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Abstract

Classical Group Decision Making (GDM)
problems require the use of aggregation
functions to fuse the information elicited
from the experts who participate in the de-
cision process. One of the most widely
adopted aggregation functions employed in
GDM are the Ordered Weighting Averaging
(OWA) operators which use a linear linguis-
tic quantifier to define the relevance of each
expert. However, the use of linear quantifiers
to fuse information presents some disadvan-
tages due to the fact that they can assign the
value 0 to the weights corresponding to the
most extreme opinions, completely ignoring
them. In this contribution, we propose a
novel OWA operator which uses an Extreme
Values Reduction (EVR) as linguistic quan-
tifier to compute the relevance of each ex-
pert. The resulting operator, so-called, EVR-
OWA operator, will always assign a non zero
weight to every expert but giving greater im-
portance to the intermediate opinions. Af-
ter defining the EVR-OWA operator for a
generic EVR, the EVR-OWA operators as-
sociated to two concrete families of EVRs
are proposed and their main measures, i.e.
mean, standard deviation, orness measure
and entropy, computed. Finally an example
of aggregation is developed to show the per-
formance of the EVR-OWA operator.

Keywords: Aggregation operator, Ordered
Weighted Averaging operators, Extreme Val-
ues Reduction.

1 Introduction

Group Decision Making (GDM) problems are those
situations in which several individuals or experts pro-

vide their preferences over a set of alternatives to ob-
tain the most suitable one(s) for the problem [6]. Tra-
ditionally, a GDM process consists of two phases: (i)
aggregation that aggregates the experts’ preferences to
obtain a collective opinion and (ii) exploitation that ob-
tains a ranking of the alternatives to select the best one
as solution of the decision problem.

Therefore, the use of aggregation operators is of vi-
tal importance in GDM. There are many aggregation
operators [1, 2] that can be used for fusing experts’
preferences in decision making, one of the most widely
used is the Ordered Weighted Averaging (OWA) opera-
tor that considers the weights associated to the ordered
values [13, 14].

In GDM problems, agreed solutions are highly appre-
ciated [4] and in order to achieve such agreements it
is necessary to include consensus reaching processes
prior to the GDM solving process [9]. In such sit-
uations, it is common to find conflicts and polarized
opinions among experts [3]. It has been shown that
the less extreme information has a more cohesive ef-
fect and makes easier the reaching of an agreement
[10, 11]. Therefore, it seems interesting to study how
to weight the extreme values in the aggregation process
to achieve the consensus. Thus, our aim is to propose
a novel extension of the OWA operator which uses an
Extreme Values Reduction as fuzzy quantifier. The re-
sulting aggregation operator will be characterized for
assigning weights to experts’ opinions depending on
their degree of polarization, such that, the importance
of the most extreme opinions will decrease whereas
the opinions around the median value will be assigned
with a higher relevance in order to facilitate the con-
sensus reaching process. Furthermore, the abstract no-
tion of EVR provides a generalization for other studies
focused on generating weights with similar properties
[12].

The structure of this contribution is as follows: Section
2 revises some basic concepts about OWA operator and

Atlantis Studies in Uncertainty Modelling, volume 3

Joint Proceedings of the 19th World Congress of the International Fuzzy Systems Association (IFSA), the 12th Conference of the European

for Fuzzy Logic and Technology (EUSFLAT), and the 11th International Summer School on Aggregation Operators (AGOP)

Copyright © 2021 The Authors. Published by Atlantis Press International B.V.
This is an open access article distributed under the CC BY-NC 4.0 license -http://creativecommons.org/licenses/by-nc/4.0/. 290



the use of a linguistic quantifier. Section 3 introduces
the new OWA operator based on Extreme Values Re-
ductions and shows some examples to understand its
performance. Section 4 presents a GDM problem that
is solved by using the proposed aggregation operator.
Finally, section 5 points out with some conclusions.

2 Preliminaries

In this section we provide a brief review about OWA
operators [13] and Yager’s method [14] to compute
their weights from a linguistic quantifier, which will
be the starting point of our proposal.

2.1 Ordered Weighted Averaging Operators

The Ordered Weighted Averaging (OWA) operators are
a family of aggregation functions which generalizes
the notion of arithmetic mean.

Definition 1 (OWA Operator [13]). Let ω ∈ [0,1]m be
a weighting vector (ω ∈ [0,1]m, ∑

m
i=1 ωi = 1). The

OWA Operator OWAω : [0,1]m → [0,1] associated to
ω is given by:

OWAω(
−→x ) =

m

∑
k=1

ωkxσ(k) ∀ −→x ∈ [0,1]m

where σ is a permutation of the m-tuple (1,2, ...,m)
which satisfies xσ(1) ≥ xσ(2) ≥ ...≥ xσ(m).

Remark 1. If ω = (1,0, ...,0) ∈ [0,1]m, the corre-
sponding OWA Operator is the maximum operator,
whereas when ω = (0,0, ...,1) ∈ [0,1]m the respec-
tive OWA Operator is the minimum operator. For
ω = ( 1

m ,
1
m , ...,

1
m ) ∈ [0,1]m, the OWA Operator asso-

ciated to ω is the arithmetic mean.

OWA operators have several remarkable properties
such as the facts that OWA operators are idempotent
non decreasing functions which are continuous, sym-
metric, homogeneous and shift-invariant [1].

There are several measures to study the behavior of an
OWA Operator. Among the most extended measures
are the arithmetic mean and the standard deviation of
the weights. Other useful measures are the Orness and
Entropy measures [1].

The orness measure of an OWA Operator quantifies
how similar are this OWA Operator and the maximum
operator. It is given by

orness(OWAω) =
m

∑
k=1

ωk
m− k
m−1

.

When the coordinates of the weighting vector are in-
creasing, i.e. w1 ≤ w2 ≤ ... ≤ wm, orness(OWAω) ∈

[ 1
2 ,1] whereas when these coordinates are decreasing,

i.e. w1 ≥ w2 ≥ ...≥ wm, orness(OWAω) ∈ [0, 1
2 ].

The Entropy measure, or simply Entropy, quantifies
how much information is taken into account during the
aggregation process when an orness measure is set. It
is given by

Entropy(OWAω) =−
m

∑
k=1

ωk logωk,

If no orness measure is specified, the weighting vector
which maximizes the Entropy is the vector associated
with the arithmetic mean operator [1].

2.2 Using linguistic quantifiers to compute
weights

Among others proposals to compute OWA weights,
Yager proposed the use of linguistic quantifiers to com-
pute the weights for OWA Operators [14]. Let Q :
[0,1]→ [0,1] be the linguistic quantifier for the con-
cept of most given by

Q(x) =


0 0≤ x < α

x−α

β−α
α ≤ x≤ β

1 x≥ β

,

where α < β are two parameters in the interval [0,1].
Then, the weighting vector is computed according to
the formula

wk = Q(
k
m
)−Q(

k−1
m

)

for k ∈ {1,2, ...,m}, where m is the amount of elements
which we want to aggregate.

Several classic consensus processes for GDM prob-
lems [5, 7, 8] have used this method to compute the
weights of their OWA aggregations.

Let us analyze the implications of choosing the weight-
ing vector in this way. Suppose 0 < α < β < 1. Then
for any k ≤ αm we obtain ωk = 0. When k ≥ mβ +1,
we also get wk = 0. If mα > k but k− 1 ≤ mα we
obtain

wk =
k−mα

m(β −α)
.

In the case mβ ≤ k and k−1 < mβ :

wk = 1− (k−1)−mα

m(β −α)
=

mβ − k+1
m(β −α)

.

The remaining case αm+1 < k < mβ is reduced to:

wk =
k−mα

m(β −α)
− k−1−mα

m(β −α)
=

1
m(β −α)

.
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To summarize:

wk =



0 1≤ k ≤ αm
k−mα

m(β−α) mα < k ≤ αm+1
1

m(β−α) αm+1 < k < mβ

mβ+1−k
m(β−α) mβ ≤ k < mβ +1

0 βm+1≤ k ≤ m

,

Note that for any k ≤ mα , all the weights wk are null
and the same occurs when k ≥ βm+ 1. In terms of
the OWA operator associated to these weights, this fact
means that the operator will ignore the first mα values
and the last m− (βm+ 1) values. In other words, the
more the value of α , the less top ranked values will be
considered for the OWA aggregation. In the same way,
the less the value of β , the less bottom ranked values
will be considered for OWA aggregation.

In addition, the fact that there are just a few possible
values for the weights is somehow against the fuzzy
logic view. It should be convenient that the values of
the weights change smoothly from the minimum pos-
sible value to the maximum one, instead of changing
drastically from zero to 1

m(β−α) as it occurs with the
weights associated to the linguistic quantifier Q for the
concept of most.

Here, we will propose an alternative method to select
such OWA weights which guarantees not only to take
into account the more extreme values, but also allows
the user to control the relevance given to these values.
Our aim is to aggregate elements in a more realistic
way that supports consensus reaching in polarized sit-
uations.

3 An OWA operator based on Extreme
Values Reductions

In this section the main novelty of this contribution,
namely EVR-OWA operator, is presented. This opera-
tor will be based in the notion of Extreme Value Reduc-
tion, detailed in Subsection 3.1, which are a family of
automorphisms in the interval [0,1] characterized for
reducing the distances between the values which are
close to 0 and 1. In Subsection 3.2 the EVR-OWA op-
erator is introduced and both its arithmetic mean and
its orness measure are computed. Finally, in Subsec-
tion 3.3, some examples of these EVR-OWA operators
are presented.

3.1 Extreme Values Amplifications and Extreme
Values Reductions

Those automorphisms on the interval [0,1], i.e. strictly
increasing bijections which satisfy the boundary condi-

tions D(0) = 0 and D(1) = 1, characterized by increas-
ing the distance between the values which are close to
0 and 1 will receive the name of Extreme Values Am-
plifications (EVAs). Formally:

Definition 2 (Extreme Values Amplification). Let D :
[0,1]→ [0,1] be a function satisfying:

1. D is an automorphism on the interval [0,1],

2. D is a function of class C 1,

3. D satisfies D(x) = 1−D(1− x) ∀ x ∈ [0,1],

4. D′(0)> 1 and D′(1)> 1,

5. D is concave in a neighborhood of 0 and convex
in a neighborhood of 1.

D will be called then an Extreme Values Amplification
(or EVA) on the interval [0,1].

The main purpose of EVAs is to remap the values in
the [0,1] interval in a non linear way so that the new
preferences show a larger distance between extreme el-
ements and a smaller distance between elements close
to 1

2 .

We can also state a parallel definition for those auto-
morphisms on the interval [0,1] which reduce the dis-
tance between extreme values and increases the dis-
tance between intermediate values.

Definition 3 (Extreme Values Reduction). Let D̂ :
[0,1]→ [0,1] be a function satisfying:

1. D̂ is an automorphism on the interval [0,1],

2. D̂ is a function of class C 1,

3. D̂ satisfies D̂(x) = 1− D̂(1− x) ∀ x ∈ [0,1],

4. D̂′(0)< 1 and D̂′(1)< 1,

5. D̂ is convex in a neighborhood of 0 and concave
in a neighborhood of 1,

Then D̂ will be called an Extreme Values Reduction (or
EVR) on the interval [0,1].

For both definitions, the two first properties are related
with the regularity of these functions, while the third
ones establish a kind of symmetry around 1

2 which will
be pretty useful later on.

For a better understanding of the fourth property we
need a complementary result:

Theorem 1. Let f : [a,b]→ R be a C 1 function de-
fined on the interval [a,b] ⊂ R. Then the following
statements are equivalent:
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1. f is an increasing function satisfying | f (y) −
f (x)| ≥ |y− x| ∀ x,y ∈ [a,b],

2. f ′(z)≥ 1 ∀ z ∈ [a,b].

Proof. 1→ 2) Suppose first that | f (y)− f (x)| ≥ |y−
x| ∀ x,y ∈ [a,b] and pick z ∈ [a,b[. Let us choose h > 0
such that z+ h < b. In that case the auxiliary function
g :]0,h[→ R defined by g(t) = f (z+t)− f (z)

t ∀ t ∈]0,h[ is
a continuous function such that g(t)≥ 1 ∀ t ∈]0,h[ and
therefore f ′(z) = limt→0 g(t) ≥ 1. On the other hand,
when z = b, we can consider h > 0 such that b− a >
h and use the analogue reasoning for the function g :
]0,h[→ R defined by g(t) = f (b)− f (b−t)

t ∀ t ∈]0,h[.

2→ 1) Since f ′(z)≥ 1 ∀ z ∈ [a,b], f is increasing. To
show the inequality pick x,y∈ [a,b] such that x< y. We
can use the Mean Value Theorem to obtain ξ ∈]x,y[
such that f (y)− f (x) = f ′(ξ )(y− x) and therefore it
must be | f (y)− f (x)| ≥ |y− x|.

In other words, f ′ ≥ 1 implies distance amplifications
while f ′≤ 1 implies a distance reduction after applying
the function f .

The following result will be the key for constructing
our new OWA operator by using the fifth property.

Proposition 1. Let f : [a,b]→R be a differentiable in-
creasing function. The following statements are equiv-
alent:

1. f is a convex function,

2. For each x < y, x,y ∈]a,b] the inequality

| f (x)− f (x− t)| ≤ | f (y)− f (y− t)|

holds for any t ∈ [0,h], where h =
min{x−a,y− x}.

Proof. 1) → 2). If f is convex, f ′ is an increasing
function in [a,b]. On the other hand, the Mean Value
Theorem gives us ξ1 ∈]x− t,x[ and ξ2 ∈]y− t,y[ such
that

| f (x)− f (x− t)|= f (x)− f (x− t) = f ′(ξ1)t ≤
f ′(ξ2)t = f (y)− f (y− t) = | f (y)− f (y− t)|,

where we have used that f ′ is increasing and therefore
f ′(ξ1)≤ f ′(ξ2).

2)→ 1). Fix x < y, x,y ∈]a,b] and define g :]0,h]→R
by

g(t) =
f (y)− f (y− t)− ( f (x)− f (x− t))

t
∀ t ∈]0,h].

Since f is increasing g≥ 0. In addition

lim
t→0

g(t) = f ′(y)− f ′(x)

and the continuity of g leads to f ′(y)≥ f ′(x), which is
the convexity of f .

Remark 2. The inequality in the previous result can-
not be replaced for a strict inequality, because though
f ′ is increasing, we cannot assure it is strictly increas-
ing.

We can obtain a similar result for concave functions:
Proposition 2. Let f : [a,b]→ R be a differentiable
increasing function. The following statements are then
equivalent:

1. f is a concave function,

2. For each x < y, x,y ∈]a,b] the inequality

| f (x)− f (x− t)| ≥ | f (y)− f (y− t)|

holds for any t ∈ [0,h], where h =
min{x−a,y− x}.

3.2 A novel EVR-OWA Operator

Here, we will use the fifth property of EVRs to con-
struct an OWA Operator which has similar measures to
the arithmetic mean but giving more importance to the
intermediate values and less importance to the more
extreme values to smooth out the importance of polar-
ized opinions in GDM, but taking them into account
instead of ignoring them.

Let us start by clarifying this property. Consider an
EVR D̂ : [0,1] → [0,1] which is twice differentiable
and convex in [0,0.5] and twice differentiable and con-
cave in [0.5,1]. Suppose we have a partition of the
interval [0,1]. For instance, we can take m ∈ N and
define

xk =
k
m
, ∀ k ∈ {1,2, ...,m}

Since D̂ is convex in [0,0.5], this fifth property assures
that, for any k1 ≤ k2 such that xk1 ,xk2 ∈ [ 1

m ,
1
2 ] we ob-

tain

|D̂(xk1)− D̂(xk1 −
1
m
)| ≤ |D̂(xk2)− D̂(xk2 −

1
m
)|.

In other words, the more closer xk is to 0, the smaller
the difference |D̂(xk)− D̂(xk − 1

m )|. A similar rea-
soning leads us to the concave counterpart of this:
the more closer xk is to 1, the smaller the difference
|D̂(xk)− D̂(xk− 1

m )|.

This fact is utilized to define the weights of an OWA
operator by using the general scheme introduced by
Yager [14].
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Definition 4 (EVR-OWA Operator). Let D̂ be an Ex-
treme Values Reduction and consider m∈N. We define

wk = D̂(
k
m
)− D̂(

k−1
m

) ∀ k ∈ {1,2, ...,m} .

The family W = {w1,w2, ...,wm} will receive the name
of order m weights associated with the EVR D̂, and the
OWA- operator given by ΦW : [0,1]m → [0,1] defined
by

ΦW (x1,x2, ...,xm) =
m

∑
k=1

wkxσ(k),

∀ (x1,x2, ...,xm) ∈ [0,1]m,

where σ is a permutation of the m-tuple (1,2, ...,m)
which satisfies xσ(1) ≥ xσ(2) ≥ ... ≥ xσ(m), will be
called the EVR-OWA operator associated with D̂ to ag-
gregate m elements.
Remark 3. Since D̂ is an automorphism of [0,1], we
can consider it as a fuzzy quantifier and so we can re-
peat the scheme introduced by Yager.

We highlight the philosophy behind this operator. As
any OWA operator, ΦW starts by ordering the values
x1,x2, ...,xm from the largest one, to the smallest one.
When we use these weights, those values of x which
are closer to extremes, i.e. the largest ones, and the
smallest ones, are matched with the smallest weights
while the intermediate values of x will be matched with
the highest wk’s. Hence, this operator aggregates ele-
ments by assigning more relevance to the intermediate
values of the elements which aggregates, and giving
less importance to the more extreme elements, but tak-
ing them into account since D̂ is strictly increasing and
therefore those weights can not be null.

Let us analyze some properties of these weights. First
note that since D̂ is strictly increasing, all of these
weights are greater than zero. In addition,

m

∑
k=1

wk =
m

∑
k=1

D̂(
k
m
)− D̂(

k−1
m

) =

= D̂(1)− D̂(0) = 1,

and they are properly defined.

By using the third condition of the EVR definition, i.e.
D̂(x) = 1− D̂(1− x) ∀ x ∈ [0,1], we get:

D̂(
k
m
) = 1− D̂(1− k

m
) = 1− D̂(

m− k
m

),

D̂(
k−1

m
) = 1− D̂(1− k−1

m
) = 1− D̂(

m− k+1
m

),

therefore

wk = D̂(
k
m
)− D̂(

k−1
m

) =

= D̂(
m− k+1

m
)− D̂(

m− k
m

) = wm−k+1.

This symmetry and the fifth property of EVRs, used as
we have explained before, give us an idea of the distri-
bution of these weights. On the one hand, the smallest
values of wk are always located at k = 1 and k = m, i.e.

wmin = w1 = D(
1
m
) = 1−D(1− 1

m
) = wm.

We know that these weights are matched by pairs.
So there is a minimum value at w1 and the values of
the weights will strictly increase until a certain max-
imum value wmax and then, because of the symmetry
wk = wm−k+1, the values of the weights will start to
decrease towards the value wm = w1. The maximum
value for wk depends on the parity of m. When m
is even, the maximum value will be at k = m

2 due to
w m

2
= wm−m

2 +1 = w m+2
2

. When m is odd, the maximum

value is at k = m+1
2 :

wmax =

{
w m

2
if m is even

w m+1
2

if m is odd ,

Let us remark here that wmax is a kind of median value
for the weights.

Note that the arithmetic mean of these weights is

w0 =
1
m

m

∑
k=1

wk =
1
m

To compute the orness measure we have to distinguish
two cases. If m is even:

orness(ΦD̂) =
m

∑
k=1

wk
m− k
m−1

=

m/2

∑
k=1

wk
m− k
m−1

+
m

∑
k=m/2+1

wk
m− k
m−1

=

m/2

∑
k=1

wk
m− k
m−1

+
m

∑
k=m/2+1

wm−k+1
m− k
m−1

=

m/2

∑
k=1

wk
m− k
m−1

+
1

∑
k=m/2

wk
k−1
m−1

=

m/2

∑
k=1

wk
m− k
m−1

+
m/2

∑
k=1

wk
k−1
m−1

=

m/2

∑
k=1

wk
m− k
m−1

wk
k−1
m−1

=

m/2

∑
k=1

wk = D(1/2) =
1
2
.
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If m is odd

orness(ΦD̂) =
m

∑
k=1

wk
m− k
m−1

=

(m−1)/2

∑
k=1

wk +w(m+1)/2
2m− (m−1)

2(m−1)
=

= D(
m−1

2m
)+

1
2
(D(

m+1
2m

)−D(
(m−1)/2−1

m
)) =

1
2
(D(

m+1
2m

)+D(
m−1

2m
)) =

1
2

So orness(ΦD̂) = 0.5 for any EVR D̂ and any m ∈ N.

3.3 Examples of EVR-OWA operators

In this subsection two families of EVRs are introduced,
namely the sin based EVR sα and the polynomial based
mα . For the EVR-OWA operator associated to these
families, the entropy measure, the standard deviation
(SD) and both the minimum and maximum values for
the weights are computed.

The EVR-OWA associated to sα

Let α ∈]0, 1
2π
[ and consider the C ∞ EVR sα : [0,1]→

[0,1] given by

ŝα(x) = x+α · sin(2πx−π) ∀ x ∈ [0,1].

For m= 100, table 1 shows the calculations of the most
standard measures for the weights obtained for differ-
ent values of α (keep in mind that for α = 0 we get the
weights associated to the arithmetic mean operator). In
figure 1 we show the comparison between values of the
weights obtained for several values of α .

Table 1: Measures for ŝα , m = 100

EVA Orness Entropy Mean SD Min Max
ŝ0 0.5 4.6051 0.01 0 0.01 0.01

ŝ0.05 0.5 4.5801 0.01 0.0022 0.0068 0.0131
ŝ0.08 0.5 4.5398 0.01 0.0035 0.0049 0.0150
ŝ0.09 0.5 4.5216 0.01 0.0039 0.0043 0.0156
ŝ0.15 0.5 4.3443 0.01 0.0066 0.0005 0.0194

The EVR-OWA associated to mα

Let α > 1 and consider the EVR m̂α : [0,1]→ [0,1]
given by

m̂α(x) =

{
1
2 −

1
2 (1−2x)

1
α 0≤ x < 1

2
1
2 +

1
2 (2x−1)

1
α

1
2 ≤ x≤ 1

.

Remark 4. Note that m̂α is not an EVR strictly speak-
ing since it is not differentiable in x = 1

2 . However,
limx→ 1

2−
f ′(x) = limx→ 1

2+
f ′(x) = +∞ and therefore it

will behave as an EVR.

Figure 1: Comparison of wk for different ŝα , m = 100.

For m = 100 we show the results of the calculations for
most standard measures for the weights in table 2 (in
this case, the weights associated to the arithmetic mean
operator are given by α = 1). In Figure 2 we show the
comparison between values of the weights obtained for
the different values of α .

Table 2: Measures for m̂α , m = 100

EVA Orness Entropy Mean SD Min Max
m̂1 0.5 4.605 0.01 0 0.01 0.01

m̂1.35 0.5 4.5581 0.01 0.0034 0.0074 0.0275
m̂2 0.5 4.3421 0.01 0.0098 0.0050 0.0707

m̂3.39 0.5 3.8057 0.01 0.0219 0.0029 0.1576
m̂5 0.5 3.3090 0.01 0.0317 0.0020 0.2286
m̂10 0.5 2.4379 0.01 0.0470 0.0010 0.3381

Figure 2: Comparison of wk for different m̂α , m = 100.

4 An illustrative example

Suppose a group consisting on 5 experts who elicit
their preferences on how much they prefer a certain
alternative x1 to the alternative x2. These preferences
will be denoted as pk := pk

1,2 ∈ [0,1], k = 1,2, ...,5 are
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given by:

p1 = 0.6
p2 = 0.9
p3 = 0.8
p4 = 0.1
p5 = 0.3

For m = 5 and the EVR ŝ0.15 the obtained list of
weights is:

w1 = 0.0573
w2 = 0.2544
w3 = 0.3763
w4 = 0.2544
w5 = 0.0573

and the collective preference by using these weights is
given by:

p1,2 =< (p1, p2, p3, p4, p5)↘,(w1,w2,w3,w4,w5)>=

< (p2, p3, p1, p5, p4)↘,(w1,w2,w3,w4,w5)>=

= 0.0573 ·0.9+0.2544 ·0.8+0.3763 ·0.6
+0.2544 ·0.3+0.0573 ·0.1 = 0.5629

.

Table 3 compiles the standard measures for both the
arithmetic mean (ŝ0) and the EVR-OWA associated to
ŝ0.15.

Note that the arithmetic mean operator assigns a
weight of 0.2 to every expert when m = 5 while the
weights corresponding to the EVR-OWA take values
in the interval [0.0573,0.3763]. The highest weight
is associated to the median value of the preferences
whereas the most extreme values receives the mini-
mum weight.

These changes in the values of the weights are trans-
lated into a smaller value for the entropy and a slight
increment for the value of the standard deviation.

Figure 3 provides a graphical comparison between the
weights obtained for arithmetic mean operator, i.e.
ŝ0 = 0, and the weights corresponding to the EVR-
OWA associated with ŝ0.15.

5 Conclusions

The use of linguistic quantifiers to define OWA opera-
tors throughout Yager’s method presents some limita-
tions depending on the values of the parameters α and

Table 3: Measures for ŝ0 and ŝ0.15 , m = 5

EVA Orness Entropy Mean SD Min Max
ŝ0 0.5 1.60 0.2 0 0.2 0.2

ŝ0.15 0.5 1.3921 0.2 0.1246 0.0573 0.3763

Figure 3: Comparison of 5 experts’ wk’s for ŝα with
α = 0 and α = 0.15.

β . One of these limitations is the fact that, with just
two possible exceptions, the value wk is either null or
the constant 1

m(β−α) . Therefore, the progressive behav-
ior of the weighting vector calculated as we propose in
this contribution is more related to the fuzzy environ-
ment we are dealing with: whereas the classical quan-
tifier Q completely ignores the most extreme elements,
the EVR quantifier we propose will provide a progres-
sive reduction of the importance we are giving to the
more extreme values, which is closer to the fuzzy phi-
losophy.

By using the OWA operator associated to an EVR we
can overcome these limitations obtaining an OWA op-
erator which takes into account the more extreme val-
ues, but gives more importance to the intermediate
ones. By adjusting the parameters of the EVR, we can
control the balance between the relevance given to the
extreme values and the intermediate ones.

To summarize, we obtain weighting vectors for OWA
operators which assign small relevance to the most ex-
treme elements and give more importance to the inter-
mediate elements. The first values of the weights to-
gether with the last ones will be the more extreme, and
therefore will receive the lower values of the weights.
These weights will progressively increase until they
reach the maximum value at approximately the me-
dian element to be aggregated. Then, the values of the
weights will progressively decrease towards the mini-
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mum value at wm = w1.

Further studies should be related with the behavior of
these weights in large scale GDM problems and con-
sensus reaching processes in which preferences tends
to be polarized.
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