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a b s t r a c t 

There are approaches that successfully recognize activities of daily living by using a trained classifier on 

feature vectors created from binary sensor data. Although these approaches have been successful, there 

are still open issues such as the evaluation of multiple temporal windows, ensembles of classifiers or 

unbalanced classes which need to be addressed in order to improve the performance of the real-time 

activity recognition process. In this paper, we present a methodology for Real-Time Activity Recognition 

based on the diverse fields of Machine Learning, including Fuzzy Logic and Recurrent Neural Networks. 

The methodology uses a long-term and short-term representation of binary-sensor activations based on 

Fuzzy Temporal Windows. The paper proposes an ensemble of activity-based classifiers for the purposes 

of balanced training, where each classifier in the ensemble is a Long Short-Term Memory. The approach 

was evaluated using two binary-sensor datasets of daily living activities and benchmarked against previ- 

ous approaches based on the combination of sensor activation features. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Activity recognition (AR) systems deployed in smart homes are

haracterized by their ability to detect human actions and their

oals in order to improve assistance. Such assistive technologies

ave started to be adopted by smart homes and healthcare ap-

lications in practice and have delivered promising results for im-

roving the quality of care services for the ageing and provision of

esponsive assistance in emergency situations ( Chen, Hoey, Nugent,

ook, & Yu, 2012 ). 

AR based on the use of binary sensors is a useful approach to

ssess the status of daily living within a sensorised environment in

n unobtrusive manner ( Espinilla et al., 2017; Krüger, Nyolt, Yor-

anova, Hein, & Kirste, 2014 ). Binary sensors are small and light

evices which installed in everyday objects to register human in-

eraction. Examples of these kinds of devices are motion detectors,

ontact switches, break-beam sensors, and pressure mats ( Wilson

 Atkeson, 2005 ). They are easily connected to a middleware, gen-

rally using wireless communications, and subsequently generate

treams of binary data. 

Data Driven Approaches for AR, which aim to use the informa-

ion gleaned from the sensors, require a large dataset with the ac-
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ivities labelled specifying their starting and ending point in time

o represent the ground truth. The activities within such a dataset

et are usually performed by participants as part of a controlled

xperiment whilst the binary sensors are activated in controlled

onditions within a smart lab/home. A training process is neces-

ary for data driven approaches to build an activity model. Once

rained the model can be exposed to unseen data to evaluate its

eneralization abilities in classifying unseen activities ( Espinilla,

iu, & Chamizo, 2017; Gu, Wang, Wu, Tao, & Lu, 2011; San Martín,

eláez, González, Campos, & Lobato, 2010 ). 

A number of previously undertaken AR studies have been

entered on classifying activities, which were previously labelled

y human-defined time intervals ( Espinilla et al., 2016 ). These

pproaches are referred to as explicit segmentation ( Krishnan &

ook, 2014 ) and do not provide real-time capabilities in AR. Within

 real context, however, it is desirable for any AR model to be ca-

able of running in real-time ( Cook, Schmitter-Edgecombe, Cran-

all, Sanders, & Thomas, 2009 ). Real-time refers to the recognition

f activities: (i) when they are being undertaken ( Yan, Liao, Feng,

 Liu, 2016 ), (ii) while new sensor events are being recorded, and

iii) the processing of data to produce results within an acceptable

eriod of time ( Martin, 1965 ). Including real-time capabilities has

ecome a key challenge in AR to provide responses to real-world

onditions ( Chen et al., 2012 ) enabling adequate assistance services ,

hich can be offered within Ambient Assisted Living ( Storf et al.,

009 ). In real-time AR, explicit information relating to the labelled
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.07.068&domain=pdf
mailto:jmquero@ujaen.es
mailto:s.zhang@ulster.ac.uk
mailto:cd.nugent@ulster.ac.uk
mailto:mestevez@ujaen.es
https://doi.org/10.1016/j.eswa.2018.07.068


442 J. Medina-Quero et al. / Expert Systems With Applications 114 (2018) 441–453 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h  

i  

t  

b  

l  

p  

i  

s

 

t  

m  

t  

w  

L  

2  

a  

t  

s

 

s  

t  

t  

(  

(  

t  

e  

h  

w  

(  

c

 

d  

s  

2  

o  

p  

M  

h  

2  

2

 

a  

c  

w

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Shahi et al., 2017 ). 
time interval is generally not included whilst learning. This sub-

sequently requires window based approaches to segment the data

stream ( Krishnan & Cook, 2014 ). 

The main difficulty with real-time AR approaches is the ability

to correctly define the size of the temporal window to allow ef-

fective recognition of activities ( Banos, Galvez, Damas, Pomares, &

Rojas, 2014; Ordónez, de Toledo, & Sanchis, 2013 ). The difficulty of

using a single sliding window is that the more sensor events from

the past that are included, implying noise in the trained model

( Banos et al., 2014; Espinilla, Medina, Hallberg, & Nugent, 2018;

Krishnan & Cook, 2014 ). In this work, the use of multiple temporal

windows and fuzzy aggregation methods are proposed to enable

the long and mid term evaluation of sensors, discriminating sensor

activations by more than one temporal window. 

A further issue when considering the development of Data

Driven approaches to AR is that the datasets used usually suf-

fer from a class imbalance problem ( Ordónez et al., 2013;

Van Kasteren, Noulas, Englebienne, & Kröse, 2008 ), where activity

events are extremely scarce ( Yin, Yang, & Pan, 2008 ). For exam-

ple, cooking is an activity which usually has a duration around one

hour with a many sensor activations, while go to the toilet typi-

cally only lasts a few minutes with a few sensor activations. Bal-

ancing methods are recommended to assist with improving gen-

eralization of the model ( Logan, Healey, Philipose, Tapia, & Intille,

2007 ). An example of balancing method is to learn using data leads

to minority classes, ignoring majority classes, when a specific clas-

sifier for a minority class is trained ( Guo, Yin, Dong, Yang, & Zhou,

2008 ). 

This work takes these issues into consideration proposing a

Data Driven Approach whose methodology aims: 

• To propose a representation focused on the long-term and

short-term based on a temporal sequence, which is defined

by multiple and incremental fuzzy temporal windows under a

fuzzy aggregation. Here, shorter term is related to finer tempo-

ral granularity and the longer term is related to coarser gran-

ularity. Together they provide an adequate aggregation of past

events whilst at the same time provide an accurate representa-

tion of recent events from binary data streams. 
• To develop a more representative and balanced approach

to learning in order to: (i) increase the learning capa-

bilities using an ensemble of classifiers, and (ii) create

a training dataset based on the similarity relation be-

tween activities, which encourages learning in conflicting

activities. 

The proposed approach is introduced in Section 2 along with

related works. The proposed approach is formally defined in

Section 3 . The proposed methodology is evaluated on two popu-

lar datasets, Ordónez et al. (2013) and Singla, Cook, and Schmitter-

Edgecombe (2009) in Section 4 . Finally, in Section 5 , conclusions

and ongoing work are discussed. 

2. Related works 

The proposed approach presented in this work is based on two

main concepts: (i) a representation based on fuzzy temporal win-

dows to describe long-to-short sequences of binary-sensor activa-

tions suitable for sequence classifiers and, (ii) learning an ensem-

ble of classifiers based on activity similarity to address the class

imbalance problem. 

2.1. Representation of temporal data for real-time activity recognition 

AR is an open field of research where approaches based on

different types of sensors have been proposed. Wearable devices
ave been used to analyze activities such as walking, sitting or ly-

ng down ( Medina, Fernandez-Olmo, Peláez, & Espinilla, 2017; Or-

iz, 2015; Reyes-Ortiz, Anguita, Ghio, & Parra, 2012 ). Approaches

ased on body-worn devices can, however, be intrusive for daily

ife ( Roggen et al., 2010 ) and, at the same time, they are not ap-

ropiate to provide a long-term vision of daily activities due to be-

ng focused on gesture rather than a user’s interaction with the

mart environment. 

Vision based sensors have also been used as a rich source for

he recognition of human activities, generally in outdoor environ-

ents ( Robertson & Reid, 2006 ). Within the home-based litera-

ure description of activities through the detection of human joints

ith a vision sensor has been considered ( Rege, Mehra, Vann, &

uo, 2017 ). In addition, the wearable vision sensors ( Shewell et al.,

017 ) in daily object interaction has been reported. The main dis-

dvantages of vision sensor approaches include the high compu-

ational costs, in addition to privacy concerns ( Sixsmith & John-

on, 2004 ). 

Binary sensors have been proposed as suitable devices for de-

cribing daily human activities within a smart environment set-

ing ( Van Kasteren et al., 2008 ). Their main advantages are that

hey are: (i) easy to install, (ii) small in size, (iii) low-cost and

iv) minimally invasive in comparison to videos and microphones

 Tapia, Intille, & Larson, 2004 ). Their main drawback, however, is

heir ability to manage situations of multi-occupancy within smart

nvironments. More recently, approaches based on binary sensors

ave been extended to Smart Meters ( Koutitas & Tassiulas, 2016 ),

hich enable identifying user interaction with electrical devices

 Belley, Gaboury, Bouchard, & Bouzouane, 2013 ) based on power

onsumption ( Alcalá, Ureña, Hernández, & Gualda, 2017 ). 

Within the domain of real-time AR with binary sensors, the

efinition of a temporal window size requires a deep analysis to

egment the data correctly ( Banos et al., 2014; Espinilla et al.,

018 ). To date, several attempts have evaluated the performance

f Machine Learning classifiers, such as, Decision Trees (DT), Sup-

ort Vector Machines (SVM), naives Bayes (NB) or Hidden Markov

odel (HMM), based on sliding windows ( Stikic, Huynh, Van Laer-

oven, & Schiele, 2008; Tapia et al., 2004; Yala, Fergani, & Fleury,

015 ) or dynamic windows ( Espinilla et al., 2018; Krishnan & Cook,

014; Yan et al., 2016 ). 

These previous effort s highlight studies which have strived to

djust fixed or dynamic window sizes in real-time AR involving

ontext-based complexity ( Shahi, Woodford, & Lin, 2017 ), which

e aim to avoid. 

From an evaluation perspective, real-time AR has mainly been

rovided by two methods: 

• Usage of time-slots: In this approach, the process of recogniz-

ing the activity is evaluated for each given time-slot with a

given duration ( Van Kasteren, Englebienne, & Kröse, 2010 ). Re-

lated approaches have found that a time-slot of 60 seconds pro-

vides good performance in human activity recognition with bi-

nary sensors ( Ordónez et al., 2013; Van Kasteren et al., 2010 ).

An adaption of this approach has been used for the purposes of

evaluation within the current works. 
• Usage of events: In this approach, the sensor data stream is

evaluated taking into account the changes in sensor events

( Patterson et al., 2017 ). With this method, the approach clas-

sifies every sensor event based on the information encoded in

a sliding window of preceding sensor events. This approach

is mainly adopted by research studies that (i) analyze sensors

which provide continuous data from wearable devices, such

as accelerometers ( Banos et al., 2014 ), and (ii) using binary

sensors in AR together with dynamic windowing approaches
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Fig. 1. (A) Relevance of activation for some sensors ( S 1 , S 2 , S 3 ) in a given current time t ∗ within a long-term, mid-term and short-term representation. (B) Scheme of a LSTM 

cell. 
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.2. Fuzzy temporal windows to describe long-to-short sequences of 

inary-sensor activation 

In this work, a methodology is proposed to aggregate data from

inary sensors by means of incremental temporal windows to rec-

gnize daily activities in real-time from a single occupancy sce-

ario. In previous works, a combination of human-defined features

n binary sensors, such as last activation, change point or raw ac-

ivation in current time, has been proposed as a suitable represen-

ation for features in real-time AR ( Van Kasteren et al., 2010 ) un-

er windowing approaches ( Huynh, Blanke, & Schiele, 2007 ). The

se of dynamic windowing and human-defined features for rep-

esenting binary sensors has been evaluated previously considered

 Shahi et al., 2017 ). Nevertheless, these representations based on

uman interpretation lack a longer temporal representation, which

as been recognized as a critical aspect impinging upon the per-

ormance of sliding window approaches ( Espinilla et al., 2018 ). 

Taking these previous findings into consideration, the use of

ong-term or mid-term windows is considered a key to represent

vents from the previous minutes or hours, which can be critical in

he overall recognition of a given activity. For example, the differ-

nce between breakfast and dinner is usually provided by activa-

ions as well as deactivations of the bed sensor from long-term to

hort-term. In the case of breakfast, the short-term deactivation of

he bed sensor. While dinner, the bed sensor is deactivated from

he longer term to short term. Therefore, there is a relation be-

ween the sleep/sitting in the bed with the breakfast/dinner activ-

ty. 

In order to define the activation for each sensor within a long-

erm, mid-term and short-term representation, this work proposes

he definition of Fuzzy Temporal Windows (FTWs) of incremental

ize, which represent the temporal activation from binary-sensors.

ith such an approach, the selection of a critical single window

ize is reduced by offering a wide range of FTWs (refer to Fig. 1 ).

n developing intelligent systems from sensor data stream, Fuzzy

ogic ( Zadeh, 1996 ) has provided successful results in aggregat-

ng sensor information using linguistic representations ( Espinilla &

ugent, 2017; Medina, Espinilla, Zafra, Martínez, & Nugent, 2017 ).

he proposed FTWs ( Medina, Martinez, & Espinilla, 2017 ) provide a

odel to: (i) weight sensor activation based on temporal member-

hip functions, (ii) define progressive and interpretable temporal

indows, and (iii) reduce the complexity of the temporal repre-

entation from long and mid-term sensor activation. 

Furthermore, the use of FTWs can define a temporal-sequence

epresentation of sensor activation by means of incremental tem-

oral size ( Edwards, Coward, Hamer, Twitchen, & Hobson, 20 0 0;

ossetti, Milli, Giannotti, & Pedreschi, 2017 ). The advantage of in-

luding a sequence representation is the improvement in learning

y a sequence classifier, such as Long Short-Term Memories (LSTM)

 Hochreiter & Schmidhuber, 1997 ). LSTM is a Recurrent Neural Net-
ork which is formed by a chain of repeated modules called mem-

ry cells. Each memory cell is composed of an input gate, a self-

ecurrent connection, a forget gate and an output gate (refer to

ig. 1 ). The cell states of LSTMs can be controlled in order to re-

ove or add information based on the learning of the gates. LSTMs

ave also provided state-of-the-art learning of video representa-

ions ( Srivastava, Mansimov, & Salakhudinov, 2015 ), which have

een adapted to AR from fixed windows or video shot segments

f daily activities ( Donahue et al., 2015 ). 

LSTMs have been previously described as an appropriate choice

or use in sensor-based AR: (i) ( Singh et al., 2017 ), where to-

ether with Convolutional Neural Networks (CNN), they have been

onsidered under a time slice approach; and (ii) ( Ordóñez &

oggen, 2016 ), where an approach based on wearable devices,

uman activity recognition and human gesture recognition was

resented. In both instances, LSTM has provided high accuracy

n learning activities, however, avoided aggregation of long and

id-term representations. For example, Singh et al. (2017) pro-

osed 70 sequences for one-minute time-slots, and Ordóñez and

oggen (2016) used a 500 ms sliding window with 250 ms time-

lots (we note the difference between the binary and wearable

ensor representation of time). In this work, we propose the use

f FTWs to describe multiple temporal windows, whose size is de-

ned from a half day to a few minutes by means of a long-to-short

erm fuzzy temporal representation. 

In Tables 1 and 2 , we summarize the related work considered

or different types of sensors in AR and the representation of fea-

ures and classifiers, respectively. 

.3. Balanced-based similarity training for an ensemble of classifiers 

A dataset is considered to be imbalanced when its classes

re not equally represented ( Chawla, Bowyer, Hall, & Kegelmeyer,

002; Japkowicz & Stephen, 2002 ). It has been previously reported

hat daily activity datasets suffer from a severe class imbalance

roblem ( Ordónez et al., 2013; Van Kasteren et al., 2008 ). In Neural

etwork (NN) approaches, the classifier performance deteriorates

ith even the most modest of class imbalance in the training data

 Mazurowski et al., 2008 ). 

Due to our approach being based on sequence learning through

N (specifically LSTM) from imbalanced daily activity datasets, we

ropose the following two key points to minimize the impact of

he imbalance problem. 

Firstly, an ensemble of activity-based classifiers is included. En-

emble of classifiers have been proposed to handle class imbal-

nce problems ( Galar, Fernandez, Barrenechea, Bustince, & Herrera,

012 ). The use of an ensemble of classifiers for wearable-based ac-

ivity recognition has been previously proposed in Lester, Choud-

ury, Kern, Borriello, and Hannaford (2005) . In this approach, a 

eature selection together with an ensemble of static classifiers and
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Table 1 

Example approaches with different types of sensors in AR. 

Type Reference works Advantages Disadvantages 

Vision Rege et al. (2017) , Robertson and 

Reid (2006) , Shewell et al. (2017) , 

Sixsmith and Johnson (2004) , 

Donahue et al. (2015) 

Low invasiveness, rich visual 

description 

Privacy, cost, computational burden 

Wearable ( Ortiz, 2015 ), Ordóñez and 

Roggen (2016) , Banos et al. (2014) 

Individual granularity, precision, high 

collecting rate 

Invasive, limited to gesture recognition, 

computational burden 

Binary ( Van Kasteren et al., 2010 ), 

Ordónez et al. (2013) , 

Singh et al. (2017) , Yan et al. (2016) , 

Krishnan and Cook (2014) , 

Yala et al. (2015) , Espinilla et al. (2018) 

Easy-to-install and maintain, minimally 

invasive, low-cost 

Non-individual granularity, low 

performance in multi-occupancy 

Sensing 

Electricity 

Data 

( Belley et al., 2013 ), Alcalá et al. (2017) Easy-to-install, minimally invasive Non-individual granularity, low 

performance in multi-occupancy 

Table 2 

Representation of features and classifiers of AR. 

Reference works Representation Classifier 

( Yan et al., 2016 ), Krishnan and Cook (2014) , Espinilla et al. (2018) Windowing approaches (binary sensors) NB + SVM+HMM+Others 

( Ortiz, 2015 ), Banos et al. (2014) Windowing approaches (wearable sensors) SVM + Decision Trees+Bayes+Others 

( Van Kasteren et al., 2010 ), Ordónez et al. (2013) Human-defined features + short sliding window for time-slots DT + SVM+HMM+Others 

( Shahi et al., 2017 ) Human-defined features + dynamic window NB 

( Donahue et al., 2015 ) CNN + Fixed sequences (video sensors) LSTM 

( Singh et al., 2017 ) CNN + fixed sequence of time-slots (binary sensors) LSTM 

( Ordóñez & Roggen, 2016 ) CNN + Sliding window (wearable sensors) LSTM 
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hidden Markov models were proposed to recognize different ac-

tivities. In Catal, Tufekci, Pirmit, and Kocabag (2015) an ensemble

of machine learning classifiers werw evaluated for accelerometer-

based AR. 

Secondly, a balancing method has been included to introduce

an ad hoc training dataset for each specific activity. The balancing

method is developed by a random process which weights the ratio

of samples according to the similarity between activities. Similar

random sampling has been described as an effective method for

dataset balancing ( Möller-Acuña, Ahumada-García, & Reyes-Suárez,

2017; Sanchez, Martinez, & Gonzalez, 2017 ), having been included

in common tools, such as, Weka and R. In addition, balancing the

data based on similarity has been proved to deal with the prob-

lem of learning from imbalanced datasets ( Batista, Prati, & Monard,

2004 ). In this work, we have computed the similarity based on the

statistical analysis of the activation of sensors within the activa-

tion of activities as it provides a useful metric when evaluating AR

( Carnevali, Nugent, Patara, & Vicario, 2015 ). 

The combination of both methods, which weight the training

dataset based on the conflict between classes within an ensem-

ble of classifiers, has been demonstrated to create strong learning

methods ( Dietterich, 20 0 0 ). 

In Section 3 , we detail the methodology for (i) defining long-

to-short sequences in binary-sensor activation using fuzzy tempo-

ral windows and (ii) balancing the training in ensemble learning

classifiers based on activity similarity. 

3. Methodology 

In this Section, the proposed methodology is presented for

defining the activation of binary sensors and activities in different

ranges of time. 

A set of binary sensors is represented by S = { S 1 , . . . , S | S| } and

a set of daily activities is represented by A = { A 1 , . . . , A | A | } , where

| S | and | A | are the number of sensors and daily activities respec-

tively. Each of the binary sensors and daily activities are described

by a set of binary activations within a set of ranges of time, which

are defined by a starting and ending point in time as shown by
q. (1) : 

S i = { S i 0 , . . . , S | S i | } , S i j = { S 0 i j 
, S + 

i j 
} 

 i = { A i 0 , . . . , A | A i | } , A i j = { A 

0 
i j 
, A 

+ 
i j 
} (1)

eing (i) | S i |, | A i | the total number of activations for a given binary

ensor S i and a daily activity respectively, and (ii) S 0 
i j 
, S + 

i j 
the start-

ng and ending point of a given time of activation respectively. 

.1. From activation between ranges of time to segmented time-slots 

The first step in processing the dataset is to generate a seg-

ented timeline of time-slots ( van Kasteren et al., 2011 ). Given

hat the activation of sensors and activities is defined by ranges

f time, we are able to generate the segmented timeline which

ndicates the activation of activities and sensors for a given time

nterval �t . 

Subsequently, we divide the timeline T = { min (S 0 
i j 
) , max (S + 

i j 
) } ,

hich configures the range of time between minimal starting point

nd maximal ending point, in time-slots t i of equal duration �t .

he range of evaluation for each time-slot is defined by a sliding

indow between [ t i , t i + �t] . For each time-slot and a given sensor,

e determine its activation based on whether it has been activated

even just partially) within it: 

(t i , s ) = 

{
1 ∃ [ S 0 s j 

, S + s j 
] ∩ [ t i , t i + �t] ∀ S s j 

0 otherwise 
(2)

In a similar way, for each time-slot and a given activity, we de-

ermine its activation based on whether it has been carried out

even just partially) within it: 

(t i , a ) = 

{
1 ∃ [ A 

0 
i j 
, A 

+ 
i j 

] ∩ [ t i , t i + �t] ∀ A i j 

0 otherwise 
(3)

In this way, the segmented timeline can be represented as a

inary matrix where for each time-slot t i we return the value

 if a sensor or an activity has been active. Additionally, the

egmented timeline for a given sensor or activity is represented

s a row which involves the activation in all time-slots S(s ) =
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Fig. 2. Example of the segmentation for activity and sensor activation ( �t = 60 s). The labels beginning with #A represent an activity and #S represent a sensor. 
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 S(t 0 , s ) , . . . , S(t n , s ) } . For the sake of simplicity, we refer to t + as

 time-slot t i in the timeline T . 

An example of segmentation from temporal activation ranges to

ime-slots is presented in Fig. 2 . 

.2. Representation of sensor activation based on fuzzy temporal 

indows 

In this Section, a binary-sensor representation approach is de-

cribed, which is based on fuzzy temporal windows (FTWs). A real-

ime classification of daily activities is proposed to decide which

ctivity, or the absence thereof ( Idle ), is identified for all time-slots

n the timeline. 

Based on previous works Medina, Espinilla, and Nu-

ent (2016) and Medina et al. (2017) , a fuzzy aggregation of

he sensor activation has been integrated within the segmented

imeline using FTWs. In this previous work, a fuzzy temporal

ggregation of wearable and binary sensors was proposed to

efine an interpretable representation of a smart environment. 

FTWs are therefore described from a given current time t ∗ to

 past point in time t i as a function of the temporal distance

t ∗
i 

= t ∗ − t i , t 
∗ > t i ( Medina et al., 2016 ). For this purpose, a given

TW T k relates the sensor activation S ( s, t i ) in a current time t ∗ to

 fuzzy set T k (�t ∗
i 
) , which is characterized by a membership func-

ion μ ˜ T k 
(�t ∗

i 
= t ∗ − t i ) . A given FTW can be represented as T k (�t ∗

i 
)

nstead of μ ˜ T k 
(�t ∗

i 
) . 

For a given FTW T k and the current time t ∗, each past sen-

or activation S ( t i , s ) is weighted by calculating the degree of

ime-activation within the fuzzy temporal window T k according to

q. (4) . 

 k (s, t ∗, t i ) = S(t i , s ) ∩ T k (�t ∗i ) , t i < = t ∗ (4)

The degrees of time-activation are subsequently aggregated us-

ng the t-conorm operator in order to obtain a single activation
egree of both fuzzy sets S ( s ) ∩ T k by Eq. (5) . 

 k (s, t ∗) = S(s ) ∪ T k (�t ∗) = 

⋃ 

t̄ i ∈ T 
S(t i , s ) ∩ T k (�t ∗i ) , t i < = t ∗ (5)

We note several fuzzy operators can be applied to implement

emantics in the t-norms. Nevertheless. In this paper we propose

he use of maximal and minimal operators, being 
⋃ = max, ∩ =

in, which compute the highest degree of activation within the

uzzy temporal window. They are recommended for represent-

ng binary sensors due to they present a low activation rate

 Medina et al., 2017 ). 

 k (s, t ∗) = S(s ) ∪ T k (�t ∗) 

= max (min (S(t i , s ) , T k (�t ∗i )) , ∀ t i ∈ T , t i < = t ∗ (6) 

An example of the representation of a FTW within a sensor ac-

ivation in the segmented timeline is presented in Fig. 3 . 

.3. LSTM for sequence classification of FTW 

The representation of a sensor activation based on FTWs can

e used to define a sequence for the purposes of classification. In

his work, we propose to define multiple FTWs with incremental

emporal size. The aim of this representation is to collect long-

erm to short-term sensor activations, where shorter activations

ave finer temporal granularity and the longer activations have a

oarser temporal granularity. 

A simple definition of FTWs is described, the durations of which

re represented by a fuzzy set characterized by a membership

unction whose shape corresponds to a trapezoidal function. Other

embership functions can also be used to define FTWs, however,

he trapezoidal shape is proposed to define the limit in a straight-

orward way. The well-known trapezoidal membership functions

re defined by a lower limit l , an upper limit l , a lower support
1 4 
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Fig. 3. Representation of a fuzzy temporal window T k within a sensor activation in the segmented timeline S ( s, t i ). In the example, the aggregated degrees of activation T k ( s, 

t ∗) are 0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

An example of fuzzy temporal 

windows described by incremen- 

tally ordered evaluation times L = 

{ 720 , 540 , 360 , 180 , 60 , 30 , 15 , 5 , 3 , 2 , 1 } min. 

FTW L k L k −1 L k −2 L k −3 

T 1 720 540 360 180 

T 2 540 360 180 60 

T 3 360 180 60 30 

T 4 180 60 30 15 

T 5 60 30 15 5 

T 6 30 15 5 3 

T 7 15 5 3 2 

T 8 5 3 2 1 

T 9 3 2 1 0 

T 10 2 1 0 0 

i  

c

 

t  

l

O  
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f  

o

 

a  

L  

b  

t  

v  

n  

t

μ  

 

w  

m  

s  
limit l 2 , and an upper support limit l 3 , as per Eq. (7) : 

T S(x )[ l 1 , l 2 , l 3 , l 4 ] = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 x ≤ l 1 
(x − l 1 ) / (l 2 − l 1 ) l 1 < x < l 2 
1 l 2 ≤ x ≤ l 3 
(l 4 − x ) / (l 4 − l 3 ) l 3 < x < l 4 
0 l 4 ≤ x 

(7)

Each FTW T k is described by a trapezoidal function based on

the time interval from a previous time t i to the current time t ∗:

T k (�t ∗
i 
)[ l 1 , l 2 , l 3 , l 4 ] . In order to generate FTWs in a simple manner,

we propose to define them from a set of incrementally ordered

evaluation times L = { L 1 , . . . , L | L | } , L i −1 < L i , where the limits of the

trapezoidal functions are calculated according to the index of the

temporal window T k . 

T k = T k (�t ∗i )[ L k , L k −1 , L k −2 , L k −3 ] (8)

Once the FTWs { T 0 , . . . , T | T | } have been defined by incrementally

ordered times, we apply the fuzzifization to each time-slot in the

timeline t + ∈ T and sensor activation S(t + , s ) as per Eq. (5) . Sub-

sequently it generates a feature vector of components T k (s, t + ) for

each time-slot in the timeline t + , the size of which is equal to the

number of FTWs multiplied by the number of sensors | T | × | S |. 

As the semantic of windows provides a description from short

to long temporal components, we can define an order sequence of

aggregated degrees from the sensor activations within fuzzy tem-

poral windows for each given time-slot in the timeline t + and the

sensor s : 

T (s, t + ) = { T 0 (s, t + ) → . . . → T k (s, t + ) → . . . → T | T | (s, t + ) } (9)

In Table 3 , we show an example of FTWs de-

scribed by incrementally ordered evaluation times

L = {720,540,360,180,60,30,15,5,3,2,1} min. 

3.3.1. Ensemble of classifiers for activities 

In this Section, an ensemble of LSTMs for the purpose of AR is

proposed. The main concept is learning each activity in an isolated

manner using an LSTM activity-based classifier. 

With this approach, each LSTM activity-based classifier is fo-

cused on learning a given activity A i by means of a balanced train-

ing dataset. In this way, from the same training dataset, several

adapted-activity datasets can be built, namely one for each LSTM

activity-based classifier. Each classifier is trained to recognise a

particular activity and has a binary output to represent: A i ) when

the target activity is presented, and, A i ) when the target activity is

not presented. This last output represents other activities and the

idle activity. Moreover, the weight of each activity in the dataset
s defined by similarity of the target activity to another and is dis-

ussed in Sections 3.3.2 and 3.3.3 . 

The inputs of the LSTM activity-based classifier for a given ac-

ivity A i are composed of a given time-slot t + and the ensuing re-

ated information: 

The target activity O (t + ) is defined by: 

 (t ∗) = 

{
1 S(t + , A i ) == 1 

0 S(t + , A i ) 
 = 1 

(10)

The feature vector is formed by the sequence of aggregated de-

rees of activation T k (s, t + ) within the FTWs T k for each sensor s

or a given time-slot t + , the size of which is equal to the number

f FTW multiplied by the number of sensors | T | × | S |. 

Once the learning process is complete, in the testing phase, the

ctivation of the target activity A i , which has been learned by its

STM activity-based classifier, is presented when the prediction for

eing target activity p A i overcomes the prediction of not being the

arget activity p 
A i 

. In order to provide a normalized degree of acti-

ation between [0,1], the softmax function as a normalized expo-

ential function ( Bishop, 2006 ), has been applied to output predic-

ion as expressed by the following equation: 

p A i 
= 

e p A i 

e p A i + e 
p 

A i 

(11)

In case of conflict between classifiers within the ensemble,

hen several activities are detected at the same time, the maxi-

al value of prediction from the LSTM activity-based classifiers is

elected A (t + ) ∗ as the activity carried out by the inhabitant in the
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Fig. 4. Architecture of the ensemble of LSTM activity-based classifiers. 
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der to guarantee a minimal representation. 
iven time-slot t + . 

 (t + ) ∗ = 

{
A 0 μp A i 

= 0 , ∀ A i ∈ | A
A i , μp A i 

> μp A j 
∀ A i , A j ∈ | A | , A j 
 = A i otherwise 

(12) 

We note that this step is included when the dataset is formed

y activities without overlapping, however, avoiding this step could

rovide multiple activations in the context of interleaved activities.

In Fig. 4 , a scheme for the architecture of the ensemble of LSTM

ctivity-based classifiers is presented. 

In the following sections, we describe how to build an ad hoc

alanced training dataset for each activity-based classifier based on

he similarity relation to other activities. 

.3.2. Computing similarity relation between activities based on 

ensor activation 

Based on a given activity A i and another activity A j , we define

 similarity relation R a as a function R a : A i × A j → [0, 1] which de-

ermines the degree of similarity between both activities. Next, we

escribe an approach to compute the similarity based on the fre-

uency of common sensors. 

Firstly, from the segmented timeline, we calculate a similarity

elation R s : A i × S j → [0, 1] between activities and the sensor using

he relative frequency of the sensor activation within each activ-

ty: 

 s (A i , S j ) = 

| S j ∩ A i | ∑ S 
S k 

| S j ∩ A i | 

| S j ∩ A i | = 

T ∑ 

t + 

{
1 S(t + , A i ) = S(t + , S j ) 
0 otherwise 

(13) 

here | S j ∩ A i | represents the number of time-slots activated when

he sensor S j is activated together with the activity A i . This mea-

ure is also called Mutual Information ( Krishnan & Cook, 2014 ). 

Secondly, we evaluate the similarity relation between activities

 a aggregating the similarity relation from their sensor activations:
 a (A i , A j ) = 

S ∑ 

S k 

R a (A i , S k ) × R a (A j , S k ) , A i 
 = A j (14) 

We note that we can normalize the degree of similarity for a

iven activity A i , 
˜ R a (A i , A j ) = 

R a (A i ,A j ) ∑ A 
A k 

R a (A i ,A k ) 
. In the next Section, we

etail how to balance the training dataset based on the degree of

imilarity in the ensemble of activity classifiers. 

.3.3. Balancing training in the ensemble of activity classifiers 

In this Section, we describe how to balance the training dataset

or each activity classifier in order to: (i) solve the imbalance prob-

em within datasets, (ii) to obtain a more representative training

ataset for conflicting activities, obtaining a higher similarity rela-

ion. 

In this way, we based the balancing of the training data on the

imilarity relation between activities. Specifically, we propose to

uild a balanced-activity training dataset , which contains a ratio of

amples (weight) for each activity A i : 

• w A i 
, which represents the ratio in the balanced-activity training

dataset corresponding to the activity to be learned. 
• w A 0 

, which represents the ratio of samples in the balanced-

activity training dataset, corresponding to any activity (Idle). 
• w 

A i 
, which configures the ratio of other activities in the

balanced-activity training dataset w A i 
+ w A 0 

+ w 

A i 
= 1 . The ra-

tio for all of the other activities is calculated by weighting the

normalized degree of similarity with the ratio of the other ac-

tivities: 

w A j = w A i 
× ˜ R a (A i , A j ) (15) 

We note that w 

A i 
is defined as a fixed ratio for all other ac-

tivities, which is weighted for each other activity based on the

similarity guaranteeing that finally w A 0 
+ w A 1 

+ . . . + w A n = 1 . 

A minimal ratio w min of time-slots per activity, in case a close-

to-zero degree of similarity is obtained, is recommended in or-
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In order to select the time-slots, a random process, which is

weighted by the previously defined ratios, is established. This

process selects a time-slot randomly, rejecting or accepting them

based on the current ratio of the activities which are activated

within it. In Algorithm 1 , we detail the pseudo-code of this

Algorithm 1: Algorithm for obtaining random time-slots 

from a balanced ratio of activities { w A 0 
, w A 1 

, . . . } . 
Data : { w A 0 

, w A 1 
, . . . } , N 

Result : ts = { . . . t k , . . . } 
c ′ 

A 1 ···| A | = 0 ; 

count = 0 ; 

ts = �; 

while count < N do 

t k = rand omInd ex (t 0 , . . . , t | T | ) ; 
forall the A i ∈ A i (t k ) = 1 do 

w 

′ 
A i 

= 0 ; 

if count > 0 then 

w 

′ 
A i 

= c ′ 
A i 

/count; 

end 

if w 

′ 
A i 

< w A i 
then 

ts = ts ∪ t k ; 

c ′ 
A i 

= c ′ 
A i 

+ 1 ; 

count + + ; 

if count > = N then 

break ; 

end 

end 

end 

end 

process. 

For a time-slot t k , which is obtained from the function rando-

mIndex selecting a random time-slot in the timeline, we evalu-

ate if the computed ratio w 

′ 
A i 

= c ′ 
A i 

/count of the activities activated

A i in the time t k does not overcome the threshold ratio w A i 
, in

which case we accept the time-slot t k . At the end, when the target

number of samples N is collected (and even in each iteration) the

method guarantees that the ratio of selected time-slots per activity

remains under the defined threshold ratio of the activities. 

4. Evaluation 

In this Section, the experiments performed according to the

proposed methodology are evaluated using two popular datasets:

Ordoñez ( Ordónez et al., 2013 ) and CASAS ( Cook & Schmitter-

Edgecombe, 2009; Singla et al., 2009 ), where the binary sensor ac-

tivation is related to the daily activities of an inhabitant labelled

by an external observer. 

In both datasets, the methodology proposed in this work de-

fines the following parameters: 

• Number of FTWs = | T | = 10 . 
• Incrementally ordered evaluation times L =

{ 720 , 540 , 360 , 180 , 60 , 30 , 15 , 5 , 3 , 2 , 1 } · �t . L is defined by

a human expert to relate to short, mid and long intervals of

time from minutes to hours. 
• For balancing the training dataset for each activity: 

− Number of training samples = 10,0 0 0. 

− Weight of samples corresponding to the target activity w A i 
=

0 . 4 . 

− Weight of samples corresponding to the idle activity w A 0 
=

0 . 1 . 
− Weight of samples corresponding to the non-target activity

w 

A i 
= 0 . 6 . 

− Minimal ratio of similarity per activity w min = 0 . 05 . 
• For each LSTM activity-based classifier: 

− Learning rate = 0.0 0 01, to work well as a standard param-

eterization ( Salimans & Kingma, 2016; Wu, Zhang, Zhang,

Bengio, & Salakhutdinov, 2016 ). 

− Number of neurons = 64, as a minimal reference value in

learning patterns in RNN ( De Pietro, Gallo, Howlett, & Jain,

2018 ). 

− Number of layers = 3, due to a great number of layers in-

creasing learning time exponentially without significance in

accuracy ( Collins, Sohl-Dickstein, & Sussillo, 2017 ). 

− Training epochs = 40 and batch size = 10 0 0 to complete al-

most 4 iterations over the training dataset (training samples

= 10 0 0 0). 

The following three popular metrics are used to evaluate the

atasets: 

• Accuracy ( acc ), which represents the correctly classified per-

centage, TP being true positives, TN, true negatives, FP, false

positives and, finally, FN, fase negatives: acc = 

T P+ T N 
T P+ T N+ F P+ F N . 

This metric has been used in other related works ( Singh et al.,

2017 ), however, in learning situations using imbalanced

datasets, the overall classification accuracy is not considered as

an appropriate measure of performance. 
• F1-score ( F1-sc ), which provides an insight into the balance be-

tween precision, which is precision = 

T P 
T P+ F P , and recall, which

is recall = 

T P 
T P+ F N . Although this metric is well-known in AR

( Van Kasteren et al., 2010 ), we note a key issue from this met-

ric on time interval analysis: the FPs of an activity far from any

time interval activation are equally computed to false positives

closer to the end of activities, which are common in the end of

activities (refer to Fig. 5 ). For taking into account a time interval

evaluation, we propose the following additional metric. 
• F1-interval-intersection ( F1-ii ), which evaluates the time inter-

vals of each activity based on: (i) the precision of predicted

time intervals which intersect with a ground truth time inter-

val, (ii) the recall of the ground truth time intervals which in-

tersect with a predicted time interval. 

.1. Ordoñez dataset 

In this dataset, two experiments were carried out in differ-

nt rooms (A and B). In room A, 12 binary sensors describe 14

ays where 9 daily activities were carried out over a period of

9,932 min. In room B, 12 binary sensors describe 22 days where

0 daily activities are carried out over a period of 30,495 min. 

We have initially segmented the timeline in time-slots us-

ng the window size �t = 60 s, based on the standard reference

rom van Kasteren et al. (2011) , Ordóñez and Roggen (2016) and

ingh et al. (2017) . 

For evaluation purposes, we have developed a leave-one-day

ross-validation, where the test is composed by a single day and

raining is composed by other days. Then, the process is repeated,

electing different test days and finally iterating over all days

 Van Kasteren et al., 2008 ). To include a complete day cycle with-

ut splitting a short activity, we have taken into account the days

etween 4:00pm and the following 24 h. After obtaining the re-

ults of classification with leave-one-day cross-validation, other

uthors have provided an average of the metrics between days

 Ordóñez & Roggen, 2016; Singh et al., 2017 ). Nevertheless, initial

nd end days are usually shorter and many days do not include the

evelopment of all activities, which can undermine the total per-

ormance. To solve this issue, we have merged all time-slots from
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Fig. 5. Evaluation and metrics of predicted and ground truth activity time intervals in AR. 
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1 http://serezade.ujaen.es:8054/lstm-ftw/ . 
eave-one-day tests configuring a timeline test per activity which

an be analyzed by the metrics. 

.2. CASAS dataset 

This dataset includes two experiments of activities which were

erformed individually and sequentially by several inhabitants. Ex-

eriment A ( Singla et al., 2009 ) contains 8 activities carried out

y 21 inhabitants with a total of 10.334 binary sensor records, and

xperiment B ( Cook & Schmitter-Edgecombe, 2009 ) contains 5 ac-

ivities carried out by 51 inhabitants with a total of 6.425 binary

ensor records. 

We have evaluated three window sizes for segmenting the

imeline in time-slots �t = 5 s,20 s,60 s. We note in the Ordoñez

ataset that the optimal window size for time-slots was fixed by

he evaluation of previous works ( Ordóñez & Roggen, 2016; Singh

t al., 2017; van Kasteren et al., 2011 ). 

For evaluation purposes we have developed a leave-one-

nhabitant cross-validation, where for each inhabitant, the test

s composed of activities developed by the given inhabitant and

raining is composed of the activities developed by other inhabi-

ants. After obtaining the classification results from the leave-one-

nhabitant cross-validation, we have merged all time-slots from the

ests configuring a timeline test per activity which can be analyzed

y the metrics. 

.3. Results 

In this Section, we compare the results of the proposed

ethodology with the two datasets and results from previous

orks. In Ordónez et al. (2013) , the representation of sensor by

eans of raw and last activation was demonstrated to provide en-

ouraging results in real-time AR by means of non-sequence clas-

ifiers, highlighting Support Vector Machines (SVM) and Decision

rees (C4.5), which have been compared against the methodology

roposed in this work. 

As previously detailed, all time-slots from leave-one cross-tests

ave been merged configuring a timeline test per activity which

an be analyzed with the metrics. For each metric (accuracy, F1-

core and F1-interval-intersection), we have analyzed the average

f the metric per activity in the timeline test. To avoid the possible
ffect of im precision when segmenting the dataset into time-slots,

 confidence interval of one time-slot is allowed in computing the

1-score and F1-interval-intersection. 

The results from the experiments within the Ordoñez dataset

Room A and Room B) are described in Table 4 and 5 . 

In the CASAS dataset, we have evaluated three time intervals

f �t = 5 s,20 s,60 s in length. In Table 6 , we present the aver-

ge of the metrics for each approach and time interval. Moreover,

n Tables 7 and 8 , we detail the activity performance for each ap-

roach in its best time interval for Experiment A and B, respec-

ively. 

It is noteworthy that the data and code from the experiments

nd results described are shared under Creative Commons Attribu-

ion 3.0 in the following repository 1 . 

.4. Discussion 

From the results previously described, we note the general im-

rovement in terms of the F1-score and F1-intersection of time in-

ervals in real-time AR. 

When considering the Ordoñez dataset, we particularly note the

mprovement in terms of F1-ii, which indicates that the temporal

ntervals predicted by LSTM are closer in terms of temporal dis-

ance to the ground truth. On the accuracy metric, previous works

resent a slightly better performance due to LSTM discriminates

ensor activations by more than one temporal window, where F1-

i and F1-sc are higher. Moreover, LSTM analyzes more temporal

eatures waiting for the permanence of sensor activation within

everal temporal windows to overcome the certainty of an activ-

ty being developed. We note that accuracy has been shown not to

e a representative metric in AR ( Ordónez et al., 2013 ). 

Moreover, in Ordoñez Room A, we highlight the high perfor-

ance of conflicting activities in the kitchen: Lunch, Breakfast and

nack . This is due to the integration of long-mid temporal informa-

ion and the ad hoc balanced learning included for each classifier

er activity. This impact is more prominent in the case of Dinner in

ataset Ordoñez Room B, which represents a scarce activity which

s just presented for a few days, lasting a short time and with sev-

http://serezade.ujaen.es:8054/lstm-ftw/
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Table 4 

Metrics expressed by percentage for real-time AR in Ordoñez Room A. 

FTW + LSTM Raw + Last+SVM Raw + Last+C4.5 

Acc F1-ii F1-sc Acc F1-ii F1-sc Acc F1-ii F1-sc 

Leaving 99.53 90.32 97.26 99.75 96.55 98.56 99.75 96.55 98.56 

Toileting 98.73 72.96 51.74 98.89 86.74 38.09 98.89 80.52 35.19 

Showering 99.92 100 94.02 99.96 100 96.43 99.96 100 96.43 

Sleeping 99.99 100 99.99 99.98 100 99.98 99.99 100 99.99 

Breakfast 99.78 100 85.71 99.72 77.0 81.76 99.74 80 82.71 

Lunch 99.55 90.00 86.98 99.53 72 82.26 99.54 72 86.49 

Snack 99.97 80.0 80 99.92 40.0 40.0 99.92 0 0 

Spare Time 98.16 98.99 97.91 98.73 98.99 98.56 98.71 97.96 98.53 

Grooming 99.57 91.36 76.92 99.58 79.54 75.22 99.57 79.57 75.21 

Total 99.47 91.51 85.61 99.56 83.51 79.43 99.56 78.51 74.79 

Table 5 

Metrics expressed by percentage for real-time AR in Ordoñez Room B. 

FTW + LSTM Raw + Last+SVM Raw + Last+C4.5 

Acc F1-ii F1-sc Acc F1-ii F1-sc Acc F1-ii F1-sc 

Leaving 98.09 90.47 94.69 99.54 98.67 98.68 99.53 98.67 98.66 

Dinner 99.53 47.61 28 99.60 0 0 99.58 21.05 11.11 

Toileting 99.83 89.11 85.39 99.83 94.18 84.78 99.85 97.17 88.0 

Showering 99.96 90.91 92.31 99.98 95.62 95 99.98 95.65 95.54 

Sleeping 98.65 92.15 98.08 98.87 96.35 98.34 98.89 98.04 98.41 

Breakfast 99.30 81.18 69.52 98.49 33.33 29.36 98.56 52.53 41.64 

Lunch 98.04 45.55 40.87 98.63 4 9.4 8 13.28 98.62 45.28 13.20 

Snack 97.32 46.86 30.85 98.18 42.11 17.26 98.32 42.70 13.54 

Spare Time 94.84 84.17 91.28 94.94 65.86 91.15 94.83 66.28 90.97 

Grooming 99.54 93.23 85.77 99.71 98.41 90.31 99.73 97.33 90.79 

Total 98.51 76.12 71.68 98.77 67.40 61.99 98.79 71.47 64.19 

Table 6 

Total metrics expressed by percentage for time intervals in the CASAS dataset �t = 5 s,20 s,60 s. 

FTW + LSTM Raw + Last+SVM Raw + Last+C4.5 

Exp �t Acc F1-ii F1-sc Acc F1-ii F1-sc Acc F1-ii F1-sc 

A 5s 97.97 95.79 90.59 95.35 52.03 77.80 95.66 51.00 79.72 

A 20s 97.68 97.56 89.67 95.86 68.83 82.91 95.82 66.84 82.39 

A 60s 97.27 94.69 88.19 94.96 88.98 81.21 94.35 82.30 78.96 

B 5s 95.47 92.67 84.98 90.25 46.43 60.27 90.45 47.47 63.71 

B 20s 95.73 97.48 88.62 91.04 65.20 74.47 90.30 63.02 71.12 

B 60s 95.98 96.89 90.32 90.05 80.68 72.57 90.20 76.91 71.28 

Table 7 

Metrics expressed by percentage for real-time AR in CASAS Experiment A. 

FTW + LSTM Raw + Last+SVM Raw + Last+C4.5 

�t = 20 s �t = 60 s �t = 60 s 

Acc F1-ii F1-sc Acc F1-ii F1-sc Acc F1-ii F1-sc 

Medication 99.61 97.44 97.96 96.41 77.55 83.91 96.54 76.00 84.39 

Watch 95.79 97.56 90.63 92.32 80.00 84.46 91.29 65.71 82.83 

Water plants 98.73 95.24 88.70 95.52 90.91 72.87 93.21 70.83 60.15 

Phone 97.16 95.00 81.53 95.01 91.30 76.36 95.26 93.02 76.73 

Prepare card 96.18 10 0.0 0 87.30 95.52 89.36 85.83 96.16 87.50 87.70 

Cook 97.75 97.67 93.90 93.73 93.33 84.44 93.47 89.36 84.01 

Clean 97.55 97.56 90.57 93.98 89.36 81.12 91.93 78.43 74.90 

Choose outfit 98.63 10 0.0 0 86.79 97.18 10 0.0 0 80.70 96.93 97.56 80.95 

Total 97.68 97.56 89.67 94.96 88.98 81.21 94.35 82.30 78.96 

Table 8 

Metrics for real-time AR in CASAS Experiment B. 

FTW + LSTM Raw + Last+SVM Raw + Last+C4.5 

�t = 20 s �t = 60 s �t = 60 s 

Acc F1-ii F1-sc Acc F1-ii F1-sc Acc F1-ii F1-sc 

Phone 99.44 100 97.98 95.48 100 85.21 95.48 100 85.21 

Wash 99.02 100 92.47 91.68 57.14 43.90 91.32 39.02 36.84 

Cook 93.96 100 92.20 88.25 84.74 85.06 88.79 85.71 85.71 

Eat 91.43 91.39 69.95 89.15 90.57 71.70 89.33 86.79 71.22 

Clean 94.80 96.00 90.49 85.71 70.97 76.97 86.08 73.02 77.42 

Total 95.73 97.48 88.62 90.05 80.68 72.57 90.20 76.91 71.29 
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Table 9 

Metrics, results and window approaches in evaluated datasets. 

Dataset Reference works Metric/Value Learning Features Window 

CASAS B 

Espinilla et al. (2016) 

Acc (96.67%) Prototype + KNN raw window from offline human labelled 

observation (explicit segmentation) 

CASAS B FTW + LSTM F1-ii (97.56%) LSTM FTW �t = 20 s (real-time based on 

time-slots) 

CASAS B Shahi et al. (2017) F1-sc(95.3%) Acc 

(87.5%) 

NB mutual 

information + time 

interval 

dynamic window (real-time based on 

events) 

CASAS B FTW + LSTM F1-sc(88.6%) Acc 

(95.7%) 

LSTM FTW + time-slots 

(20s) 

FTW �t = 20 s (real-time based on 

time-slots) 

Ordoñez A 

Espinilla et al. (2018) 

Acc (89.1%) DT (C4.5) Dynamic 

window + 3 

subwindows 

Analysis at ending point of activity 

(partial explicit segmentation) 

Ordoñez A FTW + LSTM F1-ii (91.51%) LSTM FTW �t = 60 s (real-time based on 

time-slots) 

Ordoñez B 

Ordónez et al. (2013) 

F1-sc (64.19%) DT (C4.5) raw + last activation �t = 60 s (real-time based on 

time-slots) 

Ordoñez B FTW + LSTM F1-sc (79.43%) LSTM FTW �t = 60 s (real-time based on 

time-slots) 
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ral conflicting activities: Lunch, Breakfast and Snack . This case is

o difficult to analyse that raw+last+svm is not able to detect the

inner activity; however, FTW+LSTM has collected the proper in-

ormation from long-mid term to generate a notable increase of

lassification which duplicates its performance. 

In the CASAS dataset, the performance of FTW+LSTM notably

vercomes the performance of the feature representation of raw

nd last activation for real-time AR. Here, the accuracy, F1-ii and

1-sc are increased due to the sequence learning and temporal ag-

regation of sensor activation developed by FTWs. Moreover, a rel-

vant strength of our approach is the robust performance of the

ariation of the window size in time-slots segmenting the time-

ine. As in �t = 5 s,20 s,60 s the methodology presents an encour-

ging recognition of activities, highlighting F1-ii which represents

he prediction within the temporal intervals of ground truth. So,

nlike the previous works, our methodology is able to provide a

esponse in real-time with a finer granularity of time. 

Table 9 presents a comparison between relevant windowing

ethodologies, some of which are lacking real-time capabilities.

e note the performance measures of some methodologies are not

irectly comparable; for example, in Shahi et al. (2017) the seg-

entation is based on events instead of time-slots, and the testing

s only developed in 20% of the data. In Espinilla et al. (2018) the

uthors propose two learning layers under a windowing approach

i) to evaluate the ending point of the activities without real-

ime AR, and (ii) after a selection of the most suitable window

ize. In these cases, although the performance measures of these

ethodologies are not directly comparable, it is key that the time

nterval recognition of activities (F1-ii) in the timeline from this

ork obtains a higher performance than accuracy in AR under the

indowing approach; notwithstanding that evaluating the ending

oint of the activities provides the most advantageous point of

ime in AR without offering real-time capabilities. 

The achievements of this work, which aggregates long-term in-

ormation from binary sensors by means of incremental FTW us-

ng the LSTM sequence classifier, have reduced the complexity of

i) fixing the window sizes for each activity, (ii) selecting an op-

imal time interval to segment the information of binary sensors

nd (iii) defining human-defined features. 

. Conclusions and future works 

In this work, we have presented a methodology to aggregate

inary sensor activations using Fuzzy Temporal Windows. This

pproach has been evaluated as a suitable representation using

 fuzzy temporal aggregation as described in a previous work
 Medina et al., 2017 ). In summary, defining multiple FTWs of in-

remental size from long-term to short-term has provided an ad-

quate semantic to define a sequence of temporal features, which

as been suitable for learning using the LSTM sequence classifier. 

In this work, LSTM has been demonstrated as a powerful classi-

er to understand the raw activation between sensors and without

equiring additional representations in the feature vector based on

xternal knowledge, such as the last sensor activation. Moreover, a

etric to evaluate the temporal distance of predicted time inter-

als to ground truth has also been introduced. 

In addition, the use of the ensemble of LSTM activity-based

lassifiers could provide a straightforward adaptation to complex

ontexts, such as interleaved activities ( Singla et al., 2009 ). 

Furthermore, as we have discussed, the mosaic of approaches

n Activity Recognition is wide. Given the convergence of different

echnologies in Activity Recognition, in future work we will include

earable devices to detect user interaction with daily objects by

eans of proximity sensors ( Medina et al., 2017 ). This approach

ould include the advantage of privacy in addition to facing multi-

ccupancy in real-time AR. In order to introduce the use of FTW in

on-binary sensors, such as wearable devices, we note that defin-

ng aggregated features represents a more complex problem than

uzzy temporal aggregation for binary sensors. In this way, several

eature selection methods would be necessary to extract long and

id temporal patterns within fuzzy time intervals defined by the

emporal windows. These open issues will be analyzed as the next

tep of future works. 
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