabilities, the field of HAR based on binary sensors was
selected as an ideal scenario where the data collected from different sensor devices is
both as simple as possible and prone to be noisy. In such scenarios DIA could be easily
exemplified, as found in the case studies when the performances of HA and DIA-HA
were compared. Although a very simple classifier based on the Hamming distance simi‐
larity and a Weighted Average aggregation was proposed (HA), DIA has a great potential
to be further improved if other more advanced similarity and aggregation functions were
utilized.

Further research will therefore be focused on developing similarity and aggregation
functions specialised on specific features of HAR, such as imbalanced classification or
missing values. The development of algorithms able to include data from different types
of sensors, rather than just from binary sensors, is also an aim to be addressed in the
foreseeable future.
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