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ABSTRACT The research area of ambient assisted living has led to the development of activity recognition
systems (ARS) based on human activity recognition (HAR). These systems improve the quality of life and
the health care of the elderly and dependent people. However, before making them available to end users, it is
necessary to evaluate their performance in recognizing activities of daily living, using data set benchmarks
in experimental scenarios. For that reason, the scientific community has developed and provided a huge
amount of data sets for HAR. Therefore, identifying which ones to use in the evaluation process and which
techniques are the most appropriate for prediction of HAR in a specific context is not a trivial task and
is key to further progress in this area of research. This work presents a systematic review of the literature
of the sensor-based data sets used to evaluate ARS. On the one hand, an analysis of different variables
taken from indexed publications related to this field was performed. The sources of information are journals,
proceedings, and books located in specialized databases. The analyzed variables characterize publications
by year, database, type, quartile, country of origin, and destination, using scientometrics, which allowed
identification of the data set most used by researchers. On the other hand, the descriptive and functional
variables were analyzed for each of the identified data sets: occupation, annotation, approach, segmentation,
representation, feature selection, balancing and addition of instances, and classifier used for recognition.
This paper provides an analysis of the sensor-based data sets used in HAR to date, identifying the most
appropriate dataset to evaluate ARS and the classification techniques that generate better results.

INDEX TERMS Ambient assisted living–AAL, human activity recognition–HAR, activities of daily
living–ADL, activity recognition systems–ARS, dataset.

I. INTRODUCTION
The care of elderly dependent people who have difficul-
ties to effectively develop ADL requires a lot of attention
and dedication, because both the lifestyle and the health
state of these people are affected. The proliferation of
problems associated with dementia in older adults between
74 and 84 years of age [1] constitutes one of the main
public health challenges worldwide. Due to this fact, sec-
ondary problems are generated that affect mental, physi-
cal and mobility capabilities [2]–[4]. In addition, there is
a decline in basic communication skills, such as writing,
speaking and performing simple and complex motor activ-
ities (cooking, taking medications and paying bills, among
others) [5].

Nowadays, there has been a growing need for society
to take care of their health integrating the use of technol-
ogy. HAR enables monitoring of people’s quality of life
and more features and functionalities arise in this area over
time, relying on a wide repertoire of hardware and software
components. The research area of AAL has influenced the
generation of reminder solutions, as a support for people
suffering from neurodegenerative diseases. Proof of this is the
implementation of several solutions in indoor environments,
which capture the data generated from the interactions of
people with an intelligent environment [6]. The objectives
of HAR, based on the analysis of ADL [7], are: 1) the
creation of predictive models that allow the classification of
the normal and abnormal behaviour of individuals [8], 2) to
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provide the necessary tools for the caregiver and the medical
team to identify the activities carried out by them and generate
preventive and corrective measures.

The data collected from heterogeneous sensors deployed
in smart environments or from sensors attached to the
body (wearables), are stored in datasets. In this way, dif-
ferent modalities of data collection have been proposed:
video [9], [10], audio [11], [12] and binary sensors [6], [13]
or portable sensors deployed on the body such as accelerom-
eters and gyroscopes [14], [15], among others. The dataset is
then used to train different machine learning techniques that
predict the behaviour of people with different purposes, such
as sending early warnings to caregivers and mitigating the
risks related to the deterioration of the health of the monitored
people.

Currently there is a large amount of datasets for HAR.
Therefore, identifying which ones to use in the evaluation
process of anARS andwhich techniques (in the phases of pre-
processing, extraction features, feature selection and trans-
formation, classification and post-classification) are the most
appropriate to improve the rates of Activity Recognition (AR)
is a complex task. The exploratory process of identifying the
most appropriate dataset to be used in the evaluation of the
ARS and the identification of the techniques that have been
successfully applied in different AR approaches, in order
to improve accuracy rates, demands considerable time that
the researcher could use on other tasks at the core of their
research.

ARS have emerged thanks to the advancement of sensor
technology, mainly for its ability to understand the situations
that arise in contexts in which humans interact while perform-
ing ADL. As indicated in [16], the practical applications of
ARS are numerous: fall detection [17], gait anomaly detec-
tion [18], energy expenditure estimation [19], [20], stress
detection [21], behaviour monitoring [22] and rehabilita-
tion [23], among others. Therefore, evaluating the reliability
of ARS in terms of their ability to predict the different activ-
ities collected in the dataset is a challenging task.

Initially, ARS were evaluated with adapted laboratory
datasets, which were recorded in controlled conditions.
With the growing development of new ARS, the diffi-
culty of collecting data is increased, since the collection of
data recorded in a particular laboratory does not include
a wide enough variety of activities to evaluate ARS with
sufficient rigor. Given this situation, a series of dataset
benchmarks (Opportunity [24], HASC [25], AmI Reposi-
tory [26], among others) have emerged. Additionally, the
scientific community has created a competition called Eval-
uating AAL Systems Through Competitive Benchmark-
ing – AR (EvAAL-AR) [27]. Both initiatives aim for
researchers: 1) to develop ARS and put them to the test
in the context of experimentation, 2) to submit their pro-
posals to evaluation using different dataset benchmarks,
and 3) to validate their developments in an academic
competition.

Motivated by this research field, the main contribution of
this paper is:

1) The identification of the most recognised datasets by the
academic community regarding HAR, assessing the types of
activity and data, data capture devices, level of occupation,
annotation, context and scenario where the data have been
collected, the duration of the capture and the number of
individuals or inhabitants that generated the activities.

2) A characterisation and analysis of each identified
dataset, which includes: the different classification tech-
niques used for the AR, the segmentation techniques used to
select the data-streaming windows, the feature representation
of the data, the distribution of the dataset used for training
and testing and the quality metrics (F-measure and accuracy)
used in the HAR evaluation, and

3) A series of suggestions in relation to the use of differ-
ent techniques: segmentation, feature representation, feature
selection, balancing or addition of instances and distribution
of datasets for the experimentation processes.

In previous literature, two studies [28], [29] can be identi-
fied, in which six dataset benchmarks are compared to several
ARS. In the first study, a comparative analysis of six bench-
mark datasets (Berkeley [30], USC [31], HMD [32], Oppor-
tunity [24], UTD MHAD [33] and Sport [34]) was made
comparing the F-measure obtained in nine ARS proposals,
including theirs (identifying the classifier or classifiers used
in each proposal). In the second study, a comparative analysis
of 15 proposals (including theirs) was documented, compar-
ing whether they were used or not: six dataset benchmarks
(CASAS [23], VanKasteren [6] and others), two feature
selection techniques (Principal Component Analysis – PCA
and Information Gain – IG) and 12 association approaches
(or classifiers). The proposed approach in this paper is an
original contribution, because there is no benchmark that
has identified the most relevant datasets in terms of HAR.
In this paper, for each one of them, a detailed characterisation
and subsequent analysis is made in relation to the different
classification techniques used for AR including the segmen-
tation techniques used to select the data-streaming windows,
the feature representation of the data, the distribution of the
dataset used for training and testing, and the quality metrics
(F-measure and accuracy) used in the HAR evaluation.

The compilation, documentation and analysis of the afore-
mentioned variables for each dataset and the studies done
between 2003 and 2017 constitute a considerable volume of
papers to be reviewed. This task of evaluating the particular-
ities of each variable analysed in the datasets using scientific
rigor makes this work a valuable and relevant contribution.

The work has been structured in the following way: in
Section II, related research is described. Section III pro-
poses the methodology used for the systematic review of
the literature. In Section IV, the scientometric analysis is
presented and, in Section V, the technical analyses are pre-
sented. Section VI presents the characterisation of each of
the identified datasets and the respective analysis of results.

VOLUME 6, 2018 59193



E. De-la-Hoz-Franco et al.: Sensor-Based Data Sets for HAR–Systematic Review of Literature

Section VII presents the discussion and, finally, Sections VIII
and IX present the conclusions and future work, respectively.

II. RELATED RESEARCH
When consulting related works, it has been observed
that some reviews of the literature analyse very specific
approaches from the point of view of technology (Mode of
Movement Recognition – MMR [35], Acceleration-Based
Activity – ABC [36] and Non-Intrusive Load Monitoring
NILM [37]). Other reviews, albeit not thoroughly, focus on
the evaluation of classification techniques in terms of their
effectiveness for the recognition of activities of daily life
from datasets [38], [39]. However, there is no evidence that
proposes a systematic review of the literature, which allows
characterising datasets for HAR based on the analysis of
ADL. Below a detailed description of the studies previously
mentioned is provided.

In [35] the approaches to MMR are compared and
described from different viewpoints: usability and con-
venience, device types, data collection methods, types
and errors of sensors used, signal pre-processing meth-
ods employed (windowing, de-noising and variable calcula-
tion), feature extraction (statistical and time-domain features,
energy, power, magnitude and frequency-domain), feature
selection and transformation, classification techniques and
post-classification refining. This paper ends with a quantita-
tive comparison of the performance of motion mode recogni-
tion modules developed by researchers in different domains.

In [36], a naturalistic 3D acceleration-based activity
dataset, the SCUT-NAAdataset (publicly available) is created
to assist researchers in the field of acceleration-based AR and
to provide a standard dataset for comparing and evaluating
the performance of different algorithms. The SCUT-NAA
contains 1278 samples from 44 subjects, collected in natu-
ralistic settings with only one tri-axial accelerometer located
alternatively on the waist belt, in the trouser pocket, and in
the shirt pocket. In this research they showed a summary of
some representative datasets (none publicly available) on AR
using acceleration, in which they compared: number of activ-
ities, number of subjects, whether data was collected under
laboratory or naturalistic settings, number of accelerometers
used per subject and accuracy.

In [37], a novel technique to monitor human activity based
on NILM is presented. In order to evaluate the performance
of the proposed algorithm, two different datasets have been
considered: theHousehold Electricity Survey dataset [40] and
the UK Domestic Appliance-Level Electricity – UK-DALE
dataset [41]. Both use real collected data from the aggregated
and disaggregated energy consumption of UK households.
The former contains a year of data from three single pensioner
households, which are the targeted community in this study;
whereas the latter is a two-year collection of data from a
family household (two adults, two children and a dog).

In [38], they proposed the use of Deep Learning (DL)
techniques to automatically learn high-level features from
binary sensor data. To evaluate the performance of the

proposed method, they applied experiments to three (publicly
available) smart home datasets, and compared it with a range
of shallow models in terms of time-slice accuracy and class
accuracy. The datasets were collected using simple sensors
(motion detector, contact switch, pressure mats, mercury
contacts and float sensors), and each of the smart homes
housed one resident performing ADL. The description of
each of the datasets, in relation to the number of sensors, data
collection time, number of activities, resulting sensor events
and activity instances is as follows: first dataset (14 sensors,
25 days, 10 activities, 1229 sensor events and 292 activity
instances), second dataset (23 sensors, 14 days, 13 activities,
19075 sensor events and 200 activity instances) and third
dataset (21 sensors, 19 days, 16 activities, 22700 sensor
events and 344 activity instances).

In [39], three learning classification algorithms were
implemented to evaluate the AR of ADL using: Naïve
Bayesian (NB), Support VectorMachine (SVM) and Random
Forest (RF). For this, recruiting ten healthy subjects andmon-
itoring their activities over 20 days using the sensor system
was necessary.

III. METHODOLOGY
The SRL is a key piece of secondary research that allows
the creation of frameworks on which future research is sup-
ported. An outstanding reference in this respect is [42], which
proposes a methodology based on the definition of research
questions, search process, inclusion and exclusion criteria,
quality assessment, data collection, data analysis and devia-
tions from protocol. The vast majority of research of this type
is carried out in the health field, for which the methodologies
proposed in [43]–[45] were analysed. In the field of engineer-
ing, [42] and [46] propose their respective methodologies.
Reference [46] is organised in three stages: the definition of
search parameters (objective, hypothesis and search index),
identification and debugging in data bases (selection of search
chains whose results will be deepened) and the proposal of
answers to the hypothesis (from the information obtained
from the categorisation and analysis of the most relevant
articles). Specifically, in [47] a methodology was proposed
to perform a validation of Chronic Kidney Disease (CKD)
and related conditions in existing datasets (including admin-
istrative datasets and disease registries). All these studies
contributed to the approach of the SRL methodology used
in the research described here, which was organised in three
stages.

The definition of search parameters configures the first
stage and consists in determining the objectives of the review,
to then identify the following hypothesis: ‘‘Which datasets
have provided the greatest impact on the development of
research related to the recognition of ADL?’’ Subsequent to
this, we proceeded to locate the topics of the databases on
which the search would focus (Scopus, IEEExplore, Science
Direct, Web of Science and ACM). From these, the keywords
to be used and discarded were identified and validated, due
to the noise generated by the latter in the results. Fig. 1 show

59194 VOLUME 6, 2018



E. De-la-Hoz-Franco et al.: Sensor-Based Data Sets for HAR–Systematic Review of Literature

FIGURE 1. Search chains conformation model.

the schema fromwhich the search terms were built, where the
term ‘‘video’’ and ‘‘audio’’ have been excluded, given that
the processing of data based on this type of research differs
considerably from other feedback mechanisms such as pres-
sure, contact, positioning and accelerometer sensors, among
others. Additionally, the term ‘‘outdoor’’ was excluded in
order to delimit the scope of the publications to be analysed.

In the second stage, the identification and filtering of
the information obtained from the specialised databases was
undertaken, and the results obtained from the application
of the different search chains were analysed. The data have
been represented synthetically in different arrays and where
the search indexes are hierarchically organised, discarding
the combinations that did not yield any results. In addi-
tion, the terms that yielded a large number of results were
identified, with greater specificity criteria added to limit the
searches to the subject matter of the research.

The search chains that yielded results were selected, iden-
tifying the articles that match the proposed hypothesis. The
search chains were constructed using the keywords identified
in Fig. 1, its structure being as follows: (HARORADL)AND
dataset AND (‘‘indoor environment’’ OR ‘‘smart homes’’
OR ‘‘intelligent buildings’’ OR ‘‘ambient intelligence’’ OR
‘‘assisted living’’) AND NOT (video) AND NOT (audio)
AND NOT (outdoor). A series of scientometric variables
were documented for each article, such as the year of publica-
tion, the journal, the typology of the document, the journal’s
quartile, the country of publication of the journal, the country
from where the production is generated and the entity or uni-
versity that presents the product. Additionally, a series of
technical variables were documented to characterise the type
of dataset used in the different researchworks consulted. Such
variables were: 1) if reference was made to a dataset or a
repository, 2) its name, 3) what type of events it contained,
4) its level of occupation and annotation, 5) the sens-
ing modality with which the dataset was fed. Finally, the
approach, segmentation, representation, feature selection,
balancing and addition of instances, category and subcate-
gory of the classifiers referenced in the papers. The last stage
is the presentation and analysis of results.

FIGURE 2. Trend in the number of publications: (a) number of
publications by year and (b) publications by scientific database.

IV. SCIENTOMETRIC ANALYSIS
After recording the scientometric variables of the 374 publi-
cations, they were quantified based on the following criteria:
year of publication, number of articles published by database
(identifying those that were referenced in several databases),
publications according to the typology of the same and to the
quartile of the magazine, congress or book where it was pub-
lished. We also considered the identification of the countries
that receive a greater flow of works and those that output
a greater flow of works, the journals and universities that
have more development in this concrete field of research. The
following figures and tables of contents illustrate the above
with greater precision.

Evidence of the validity of this field of research (see Fig. 2)
is the growing trend in the number of publications related
to HAR, in terms of: 1) the implementation of intelligent
environments in indoor contexts, 2) the capture of data gener-
ated from the interactions of the inhabitants with the sensors
deployed in such environments, 3) the collection and structur-
ing of datasets and 4) the application of predictive algorithms
for the classification of ADL. Fig. 2a shows how the number
of publications has grown each year in this research field
reaching its peak in 2017. Fig. 2b indicates that between
2003 and 2017, the scientific database with the most research
products registered (Journals, Proceedings and Chapters of
books, among others) is IEEEXplore.

66% of the publications in this field of knowledge are
carried out in journals and proceedings, which can be
accessed from the IEEExplore specialised database. 72%
of the publications accessible from the different specialised
databases are carried out in proceedings and 27% in journals
(see Fig. 3a). Although it is true that the highest percentage of
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FIGURE 3. Publications by type and quartile: (a) number of publications
by type and (b) publications by quartile.

FIGURE 4. Number of publications received and generated by country.

publications is made in uncategorised resources (71%), there
is a significant percentage (19%) of publications that are
made in journals of the first quartile (see Fig. 3b).

Fig. 4 shows the number of publications received and
generated by country, between 2003 and 2017. The first value
was calculated by counting the publications by the coun-
try of origin or edition of the journal, proceeding or book.
From this, it has been identified that the countries with the
highest number of publications received, in relation to the
scope of the HAR, are: USA, Netherlands, China, UK and
Germany, among others. To account for the publications
by the country of generation of these, the place of origin
of the university, research center or organization to which
the authors of said publication are affiliated was identified.
Specifically, the criterion of identification of the country of
generation, was determined mostly by taking the one that was
most common to all the authors of the respective paper and in
some exceptional cases, taking the place of origin of the first
author. From this, we have identified that the countries with
the highest number of publications generated, based on HAR,
are: USA, UK, Italy, China and South Korea, among others.

TABLE 1. Journals with the most publications.

FIGURE 5. Publications by University.

Table 1 shows the resources where more works related
to the recognition of ADL are published. It is noteworthy
that most of them present a good ranking in relation to their
quartile.

In addition, we note the production in research at the level
of scientific Journals regarding pervasive healthcare, by the
University of Ulster andWashington State University –WSU
(see Fig. 5). This fact is due to the institutions having gener-
ated and validated their own datasets, which have beenwidely
used by a representative sector of the academic community.
In this way, we highlight the University of Ulster, which
presented an initiative for the creation of open datasets within
pervasive healthcare, which can be consulted in [48]. For its
part, WSU is the creator of the most complete repository of
AR in smart homes, called CASAS [23], [49].

V. TECHNICAL ANALYSIS
The Inter-University Consortium for Political and Social
Research – ICPSR [50] is an international consortium of
more than 750 academic institutions and research organ-
isations, which provides leadership and training in data
access, curation, and methods of analysis for the social sci-
ence research community. This organisation has Institutional
Review Boards (IRB) which review research proposals [51].
It is a good practice to submit ADL recognition datasets to

59196 VOLUME 6, 2018



E. De-la-Hoz-Franco et al.: Sensor-Based Data Sets for HAR–Systematic Review of Literature

FIGURE 6. Documented events in the datasets.

the IRB for review, in order to safeguard the human subjects
who participate in biomedical or behavioural research.

Rodríguez et al. [52] classify the dataset according to
the type of event or activity granularity levels they record:
actions, activities and behaviours, First, the actions or atomic
events with a timestamp define the lowest granularity degree
of representation (e.g.: open door, move object, turn light
off, walk by, be observed in location, among others).
Second, the activities, which were considered as single
actions with an inherent purpose or composed by a set
of different actions, represent an intermediate level of rep-
resentation as regards granularity and have a start-date-
time and end-date-time (e.g.: take coffee, attend conference,
group meeting, video call, send email, among others). Last,
the behaviours were defined as a sequence of activities and/or
actions by a set of compulsory actions or activities plus a set
of optional actions or activities, where some of them can have
temporal execution interdependencies (e.g., the behaviour
coffee break includes the action exit office, the activity make
coffee or take coffee, and the action enter office in this order).
Fig. 6 shows the number of papers that reference actions,
activities or behaviours (or combinations of these events).

According to [53], we identify many datasets proposed
in the literature in which three classes of activities can be
distinguished: single activity [54], interleaved activity [55]
and multi-occupancy [13]. Single defines an activity which
has been fully carried out before starting the performance
of a new one; interleaved activities are carried out while
another activity is being performed at the same time; and
multi-occupancy is related to a class of activity in which
some people are performing their activities simultaneously.
Fig. 7 indicates that, in relation to occupation, the vast major-
ity of the papers consulted have used datasets that contain data
records of single activities, 42.2% of the papers reviewed,
while 20.3% correspond to datasets with interleaved
activities.

Otherwise, a dataset is annotated when each data record is
assigned a class tag that identifies it. In this case, researchers
use different techniques (manual and automatic) to assign the
labelling of the dataset records. Fig. 8 shows that the majority
of datasets referenced in the papers are annotated (60.4%).

FIGURE 7. Level of occupations.

FIGURE 8. Number of papers that relate the type of dataset annotation.

FIGURE 9. Number of papers according to sensing modalities.

In Fig. 9, we show the results according to the modality
in which the data were sensed to feed the dataset. It is
noteworthy that most of the research has been done where the
data is captured by the use of environmental sensors (46.3%),
although there is an evident growth in wearables
sensors (19.3%).

A relevant classification of Machine Learning is presented
in [48], which shows two approaches for AR: Data-Driven
Approaches (DDA) and Knowledge-Driven Approaches
(KDA). DDA are based on machine learning techniques in
which a pre-existent dataset of user behaviours is required.
Here a training process is usually carried out to build an
activity model which is followed by a testing process and to
evaluate the generalisation of the model in classifying unseen
activities [38], [108]. Regarding KDA, an activity model
is built through the incorporation of rich prior knowledge
gleaned from the application domain, using knowledge engi-
neering and knowledge management techniques [109], [110].
The vast majority of studies reviewed (76.2%), mention the
name of the classifier used (285 papers), while the remaining
23.8% do not mention it (89 papers), 60.9% use classifiers
based onDDA, 12.6% use classifiers based onKDA and 2.7%
use classifiers of both approaches.
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TABLE 2. References to classifier subcategories.

In this study, to account for the results obtained, the hier-
archy defined in [35] was used, in relation to the approaches,
categories, subcategories and classification techniques, used
for HAR based on the identification of ADL. In several
papers, reference is made to more than one classification
technique. Therefore, in some cases, the reference to sev-
eral subcategories of techniques was counted for the same
papers. Table 2 contains the number of references within
these subcategories associated with the respective categories
and approaches (the 89 papers that do not mention the name
of the classifier used were discarded). The most referenced
subcategories were those belonging to the DDA categories of
Machine Learning Methods – MLM (e.g., Markov Models
– MM, Instance Based Classifiers or Instance based learn-
ing – IBL, Bayesian Classifiers – BC, Decision Trees – DT,
Artificial Neural Networks – ANN, among others); the sub-
categories belonging to Meta-Level Classifiers – MLC (e.g.,
Multi-agent System – MaS and Cascading) and Semantic
Attribute-Based Learning (SABL)within KDA categories are
referenced to a lesser extent.

The consulted papers refer to one or more classification
techniques, with the purpose of carrying out a comparative
analysis of their performance. Accordingly, 41.7% of the
references to classifiers correspond to the MM subcategory
(specifically using the Hidden-Markov Model – HMM clas-
sifier), while 17.4% reference the SVM classifier, and the
subcategories IBL and BC have 15.8% references each in the
papers consulted, the first one specifically using the k-Nearest
Neighbor – kNN algorithm and the second using NB and BC
classifiers (see Table 2).

On the other hand, of 374 publications related to this field
of research, 94% of the works (352 papers) indicate that they
have used datasets (their own or from other authors), while
2% (7 papers) do not specify what type of data structure
has been used (if it is a dataset or a repository) and the
remaining 4% (15 papers) mention the use of a repository,
in which the results obtained from the processing are com-
pared to the different datasets that constitute it. The most used
repositories are CASAS [23], [49], [54] and UCI Machine
Learning Repository [56]. It is important to note that some
papers mention one or several datasets generated or used.

TABLE 3. Most referenced dataset.

TABLE 4. Details of the most referenced dataset.

Of the 352 papers that indicate the use of datasets,
50% (175 papers) explicitly mention the name of the dataset
used. In some of these papers, reference is made to more
than one dataset when a comparative analysis of the perfor-
mance quality metrics of the classifier used is performed.
The remaining 50% (177 papers) do not mention the name
of the dataset used. Tables 3 and 4 show the details of the
seven (7) most referenced datasets (all are annotated), in the
175 publications that do identify the name of the dataset used.

The Van Kasteren dataset [57] is the result of the measure-
ment of a Wireless Sensor Network (WSN) in an enclosure
that is occupied by two men (26 and 57 years old). In this
apartment there are 14 sensors that indicate changes of state
associated with actions such as: opening and closing of doors,
pressure on the apartment floor, as well as sensors on the
bed and on the sofa. The characteristics of the dataset are:
the stored values are binary (either because of the use of
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binary sensors for the capture or because some threshold was
applied to the captured analogue value), it has 245 actions
from different activities (brushing teeth, showering, toileting,
bathing, shaving, breakfast, dinner, snacking, drinking, load-
ing the dishwasher, unloading the dishwasher, among others)
and the duration of the capture process was two weeks (which
included sensor data and annotation). The data were captured
through the implementation of RFID, WSN and different
types of sensors (reed switches, mercury contacts, passive
infrared - PIR and float sensors). For the annotation process,
a combination of Bluetooth headsets with speech recognition
and a handwritten register of activities were used. In [2], [29],
[64], and [65] different classification techniques (NB, HMM,
Hidden Semi-Markov Model – HSMM and Conditional Ran-
dom Field – CRF) were used to compare Van Kasteren with
one or more datasets.

The CASAS project [23], [49], [54] is located on the
campus of WSU. The apartment is made up of a bathroom,
a living room, three bedrooms and a kitchen. The sensors in
the apartment are distributed at a distance of approximately
one meter. The sensors can be categorised as: motion sensor,
motion area sensor (covers a larger region), item sensor for
selected items in the kitchen, door sensor, burner sensor, hot
water sensor, cold water sensor, temperature sensor, elec-
tricity usage, battery level, light level, shake sensor, light
sensor, gyro sensor, experimenter switch (manual trigger)
and fan. The official website1 of the project contains a wide
variety of datasets and tools. For each dataset the following
is detailed: the name of the testbed, the number of residents
or participants, whether it is annotated or not. Addition-
ally, the files of each dataset are available for download.
The CASAS repository also has the following tools: real-
time activity profiling, activity learning (recognition, dis-
covery, and prediction), AR, rule-based activity prediction,
pattern visualiser, activity visualisation, real-time annota-
tion tools, data sampling tools, sequential prediction, multi-
view transfer learning techniques and mobile activity learner
(IOS and Android).

The most referenced datasets of the CASAS reposi-
tory are: Daily life 2010-2012 (Testbed: Kyoto) also called
ADL Activities [23], Daily life 2010-2011-2012 (Testbed:
Aruba) [58] and Multiresident ADL Activities (Testbed:
Kyoto) [13]. The first contains activities (making a call, wash-
ing hands, cooking, eating and washing the dishes) collected
from 20 participants, using environment sensors (motion,
associated with objects, from the medicine box, a flowerpot,
a diary, a closet, water, kitchen and telephone use sensors),
the dataset contains information related to the date and time
of each event, the sensor ID and value (binary or numeric) of
each sensor activated during the event. The second contains
activities (movement from bed to bathroom, eating, getting
home, housework, leaving home, preparing food, relaxing,
sleeping, washing dishes and working) collected from an
older volunteer woman, and her children and grandchildren

1http://casas.wsu.edu/

(who visited her several times). They interacted with envi-
ronment sensors (motion, door and temperature sensors) and,
like the previous dataset, this one contains information related
to the date and time of each event, the sensor ID and value
(binary or numeric) of each sensor activated during the event.
The third dataset contains a wide variety of activities (fill-
ing medication dispenser, hanging up clothes, moving the
couch and coffee table, sitting on the couch, watering plants,
sweeping the kitchen floor, playing a game of checkers,
setting out ingredients for dinner, setting dining room table,
reading a magazine, simulating the payment of an electric
bill, gathering food for a picnic, retrieving dishes from a
kitchen cabinet, packing supplies in the picnic basket and
packing food in the picnic basket) collected from two inhab-
itants, who participated at the same time and with 26 tests
for each pair of inhabitants (40 participants in total), where
they interacted with environment sensors (motion, item, cab-
inet, water, burner, phone and temperature sensors). This
dataset contains information related to the date and time of
each event, the sensor ID and (binary) value of each sensor
activated during the event and the Task ID identifies that
event. The annotation process was manual (labelled during
the recording). In [29], [64], and [66]–[73], different classi-
fication techniques were used to compare one of the datasets
available in the CASAS repository, with one or more datasets
of the same or other repositories. In these works, the most ref-
erenced CASAS datasets are: ARAS, Cairo, Aruba, Tulum,
Kyoto (ADL Activities and Multiresident ADL Activities),
DOMUS and Tokyo.

The HAR using a smartphone dataset – HAR [59], [60]
was collected using a Samsung Galaxy SII smartphone, with
the collaboration of 30 volunteers in order to identify actions
(walking, going upstairs, going downstairs, sitting, stand-
ing and laying down). This dataset is available in the UCI
Machine Learning dataset repository. For each record in the
dataset, the following is provided: triaxial acceleration from
the accelerometer (total acceleration) and the estimated body
acceleration, triaxial angular velocity from the gyroscope, to
561-feature vector with time and frequency domain variables,
activity label and an identifier of the subject who carried
out the experiment. In [74]–[79], different classification tech-
niques were used to compare HAR datasets with one or more
datasets of the same or other repositories.

The Opportunity AR dataset [24] (also available in the
UCI repository), allows multi-patient experimentation on
4 subjects in the same venue. The subjects were monitored
for 30 days, in a room simulating a studio flat with kitchen,
deckchair, and outdoor accesswhere subjects performed daily
morning activities. The dataset contains activities (waking
up, grooming, making breakfast and cleaning). The data cap-
ture is achieved through 68 sensors (14 located on objects,
21 ambient sensors and 33 located on the body). The data
is provided as a text file containing an array where each
row corresponds to a sample, the first column includes the
sample timestamp (ms), and the last two columns include
the labels for modes of locomotion and gestures respectively.
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The annotation process was labelled while recording.
In [16], [28], and [76] different classification techniques were
used to compare Opportunity with one or more datasets.

The mHealth dataset [63], [80] (also available in the
UCI repository), contains body motion and vital sign record-
ings for ten volunteers performing several physical actions
(standing still, sitting and relaxing, lying down, walking,
climbing stairs, bending waist forward, front arm elevation,
knee bending, cycling, jogging, running, jumping front and
back). Sensors were located on the chest, right wrist and left
ankle of the subject and were used to measure the motion
experienced in diverse body parts (acceleration, rate of turn
and magnetic field orientation). The sensor positioned on
the chest also provides 2-lead ECG measurements, which
can be potentially used for basic heart monitoring, checking
for various arrhythmias or looking at the effects of exercise
on the ECG. The dataset includes fine-grained real-valued
sensor readings of actions over a short time interval, with
no explicit timestamps or locations included in the dataset.
The annotation process was recorded using a video camera.
In [75] and [81], [82] different classification techniques were
used to compare mHealth with one or more datasets.

VI. CHARACTERISATION AND ANALYSIS OF RESULTS
Regarding the classification techniques used for the process-
ing of the aforementioned datasets, Tables 5 and 6 detail
each of them according to the different approaches (DDA
and KDA). Additionally, the total number of citations of
the papers that introduce each dataset (taken from Google
Scholar) are indicated. Some of the techniques referenced
in the papers were not listed in the table, because there is
no evidence that they have been applied to these datasets.
However, the following are mentioned: Activity Discovery
(AD) [83], Bayesian Belief Network (BBN) [84], Hierar-
chical, Autonomic Recursive and Distributed Bayesian Net-
work (HARD-BN) [85], Cross-subject unsupervised transfer
learning (CsUTL) [86], Data-Driven Non-Linear Heb-
bian (DD-NHL) [87], Dynamic Background Subtraction
(DBS) [88], Temporal Learning using Echo State Network
(TL-ESN) [89], Expectation Maximization (EM) algorithm
[90], Extended Episode Discovery (xED) algorithm [91],
Finite Action-set Learning Automata (FALA) [92], Finite
State Machine (FSM) [93], Fuzzy Logic (FL) [94], Fuzzy
HMM (FHMM) [95], Fuzzy Inference Model (FIM) [96],
Fuzzy Temporal Relationships (FTR) [97], Learning Fre-
quent Patterns of User Behaviour System (LFPUBS) [8],
Minimum Redundancy Maximum Relevance (MRMR) [98],
Multi-stage Decision Model (MsDM) [99], Qualitative
Spatial Reasoning + AtomGID (QSR-AtGID) [100], Self-
Adaptive Neural Networks (SANN) and Growing Self Orga-
nizing Maps (GSOM) [101], Semantic Indoor Trajectory
Model and N-gram Model (SITM-NgM) [102], Sequen-
tial Extreme Learning Algorithm (SELA) [103], Suitability
of Multi-label Learning Algorithms (SMLLA) [104], Term
Based Labelling (TBL) [105] and User Behaviour Shift
Detection (UBSD) [106].

TABLE 5. KDA and classification techniques used in analysed datasets.

A comprehensive review of each of the seven aforemen-
tioned datasets was carried out. With the analyses presented
below, we aim to identify: the different classification tech-
niques used for AR, the segmentation techniques used to
select the data-streaming windows, the feature representation
of the data, the distribution of the dataset used for training
and testing, and the quality metrics (F-measure and accuracy)
used in the evaluation of the proposals analysed. Not all stud-
ies applied the same quality metrics and not all present the
values obtained with their corresponding standard deviation.
The papers that do not explicitly indicate the techniques and
metrics used for the processing and evaluation of the dataset
were not documented in the respective tables.

A. VANKASTEREN DATASET ANALYSIS
Table 7 presents the evaluation of the pre-processing and clas-
sification techniques, as well as the quality metrics, of each
of the proposals applied to the VanKasteren. From this, the
following analysis was made:
• Whenever the VanKasteren and ARAS datasets were
compared when [64] using Streaming Multi-Class
imbalance ensemble NB classifiers (streamingMEn) and
when [113] using HMM and HHMM, the best results
were obtained with VanKasteren.

• Only in [38] the noise was eliminated, applying the
Stacked Denoising Autoencoder (SDAE) technique,
which generated an improvement in accuracy, when
compared with not using this technique.

• In [29], [107], and [38] feature selection techniques were
applied to improve the performance of the classifier.
In the first one, an accuracy of up to 85.6%was obtained
using the SAE technique. In the second, the IG technique
was used, obtaining an accuracy of 95.3%. This signifi-
cant result is also due to the fact that in this proposal, data
balancing was used through the oversampling approach,
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TABLE 6. DDA and classification techniques used in analysed datasets.

using the Synthetic Minority Oversampling Technique
(SMOTE) [128]. Finally, in [107] PCAwas used, obtain-
ing an accuracy of 96.3%.

• Other studies that applied data balancing techniques
were: [64] using Multi-class Stream Imbalance (McSI),
[114] using an algorithmic approach and [2] adding
manually synthesised abnormal activities (occurring at
a wrong time of the day and after and before a specific
activity); the latter is the proposal with the best accuracy:
96.7% ± 2.6.

• Although different segmentation techniques have been
applied, the most commonly used in these studies was
a Time-based and Sliding Window (Tb-SW) of 60 sec-
onds. The best accuracy obtained when applying this
segmentation technique was 96.7% in [2], using a

TABLE 7. VanKasteren dataset evaluation.

classifier based on RNN, called Long Short Term
(LSTM). However, it is important to note that a very high
accuracy (96.9%) was obtained in [115] without using
segmentation techniques, by applying the classification
technique PCC + CC. Additionally, significant values
of accuracy were obtained in [107] and [29] apply-
ing the Segmented Activity Instances (Seg-AI) (96.3%)
and Activity Recognition - Segmental Pattern Mining
(AR-SPM) (95.3%) techniques.

• The majority of the analysed studies use the Last-fired
(Lf) and Change-point (Cp) feature representation tech-
niques, where the highest accuracy was obtained when
implemented in [115] 96.9% and [2] 96.7% ± 2.6.

• Leave one day out cross validation (Lodo-CV) was the
most used distribution of data for training and testing in
the different experimentation scenarios.

• The most commonly used classifiers in the analszed
studies are those based on MM (in their different varia-
tions: HMM, HSMM and HHMM), NB, CRF and SVM,

VOLUME 6, 2018 59201



E. De-la-Hoz-Franco et al.: Sensor-Based Data Sets for HAR–Systematic Review of Literature

individually employed, assembled with another tech-
nique or as a benchmark to compare with other proposed
methods.

• The best accuracy achieved in AR, using the
VanKasteren dataset, has been obtained in pro-
posal [115] 96.9%, using PCC+CC as a classifier and in
proposal [2] 96.7% ± 2.6, using the RNN called LSTM
as a classifier.

• Proposals such as [108], where the metric evaluated was
the Average time slice error (%), and [112] where the
metrics evaluated were precision, recall and F1score, are
not documented in Table 7, due to the uniformity of the
analysis.

B. CASAS-KYOTO DATASET ANALYSIS
Table 8 presents the evaluation of the pre-processing and clas-
sification techniques, as well as the quality metrics, of each
of the proposals applied to Kyoto. From this, the following
analysis was made:
• In the analysed studies there is no evidence of the
application of noise elimination techniques and feature
representation when using Kyoto.

• There is only evidence of such in the application of
two data segmentation techniques, in [73] and [117]
Segments of Activities (Seg-oA) and in [29] AR-SPM,
where best accuracy was obtained with the application
of the latter.

• The distribution of data for training and testing in [29]
and [117] was Leave one out cross validation (Loo-CV)
with k-folds = 20 and in [73] with k-folds = 10.

• In [29], a comparison was made between VanKasteren
and Kyoto, evaluating the performance of the ET-kNN,
where best accuracy was obtained when applied in
Kyoto (97.4%) using IG and overlapping activity classes
as a feature selection technique.

• The best accuracy results using Kyoto were obtained
in [29] at 97.4%, when the IG feature selection technique
was applied and at 96.2% when it was not applied.
This significant result is also due to the use of data
balancing in this proposal through the over-sampling
approach, using the SMOTE [128]. Although in [73] the
combination of feature selection techniques Consistency
Subset Eval (best First Search) – CsubE and Chisquared
Attribute Evaluation (Ranker Thresh-old 1) – Ch2AE
were applied, the obtained results did not exceed those
previously mentioned.

• The most commonly used classifiers in the analysed
studies are: LCCRF (with two variations according to
the way the activities were evaluated: 1. Single Model
for a Single Activity – SMSA and 2. Single Model for
All Activities – SMAA), SCCRF, HMM, DCP, ET-kNN
(applying and not IG) and SVM.

C. CASAS-ARUBA DATASET ANALYSIS
Table 9 presents the evaluation of the pre-processing and clas-
sification techniques, as well as the quality metrics, of each

TABLE 8. CASAS-kyoto dataset evaluation.

TABLE 9. CASAS-aruba dataset evaluation.

of the proposals applied to Aruba. From this, the following
analysis was made:
• In [73], a comparison was made between Aruba and
Kyoto, evaluating the performance of the SVM classifier
(both non-graphical and graphical features), where the
best accuracy was obtained for Aruba at 93.4%, with
graphical features.

• In the analysed studies, there is no evidence of the
application of noise elimination techniques or addition
of instances when using Aruba.

• Only two proposals use feature representation: [107]
uses the number of times that sensors activated during
activity and [121] uses Last-state (Ls) representation,
the best accuracy between these two was obtained with
the first at 91.4%.

• Different feature selection techniques were used: IG
in [118] and [119], PCA in [107], CsubE and Ch2AE
in [73] and Activity Features Maintain the Statistical
Information about the Activities – AFMSI-Act (Mutual
Information, Frequency of triggered sensors of an activ-
ity, Interval time and Last two sensors) in [67]. This
last technique improved the accuracy of the classifier,
achieving 100% in AR.

• Regarding the distribution of data for training and
testing, although most of the studies used 10-fold
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TABLE 10. CASAS-multiresident dataset evaluation.

cross-validation, the best result was obtained in [67] with
a training of 80% and a test with 20% of the data.

• The analysed studies use different segmentation
techniques: Dynamic Window (D-win) or Adaptive
Window (A-win), which is based on the number of
sensors activated or in the approach, by Segmentation
of Activities (Seg-oA) and fixed size based on time. The
highest 100% accuracy was obtained with an innova-
tive segmentation technique called Adaptive windowing
approach [67], which is divided into two phases (off-line
modelling and on-line recognition). In the former phase
a representation called Activity Features (AFs) is built
from statistical information about the activities from
annotated sensory data and a NB classifier is modelled
accordingly. In the second phase, a dynamic multi-
feature windowing approach using AFs and the learner
NB classifier is introduced to segment unlabelled sensor
data aswell as predicting the related activity, as indicated
in [67].

• The most used classifiers in the analysed studies are:
MLR, ET-kNN, NB, HMM, CRF and SVM.

D. CASAS-MULTIRESIDENT DATASET ANALYSIS
Table 10 presents the evaluation of the pre-processing and
classification techniques, as well as the quality metrics,
of each of the proposals applied to the Multiresident ADL
Activities (testbed: Kyoto) dataset. From this, the following
analysis was made:

• In the analysed studies there is no evidence of the appli-
cation of segmentation techniques, noise elimination
and balancing or addition of instances when using the
Multiresident ADL Activities dataset.

• Regarding the feature representation in [122], Change-
point (Cp) was used, reaching an accuracy of 70.3%.

• In both [122] and [66] cross-validation was used,
in the first with k-folds = 10 and in the second with
k-folds = 3, the best accuracy being obtained in the
latter.

• The best accuracy was 81.5% in [66], using the
NB classifier and selecting features manually.

E. UCI-HAR DATASET ANALYSIS
Table 11 presents the evaluation of the pre-processing and
classification techniques, as well as the quality metrics,
of each of the proposals applied to UCI-HAR. From this, the
following analysis was made:

TABLE 11. UCI-har dataset evaluation.

• In the analysed studies there is no evidence of the
application of noise elimination techniques and addi-
tion or balancing of instances when using UCI-HAR.

• Regarding the segmentation in [124], a sliding windows
of 128 samples was established and in [123] a win-
dows of raw signals is used, but no further details are
given. In both studies feature representation techniques
were used: in [124] they used Scaling to obtain z-scores
(from values between 1 and -1), reaching an accuracy
of 91.76% and in [123] they used raw signals represen-
tation, reaching 90.5%.

• The only study that explicitly indicates the distribution
of the dataset in the experimentation process for training
and testing is [124], where 10-fold cross validation was
used, 70% for training (of 21 subjects) and 30% for
testing (of 9 subjects), reaching an accuracy of 91.76%.

• In [75] different kernel approaches for the SVM
classifier were analysed (Compressive single RBF
kernel – Cs-RBFk, Compressive single Laplacian
kernel – Cs-Lk, Compressive single sigmoid kernel –
Cs-Sk, Compressive uniform multi-kernel – Cu-mk,
Compressive uniform multi-RBF-kernel – Cu-mRBFk,
Compressive alignment-based multi-kernel – Cab-mk,
Compressive alignment-based multi-RBF-kernel –
Cab-mRBFk, Compressive SNR-based multi-kernel –
C-SNRb-mk and Compressive SNR-based multi-RBF-
kernel – C-SNRb-mRBFk). When comparing their per-
formance in the mHealth and UCI-HAR, the highest
accuracy (91.4%) was obtained when applying SVM
C-SNRb-mk in UCI-HAR.

• The best accuracy achieved with UCI-HAR was 92.6%,
using Multiple HMMs classifier with MOT and kNN
ensemble, proposed in [78], without applying feature
selection techniques.

• The most used classifiers in the analysed studies are:
SVM and HMM.
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TABLE 12. Opportunity dataset evaluation.

F. OPPORTUNITY DATASET ANALYSIS
Table 12 presents the evaluation of the pre-processing and
classification techniques, as well as the quality metrics,
of each of the proposals applied to Opportunity. From this,
the following analysis was made:

• In the analysed studies there is no evidence of the
application of noise elimination techniques when using
Opportunity.

• The only study that explicitly claims to use segmentation
techniques is [16] with a sliding window of 2 seconds
(1 second overlap), reaching an accuracy of 99.0%when
using a hybrid model based on ER2RP and a classifier
trained with DMA.

• Regarding the feature representation in [125], the raw
sensor data was compressed, which allowed to reach an
accuracy of 94.0% ± 2.0, using a 3SC with SVM.

• Only two studies, [28] and [127], applied feature selec-
tion techniques: IG was used in the former, reaching
an accuracy of 96.3% when applying the RF classi-
fier, and in the latter, SAE were used, achieving an
accuracy of 99.9% when applying a classifier based on
DL Technique.

• Regarding the balancing or addition of instances,
in [126] the instances are randomly selected for each
fold among the four inhabitants, which allowed an accu-
racy of 92.7% ± 1.3 to be achieved, using a classi-
fier that operated MLP, SVM and BC. A better result
was achieved in [125] where the Instance Reassignment
technique was applied (avoiding class imbalance within
each group and also reducing the number of classes

TABLE 13. mHEALTH dataset evaluation.

per group), which allowed to reach an accuracy of 94.0%
± 2.0 using a 3SC classifier with SVM.

• The best accuracy was 99.9% in [28], using a classifier
based on DL technique. The approach proposed in [28]
first applied to matrix factorization (NMF) in order to
project data into a new reduced space to find a better
activity representation and to increase discrimination
capacity. Then, features were automatically extracted
from the projected data using SAE. For classification,
they built a softmax classifier on the top hidden layer of
the SAE.

• In [127], Smartphone Activity Recognition (AR) [129]
and Opportunity datasets were compared, while in [28]
Berkeley [30], USC [31], HMD [32], UTDMHAD [33],
Sport [34] and Opportunity datasets were compared, and
in both studies Opportunity showed better results.

• The most used classifiers in the analysed studies are:
SVM, RF, DT, NB and MLP.

G. mHEALT DATASET ANALYSIS
Table 13 presents the evaluation of the pre-processing and
classification techniques, as well as the quality metrics,
of each of the proposals applied to mHealth. From this,
the following analysis was made:

• In the analysed studies there is no evidence of the appli-
cation of noise elimination techniques, features repre-
sentation and selection techniques, balancing or addition
of instances, nor the distribution of the datasets in the
experimentation process (for training and testing) in
mHealth.

• In [82] sliding window segmentation with a size
of 60 samples was applied, obtaining an accuracy
of 91.9% when using the CNN classification technique.
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TABLE 14. Classification techniques with better accuracy by dataset.

• The highest accuracy was obtained in [81] at 97.2%, and
was achieved by applying a Hierarchical Classification
Method (HCM) based on the combination of binary
classifiers.

• The most used classifiers in the analysed studies are
SVM and CNN.

VII. DISCUSSION
To address the discussion, Table 14 condenses the classifica-
tion techniques that generated the highest accuracy for each
dataset. We note that the datasets correspond to different con-
texts and purposes and therefore the evaluation and methods
are not directly comparable between them. That is, while
VanKasteren, CASAS-Kyoto, CASAS-Aruba and CASAS-
Multiresident contain data captured with WSN, environmen-
tal sensors and wearables from the interactions of one or
several inhabitants in indoor environments, the UCI-HAR,
Opportunity and mHealth datasets contain data captured
from wearables or smartphones not necessarily in indoor
environments. The discussion focuses on the use of differ-
ent techniques (segmentation, feature representation, feature
selection, balancing or addition of instances and distribution
of datasets for experimentation processes) in each dataset,
in order to facilitate the decision making of researchers
regarding their choice in ARS evaluation processes.

Different segmentation techniques have been applied in the
VanKasteren and CASAS-Kyoto datasets in almost all the
proposals. The use of time-based techniques with 60-second
sliding windows and AR-SPM predominates in VanKasteren,
reaching its maximum accuracy (96.7% ± 2.6) with the
first mentioned technique. In the CASAS-Kyoto dataset the
maximum accuracy (97.4%) was reached with the AR-SPM
technique, giving a clear idea of which are the most appropri-
ate segmentation techniques in the pre-processing of the data-
streaming windows of these two datasets. In UCI-HAR [124]
and mHealth [82] the segmentation for Sliding windows of
samples (128 and 60 respectively) has been applied, reaching
an accuracy of 91.76% and 91.9%, which have not been the
maximum values of accuracy achieved. The application of
segmentation techniques is still a topic to explore in these two
datasets. There is only one segmentation application refer-
ence for Opportunity [16], with a slidingwindow of 2 seconds
(1 second overlap), reaching an accuracy of 99.0%. Although
it is not the maximum accuracy reached for this dataset,
it is very good reference for future research. In the case of

CASAS-Multiresident, there is no evidence of the application
of segmentation techniques.

Regarding feature representation, most of the studies anal-
ysed for VanKasteren use the last-fired technique, obtaining
the highest accuracy (96.7% ± 2.6) in [2]. In CASAS-Kyoto
and mHealth there is no evidence of the application of fea-
ture representation techniques. In CASAS-Aruba, CASAS-
Multiresident, UCI-HAR and Opportunity, although some
techniques have been used (number of times that sensors
were activated, Last-state, Change-point, z-scores and raw
signals), this topic should be addressed with much greater
depth since the accuracy obtained with its application has not
been as significant.

Although different feature selection techniques were
applied in VanKasteren (SAE, IG and PCA), the highest
accuracy (96.7%± 2.6) was obtained without the application
of these techniques. For CASAS-Kyoto, a combination of
CsubE and Ch2AE techniques was applied with low results
and IG, with the highest accuracy at 97.4%. For CASAS-
Aruba, different feature selection techniques were used (IG,
PCA and CsubE + Ch2AE) with low results, the highest
accuracy (100%) was obtained with statistical information
about the activities. For UCI-HAR, different techniques were
applied (PCA, RF, LDA and Correlation), however, the high-
est accuracy (92.6%) was achieved without the application of
any technique. With Opportunity, the IG and SAE techniques
have been used, with the latter obtaining the highest accuracy
at 99.9%. For CASAS-Multiresident, the feature selection
was carried out manually, reaching the maximum accuracy
(81.5%) and for the mHealth dataset no feature selection
technique was applied. Implementing techniques such as
SAE, statistical information about the activities, IG and PCA,
among others, in those datasets in which very few or no
feature selection techniques have been implemented is an
important challenge to be addressed.

The balancing or addition of instances in VanKasteren
allowed to reach the maximum accuracy (96.7% ± 2.6)
adding instances of manual form of the abnormal activities.
None of the other techniques applied (SMOTE, McSI and
algorithmic approach) exceeded this value. In CASAS-Kyoto
only SMOTE was applied, reaching the highest accuracy
of 97.4%. In Opportunity, several instance addition tech-
niques were applied (instances randomly selected for each
fold and Instance Reassignment), however the best accu-
racy (99.9%) was obtained without the application of tech-
niques. There is no evidence of the application of balancing
techniques or addition of instances in the tests carried out
with CASAS-Aruba, CASAS-Multiresident, UCI-HAR and
mHealth. It seems that the techniques of addition or bal-
ancing of instances have not been studied in depth in this
field of research, preferring in some studies to add instances
manually. However, there is discussion in relation to the fact
that the addition of instances could generate an erroneous
representation of the data really captured, as for this type
of study the addition of instances by categories of activities
could avoid the bias of the classifier.
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The distribution of data for training and testing in the
different experimentation scenarios presented in the propos-
als where VanKasteren and CASAS-Kyoto were evaluated
was leave one day out cross-validation; in CASAS-Aruba
and UCI-HAR, it was 10-fold cross- validation; in
CASAS-Multiresident, it was cross-validation (3 or 10 fold);
in Opportunity, it was cross-validation (5 or 10 fold) and in
mHealth no such distribution was indicated.

Additionally, work must be done on the dynamic identi-
fication of window sizes according to the types of activi-
ties. Another approach that contributes considerably to this
process is the use of stacked auto encoder for the automatic
extraction of the features.

A relevant issue in the methodologies is that the vast
majority of studies have been recreated in experimental sce-
narios and labelled activities, which generally yield very
good accuracy rates, and are adequate as a process prior to
real-time implementations. In the first hand, the approaches
without real-time capabilities are used to evaluate usefully
the daily activities of inhabitants in long-term within the
early diagnosis of mental diseases [53]. Example of health
applications for these purposes are analysing disturbed sleep
cycles, which have become an indicator of mental disease
such as Alzheimer, or identifying a change of patterns in
activities, which is related to cognitive or physical decline.

On the second hand, the challenge of recognizing activi-
ties in real time undoubtedly generates a series of issues to
address, in terms of pre-processing, in particular the repre-
sentation of features and segmentation, requiring advanced
methods which process data with little delay and high reli-
ability [67]. However, the benefits of performing an activ-
ity recognition close to real time allow smart environments
to provide a valuable short-term interaction with the user.
For example, to promptly notify forgetfulness in the activity
development, such as forgetting the umbrella a rainy day or
intaking medications, or to prevent home riks of patients with
dementia when manipulating household appliances, such as
turning off the oven..

VIII. CONCLUSION
The purpose of this article has been to propose a series of
recommendations to researchers related to HAR, in relation
to the identification of the most appropriate dataset according
to the type of research. Development in this area of research in
the last fifteen years has been growing from the presentation
of only one research article in 2003 to 85 research arti-
cles in 2017. The most representative specialised databases,
in relation to the number of scientific publications in ADL,
is IEEExplore, with 66% of publications in total (247), sur-
passing the sum of the results obtained from consulting the
databases Scopus, Science Direct, Web of Science and ACM.

It is noteworthy that the majority of publications in this
field of research are proceedings or conference papers (72%
of publications) and a representative percentage is in journal
(27%). As for the quartile of the publication, although the
highest percentage of publications is done in non-categorised

proceedings or conferences (71%), a very important percent-
age (27%) of the publications is done in the first and second
quartile journals. The USA can be highlighted as the country
that accepts the largest amount of publications in this area
of research, with a participation of 31.8% with respect to
the total number of publications received worldwide and
followed by the Netherlands with 13.1%. In terms of the
number of publications generated, the USA and the UK with
13.4% of publications each, are the countries that stand out
most, while the participation of Italy is also representative,
with 11.2%. Although the media in which research results
are published in this area of knowledge are very diverse,
the most outstanding are: the magazine Pervasive and Mobile
Computing (Netherlands) with 2.6% and the series of books
Lecture Notes in computer science (Germany), with the same
percentage. The institutions with the most experience in this
field are: Ulster University (Ireland) with a participation
of 4.8% of the publications worldwide and the WSU (USA)
with 3.2%.

The technical analysis outlined in this paper has made it
possible to identify the WSU CASAS repository as the most
used, as it is referenced in 12.5% of the papers consulted,
in particular with the following datasets: Tokyo, Aruba,
Tulum, DOMUS, Real-Time Smart Home Stats, Single-
resident apartment data andKyotoMultiresident ADLActivi-
ties. Additionally, the VanKasteren (5.7%), UCI HAR (2.8%)
and Opportunity (2.3%) datasets have shown significant rep-
resentativeness in terms of usability, which allowed us to
answer the hypothesis initially raised. A more detailed char-
acterisation of the datasets referenced in the publications
was made, in terms of: type of event (activities: 35.3%),
occupation (single: 42.2%), annotation (annotated: 60.4%),
sensing modalities (environment sensor: 46.3%).

In addition, it has been possible to identify that the vast
majority of papers reviewed use a classifier based on DDA
(61%). Most of the papers referred to several classification
techniques for the comparative analysis of quality metrics.
Accordingly, 41.7% of the references to classifiers corre-
spond to the MM, 17.4% of the references used to the SVM
classifier, while IBL is mentioned in 15.8% of the papers
consulted, 15.8% of the papers mention the use of BC and
9.6% reference the use of DT.

The best results regarding the recognition of activities have
been achieved using MLC, which combines several individ-
ual classifiers, as evidenced by [28], [29], [78], and [81].
In addition, the use of RNN (which should be extended
to deep neural networks) considerably improves hit rates.
On the other hand, proposal [67] has obtained such a high
result because the Activity parameter maintains the statistical
information about the activities (throughMutual Information,
Frequency of triggered sensors of an activity, Interval time
and Last two sensors) and by its innovative Adaptive win-
dowing approach.

Regarding the processing of datasets with multi-
occupancy, it is necessary to implement techniques that
automatically select feature values, with the challenges that
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this entails. However, the use of genetic algorithms could
be a key element to solve this challenge. Complex activity
recognition (cooperative, parallel and individual) is a non-
trivial problem due to the conflicts that are generated in
the capture of data generated by the interactions. The rule-
based approach could provide solutions to the management
of such conflicts, taking into account the spatial and temporal
location of the inhabitants.

IX. FUTURE WORKS
In future work, we propose the evaluation of the recognition
capacity of an ARS of complex activities, comparing the
obtained quality metrics. In a first phase, we will recreate
experimentation scenarios, which will be validated from our
own multi-occupancy dataset and other dataset benchmarks.
In a second phase, the aim is to provide real-time capabil-
ities. In addition, we will focus on the implementation of
techniques for the re-labelling of activities (not identified)
and the recognition of activities using a multi-level classifier
approach that integrates: 1) genetic algorithms for feature
selection, and 2) GrowingHierarchical Self-OrganizingMaps
for classification based on the proposals of [130]–[132].
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