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Abstract: In this work, we detail a methodology based on Convolutional Neural Networks (CNNs)
to detect falls from non-invasive thermal vision sensors. First, we include an agile data collection to
label images in order to create a dataset that describes several cases of single and multiple occupancy.
These cases include standing inhabitants and target situations with a fallen inhabitant. Second,
we provide data augmentation techniques to increase the learning capabilities of the classification
and reduce the configuration time. Third, we have defined 3 types of CNN to evaluate the impact
that the number of layers and kernel size have on the performance of the methodology. The results
show an encouraging performance in single-occupancy contexts, with up to 92% of accuracy, but a
10% of reduction in accuracy in multiple-occupancy. The learning capabilities of CNNs have been
highlighted due to the complex images obtained from the low-cost device. These images have strong
noise as well as uncertain and blurred areas. The results highlight that the CNN based on 3-layers
maintains a stable performance, as well as quick learning.
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1. Introduction

The global population of those 60 years old or above exceeded 962 million in the year 2017, which
is more than twice as large as it was in 1980. This number of elderly persons is expected to double
again by 2050 worldwide. As the average age of the population continues to rise [1], elderly people are
continuing to suffer from certain chronic diseases like dementia, hypertension, diabetes, gait issues,
etc. Therefore, it has become important to address the needs and interests of older persons, specifically
needs related to health-care and other forms of daily life. In an indoor environment, impact related
accidents such as falling and collisions have been identified and studied in an attempt to avoid falls or
reduce the aid response time [2]. In 2012–2013, 55% of all unintentional injury deaths among adults
aged 65 and over were due to falls [3]. This opens up the research avenue for tracking elderly people’s
daily routine related activities, specifically those that guarantee the safety. Over the last decade, interest
in wearable and mobile ubiquitous computing technologies has provided researchers with enough
opportunities to design monitoring and intervention platforms, which could provide continuous 24/7
real-time monitoring in a smart-home environment.

To date, significant advances have been made towards reliable recognition of various activities
in highly instrumented Smart-home environments [4], as people spend most of their time indoors.
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These aforesaid environments mostly include elaborate and augmented object/location schemes,
with a broad range of appliances and wearable sensors such as acceleration sensors, RFID reader etc.
In contrary, human activity recognition in smart-environment with limited augmentation is possible
with minimal or no use of wearable sensors, but it is still an open research issue.

These methods of activity recognition most often involve the use of a camera. A camera’s usage,
however, invades the user’s privacy, as it is deployed 24/7 to monitor the inhabitant in the smart-home
environment. In order to increase comfort for the inhabitant, minimize the operation cost and simplify
the use of technologies, non-wearable sensors are introduced. Keeping these issues in mind, different
types of non-wearable and non-intrusive human identification sensors are deployed in the smart-home
environment. The maturity of non-wearable activity recognition, however, is not high and most of
these technologies are verified only in a smart-lab environment. It is evident that falling is a big problem
for elderly people in nursing care, as a fall or accident could happen in any living environment such as
a room, corridor or wash-room. Most importantly around 58% of falls occur in the living room for
the elderly [2]. Therefore, even with the mentioned privacy concerns, 24/7 monitoring is required for
inhabitant tracking.

This work proposes detection of falls using Convolutional Neural Networks (CNNs) by employing
a non-invasive thermal vision sensor (TVS) in a real-environment. In the proposed methodology,
we collect occupancy frames using a single TVS attached to the ceiling. The fall situation and the
non-fall situation is detected with a CNN by using augmented posture transitions.

The paper is organized as follows: Section 1 gives an overview of the state-of-the-art non-intrusive
sensor categories. Section 2 describes the architecture of the components, and proposed methodology
to detect falls. Section 3 discusses the experimental set-up in a smart-room. Section 4 shows the results
from the 3 types of CNN, as well as the performance evaluation and a detailed discussion. Section 5
provides the concluding remarks.

Related Works

The use of smart homes for different applications such as health and activity recognition is rapidly
increasing worldwide [5] for the elderly. Different sensing technologies are used around the home to
monitor the activities of the inhabitants. Based on these activities and behaviours, personalized services
are provided to them. In all cases, the combinations of events needed to recognize such activities
require the implementation of several, often complex sensors around the inhabitant. An example
is a camera, which can, in principle, provide all the information from a single source. While there
has been a lot of work on video-based activity recognition in household environments [6], it infers
privacy concerns. In the last decade, significant work has been done in this area to identify different
sets of activities using other non-wearables. Some approaches consider using environment placed
sensors, such as cameras, PIR (pyroelectric) [7], thermal sensors [8], and others. Some techniques
also considered smart floor and pressure sensors. The research community, however, has suggested
that non-wearable technologies can generate alerts of elapsed sedentary time [9], gait deformities,
falls and collisions, which could all be detected and avoided in our daily routines without privacy
issues. Non-wearable human context identification technologies are classified into four main categories,
object-based, footstep-based, body-shape, and gait-based identification technologies.

In the context of fall detection, in [10] authors present a wearable based solution, which was
located on the waist. It collects data from both a triaxial accelerometer and gyroscope to classify several
human actions, including three types of falls: falling forward, falling to the left and falling to the right.
In [11] authors describe a fall detection system using a wearable sensor, which was optimized to
determine the optimal transmission and sampling rates.

In [12] authors integrate a thermal infrared array sensors to detect falls computing the maximal
thermal difference between the background and foreground pixel. The configuration was sensible
to room temperature and brightness. In [13] authors proposed a system used to recognize human
activities, which include falls, by means of a single thermal infrared sensor. Several features based
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on temperature thresholds are proposed to be evaluated by a Support Vector Machine (SVM) in the
classification. It achieved a good performance but including some confusion in distinguishing between
the falling and sitting.

Based on previous work, the proposed methodology aims to:

• Integrate a low resolution thermal vision Heimann HTPA 32 × 31 [8].
• Offers a degree of privacy not offered by traditional camera methods as occupants cannot be

identified, providing a more positive acceptance than standard vision cameras [14].
• Avoid that the inhabitant carries a wearable sensor or external device. The wearable based

approaches involve a maintenance and battery charge of the external device.
• Avoid the evaluation by on human defined features based on thresholds and parameters using a

quick configuration with data augmentation and Convolutional Neural Networks.

2. Methodology

In this section, we detail the methodology proposed to detect falls from non-invasive TVSs. First,
we detail an agile data collection to label images in order to compose a dataset that describes several
cases of normal occupancy with standing inhabitants and target situations with a fallen inhabitant.
Second, we detail the data augmentation techniques included in the approach, to increase the learning
capabilities of the classification. Third, we have defined 3 types of CNN to evaluate the impact that the
number of layers and kernel size has on the performance of the methodology.

In Figure 1 we show the architecture of components described in the next Sections.

Figure 1. Architecture of components in methodology.

2.1. Agile Data Collection from Thermal Vision Sensor

In this section we describe a agile process of data collection and the processing of images in order
to optimize the learning of CNN by means of data augmentation.

First, we note the TVS is located in the room’s ceiling, collecting an zenithal view of the occupants,
which offers the advantage of (i) providing a clear view of fall situations and (ii) reducing occlusion in
multi-occupancy. For each image, the data collected by the TVS (Heimann HTPA 32 × 31) is defined by
a 32 × 31 matrix, where each pixel defines a heat point whose value is defined within the range of
0 and 255. The image data is collected from the TVS by means of a twisted ethernet cable which is
connected to the local area network. The middleware SensorCentral [15] integrates the TVS as a sensor
source, providing the data within a Web Service in JSON format.
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Second, we have developed an application for collecting and labeling images (ACL), which (i)
connects to the Web Service from the TVS, in order to collect data in real-time, and (ii) stores the data
as an image in PNG format within a labeled local folder. We note that due to the TVS proposed being
a low-cost sensor, the data collection rate is limited to a range of 1–2 images per second. The use
of ACL enables developers to straightforwardly generate a dataset, from a case scene, by means
of human-supervised labeling. In Section 3 we describe several case studies based on single or
multi-occupancy.

2.2. Data Augmentation

Learning from a CNN needs a large amount of data [16]. Collecting images from different
inhabitants, orientations and cases by the ACL could take a great deal of effort, which could make
the customization and configuration in different contexts hugely difficult. Fortunately, the data
augmentation provides a sort solution to enlarge the number of learning cases from a limited set [17]
and therefore, reducing the over-fitting [18].

We have developed an application for augmenting and enlarging (AAE) the image data from the
original dataset, collected by ACL by means of translation, rotation and scale transformations:

• Translation. The original image is relocated within a maximal window size [tx, ty]+ using a random
process which generates a random translation transformation [tx, ty], tx ∈ [0, t+x ], ty ∈ [0, t+y ].

• Rotation-Scale. The rotations are provided by two methods. First, the translated image is flipped
horizontally and vertically, using a random process that applies the transformation to a percentage
of cases, defined by wH, wR respectively. Second, a rotation and scale transformation is defined
by a maximal rotation angle α+ and a scale factor s+, which generates a random rotation with an
angle α ∈ [0, α+] and a random scale s ∈ [1− s+, 1 + s+] which are then applied in the center of
the image. We note that this rotation overcomes the original image size, also providing a random
scale of the image.

• Crop-scale. A final image of window size [sx, sy] is cropped from the center of the image, which
contains the most relevant visual information.

2.3. Design of the Convolutional Neural Network

In this section we describe 3 types of CNNs (CNN) for classifying the fall situations of inhabitants.
There are two target classes for the CNN to learn: fall situation and non-fall situation. As we discussed
in the previous Section 2.2, the augmented dataset provides a wide range of images of size 28 × 28 for
the two cases.

Based on the visual information of the images, the CNN learn kernels are related to key
visual patterns, whose similarity with source visual regions is defined by a convolutional operation.
They enable summarizing and reducing of the spatial information defined by a bi-dimensional
kernel size [Kx, Ky]l . Moreover, the CNN is configured within layers that are hierarchically ordered
L = {l1, ·, l|L|}. In addition, some methods/sub-layers are usually included to configure the network,
reduce the number of parameters and avoid over-fitting, such as, dropout, pooling or activation functions.

Next, we briefly discuss the functionality of such methods/sub-layers within the layers of
the CNN:

• Convolutional kernels. They represent the main contribution in the CNN. The kernels (also called
filters) define a pattern which must be learned within a local visual region. The convolution
operation of a local visual region and a kernel generate an output which represents its similarity.
The convolutional sub-layer is defined by the size of the kernels Kl

i = [Kx, Ky]l and the number of
them |Kl | in a layer l.

• Activation function. The outputs of kernels within layers can be filtered by an activation function
Al to train the neural network several times faster [18]. Rectified linear unit (Re-LU) is a simple
and encouraging function widely applied.
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• Pooling. This sub-layer provides a spatial reduction in the size of the outputs within the layers,
to control over-fitting [17]. It is defined by a window size [Px, Py] and aggregation function P+

l ,
such as maximal or average.

• Dropout. In the last layer, reducing the network by randomly removing nodes [19] reduces
over-fitting. The random punning is controlled by a probability threshold dα.

• Dense Layer. Finally, the output from last CNN layer configures a dense layer of features whose
weights describe the input image. A dense layer is introduced as a classifier or regressor that
learns the relation between all of the weights from the last layer, and the labeled target class.
The classical classifier is a multilayer perceptron, with a final activation function A+, such as,
soft-max or sigmod functions. This relates the weights of the last layer to a probability distribution
for each possible target class.

• Cost function and back-propagation. The lost/cost function C∗ defines the performance of the
learned model while training. Several cost functions have have been proposed, such as,
quadratic cost or more recently, cross-entropy [20] in vision recognition. The cost function is
computed by the optimization of the weights of neurons within the back-propagation process.
In this approach, the gradient descent optimization algorithm [21] is commonly used in
back-propagation, to optimize the network by calculating the gradient of the cost function.

In this work, three types of configurations of CNN are evaluated to classify the fall detection from
vision thermal images: (i) CNN0

2 a 2-layer CNN with optimized configuration for MINIST dataset [22],
(ii) CNN+

2 2-layer CNN with new kernels configuration and (iii) CNN3 a 3-layer CNN. Based on the
previous definitions we have described them in Table 1. The performance of the CNNs is shown in
next Section 4.

Table 1. Configurations of Convolutional Neural Networks.

Parameter CNN0
2 CNN+

2 CNN3

|L| 2 2 3
[Kx, Ky]1 × |K1| [5,5]×16 [3,3]×16 [3,3]×16
A1 Re-Lu Re-Lu Re-Lu
[Px, Py], P1 [2,2],max [2,2],max [2,2],max
[Kx, Ky]2 × |K2| [5,5]×16 [5,5]×64 [5,5]×32
A2 Re-Lu Re-Lu Re-Lu
[Px, Py], P2 [2,2],max [2,2],max [2,2],max
[Kx, Ky]3 × |K3| [7,7]×16
A3 Re-Lu
dα 0.5 0.5 0.5
A+ soft max soft max soft max
C∗ cross-entropy cross-entropy cross-entropy

3. Experimental Setup

In this section, we detail the experimental setup of the case study that has been developed to
evaluate the methodology for fall detection in a smart environment.

The case study has been carried out in the Smart Lab of the University of Ulster (https://www.
ulster.ac.uk/research/institutes/computer-science/groups/smart-environments). Three participants
(one woman, two men) between 25 and 35 years old were involved to collect data in the hall room,
using a TVS installed in the ceiling. The height of the participants were 1.72, 1.68 and 1.83 m.

The data to detect falls in single occupancy composed of three subcategories: (i) empty room,
(ii) one person standing/walking, and (iii) one person fallen. In multi occupancy, we added two new
subcategories: (iv) 2–3 people standing/walking and, (v) one person fallen with another person
standing/walking. The image from the three participants was collected in a static way due to the
purpose of the work is based on evaluating an image. The vision of the TVS within the hall room
is defined by a square bounding box of 3.5 m. When collecting data, each person simulated several

https://www.ulster.ac.uk/research/institutes/computer-science/groups/smart-environments
https://www.ulster.ac.uk/research/institutes/computer-science/groups/smart-environments
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natural positions in case of fall, as well as, took a walk around the vision area of the TSV in case
of walking.

As we have introduced, one of the main motivations of the work is providing a quick
configuration using data augmentation. So, the duration for each subcategory was 4 min and limited
to 260 frames. This allows for the methodology to provide a quick configuration and agile deployment
in several contexts.

Data Augmentation

Once data from the original dataset is collected, we include a data augmentation step for enlarging
the visual information of images, which increases the learning performance of the CNN.

• Translation. The original image is translated within a maximal window size [tx, ty]+ = [3, 3].
• Rotation-Scale. Each image is flipped horizontally and vertically by a random probability

wH = 0.5, wR = 0.5 respectively, i.e., horizontally in half of the cases, and vertically in the
other half. Second, a rotation and scale transformation is defined by a maximal rotation angle
α+ = π and scale s+ = 0.1. We note both rotation methods generate a random rotation from the
complete range of possible orientations.

• crop-scale. In this work, we are working on a final centered image with a window size of 28 pixels
[sx, sy] = [28, 28].

In Figure 2, we show an example of augmented images generated from the same image collected
by the TVS.

Figure 2. Example of data augmentation applied to the image from the thermal vision sensor, where a
fall is presented.

4. Results

In this section, we detail the results from the 3 types of CNNs, to detect falls from thermal vision
images. In order to evaluate the dataset, it has been divided into 10% for testing and 90% for training
using cross-validation. So, 10 training and testing datasets have been further evaluated. The accuracy
and time thrown by the 3 types of CNNs have been collected for over 2000 learning steps.

In Table 2, we include the data for the single occupancy dataset. In Table 3, we include the data for
the multi occupancy dataset. The results from 5 datasets for both single and multi-occupancy, provide
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(i) the average and standard deviation of accuracy from the last 20 learning steps, and (ii) the average
of the time wasted in the 2000 steps. We include the average of accuracy from the last 20 learning steps
due to the variance and evolution of the performance in Deep Learning while the training. In Figure 3
we describe the evolution of accuracy in the learning process of while the 2000 steps from the 3 types
of CNNs.

Figure 3. Evolution of accuracy in the learning process for single and multi occupancy from the 3 types
of CNNs.

Table 2. Table summarizing the results of the single occupancy data.

Σ(Time) Σ(Accuracy)%

CNN0
2 22.48 m 89.31

CNN+
2 30.36 m 90.82

CNN3 27.86 m 91.93

Table 3. Table summarizing the results of the multiple occupancy data.

Σ(Time) Σ(Accuracy)%

CNN0
2 22.53m 83.87

CNN+
2 30.36m 84.01

CNN3 28.00m 85.70
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Discussion

Before discussing the results, we note the complexity of recognizing falls from the low-cost device
studied here. The most important issue is the precision of the thermal points, which configure the
image of the TVS. It includes strong amounts of noise and uncertain and blurring areas between hot
points. This can generate problematic images in detecting falls. An example is included in Figure 4,
which summarizes the complexity of the problem that the current approach has been faced with.

First, the CNNs have provided an encouraging performance in detecting falls in single occupancy,
which achieves 90% accuracy. The use of different kernel sizes in 2-layers of CNN in CNN0

2 and CNN+
2

provides an slight improvement in accuracy, and the second version CNN+
2 wastes a significant

amount of time on learning, >35% compared to CNN0
2 . The use of a CNN based on 3-layers has

improved the accuracy in detecting falls up to 91.93%, without requiring an increase in time spent on
learning >24%. Finally, CNN+

2 and CNN3 have shown to learn faster than CNN0
2 , which could reduce

the learning time in real-time deployments and configurations.
Second, the multi-occupancy scenes have shown a more complex visual configuration, which

has reduced the accuracy to 85%. As we detail in Figure 4, it is due to the integration of more people,
which produces similar shapes as a fallen person. The use of different kernel sizes in 2-layers of CNN
in CNN0

2 and CNN+
2 has provided a slight increase in accuracy. We note that the use of a CNN based

on 3-layers has again improved the accuracy in detecting falls +2%, producing the same increase in
time spent on learning, >24%, as single occupancy. Similar to single occupancy, CNN+

2 and CNN3

have shown quicker learning than CNN0
2 .

Figure 4. Example of problematic images to detect falls from thermal vision sensor. In Top, two falls
are presented. Bottom, standing/walking people is collected.

In summary, the use of a CNN, specially based on 3-layers, has provided a robust performance in
detecting falls from thermal vision images.

5. Conclusions and Ongoing Works

The CNNs have been evaluated as suitable detectors of inhabitant falls from the images collected
by a TVS. In order to solve the problem of collecting a huge amount of data, we have included data
augmentation to provide a quick configuration.

The results have shown an encouraging performance in single-occupancy contexts with up to 91%
accuracy, and a 6% reduction in accuracy for multi-occupancy. The learning capabilities of CNNs have
been highlighted due to the complex images obtained with strong amounts of noise and uncertain
and blurring areas from the low-cost device used here. The results highlight that the CNN based on
3-layers maintains a stable performance, as well as quick learning.
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In future works we will include a robust system where the temporal evaluation of the stream
frames from a TVS are analyzed. A great number of inhabitants will be involved to increase the
soundness of the recognition. Therefore, the probability of fall detection from TVS, in the methodology
described here, will be increased as richer information will be involved. Such information includes
movement, speed and tracking information from a sequence of frames, to provide a competitive
detection of falls based on the context of the environment and inhabitants.

Moreover, for solving the problems of resolution and precision of Heimann HTPA 32 × 31, other
recent mobile TVSs, such as FLIR (https://www.flir.com/products/flir-one-gen-3/) will be evaluated
to obtain a higher quality in the images collected, which could improve the performance in the
detection of falls. It will also include a visible spectrum camera to provide a comparative performance
between thermal and non-thermal vision sensors.
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