
mathematics

Article

Induced OWA Operator for Group Decision Making Dealing
with Extended Comparative Linguistic Expressions with
Symbolic Translation

Wen He 1 , Bapi Dutta 2 , Rosa M. Rodríguez 1 and Ahmad A. Alzahrani 3 and Luis Martínez 1,*

����������
�������

Citation: He, W.; Dutta, B.; Rodríguez,

R.M.; Alzahrani, A.A.; Martínez, L.

Induced OWA Operator for Group

Decision Making Dealing with Extended

Comparative Linguistic Expressions with

Symbolic Translation. Mathematics 2021,

9, 20. https://dx.doi.org/10.3390/

math9010020

Received: 28 November 2020

Accepted: 17 December 2020

Published: 23 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Computer Science, University of Jaén, 23071 Andalucía, Spain; whe@ujaen.es (W.H.);
rmrodrig@ujaen.es (R.M.R.)

2 The Logistics Institute Asia Pacific, National University of Singapore, 21 Heng Mui Keng Terrace,
Singapore 119613, Singapore; tlibd@nus.edu.sg

3 Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
aalzahrani8@kau.edu.sa

* Correspondence: martin@ujaen.es

Abstract: Nowadays, decision making problems have increased their complexity and a single
decision maker cannot handle these problems, with a more diverse and comprehensive view of
them being necessary, which results in group decision making (GDM) schemes. The complexity of
GDM problems is often due to their inherent uncertainty that is not solved just by using a group.
Consequently, different methodologies has been proposed to handle it, in which, the use of the
fuzzy linguistic approach stands out. Among the multiple fuzzy linguistic modeling approaches,
Extended Comparative Linguistic Expressions with Symbolic Translation (ELICIT) information has
been recently introduced, which enhances classical linguistic modeling that is based on single terms
by providing linguistic expressions in a continuous linguistic domain. Its application to decision
making is quite promising, but it is necessary to develop enough operators to accomplish aggregation
processes in the decision solving scheme. So far, just a small number of aggregation operators have
been defined for ELICIT information. Hence, this paper aims at providing new aggregation operators
for ELICIT information by developing novel OWA based operators, such as the Induced OWA
(IOWA) operator in order to avoid the OWA operator needs of reordering its arguments, because
ELICIT information does not have an inherent order due to its fuzzy representation. Our proposal
not only consists of extending the definition of an IOWA operator for ELICIT information with
crisp weights, but it is also proposed a type-1 IOWA operator for ELICIT information in which both
weights and arguments are fuzzy as well as the use of ELICIT information constructing the order
inducing variable to reorder the arguments. Additionally, the use of ELICIT information in GDM
demands the ability to manage majority based decisions that are better represented in the IOWA
operator by linguistic quantifiers. Hence, a majority-driven GDM process for ELICIT information
is proposed, which it is the first proposal for fulfilling the majority solving process for GDM while
using ELICIT information. Eventually, an illustrative example and a brief comparative analysis are
presented in order to show the performance of the proposal and its feasibility.

Keywords: aggregation operators; computing with words; ELICIT information; group decision making

1. Introduction

Decision making is an everyday life activity for human beings that range from simple
to very complex problems. The increasing complexity of decision making problems that
face companies, organizations, and decision makers has made necessary the development
of comprehensive frameworks in which multiple views and knowledge about the problem
are included [1]. Such a type of problems conform the group decision making (GDM)
scheme [2], in which collective solutions are chased to make the decision and they are
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usually defined under high uncertain contexts [3]. To handle such an uncertainty, mul-
tiple proposals have been developed in the specialized literature for modeling decision
makers’ preferences uncertainties [3–7], in which fuzzy sets theory and the fuzzy linguistic
approach have provided successful results in multiple applications to decision making
under uncertainty [8–10].

The application of fuzzy linguistic variables to decision making has evolved from sin-
gle linguistic terms [11–14] to Extended Comparative Linguistic Expressions with Symbolic
Translation (ELICIT) [15], in which linguistic expressions that are conformed by multi-
ple linguistic terms representing a continuous domain are used for assessing preferences.
In the middle, the use of linguistic 2-tuple [9,16], Hesitant Fuzzy Linguistic Term Sets
(HFLTSs) [17], Comparative Linguistic Expressions (CLEs), etc., have given support to de-
veloping a big tool box for managing uncertainty in decision making. In all previous cases,
the linguistic preference modeling implied the need of operating with linguistic values that
have been accomplished by the Computing with Words (CW) methodology [18,19].

Among the different necessary linguistic computations for decision making, the
aggregation operators play a key role in fusing information that comes from different
sources into a single information, which represents an overall overview [20]. Most of the
previous linguistic preference modeling approaches have developed their correspondent
fuzzy computational model with multiple extended aggregation operators for aggregating
information during the decision processes. However, the ELICIT approach [15] due to its
youth there still needs to develop more aggregation operators, because, so far, just a few
number of them have been specifically defined to aggregate ELICIT expressions, namely,
the fuzzy arithmetic mean [15] and the Bonferroni mean [21]. Hence, in this paper, we aim
at developing several aggregation operators to aggregate ELICIT information by capturing
majority opinion that has been expressed in this context by means of the fuzzy linguistic
quantifier “most”. The notion of quantifier guided aggregation has been formally defined
by means of ordered weighted averaging (OWA) operators [22–24] and by means of the
concept of fuzzy integrals [3,20,25]. Our focus on this study is the use of OWA based
operators for ELICIT information. In particular, we will focus on the induced OWA (IOWA)
operator [26,27], because, among the other advantages, the reordering of arguments, which
is required by the family of OWA operators, is based on the order inducing variable, and, in
this way, we do not need in a compulsory way to rank fuzzy numbers as the ones that
represent the ELICIT information. Consequently, different IOWA operators for ELICIT
information will be introduced in this research:

(i) According to Zadeh’s extension principle, an IOWA operator is extended to ELICIT
information with the crisp weight, the so-called ELICIT-IOWA operator. Gener-
ally, the weight is computed by the linguistic quantifier that is expressed by the
basic unit-interval monotonic (BUM) function [28]. However, if the argument vari-
ables have associated importance, the BUM function is used to obtain the important
ELICIT-IOWA (ELICIT-I-IOWA) operator. Simultaneously, when considering that the
ELICIT expression can be equivalently converted into a trapezoidal fuzzy number [15],
by adding the continuous monotonic function g to the ELICIT-IOWA operator, we
will obtain a wide range of ELICIT-IOWA operators.

(ii) When considering the type-1 OWA operator, the induced type-1 OWA operator with
fuzzy weights, so-called the t1-IOWA operator, will be introduced. Using Zadeh’s
expansion principle, the t1-IOWA operator is extended to ELICIT information in
order to obtain the ELICIT-t1-IOWA operator.

(iii) Eventually, it will be proved that both the ELICIT-IOWA and ELICIT-t1-IOWA op-
erators have the general properties of the IOWA operator, because they are both
IOWA-based operators.

Additionally, as shown in [29], the IOWA operator is adequate for modeling the
majority driven opinions by using fuzzy linguistic quantifiers, such as “most”, “as many as
possible”, and “at least half ”, to manage the degree of majority. Based on these linguistic
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quantifiers and the ELICIT-IOWA based aggregation operators, we will propose a majority-
driven method for solving the GDM problem dealing with ELICIT information.

The paper is set out as follows: Section 2 revises related concepts of IOWA operators,
fuzzy linguistic quantifiers, and ELICIT information. Section 3 proposes different ELICIT-
IOWA operators. Section 4 proves the general properties of the previous ELICIT-IOWA
operators. Section 5 provides a majority driven GDM scheme for ELICIT information.
Section 6 provides an illustrative example to show the performance and feasibility of the
method that is based on the ELICIT-IOWA operator and briefly introduces the comparison
among other linguistic quantifiers. Finally, Section 7 concludes the paper.

2. Preliminaries

This section revises key concepts related to the induced OWA (IOWA) operator, fuzzy
linguistic quantifiers, and ELICIT information.

2.1. The Induced Owa Operator

The OWA operator was defined by Yager [30], which is a mapping OWA : Rn −→
R that has an associated weighting vector W of dimension n with the properties ωi ∈
[0, 1], i = 1, · · · , n and ∑n

j=1 ωi = 1, such that

OWA(a1, a2,· · ·,an) =
n

∑
i=1

ωiaσ(i) (1)

where R be the set of all real numbers and σ : {1, · · · , n} −→ {1, · · · , n} is a permutation
function, such that aσ(i) is the ith largest element in the set {a1, · · · , an}.

Because the real set R has an inherent order, so that, when considering the weight that
is associated to the ordered position to produce the family of the OWA operator [24,28],
for instance, the max OWA operator is guided by W∗ = (1, 0, · · · , 0), the min OWA operator
with W∗ = (0, · · · , 0, 1), and the continuous OWA (C-OWA) operator [31] applies the OWA
operator to a continuous interval [a, b] with crisp weights that are computed by a BUM
function Q [28] as FQ([a, b]) =

∫ b
a

dQ(y)
dy (b−y(b−a))dy , and type-1 OWA operator [32] with

both arguments and weights in the form of the type-1 fuzzy set, and so on. However, if we
want to apply the OWA operator to the fuzzy representation model, it is not straightforward,
because fuzzy numbers do not have an inherent order. For instance, let us assume that
the type-1 OWA operator [32] is applied to fuzzy numbers {Ai}n

i = 1 with fuzzy weights
{ŵi}n

i = 1, and both Ai and ŵi are defined on the universe of discourse [0, 1]. It aggregates
{Ai}n

i = 1 by the following formula:

µG(y) = sup

y =
Σn

i = 1ωiaσ(i)
Σn

i = 1ωi

∀ωi, ai ∈ [0, 1]

{
µŵ1(ω1) ∗ µA1(a1) ∗ · · · ∗ µŵn(ωn) ∗ µAn(an)

}

where ∗ is the t-norm operator and y is obtained by the classical OWA operator. Because of
the fact that fuzzy numbers have no inherent order, the type-1 OWA operator only uses

the OWA operator in the calculation of y =
Σn

i = 1ωiaσ(i)
Σn

i = 1ωi
, ∀ωi, ai ∈ [0, 1] in order to avoid

reordering of fuzzy numbers {Ai}n
i = 1. In a sense, this is not a straightforward application

of the OWA operator to fuzzy numbers. Therefore, the application of classical OWA
operators is constrained, especially when the argument variable has a fuzzy representation.

Therefore, it is necessary to provide a method in order to solve the reordering step
of OWA operators. One method is to use the fuzzy number ranking method, and another
method is to add an additional variable, the so-called the order inducing variable ui,
together with the argument variable ai to constitute the OWA pair 〈ui, ai〉, i = 1, · · · , n.
The latter was introduced by Yager and Filev [27] as the induced OWA (IOWA) operator.
When compared with the OWA operator [30], the reordering step of the IOWA operator
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is determined by the order inducing variable rather than by the argument variable itself.
Therefore, it can be widely and conveniently applied to some classic situations, such as
the Nearest-Neighbor model [27] and the best yesterday model [27], etc. Its definition is
as follows.

Definition 1 ([27]). Let R be the set of all real numbers and Ω be the set that is equipped with a
linear order. An IOWA operator of dimension n is a mapping IOWA : (Ω×R)n −→ R, which
has an associated weighting vector W = (ω1, · · · , ωn) with ωi ∈ [0, 1] and ∑n

i=1 ωj = 1, i =
1, 2, · · · , n, in order to aggregate the arguments ai of the OWA pairs 〈ui, ai〉, i = 1, 2, · · · , n that
reorder by the order inducing variable ui, according to the following formula:

IOWA(〈u1, a1〉,· · ·,〈un, an〉) =
n

∑
i=1

ωiau−index(i) (2)

where u − index(·) is an index function, such that u − index(i) is the index of the argument
variable, which is paired with the ith largest element of the set {u1, · · · , un}.

Example 1. Assume a set of OWA pairs{〈7, 0.4〉, 〈9, 0.3〉, 〈4, 0.7〉} has been assigned a weighting
vector {0.6, 0.1, 0.3}, then the notation of reordered OWA pairs is {〈9, 0.3〉, 〈7, 0.4〉, 〈4, 0.7〉}, and,
with the application of the Equation (2), we obtain the results IOWA(〈u1, a1〉, 〈u2, a2〉, 〈u3, a3〉) =
0.3× 0.6 + 0.4× 0.1 + 0.7× 0.3 = 0.43. If we apply arguments {0.4, 0.3, 0.7} with the OWA
operator [30], we obtain the results OWA(a1, a2, a3) = 0.7× 0.6 + 0.4× 0.1 + 0.3× 0.3 = 0.55.

Therefore, the essential difference between the OWA operator and IOWA operator is
the reordering step. The IOWA operator is based on the order inducing variable, while the
OWA operator is based on the argument variable itself.

2.2. Fuzzy Linguistic Quantifiers: Computing Weights for Owa Operators

Among the multiple choices for choosing OWA weights, Yager [24,28,30] introduced
the fuzzy linguistic quantifier Q, which guides the OWA operator in order to compute
the weight of the OWA operator. In the simplest form, computing weights for the OWA
operator on a basic unit-interval monotonic (BUM) function [28] f : [0, 1]→ [0, 1], which is
characterized as: (i) f (0) = 0; (ii) f (1) = 1; (iii) f (x)≤ f (y), if 0≤x<y≤1. However, we
often use the BUM function Q(r), ∀r ∈ [0, 1], which is characterized by two parameters
α, β ∈ [0, 1] as:

Q(r) =


0, i f 0 ≤ r < α

r−α
β−α , i f α ≤ r ≤ β

1, i f β < r ≤ 1
(3)

Several examples of instantiations of α and β for linguistic quantifiers are as follows:

(1) If α = β = 0, then BUM function Q represents the linguistic quantifier “for all”;

(2) If α = β = 1, then BUM function Q represents the linguistic quantifier “there exist”;

(3) If α = 0, β = 1, then BUM function Q represents the linguistic quantifier “mean”;

(4) If α = 0.3, β = 0.8, then BUM function Q represents the linguistic quantifier “most”;

(5) If α = 0, β = 0.5, then BUM function Q represents the linguistic quantifier “at least
half ”; and,

(6) If α = 0.5, β = 0.8, then BUM function Q represents the linguistic quantifier “as many
as possible”.

Therefore, the weight ωi for the OWA operator is computed as

ωi = Q
(

i
n

)
−Q

(
i− 1

n

)
, i = 1, . . . , n (4)
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There is an extension of it, the so-called importance weighted quantifier guided
aggregation [28], which adds an additional the importance variable αi in order to form
a 2-tuple noted as 〈ai, αi〉, i = 1, · · · , n, so that we define the OWA weight and OWA
operator as follows:

ωi = Q
(

I(i)
I(n)

)
−Q

(
I(i− 1)

I(n)

)
(5)

OWA(〈a1, α1〉, ,· · ·,〈an, αn〉) = Σn
i = 1ωiaa−index(i) (6)

where I(i) = Σi
k=1αa−index(k), i, k = 1, · · · , n with a− index(·) is an index function, such

that a− index(i) is the index of the important variable, which is paired with the ith largest
element of the set {a1, · · · , an}.

Example 2. Let a BUM function Q with α = 0, β = 0.5 that represents the linguistic quantifier
“at least half” and the aggregated 2-tuple is {〈0.5, 0.6〉, 〈1, 0.3〉, 〈0.4, 0.5〉}, then the ordered 2-tuple
is (〈1, 0.3〉, 〈0.5, 0.6〉, 〈0.4, 0.5〉) and I(1) = 0.3, I(2) = 0.9, I(3) = 2.4.

We will obtain the OWA weight

ω1 = Q
(

0.3
2.4

)
−Q

(
0

2.4

)
= 0.25, ω2 = Q

(
0.9
2.4

)
−Q

(
0.3
2.4

)
= 0.5, ω3 = Q

(
2.4
2.4

)
−Q

(
0.9
2.4

)
= 0.25

and

OWA(〈0.5, 0.6〉, 〈1, 0.3〉, 〈0.4, 0.5〉) = 1× 0.25 + 0.5× 0.5 + 0.4× 0.25 = 1.5.

2.3. Elicit Information

Recently, Labella et al. [15] proposed a new linguistic representation model, the so-
called Extended Comparative Linguistic Expressions with Symbolic Translation (ELICIT)
model, in which the possible ELICIT expressions are: “at least (Si, α)γ”, “at most (Si, α)γ”
and “between (Si, α1)

γ1 and
(
Sj, α2

)γ2 ”[15], where α represents the symbolic translation of
the 2-tuple represented model (si, α) [9,16] and γ is an additional “adjustment” parameter
that provides essential information within the computation process to the trapezoidal fuzzy
numbers. Noticeably, if γ = α = 0, then the ELICIT expressions reduce to the CLEs [2,17,33],
for instance, “at least Si”, “at most Si”, and “between Si and Sj”. Therefore, the ELICIT
model is an extension of hesitant fuzzy linguistic term sets (HFLTS) [2,17] based on the
continuous domain of comparative linguistic expressions (CLEs).

The ELICIT model extends the computing with words (CW) process to the ELICIT-CW
approach [15] comprises three parts in turn: the translation process, the manipulation
process and the re-translation process. In the ELICIT-CW scheme, the translation process
via functions ζ−1 in order to transform the input ELICIT information into trapezoidal fuzzy
numbers, so that the manipulation process could fuse trapezoidal fuzzy numbers utilizing
the proposed aggregation operator and also help to accurately complete the CW process;
finally, the re-translation process through ζ translates the aggregated result to the ELICIT
expression that is easy to understand; more details are defined as follows:

Definition 2 ([15]). Let x be an ELICIT expression and T(a, b, c, d) be a trapezoidal fuzzy number.
The function ζ−1 transforms the ELICIT expression into a trapezoidal fuzzy number, as

ζ−1 : x 7−→T(a, b, c, d) (7)

Such that, for an input ELICIT expression, it is transformed into an equivalent trape-
zoidal fuzzy number. Further details regarding the ELICIT expressions “at least (Si, α)γ”,
“at most (Si, α)γ” and “between (Si, α1)

γ1 and
(
Sj, α2

)γ2” are defined as follows:

Definition 3 ([15]). Let F be the set of all possible ELICIT expressions and S =
{

S0, S1, · · · , Sg
}

be a set of linguistic terms, then ∀x ∈ F , the function ζ−1(x) is given by
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(1) if x = at least (Si, α)γ and TELICIT(a′, b′, 1, 1) is the fuzzy envelope of at least (Si, α)γ,
then

ζ−1(x) = T(a, b, 1, 1)

a = a′ + γ

b = b′;

(8)

(2) if x = at most (Si, α)γ and TELICIT(0, 0, c′, d′) is the fuzzy envelope of at least (Si, α)γ,
then

ζ−1(x) = T(0, 0, c, d)
c = c′

d = d′ + γ

(9)

(3) if x = between (Si, α1)
γ1 and

(
Sj, α2

)γ2 and TELICIT(a′, b′, c′, d′) is the fuzzy envelope of
between (Si, α1)

γ1 and
(
Sj, α2

)γ2 , then

ζ−1(x) = T(a, b, c, d)
a = a′ + γ1

b = b′

c = c′

d = d′ + γ2

(10)

The semantics of ELICIT expressions, such as “at most(S1, 0)0”, “at least
(S3,−0.33)−0.083”, and “between (S1, 0.33)0.084 and (S2, 0.33)−0.083” are illustrated in
Figure 1, as follows:

Figure 1. ELICIT expression examples.

The inverse function of ζ−1 is noted as ζ that is a mapping ζ : β̃ 7−→ x that re-translates
the trapezoidal fuzzy number β̃ into an ELICIT expression.

Definition 4 ([15]). Let S =
{

S0, S1, · · · , Sg
}

be a set of linguistic terms and β̃ a trapezoidal
fuzzy number. The function ζ is given by

ζ
(

β̃
)
=


at least (Si, α)γ, if β̃ = T(a, b, 1, 1)
at most (Si, α)γ, if β̃ = T(0, 0, c, d)
between (Si, α1)

γ1 and
(
Sj, α2

)γ2 , if β̃ = T(a, b, c, d)

(11)

As mentioned above, in essence, the fusion CLEs or ELICIT expressions is the fusion
of trapezoidal fuzzy numbers during the ELICIT-CW approach. Therefore, we should
apply classical operators on them, such as the OWA operator, the IOWA operator, and
other canonical operators, or expand them with crisp or fuzzy weights. Uncertain or fuzzy
environments (that are represented by fuzzy numbers in most cases) often occur in the daily
life of decision makers. Therefore, if we want to manage it with crisp weights, the process
is similar, but, when comparing it with the combination of fuzzy weights, it is difficult
to complete the calculation process, because the general mathematical multiplication and
division of trapezoidal fuzzy numbers will no longer retain the trapezoid [34], which is
not conducive to completing the ELICIT-CW approach. So far, there are only the fuzzy
arithmetic mean operator proposed by Labella et al. [15] and the Bonferroni mean operator
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applied by Dutta et al. [21] for aggregating the ELICIT information. Therefore, the aggre-
gation operators of ELICIT information, especially the information with fuzzy weight, is
worthy of our study.

3. Iowa Operators for Aggregating Elicit Information

In the introduction, it has been stated the importance of the aggregation process for
decision making processes and how a generic aggregation framework could be applicable
to a wider set of decision making contexts through the modeling and interpretation of the
attached parameters of the aggregation model, as per the demand of the decision context.
In this section, we propose extending the IOWA operator in order to deal with ELICIT
information. However, we do not aim to make a simple and straightforward extension
of the classical IOWA operator; we intend to develop suitable and necessary models of
the IOWA operator for dealing with ELICIT information in decision making. Therefore,
our proposal consists of defining the following operators and the order inducing variable:

• ELICIT-IOWA operator: this operator extends the IOWA operator to aggregate ELICIT
arguments with crisps weights. It will also describe the way to compute the crisp
weights for this operator.

• ELICIT-t1-IOWA operator: this operator extends the IOWA operator to aggregate
ELICIT arguments with fuzzy weights. How to compute these fuzzy weights for this
operator will be described.

• The ELICIT order inducing variable: a brief study will also be described in order to
investigate the use of ELICIT variables as the order inducing variable in previous
operators.

3.1. Elicit-Iowa Operator

Here, we will replace the argument variable ai of the OWA pair 〈ui, ai〉 [27] with
ELICIT expression xi, and then the aggregation of the new OWA pairs 〈ui, xi〉, i = 1, · · · , n
can be defined as follows:

Definition 5. Let F be the set of all possible ELICIT expressions and Ω be the set that is equipped
with a linear order. An ELICIT-IOWA operator of dimension n is a mapping ELICIT− IOWA :
(Ω×F )n −→ F that has an associated weighting vector W = {ωi}n

i=1 of dimension n with
ωi ∈ [0, 1], i = 1, 2, · · · , n and ∑n

i=1 ωi = 1, then

ELICIT− IOWA(〈u1, x1〉, · · · , 〈un, xn〉) = ζ

(
n

∑
i = 1

ωi × ζ−1
(

xu−index(i)

))

= ζ

(
n

∑
i = 1

ωi × T(ai, bi, ci, di)

)

= ζ

(
T

(
n

∑
i = 1

ωiai,
n

∑
i = 1

ωibi,
n

∑
i = 1

ωici,
n

∑
i = 1

ωidi

)) (12)

where × represents the multiplication between the scalar and fuzzy numbers. Let u− index(·)
be an index function, such that u − index(i) is the index of the argument variable (see Defi-
nition 1 and Example 1), which is paired with the ith largest element of the set {u1, · · · , un}.
ζ−1

(
xu−index(i)

)
= T(ai, bi, ci, di), i = 1, 2, · · · , n is the equivalent trapezoidal fuzzy number

corresponding to the ELICIT expression xu−index(i) and ζ is the inverse function of ζ−1.

The ELICIT-IOWA operator is also the OWA based operator, so that the weight can
be obtained from a basic unit-interval monotonic (BUM) function [28] Q : [0, 1] −→ [0, 1],



Mathematics 2021, 9, 20 8 of 35

which is characterized as: (i) Q(0) = 0; (ii) Q(1) = 1; (iii) Q(x)≤Q(y), if 0≤x<y≤1; then,
the weight

ωi = Q
(

i
n

)
−Q

(
i− 1

n

)
, i = 1, . . . , n (13)

In the IOWA situation, there is a straight forward extension of the OWA pair 〈ui, xi〉
with an additional variable, the so-called weight variable αi ∈ [0, 1] [35] that is the asso-
ciated weight of each argument xi, noted as a triple 〈ui, xi, αi〉, i = 1, · · · , n. The weight
variable αi helps to obtain the crisp weight that is attached to the ordered position of the
ELICIT-IOWA operator, which is called the functional generated weight [35], and this crisp
weight ωi can be computed as follows:

ωi = Q
(

I(i)
I(n)

)
−Q

(
I(i− 1)

I(n)

)
, i = 1, . . . , n (14)

where I(i) = Σi
k=1αu−index(k), k = 1, · · · , n. Additionally, let u − index(·) be an index

function, such that u− index(i) is the index of the argument variable xj and the weight
variable αj, which are paired with the ith largest element of the set {u1, · · · , un}.

Nevertheless, if the weight variable αj is added to OWA pairs {〈ui, xi〉}n
i=1 of the

ELICIT-IOWA operator to obtain triples {〈ui, xi, αi〉}n
i=1, and the BUM function Q is used,

then we will obtain the definition of the important ELICIT-IOWA (ELICIT-I-IOWA) operator.
That is:

Definition 6. Let F be the set of all possible ELICIT expressions and Ω be the set that is
equipped with a linear order. An ELICIT-I-IOWA operator is a mapping ELICIT− I− IOWA :
(Ω×F × [0, 1])n −→ F that has an associated weighting vector W = {ωi}n

i=1 of dimension n
with ωi ∈ [0, 1], i = 1, 2, · · · , n and ∑n

i=1 ωi = 1 computed by the BUM function Q and the
ELICIT-I-IOWA operator is defined as follows:

ELICIT− I− IOWA(〈u1, x1, α1〉, ,· · ·,〈un, xn, αn〉) = ζ

(
n

∑
i = 1

ωi × ζ−1
(

xu−index(i)

))

= ζ

(
n

∑
i = 1

ωi × T(ai, bi, ci, di)

)

= ζ

(
T

(
n

∑
i = 1

ωiai,
n

∑
i = 1

ωibi,
n

∑
i = 1

ωici,
n

∑
i = 1

ωidi

)) (15)

where ωi = Q
(

I(i)
I(n)

)
− Q

(
I(i−1)

I(n)

)
within I(i) = Σi

k=1αu−index(k), i, k = 1, · · · , n. Addition-
ally, × represents the multiplication between scalar and fuzzy numbers. Let u− index(·) be an
index function such that u− index(i) is the index of the argument variable and the weight variable,
which is paired with the ith largest element of the set {u1, · · · , un}. ζ−1

(
xu−index(i)

)
= T(ai, bi, ci, di),

i = 1, 2, · · · , n is the equivalent trapezoidal fuzzy number corresponding to the ELICIT expression
xu−index(i) and ζ is the inverse function of ζ−1.

Noticeably, if we apply the ELICIT-I-IOWA operator with the BUM function Q(r) = r,
then we will obtain the functional weight as:

ωi =
Σi

k=1αu−index(k)

Σn
k=1αu−index(k)

−
Σi−1

k=1αu−index(k)

Σn
k=1αu−index(k)

=
αu−index(i)

Σn
k=1αu−index(k)

= αu−index(i)

and

ELICIT− I− IOWA(〈u1, x1, α1〉, ,· · ·,〈un, xn, αn〉) = ζ

(
n

∑
i = 1

αu−index(i) × ζ−1
(

xu−index(i)

))

= ζ

(
n

∑
i = 1

αi × ζ−1(xi)

)
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hence, it is the weighted average (WA) operator for ELICIT information.

Remark 1. Taking into account the fuzzy induced quasi-arithmetic OWA (QFIOWA) oper-
ator [36], which is a mapping QFIOWA : (Ω×Ψ)n −→ Ψ that has associated weights
ωi ∈ [0, 1], i = 1, · · · , n, such that Σn

i = 1ωi = 1 and

QFIOWA(〈u1, â1〉, · · · , 〈un, ân〉) = g−1
(

Σn
i = 1ωi × g

(
âu−index(i)

))
where Ω is the set equipped with a linear order and Ψ is the set of all fuzzy numbers. g is a strictly
continuous monotonic function.

If g(x) = xλ (λ 6=0), then the QFIOWA is the fuzzy induced generalized OWA (FIGOWA)
operator, defined as

FIGOWA(〈u1, â1〉, · · · , 〈un, ân〉) =
(

Σn
i = 1ωi

(
âu−index(i)

)λ
)λ−1

.

In a nutshell, because the ELICIT expression is equivalent to a trapezoidal fuzzy number
through the function ζ−1, i.e., ζ−1(F ) ⊆ Ψ, where F is the set of all possible ELICIT expressions
and Ψ is the set of all fuzzy numbers, if we add a strictly continuous monotone function g to the
ELICIT-IOWA operator, the quasi-ELICIT-IOWA (ELICIT-QIOWA) operator will be defined as
follows:

ELICIT−QIOWA(〈u1, x1〉, · · · , 〈un, xn〉) = ζ
(

g−1
(

∑n
i = 1 ωi × g

(
ζ−1

(
xu−index(i)

))))
(16)

Furthermore, let g be an exponential function where g(x) = xλ with parameter λ 6=0, then
the quasi-ELICIT-IOWA operator is the generalized ELICIT-IOWA (ELICIT-GIOWA) operator and

ELICIT−GIOWA(〈u1, x1〉, · · · , 〈un, xn〉) = ζ

((
∑n

i = 1 ωi ×
(

ζ−1
(

xu−index(i)

))λ
)λ−1)

(17)

Several special cases, depending on the various values of the parameter λ, are as follows:

(1) If λ = 1, then the ELICIT-GIOWA operator reduces to the ELICIT-IOWA operator;

(2) If λ→ 0, then

ELICIT−GIOWA(〈u1, x1〉, · · · , 〈un, xn〉) = ζ

(
n

∑
i = 1

(
ζ−1

(
xu−index(i)

))ωi

)
(18)

(3) If λ = −1, then the ELICIT-GIOWA operator is close to the Harmonic average H = n
Σn

i = 1
1
xias

ELICIT−GIOWA(〈u1, x1〉, · · · , 〈un, xn〉) = ζ


∏n

i=1 ζ−1(xu−index(i))

∑n
i = 1 ωi

∏n

j = 1
j 6=i

ζ−1(xu−index(j))




(19)

(4) If λ→ +∞, then

ELICIT−GIOWA(〈u1, x1〉, · · · , 〈un, xn〉)→max
i
{xi} (20)

(5) If λ→ −∞, then

ELICIT−GIOWA(〈u1, x1〉, · · · , 〈un, xn〉)→min
i
{xi} (21)
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Remark 2. Some special cases of the ELICIT-IOWA operator by using different crisp weighting
vectors W are briefly detailed.

(1) If W = W∗ = {1, 0, · · · , 0}, then

ELICIT− IOWAW∗(〈u1, x1〉, · · · , 〈un, xn〉) = xu−index(1).

(2) If W = W∗ = {0, · · · , 0, 1}, then

ELICIT− IOWAW∗(〈u1, x1〉, · · · , 〈un, xn〉) = xu−index(n)

(3) If W = WN =
{

1
n , · · · , 1

n

}
, then

ELICIT− IOWAWN(〈u1, x1〉, · · · , 〈un, xn〉) = ζ
(

T
(

∑n
i = 1 ai

n , ∑n
i = 1 bi

n , ∑n
i = 1 ci

n , ∑n
i = 1 di

n

))
It is the same as the fuzzy arithmetic mean operator that was introduced in [15];

3.2. Elicit-T1-Iowa Operator

Inspired by the type-1 OWA operator, which extends the OWA operator [30] to the
type-1 fuzzy sets on the basis of Zadeh’s extension principle [12–14]. We will then follow
the definition of the type-1 OWA operator that is based on the IOWA operator [27] in order
to obtain the induced type-1 OWA (t1-IOWA) operator as follows:

Definition 7. Let F([0, 1]) be the set of all type-1 fuzzy sets defined on the universe of discourse
[0, 1] and Ω be the set that is equipped with a linear order. An t1-IOWA operator of dimension n is
a mapping

Φt1−IOWA : (Ω× F([0, 1]))n −→ F([0, 1])
(〈u1, A1〉, · · · , 〈un, An〉) 7→ A

that has an associated weighting vector Ŵ = {ŵi}n
i=1 of dimension n with fuzzy weights ŵi ∈

F([0, 1]), i = 1, 2, · · · , n, such that

Φt1−IOWA(〈u1, A1〉, · · · , 〈un, An〉) = A =
∑n

i = 1 ŵi ⊗ Au−index(i)

∑n
i = 1 ŵi

(22)

A =

{
(y, µA(y))| y =

Σn
i=1ωiyi

Σn
i=1ωi

, ∀ωi, yi ∈ [0, 1]
}

(23)

µA(y) = sup
y =

Σn
i=1ωiyi

Σn
i=1ωi

∀ωi, yi ∈ [0, 1]

{
µŵ1(ω1) ∗ µAu−index(1)

(y1) ∗ · · · ∗ µŵn(ωn) ∗ µAu−index(n)
(yn)

}
(24)

where ⊗ is the multiplication operation on fuzzy numbers and ∗ is a t-norm operator. Let u−
index(·) be an index function, such that u− index(i) is the index of the argument variable, which
is paired with the ith largest element of the set {u1, · · · , un}.

According to the predefined, if the t1-IOWA operator has an associated interval
weight w̃i ⊆ [0, 1]; in other words, the membership of the interval weight equals 1,
i.e., µw̃i (ωi) = 1, ∀ωi ∈ w̃i, i = 1, 2, · · · , n, we will easily obtain this formula
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µA(y) = sup

y =
Σn

i=1ωiyi
Σn

i=1ωi

∀ωi ∈ w̃i, yi ∈ [0, 1]

{
µw̃1(ω1) ∗ µAu−index(1)

(y1) ∗ · · · ∗ µw̃n(ωn) ∗ µAu−index(n)
(yn)

}

= sup

y =
Σn

i=1ωiyi
Σn

i=1ωi

∀ωi ∈ w̃i, ∀yi ∈ [0, 1]

{
µµAu−index(1)

(y1) ∗ · · · ∗ µAu−index(n)
(yn)

}

Therefore, the previous definition can be shown as follows:

Definition 8. An t1-IOWA operator of dimension n is a mapping Φt1−IOWA : (Ω× F([0, 1]))n

−→ F([0, 1]) that has an associated weighting vector W̃ = {w̃i}n
i=1 of dimension n with interval

weights w̃i ⊆ [0, 1], i = 1, 2, · · · , n and µw̃i (ωi) = 1, ∀ωi ∈ w̃i, such that

Φt1−IOWA(〈u1, A1〉, · · · , 〈un, An〉) = A =
∑n

i = 1 w̃i ⊗ Au−index(i)

∑n
i = 1 w̃i

A =

{
(y, µA(y))| y =

Σn
i=1ωiyi

Σn
i=1ωi

, ∀ωi ∈ w̃i, ∀yi ∈ [0, 1]
}

µA(y) = sup

y =
Σn

i=1ωiyi
Σn

i=1ωi

∀ωi ∈ w̃i, ∀yi ∈ [0, 1]

{
µµAu−index(1)

(y1) ∗ · · · ∗ µAu−index(n)
(yn)

}
(25)

where ⊗ is multiplication operation on fuzzy numbers and ∗ is a t-norm operator. Let u− index(·)
be an index function, such that u− index(i) is the index of the argument variable, which is paired
with the ith largest element of the set {u1, · · · , un}.

It is very complicated to calculate with the extended principle, because we need to
discretize the domain of the fuzzy set. Therefore, we rely on α-cut based method to solve
this problem, which is more computationally efficient and provide better approximations.
To do this, we will follow the concept of the α− level type-1 OWA operator [37] guided by
α−cut of interval weights to obtain the definition of the α− level t1-IOWA operator with
fuzzy weights as follows:

Definition 9. Let
{

Aα
i
}n

i=1 represents the α− cut of fuzzy sets {Ai}n
i=1, and then denote the corre-

sponding OWA pairs as
{
〈ui, Aα

i 〉
}n

i = 1. Let
{

ŵα
i
}n

i=1 represent the α− cut of fuzzy weights {ŵi}n
i=1.

For each α ∈ [0, 1], an α− level t1-IOWA operator is defined as Φα
t1−IOWA :

(
〈u1, Aα

1〉, · · · , 〈un, Aα
n〉
)

7→ Aα, such that

Aα =

{
Σn

i=1ωiyi

Σn
i=1ωi

| ∀ωi ∈ ŵα
i , ∀yi ∈ Aα

u−index(i)

}
(26)

A =
⋃

0≤α≤1

αAα (27)

µA(y) =
∨

α: y∈Aα

α (28)

where ŵα
i =

{
ω ∈ [0, 1]| µŵi (ω) ≥ α

}
and Aα

u−index(i) = {y ∈ [0, 1]|µAu−index(i)
(y) ≥ α}. Let

u− index(·) be an index function, such that u− index(i) is the index of the argument variable,
which is paired with the ith largest element of the set {u1, · · · , un}.

The proposed t1-IOWA operator provides a basic IOWA aggregation framework for
aggregating fuzzy information. Because each ELICIT expression is equivalent to a fuzzy
number, we can define the aggregation of ELICIT expressions based on the t1-IOWA
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operator framework that we proposed. For this purpose, we replace the fuzzy parameter
variable with the ELICIT expression. Therefore, we will extend the t1-IOWA operator in
order to aggregate ELICIT information, where the fuzzy weight is induced by the type-2
linguistic quantifier [32].

Definition 10. Let F be the set of all possible ELICIT expressions and Ω be the set that is equipped
with a linear order. An ELICIT-t1-IOWA operator of dimension n is a mapping ELICIT− t1− IOWA :
(Ω×F )n −→ F that has an associated weighting vector Ŵ = {ŵi}n

i=1 of dimension n with
fuzzy weights ŵi ∈ F([0, 1]), i = 1, 2, · · · , n, such that

ELICIT− t1− IOWA(〈u1, x1〉, · · · , 〈un, xn〉) = ζ

∑n
i = 1 ŵi ⊗ ζ−1

(
xu−index(i)

)
∑n

i = 1 ŵi

 (29)

where ⊗ is the multiplication operation on fuzzy numbers. Let u− index(·) be an index function,
such that u− index(i) is the index of the argument variable, which is paired with the ith largest
element of the set {u1, · · · , un}. ζ−1

(
xu−index(i)

)
= T(ai, bi, ci, di), i = 1, 2, · · · , n is the equiv-

alent trapezoidal fuzzy number that corresponds to the ELICIT expression xu−index(i) and ζ is the
inverse function of ζ−1.

Similar to the crisp weight that was computed by the linguistic quantifiers Q reviewed
in Section 2.2, the fuzzy weights are expressed by a fuzzy number to indicate higher
uncertainty. Therefore, the fuzzy weights are computed by type-2 linguistic quantifiers Q̃
[32] that are based on the type-2 fuzzy sets [38]. Type-2 linguistic quantifier Q̃ guided the
type-1 OWA operator by the fuzzy weight ŵi = Q̃ i

n
− Q̃ i−1

n
, i = 1, · · · , n. Especially, if the

secondary membership function is equal to 1, the linguistic type-2 quantifier is called the
interval-valued type-2 linguistic quantifier, and it then computed the interval weight as

w̃i =
(

J i
n
− J i−1

n

)⋂
[0, 1] (30)

where Jr is the primary membership of the variable r, ∀r ∈ [0, 1] for all i = 1, · · · , n.
Figure 2 depicts the footprint of uncertainty (FOU) of the interval-valued type-2

linguistic quantifier “most”.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2. The FOU of the interval-valued type-2 linguistic quantifier “most”.

As aforementioned, the fusion of the ELICIT information is equivalent to the fusion of
the trapezoidal fuzzy number and it considers the general mathematical multiplication and
division of trapezoidal fuzzy numbers that are not trapezoid preserving [34], which is not
conducive to completing the ELICIT-CW approach. Therefore, it needs an approximation
process to obtain the trapezoidal fuzzy number before the last re-translation process.
Inspired by the type-1 OWA operator [32,37], we shall apply the EKM algorithm [39,40]
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upon the α−cut to implement the ELICIT-t1-IOWA operator with interval weight w̃i.

After that, we will obtain an approximated result of ∑n
i = 1

w̃i⊗ζ−1(xu−index(i))
∑n

i = 1 w̃i
.

For sake of clarity, let Ai = ζ−1
(

xu−index(i)

)
= T(ai, bi, ci, di) and interval weight w̃i

is computed by the interval-valued type-2 linguistic quantifier “most”, we shall compute
∑n

i = 1
w̃i⊗Ai

∑n
i = 1 w̃i

utilizing idea of the EKM algorithm [39,40] and α− level set theory.
In order to do this, simplify the process as the following one.

• Step 1: Initialization

(1) Given the interval weights {w̃i}n
i=1 with w̃i =

[
ωL

i , ωR
i
]

for ωL
i , ωR

i are two end-
points of the interval weight w̃i and ordered fuzzy arguments {Ai}n

i=1 that are
defined on the domain [0, 1] for all i = 1, · · · , n.

(2) For simplified the process, let Ai be a trapezoidal fuzzy number as Ai =
T(ai, bi, ci, di), and then the α− cut of them as:

w̃α
i = w̃i =

{
ω ∈ [0, 1]| µw̃i (ω) ≥ α

}
=
[
ωL

i , ωR
i

]
and

Aα
i =

{
y ∈ [0, 1]| µAi (y) ≥ α

}
= [ai + α(bi − ai), di − α(di − ci)]

(3) Let Φα(Aα
1 , · · · , Aα

n) = Aα:

Φα(Aα
1 , · · · , Aα

n) = Aα =

{
Σn

i=1ωiyi

Σn
i=1ωi

|∀ωi ∈ w̃i, yi ∈ Aα
i

}
=
[
Lyα , Ryα

]
where Lyα = min

∀ωi∈w̃i ,yi∈Aα
i

Σn
i=1ωiyi

Σn
i=1ωi

and Ryα = max
∀ωi∈w̃i ,yi∈Aα

i

Σn
i=1ωiyi

Σn
i=1ωi

are two end-

points of Aα.

Additionally, Lyα , Ryα represent the lower and upper endpoints of interval Aα,
respectively.

(4) Let 〈ai + α(bi − ai), ωi〉 be a two tuple and let τ : {1, · · · , n} −→ {1, · · · , n} be a
permutation that only acts on the first item of the two tuple, such that aτ(i+1) +

α
(

bτ(i+1) − aτ(i+1)

)
≤ aτ(i) + α

(
bτ(i) − aτ(i)

)
, then 〈aτ(i) + α

(
bτ(i) − aτ(i)

)
, ωτ(i)〉

be the reordered two tuple with aτ(i) + α
(

bτ(i) − aτ(i+1)

)
is the ith smallest ele-

ments in the set {ai + α(bi − ai)}n
i=1. It is the same to deal with 〈di− α(di − ci), ωi〉.

It helps to more easily implement the EKM algorithm.

• Step 2: To obtain the initial lower bounded Lyα of Aα

(1) Set K =
[ n

2.4
]

[39,40] (the nearest integer to n
2.4 ) and compute:

l1 = ΣK
i=1ωR

τ(i)

[
aτ(i) + (1− α)bτ(i)

]
+ Σn

i=K+1ωL
τ(i)

[
aτ(i) + (1− α)bτ(i)

]
l2 = ΣK

i=1ωR
τ(i) + Σn

i=K+1ωL
τ(i)

yα(l) =
l1
l2

(2) Find KL ∈ {1, 2, · · · , n− 1}, such that[
aτ(KL) + (1− α)bτ(KL)

]
≤ yα(l) ≤

[
aτ(KL+1) + (1− α)bτ(KL+1)

]
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(3) Check if KL = K. If yes, stop and set yα(l) = Lyα . If no, go to Step 2 (4);

(4) compute S = sign
(
KL − K

)
=


1, if KL − K > 0
0, if KL − K = 0
−1, if KL − K < 0

, and

l11 = l1 + SΣ
max (K,KL)
i=min (K,KL)

[
aτ(i) + (1− α)bτ(i)

](
ωR

τ(i) −ωL
τ(i)

)
l22 = l2 + SΣ

max (K,KL)
i=min (K,KL)

(
ωR

τ(i) −ωL
τ(i)

)
yα(l) =

l11

l22

and go to Step 2(2);

• Step 3: To obtain the initial upper bounded Ryα of Aα

(1) Set K =
[ n

1.7
]

[39,40] (the nearest integer to n
1.7 ) and compute:

r1 = ΣK
i=1ωL

τ(i)

[
dτ(i) − α

(
dτ(i) − cτ(i)

)]
+ Σn

i=K+1ωR
τ(i)

[
dτ(i) − α

(
dτ(i) − cτ(i)

)]
r2 = ΣK

i=1ωL
τ(i) + Σn

i=K+1ωR
τ(i)

yα(r) =
r1

r2

(2) Find KR ∈ {1, 2, · · · , n− 1}, such that[
dτ(KR) − α

(
dτ(KR) − cτ(KR)

)]
≤ yα(r) ≤

[
dτ(KR+1) − α

(
dτ(KR+1) − cτ(KR+1)

)]

(3) Check if KR = K. If yes, stop and set yα(r) = Ryα . If no, go to Step 3 (4);

(4) compute S = sign
(
KR − K

)
=


1, if KR − K > 0
0, if KR − K = 0
−1, if KR − K < 0

, and

r11 = r1 − SΣ
max (K,KR)
i=min (K,KR)

[
dτ(i) − α

(
dτ(i) − cτ(i)

)](
ωR

τ(i) −ωL
τ(i)

)
r22 = r2 − SΣ

max (K,KR)
i=min (K,KR)

(
ωR

τ(i) −ωL
τ(i)

)
yα(r) =

r11

r22

and go to Step 3(2);
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• Step 4: To obtain the final result Aα, A and µA(y);

Aα =
[
Lyα , Ryα

]
A =

⋃
0≤α≤1

αAα

µA(y) =
∨

α: y∈Aα

α

where Lyα = min
∀ωi∈w̃i ,yi∈Aα

i

Σn
i=1ωiyi

Σn
i=1ωi

and Ryα = max
∀ωi∈w̃i ,yi∈Aα

i

Σn
i=1ωiyi

Σn
i=1ωi

.

• Step 5: To execute an approximation of A as a trapezoidal fuzzy number T(a, b, c, d)

According to literature [34,41] regarding the operation of trapezoidal fuzzy numbers,
we know that the result of A is a generalized trapezoidal fuzzy number, so we need to
approximate it with trapezoidal fuzzy number T(a, b, c, d).

Let α = 0, then we will obtain Aα
i = [ai, di] and

a′ = Ly0 = min
∀ωi∈w̃i

Σn
i=1ωiai

Σn
i=1ωi

d′ = Ry0 = max
∀ωi∈w̃i

Σn
i=1ωidi

Σn
i=1ωi

(31)

Let α= 1, and then we can obtain Aα
i = [bi, ci] and

b′ = Ly1 = min
∀ωi∈w̃i

Σn
i=1ωibi

Σn
i=1ωi

c′ = Ry1 = max
∀ωi∈w̃i

Σn
i=1ωjci

Σn
i=1ωi

(32)

When considering that the area of the trapezoidal membership function graph can
represent the size of the information carried, then ∃ ε ∈

(
− 1

2g , 1
2g

)
, where g+1 is the

granularity of the linguistic term set S used for the ELICIT expression, such that

|
∫ 1

0

[
Lyα , Ryα

]
dα−1

2
(a + b + c + d)|→0 (33)

with 
|a−a′|<ε

b = b′

c = c′

|d−d′|<ε

Let ϕ(α) =
∫ 1

0

[
Lyα , Ryα

]
dα− 1

2 (a + b + c + d), since
∫ 1

0 [a+α(b−a), d−α(d−c)]dα

= 1
2 (a + b + c + d), then

ϕ(α) =
∫ 1

0

{
Lyα−[a+α(b−a)]

}
dα+

∫ 1

0

{
Ryα−[d−α(d−c)]

}
dα

=
∫ 1

0

{
min
∀ωi∈w̃i

Σn
i = 1ωi[ai+α(bi−ai)]

Σn
i=1ωi

−[a+α(b−a)]
}

dα

+
∫ 1

0

{
max
∀ωi∈w̃i

Σn
i = 1ωi[di−α(di−ci)]

Σn
i=1ωi

−[d−α(d−c)]
}

dα

=
1
2

{
min
∀ωi∈w̃i

Σn
i = 1ωi(ai+bi)

Σn
i=1ωi

−(b+a)
}
+

1
2

{
max
∀ωi∈w̃i

Σn
i = 1ωi(di+ci)

Σn
i=1ωi

−(d+c)
}

(34)
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Because w̃i and Ai are defined on [0, 1], then

min
∀ωi∈w̃i

Σn
i = 1ωi(ai+bi)

Σn
i=1ωi

= min
∀ωi∈w̃i

Σn
i = 1ωiai

Σn
i=1ωi

+ min
∀ωi∈w̃i

Σn
i = 1ωibi

Σn
i=1ωi

= a′+b′

and

max
∀ωi∈w̃i

Σn
i = 1ωi(di+ci)

Σn
i=1ωi

= max
∀ωi∈w̃i

Σn
i = 1ωidi

Σn
i=1ωi

+ max
∀ωi∈w̃i

Σn
i = 1ωici

Σn
i=1ωi

= c′+d′

So far, we obtain that

ϕ(α) =
1
2
(
a′−a+d′−d

)
(35)

Therefore, ∃ ε = 0 ∈
(
− 1

2g , 1
2g

)
, such that

a′ = a, d′ = d and |ϕ(α)| = 0 (36)

In general, the approximation of A is the trapezoidal function T(a, b, c, d) = T(a′, b′, c′, d′).

3.3. The Order Inducing Variable in the Form of Elicit Expression

Yager and Filev [27] introduced the idea of obtaining the order inducing variable,
which is, Ω is any target set containing linear order, which can be shown in detail as follows:

More generally, we see, that if Ω is any set of objectives such that there exists a linear
ordering on Ω, for any distinct x, y ∈ Ω, then either x < y or x > y, but not both, then
we can draw our the order inducing variable ui value from Ω.

As the name stipulates, the order inducing variables are used to reorder the argument
variables, when considering that the arguments have no inherent order. There are various
types of the order inducing variable, for instance, Ω = R for R is the set of all real
numbers and it has an incontrovertible ordering, Ω is the implicit lexicographic order and,
even while using the linguistic term set S =

{
S0, S1, · · · , Sg

}
, where Si>Sj is for i>j, etc..

However, Ω = F and Ω = Ψ are not often chosen, where F is the set of all possible ELICIT
expressions, and Ψ is the set of all fuzzy numbers. The reason is that, when compared with
R, there is no standard ranking method for fuzzy numbers to obtain undisputed ordering
results and, considering that, on the basis of the function ζ−1, F can be transformed into
a subset of Ψ, i.e., ζ−1(F ) ⊆ Ψ. Therefore, we prefer to choose Ω, which contains an
inherent order.

There is much literature on fuzzy number ranking, but different fuzzy number rank-
ing methods will provide different ranking results. Based on the work of Wang and
Kerre [42,43], the ranking of fuzzy numbers can be roughly divided into the following
three categories:

(i) the defuzzification-based method, for instance, centroid index (CI) method [26,44],
the area method, so-called the magnitude function [45], and so on;

(ii) method that measuring of the distance to the reference set [42,46,47]; and,

(iii) pairwise comparison method [43,48,49].

The purpose of all these methods is to obtain a numerical scale for ranking fuzzy num-
bers. Because there are many fuzzy numbers, such as interval fuzzy numbers, triangular
fuzzy numbers, trapezoidal fuzzy numbers, Gaussian fuzzy numbers, and L-R type, etc.,
the order inducing variables only need to select one of the fuzzy numbers and one ranking
method, and then the reordering of the argument variables is determined.
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Inspired by the concept of numerical scale function NS in [50], in which the function
NS : S −→ R defines a numerical scale on the linguistic term set S = {S0, S1, · · · , Sg}. When
assuming that the OWA pair belongs to the Cartesian Product set of dimension n, (F ×F )n, is
denoted as (〈ui, xi〉)n

i=1, then the ui can be obtained by using ∆−1((Si, α)γ),∆−1((Si, α)) =
i+α [16] to define the vertex of the triangle fuzzy numbers (Si, α)γ without considering
the adjustment parameter γ [15], where g+1 is the granularity of the linguistic terms set
{S0, S1, · · · , Sg} for all i = 0, · · · , g, as proposed in [16]. The definition is the following
one:

Definition 11. Let F be the set of all possible ELICIT expressions, then there is a mapping
φ : F −→ R that is defined by the middle position of vertexes of ELICIT expressions, such that

φ(ui) =


i+α+g

2 , i f at least (Si, α)γ

i+α
2 , i f at most (Si, α)γ

i+α1+j+α2
2 , i f between (Si, α1)

γ1 and
(
Sj, α2

)γ2

i+α, i f (Si, α)γ

(37)

where S = {s0, s1, · · · , sg} is a set of linguistic terms and g+1 is the granular of the set S.

More generally, a mapping φ : F −→ [0, 1] can be defined as an extension of the
numerical scalar function NS as the following formula:

φ(ui) =



0, i f ui = S0;

∈
[

i−1+α
g , 1

]
, i f ui = at least (Si, α)γ, i = 1, · · · , g;

∈
[
0, i+1+α

g

]
, i f ui = at most (Si, α)γ, i = 0, · · · , g− 1;

1
2 , i f ui = S g

2
;

∈
[

i−1+α1
g , j+1+α2

g

]
, i f ui = between (Si, α1)

γ1 and
(
Sj, α2

)γ2 , i<j, i = 1, · · · , g, j = 0, · · · , g− 1;

∈
[

i−1+α
g , i+1+α

g

]
, i f ui = (Si, α)γ, i = 1, · · · , g− 1

1, i f ui = Sg;

(38)

Example 3. Assume that OWA pairs (〈ui, xi〉)n
i=1 under the linguistic terms set {S0, S1, S2, S3,

S4, S5, S6} are noted as (〈 at least S4, x1〉, 〈 at most S2, x2〉, 〈S5, x3〉, 〈 between S4 and S5, x4〉),
then

φ(u1) = 5; φ(u2) = 1; φ(u3) = 2.5; φ(u1) = 4.5;

Thence, the decreasing sequence of the order inducing variable ui is uσ(1) = u1, uσ(2) = u4, uσ(3) =
u3, uσ(4) = u2, so that the reordered argument is (x1, x4, x3, x2).

4. The General Properties of the Elicit-Iowa Operator

In this section, we will prove the general properties of the ELICIT-IOWA and ELICIT-
t1-IOWA operators. First, we will review some of the properties of the IOWA operator [27],
such as idempotency, commutativity, monotonicity, and boundedness, as shown below:

• Idempotency: if ai = a, ∀i = 1, · · · , n, then

IOWA(〈u1, a1〉, · · · , 〈un, an〉) = IOWA(〈u1, a〉, · · · , 〈un, a〉) = a;

• Commutativity: if
(
〈u′1, a

′
1〉, · · · , 〈u′n, a

′
n〉
)

is a permutation of (〈u1, a1〉, · · · , 〈un, an〉),
then

IOWA(〈u1, a1〉, · · · , 〈un, an〉) = IOWA
(
〈u′1, a

′
1〉, · · · , 〈u′n, a

′
n〉
)

;
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• Monotonicity: if ai ≥ bi for two OWA pairs (〈u1, a1〉, · · · , 〈un, an〉) and (〈u1, b1〉, · · · ,
〈un, bn〉), then

IOWA(〈u1, a1〉, · · · , 〈un, an〉) ≥ IOWA(〈u1, b1〉, · · · , 〈un, bn〉);

The condition for the establishment of the monotonicity property is that the order
inducing variable ui is unchanged, if not this property does not necessarily hold
[27].

• Boundedness: mini{ai} ≤ IOWA(〈u1, a1〉, · · · , 〈un, an〉) ≤ maxi{ai};

It is worth noting that, because the ELICIT-IOWA operator only replaces the ELICIT
expression for the real argument variable in the OWA pair of the classic IOWA operator,
then the ELICIT-IOWA operator is also idempotency, commutativity, monotonicity, and
boundedness. The following theorems are the property theorems of the ELICIT-IOWA
operator:

Theorem 1. (Idempotency) Let F be an ELICIT-IOWA operator, if xi = x, i= 1, 2,· · ·,n, then

F(〈u1, x1〉, · · · , 〈un, xn〉) = x.

Proof. Because xi = x, i.e., ζ−1
(

xu−index(i)

)
= ζ−1(x) = T(a, b, c, d) and ∑n

i=1 ωi = 1 for
all i= 1, 2,· · ·,n, then

F(〈u1, x1〉, · · · , 〈un, xn〉) = ζ

(
n

∑
i = 1

ωi × ζ−1(x)

)
= ζ

(
ζ−1(x)

)
= x.

Hence,
F(〈u1, x1〉, · · · , 〈un, xn〉) = x.

Theorem 2. (Commutativity) Let F be an ELICIT-IOWA operator and (〈u′1, x′1〉, · · · , 〈u′n, x′n〉)
is a permutation of (〈u1, x1〉, · · · , 〈un, xn〉), then

F
(
〈u′1, x′1〉, · · · , 〈u′n, x′n〉

)
= F(〈u1, x1〉, · · · , 〈un, xn〉).

Proof. Because (〈u′1, x′1〉, · · · , 〈u′n, x′n〉) is a permutation of (〈u1, x1〉, · · · , 〈un, xn〉) so
that for the same order inducing variable, we obtain the same reordering of the argument
variable; in other words, xu−index(i) = x′u′−index(i) for all i = 1, · · · , n, then

F(〈u1, x1〉, · · · , 〈un, xn〉) = ζ

(
n

∑
i = 1

ωi × ζ−1
(

xu−index(i)

))

= ζ

(
n

∑
i = 1

ωi × ζ−1
(

x′u′−index(i)

))
= F

(
〈u′1, x′1〉, · · · , 〈u′n, x′n〉

)
.

Therefore,

F
(
〈u′1, x′1〉, · · · , 〈u′n, x′n〉

)
= F(〈u1, x1〉, · · · , 〈un, xn〉).

As we all know, the set F (be a set of all possible ELICIT expressions) has no inherent order
due to its fuzzy representation. Therefore, we can choose a predefined numeric scalar function
φ : F −→ R (Section 3.3) to order the elements. In this order, the distinct variables xi, xj ∈ F
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are comparable, which is, only xi≺xj or xi�xj, but neither simultaneously exist. At the same time,
we will obtain that ω× ζ−1(xi)>ω× ζ−1(xj

)
or ω× ζ−1(xi)<ω× ζ−1(xj

)
, ∀ω ∈ [0, 1] , but

not both.

Theorem 3. (Monotonicity) Let F be an ELICIT-IOWA operator. (〈u1, x1〉, · · · , 〈un, xn〉) and
(〈u1, z1〉, · · · , 〈un, zn〉) are two sequences of ELICIT-based OWA pairs, then

F(〈u1, z1〉, · · · , 〈un, zn〉) � F(〈u1, x1〉, · · · , 〈un, xn〉)

for all zi ≺ xi under the same order inducing variable ui, (i= 1,· · ·,n).

Proof. Because zi ≺ xi under the same order inducing variable ui, we will obtain zu−index(i)

≺ xu−index(i) and ζ−1
(

zu−index(i)

)
<ζ−1

(
xu−index(i)

)
, such that

F(〈u1, z1〉, · · · , 〈un, zn〉) = ζ

(
n

∑
i = 1

ωi × ζ−1
(

zu−index(i)

))

� ζ

(
n

∑
i = 1

ωi × ζ−1
(

xu−index(i)

))
= F(〈u1, x1〉, · · · , 〈un, xn〉).

Thence,
F(〈u1, z1〉, · · · , 〈un, zn〉)� F(〈u1, x1〉, · · · , 〈un, xn〉).

Theorem 4. (Boundedness) Let F be an ELICIT-IOWA operator, then

min
i
{xi} � F(〈u1, x1〉, · · · , 〈un, xn〉)� max

i
{xi} .

Proof. Let maxi{xi}= x∗ = xu−index(j) and mini{xi}= x∗ = xu−index(k) with j, k ∈ {1, · · · , n},
then

F(〈u1, z1〉, · · · , 〈un, zn〉) = ζ

(
n

∑
i = 1

ωi × ζ−1
(

xu−index(i)

))

� ζ

(
n

∑
i = 1

ωi × ζ−1(x∗)

)
= x∗

That is
F(〈u1, x1〉, · · · , 〈un, xn〉)� x∗.

Similarly, F(〈u1, x1〉, · · · , 〈un, xn〉)� x∗, then

x∗� F(〈u1, x1〉, · · · , 〈un, xn〉)� x∗.

Therefore,
min

i
{xi} � F(〈u1, x1〉, · · · , 〈un, xn〉)� max

i
{xi} .

The process of proving the properties theorem of the ELICIT-t1-IOWA operator is
similar to that of the ELICIT-IOWA operator, because the ELICIT-t1-IOWA operator is
based on the extension of the ELICIT-IOWA operator, which means that the weights are
fuzzy numbers instead of real numbers. Here, we will prove these properties with fuzzy
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weight ŵi being computed by the type-2 linguistic quantifier [32]; these properties can be
shown with the following theorems:

Theorem 5. (Idempotency) Let F be an ELICIT-t1-IOWA operator, if xi = x, i= 1, 2,· · ·,n, then

F(〈u1, x1〉, · · · , 〈un, xn〉) = x.

Proof. Because xi = x, i.e., ζ−1
(

xu−index(i)

)
= ζ−1(x) = T(a, b, c, d) for all i= 1, 2,· · ·,n,

then

F(〈u1, x1〉, · · · , 〈un, xn〉) = ζ

(
∑n

i = 1 ŵi ⊗ ζ−1(x)
∑n

i = 1 ŵi

)

We need to demonstrate that ∑n
i = 1 hatwi⊗ζ−1(x)

∑n
i = 1 ŵi

=
ζ−1(x)⊗(∑n

i = 1 ŵi)
∑n

i = 1 ŵi
= ζ−1(x).

Now, we shall obtain the α−cut of the fuzzy weight ŵi and ζ−1(x) = T(a, b, c, d), as
shown below:

ŵα
i =

{
ω ∈ [0, 1]| µŵi (ω) ≥ α

}
=
[

Lωα
i
, Rωα

i

]
(

ζ−1(x)
)α

=
{

y ∈ [0, 1]| µζ−1(x)(y) ≥ α
}
= [a + α(b− a), d− α(d− c)]

Let Φα
((

ζ−1(x)
)α, · · · ,

(
ζ−1(x)

)α
)
= Aα and Aα =

{
∑n

i = 1 ωiyi
∑n

i = 1 ωi
| ∀ωi ∈ ŵα

i , ∀yi ∈
(
ζ−1(x)

)α
}

=
[
Lyα , Ryα

]
, where Lyα = min

∀ωi∈ŵα
i ,yi∈Aα

i

Σn
i=1ωiyi

Σn
i=1ωi

and Ryα = max
∀ωi∈ŵα

i ,yi∈Aα
i

Σn
i=1ωiyi

Σn
i=1ωi

, then

Lyα =
Σi=KL

α
i=1 Rωα

i
[a + α(b− a)] + Σn

i=KL
α+1

Lωα
i
[a + α(b− a)]

Σi=KL
α

i=1 Rωα
i
+ Σn

i=KL
α+1

Lωα
i

=

[
Σi=KL

α
i=1 Rωα

i
+ Σn

i=KL
α+1

Lωα
i

]
[a + α(b− a)]

Σi=KL
α

i=1 Rωα
i
+ Σn

i=KL
α+1

Lωα
i

= a + α(b− a)

We will observe that, here, KL
α is no longer meaningful as a left switch point [40,51].

Simultaneously, derive Ryα = d− α(d− c), hence

∑n
i = 1 ŵi ⊗ ζ−1(x)

∑n
i = 1 hatwi

=
⋃

0≤α≤1

α[a + α(b− a), d− α(d− c)]

=
⋃

0≤α≤1

α
(

ζ−1(x)
)α

= ζ−1(x)

Because

ζ−1(x)⊗ (∑n
i = 1 ŵi)

∑n
i = 1 ŵi

=
⋃

0≤α≤1

α

{
y ∑n

i = 1 ωi

∑n
i = 1 ωi

|∀ωi ∈ ŵα
i , ∀y ∈

(
ζ−1(x)

)α
}

=
⋃

0≤α≤1

α
{

y| ∀y ∈
(

ζ−1(x)
)α}

= ζ−1(x)
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So far, we have already demonstrated

∑n
i = 1 ŵi ⊗ ζ−1(x)

∑n
i = 1 ŵi

=
ζ−1(x)⊗ (∑n

i = 1 ŵi)

∑n
i = 1 ŵi

= ζ−1(x)

Hence,

F(〈u1, x1〉, · · · , 〈un, xn〉) = x.

Theorem 6. (Commutativity) Let F be an ELICIT-t1-IOWA operator and (〈u′1, x′1〉, · · · ,
〈u′n, x′n〉) is a permutation of (〈u1, x1〉, · · · , 〈un, xn〉), then

F
(
〈u′1, x′1〉, · · · , 〈u′n, x′n〉

)
= F(〈u1, x1〉, · · · , 〈un, xn〉).

Proof. Because (〈u′1, x′1〉, · · · , 〈u′n, x′n〉) is a permutation of (〈u1, x1〉, · · · , 〈un, xn〉) so
that for the same order inducing variable, we obtain the same reordering of the argument
variable, in other words, xu−index(i) = x′u′−index(i) for all i = 1, · · · , n, then

F(〈u1, x1〉, · · · , 〈un, xn〉)= ζ

∑n
i = 1 ŵi ⊗ ζ−1

(
xu−index(i)

)
∑n

i = 1 ŵi


= ζ

∑n
i = 1 ŵi ⊗ ζ−1

(
x′u′−index(i)

)
∑n

i = 1 ŵi


= F

(
〈u′1, x′1〉, · · · , 〈u′n, x′n〉

)
.

Therefore,

F
(
〈u′1, x′1〉, · · · , 〈u′n, x′n〉

)
= F(〈u1, x1〉, · · · , 〈un, xn〉).

Theorem 7. (Monotonicity) Let F be an ELICIT-t1-IOWA operator. (〈u1, x1〉, · · · , 〈un, xn〉)
and (〈u1, z1〉, · · · , 〈un, zn〉) are two sequences of ELICIT-based OWA pairs, then

F(〈u1, z1〉, · · · , 〈un, zn〉) � F(〈u1, x1〉, · · · , 〈un, xn〉)

for all zi ≺ xi under the same order inducing variables ui, (i= 1,· · ·,n).

Proof. Because zi ≺ xi under the same order inducing variable ui, we obtain that zu−index(i)

≺ xu−index(i) and ζ−1
(

zu−index(i)

)
<ζ−1

(
xu−index(i)

)
, such that

F(〈u1, z1〉, · · · , 〈un, zn〉)= ζ

∑n
i = 1 ŵi ⊗ ζ−1

(
zu−index(i)

)
∑n

i = 1 ŵi


� ζ

∑n
i = 1 ŵi ⊗ ζ−1

(
xu−index(i)

)
∑n

i = 1 ŵi


= F(〈u1, x1〉, · · · , 〈un, xn〉)

Hence,
F(〈u1, z1〉, · · · , 〈un, zn〉)� F(〈u1, x1〉, · · · , 〈un, xn〉).
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Theorem 8. (Boundedness) Let F be an ELICIT-t1-IOWA operator, then

min
i
{xi} � F(〈u1, x1〉, · · · , 〈un, xn〉)� max

i
{xi} .

Proof. Let maxi{xi} = x∗ = xu−index(j) and mini{xi} = x∗ = xu−index(k) with j, k ∈ {1, · · · ,
n}, then

F(〈u1, x1〉, · · · , 〈un, xn〉)= ζ

∑n
i = 1 ŵi ⊗ ζ−1

(
xu−index(i)

)
∑n

i = 1 ŵi


� ζ

∑n
i = 1 ŵi ⊗ ζ−1

(
xu−index(j)

)
∑n

i = 1 ŵi


= ζ

(
∑n

i = 1 ŵi ⊗ ζ−1(x∗)
∑n

i = 1 ŵi

)
= x∗

That is
F(〈u1, x1〉, · · · , 〈un, xn〉)� x∗.

Similarly, F(〈u1, x1〉, · · · , 〈un, xn〉)� x∗, then

x∗� F(〈u1, x1〉, · · · , 〈un, xn〉)� x∗.

Therefore,
min

i
{xi} � F(〈u1, x1〉, · · · , 〈un, xn〉)� max

i
{xi} .

5. A Majority-Driven Gdm Process for Elicit Information

In this section, we will propose a majority-driven GDM process for ELICIT information
together with the ELICIT-t1-IOWA and ELICIT-I-IOWA operator. “Majority opinion” [29]
is intended to indicate that the majority of argument variables are aggregated, because
they are similar or close to the same position. Therefore, in [29], a support function is used
to measure the similarity between two arguments in order to obtain the induce similarly
order. Suppose that a finite set of experts {e1, e2, · · · , em} participates in the GDM problem
while considering a finite set of alternatives {a1, a2, · · · , an}. For the aggregation phase
of the GDM selection process [52], it is divided into two parts: (1) the ELICIT-t1-IOWA
operator with majority opinion to aggregate the ELICIT preference relations P k =

(
pk

ij

)
n×n

for each expert ek; (2) considering the degree of prestige αk that is enjoyed by the expert ek
constitutes a triple 〈uk, ek, αk〉, in which the order inducing variable uk = αk then reduce to
2-tuple 〈ek, αk〉, and apply the ELICIT-I-IOWA operator. The majority opinion for the ELICIT-
t1-IOWA operator is based on Zadeh’s expansion principle and support function [53] to
obtain the similarity function Sim to group the most similar variables into the same category,
and then, before aggregating the process, they are reordered in the induced similarity order.
For the ELICIT-I-IOWA operator, the linguistic quantifier “most” corresponds to most opinion
upon the degree of prestige αk of experts ek.

To do this, the GDM problem within ELICIT information is structured as follows:

• A finite set of experts E = {e1, e2, · · · , em}, m ≥ 2;

• A finite set of alternatives A = {a1, a2, · · · , an}, n ≥ 2; and,

• A preference relations matrix P k =
(

pk
ij

)
n×n

has been constructed for the kth expert,

where pk
ij represents the evaluation of the kth expert. The expert expresses the prefer-

ence of ai over aj in the form of CLE or ELICIT expressions. The preference relations
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pk
ij and pk

ji based on the negation operator of ELICIT information [15] and function

∆, ∆−1 [16].

• Step 1: for each expert ek, k = 1, · · · , m, constructing a matrix P k =
(

pk
ij

)
n×n

with pk
ij

represented by CLEs or ELICIT information;

• Step 2: to obtain the induced similarity order of the set
{

pk
i1, pk

i2, · · · , pk
ij, · · · , pk

in

}
,

which is the ith row of the matrix P k. It is slightly different from the classical order
inducing variable, which induces the argument variable pk

ij by the similar order [29]
under the concept of the “majority opinion”, so that the majority of similar arguments
are aggregated.

(1) Let F be the set of all possible ELICIT expressions, and then pk
ij ∈ F and F have

no inherent order. When considering the predefined function φ : F −→ R that
aims to find the middle position of the vertex of the ELICIT expression, then we
can measure the distance between two ELICIT information pk

ij, pk
ik in order to

estimate it similarly. The measure of distance is defined as follows:

D
(

pk
ij, pk

ik

)
=

{
0, if j = k;

|φ
(

pk
ij

)
− φ

(
pk

ik

)
|, if j 6=k;

(39)

With the application of Equation (37) and Equation (39) with ith row of the matrix
P k, we will obtain the result presented in Table 1.

(2) Let Sum
(

Pk
ij

)
= − Σn

k=1D
(

pk
ij, pk

ik

)
represent the overall distance value that

pk
ij over pk

ik, k 6=j. If the value we obtain is smaller, it means that the distance

between pk
ij and pk

ik, k 6=j is closer, which further shows that them are very similar,
which is in line with the idea of “majority opinion”. Additionally, at the same
time, we will obtain the induced similarity order of the aggregated argument{

pk
i1, pk

i2, · · · , pk
ij, · · · , pk

in

}
following the increasing lexicographic order of the

pair Sim
(

Pk
ij

)
=
(

Sum
(

Pk
ij

)
, φ
(

pk
ij

))
for all j = 1 · · · , n. If Sim

(
Pk

ij

)
has q ties,

then set the average of q items to replace them in order to solve this problem.

• Step 3: using the ELICIT-t1-IOWA operator with interval weight w̃j ⊆ [0, 1] computed by
the type-2 linguistic quantifier “most” [32] to aggregate reordered set {pk

i1, pk
i2, · · · , pk

ij, · · · ,

pk
in}, noted as vector Mk =


ak

1
ak

2
...

ak
n

 with ak
i =

Σn
j=1w̃j⊗ζ−1

(
pk

σSim(ij)

)
Σn

j=1w̃j
and ak

i repre-

sents the aggregated result of the ith alternative ai for the kth expert. Where σSim :
{1, · · · , n} −→ {1, · · · , n} is the permutation function on the set {pk

i1, pk
i2, · · · , pk

ij, · · · ,

pk
in} upon the induced similarity order.

• Step 4: utilizing the ELICIT-I-IOWA operator to aggregateMk with the functional
generated weight [35] ωk for all k = 1, · · · , m.

Each expert ek is associated with a degree of prestige αk = uk, uk is the order induc-
ing variable, constituting the 2-tuple 〈ek, αk〉 = 〈Mk, αk〉, then apply the I-ELICIT-
IOWA operator with linguistic quantifier “most” so that the BUM function Q(r) with
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α = 0.3, β = 0.8, we will obtain the result R = Σm
k=1ωk ×Mσ(k) =


β1
β2
...

βn

 with

βi = Σm
k=1ωk × aσ(k)

i and ωk = Q
(

I(k)
I(m)

)
−Q

(
I(k−1)

I(m)

)
, where I(k) = Σk

j=1ασ(j), j, k=1, · · · ,

m and σ : {1, · · · , m} −→ {1, · · · , m} is permutation function only acting on the
variable αk, such that ασ(k) is the ith largest element of set {α1, · · · , αm}, then the noted

corresponding reordered 2-tuple as
(
〈Mσ(1), ασ(1)〉, · · · , 〈Mσ(m), ασ(m)〉

)
.

• Step 5: ranking the element of set {β1, β2, · · ·, βn} in order to select the top one βi cor-
responding to the alternative ai as the solution of the GDM problem and obtaining the

final result with function ζ as ζ(R) =


ζ(β1)
ζ(β2)

...
ζ(βn)

 in the form of ELICIT expressions.

Table 1. The overall distance measure for the ith row of the matrix P k .

ith row pk
i1 · · · pk

ij · · · pk
in Sum

pk
i1 0

...

pk
ij 0

...

pk
in 0

6. Illustrative Example

This section introduces an illustrative example in order to show the performance of
our proposal and its feasibility in the GDM problem with ELICIT information. In addition,
it provides a brief comparative analysis to show the advantages of the ELICIT-IOWA
operators that were introduced regarding previous ELICIT aggregation operators for
dealing with GDM problems.

6.1. Gdm Problem with Elicit Information

Let us assume that this GDM problem involves five experts E = {e1, e2, e3, e4, e5} and
four alternatives A = {a1, a2, a3, a4}.

Each expert provides his or her ELICIT preference relation while using ELICIT ex-
pressions that were built by using the linguistic term set S = {S0, S1, S2, S3, S4, S5, S6, S7, S8},
whose semantics are S0 = None; S1 = Very Low; S2 = Low; S3 = Slightly Low; S4 = Medium;
S5 = Slightly High; S6 = High; S7 = Very High; S8 = Per f ect and its semantics are shown
in Figure 3.

0 0.125 0.25 0.5 0.75 0.875 1

None LowVery Low
Slightly 

Low High Very High PerfectMedium

Slightly 

High

0.375 0.625

Figure 3. The ELICIT expression examples.
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6.2. A Majority-Driven Solving Process Driven by Elicit-T1-Owa and Elicit-I-Iowa with Most
Linguistic Quantifier

The Majority-driven GDM process for ELICIT information that is presented in Section 5
is applied to solve the previous problem.

• Step 1: the five ELICIT preference relation matrix P k are provided as follows:

P1 =



S4 at most S3 between S6 and S7 S1

at least S5 S4 at least S6 at least S6

between S1 and S2 at most S2 S4 between S2 and S3

S7 at most S2 between S5 and S6 S4



P2 =



S4 S5 between S6 and S7 between S2 and S3

S3 S4 at most S1 at least S7

between S1 and S2 at least S7 S4 between S1 and S3

between S5 and S6 at most S1 between S5 and S7 S4



P3 =



S4 at least S5 between S5 and S6 between S1 and S3

at most S3 S4 between S6 and S7 S0

between S2 and S3 between S1 and S2 S4 S2

between S5 and S7 S8 S6 S4



P4 =



S4 S5 between S2 and S3 at least S5

S3 S4 at most S3 at least S7

between S5 and S6 at least S5 s4 S7

at most S3 at most S1 S1 S4



P5 =



S4 at least S7 at most S2 S4

at most S1 S4 at least S5 S8

at least S6 at most S3 S4 between S5 and S7

S4 S0 between S1 and S3 S4



• Step 2: to obtain the induced similarity order of ith row of P k, k = 1, 2, 3, 4, 5.

Using the first row of P1 as an example to illustrate how to obtain the induced
similarity order.

P1 =


S4 at most S3 between S6 and S7 S1

at least S5 S4 at least S6 at least S6

between S1 and S2 at most S2 S4 between S2 and S3

S7 at most S2 between S5 and S6 S4


The first row of P1 is

{
p1

11, p1
12, p1

13, p1
14
}
= {S4, at most S3, between S6 and S7, S1}

and the overall distance measure for the 1st row of the matrix P1 is shown in Table 2.

Upon Table 2 and the increasing lexicographic order of the pair
(

Sum
(

p1
1j

)
, φ
(

p1
1j

))
, j =

1, 2, 3, 4 , we obtain Sum
(

p1
13
)
<Sum

(
p1

14
)
<Sum

(
p1

12
)
= Sum

(
p1

11
)

and φ
(

p1
12
)
= 3

2<
φ
(

p1
11
)
= 4.

Therefore, the induced similarity order

p1
13≺p1

14≺p1
12≺p1

11.

Similarly, we obtain the induced similarity order of each row of the P1 as follows:

p1
13≺p1

14≺p1
12≺p1

11; p1
22≺p1

24=p1
23≺p1

21; p1
33≺p1

32≺p1
31≺p1

34; p1
42≺p1

41≺p1
43≺p1

44;
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Hence, we obtain the ordered P1 as P1
ordered as the following one:

P1
ordered =


p1

13 p1
14 p1

12 p1
11

p1
22 p1

24 p1
23 p1

21
p1

33 p1
32 p1

31 p1
34

p1
42 p1

41 p1
43 p1

44


• Step 3: using the ELICIT-t1-IOWA operator to aggregate the ordered matrix P1 with

the assigned finite fuzzy weighting vector is W̃ = {w̃1, w̃2, w̃3, w̃4}, such that the
interval weight w̃i is computed by the type-2 linguistic quantifier “most” introduced
in [32] , then

w̃1 = [0, 0], w̃2 = [0, 0.4], w̃3 = [0.433, 0.9], w̃4 = [0.1, 0.167].

Applying the ELICIT-t1-IOWA operator with fuzzy weight to the ordered P1 in order
to obtain the following results:

a1
1 =

w̃1 ⊗ ζ−1(p1
13
)
+w̃2 ⊗ ζ−1(p1

14
)
+w̃3 ⊗ ζ−1(p1

12
)
+w̃4 ⊗ ζ−1(p1

11
)

Σ4
j=1w̃j

=
w̃1 ⊗ T(0.625, 0.75, 0.875, 1)+w̃2 ⊗ T(0, 0.125, 0.25)+w̃3 ⊗ T(0, 0, 0.375, 0.5)+w̃4 ⊗ T(0.375, 0.5, 0.625)

Σ4
j=1w̃j

= T(0.026786, 0.050000, 0.40979, 0.53479);

a1
2 =

w̃1 ⊗ ζ−1(p1
22
)
+w̃2 ⊗ ζ−1(p1

24
)
+w̃3 ⊗ ζ−1(p1

23
)
+w̃4 ⊗ ζ−1(p1

21
)

Σ4
j=1w̃j

= T(0.59021, 0.71521, 1, 1);

a1
3 =

w̃1 ⊗ ζ−1(p1
33
)
+w̃2 ⊗ ζ−1(p1

32
)
+w̃3 ⊗ ζ−1(p1

31
)
+w̃4 ⊗ ζ−1(p1

34
)

Σ4
j=1w̃j

= T(0.0089286, 0.084807, 0.28479, 0.40979);

a1
4 =

w̃1 ⊗ ζ−1(p1
42
)
+w̃⊗ ζ−1(p1

41
)
+w̃⊗ ζ−1(p1

43
)
+w̃⊗ ζ−1(p1

44
)

Σ4
j=1w̃j

= T(0.46521, 0.59021, 0.77680, 0.90180);

Hence,M1 =


a1

1
a1

2
a1

3
a1

4

 =


T(0.026786, 0.050000, 0.40979, 0.53479)

T(0.59021, 0.71521, 1, 1)
T(0.0089286, 0.084807, 0.28479, 0.40979)

T(0.46521, 0.59021, 0.77680, 0.90180)

 .

Similarly, we will obtain the ordered P k and the aggregated resultsMk for all k =
2, 3, 4, 5, as follows:

P2
ordered =


p2

14 p2
13 p2

11 p2
12

p2
24 p2

23 p2
21 p2

22
p2

32 p2
31 p2

34 p2
33

p2
42 p2

43 p2
44 p2

41

; P3
ordered =


p3

14 p3
12 p3

11 p3
13

p3
23 p3

24 p3
21 p3

22
p3

32 p3
33 p3

31 p3
34

p3
44 p3

42 p3
43 p3

41

;

P4
ordered =


p4

13 p4
14 p4

11 p4
12

p4
24 p4

23 p4
21 p4

22
p4

33 p4
34 p4

31 p4
32

p4
44 p4

42 p4
43 p4

41

; P5
ordered =


p5

12 p5
13 p5

14 p5
11

p5
21 p5

24 p5
22 p5

23
p5

32 p5
31 p5

33 p5
34

p5
42 p5

43 p5
44 p5

41
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M2 =


a2

1
a2

2
a2

3
a2

4

 =


T(0.38750, 0.51250, 0.67417, 0.79917)
T(0.15622, 0.22763, 0.40979, 0.53479)

T(0.026786, 0.15179, 0.40979, 0.53479)
T(0.38750, 0.51250, 0.69175, 0.81675)

 ;

M3 =


a3

1
a3

2
a3

3
a3

4

 =


T(0.38750, 0.51250, 0.74175, 0.81675)

T(0.026786, 0.035714, 0.40979, 0.53479)
T(0.12500, 0.25000, 0.41519, 0.54019)
T(0.12500, 0.25000, 0.41519, 0.54019)

 ;

M4 =


a4

1
a4

2
a4

3
a4

4

 =


T(0.38750, 0.51250, 0.72776, 0.79917)
T(0.15622, 0.22763, 0.40979, 0.53479)
T(0.50000, 0.62500, 0.84175, 0.94588)
T(0.16237, 0.23738, 0.46250, 0.58750)

 ;

M5 =


a5

1
a5

2
a5

3
a5

4

 =


T(0.21423, 0.28564, 0.50000, 0.62500)
T(0.38750, 0.51250, 0.78350, 0.83763)
T(0.38750, 0.51250, 0.76262, 0.83763)
T(0.21423, 0.33923, 0.50000, 0.62500)


• Step 4: using the ELICIT-I-IOWA operator to aggregateMk with linguistic quantifier

Q “most”, then the BUM function Q(r) is Q(r) =


0, i f 0 ≤ r < 0.3

2r−0.6, i f 0.3 ≤ r ≤ 0.8
1, i f 0.8 < r ≤ 1

.

Suppose that the experts associated with the degree of prestige that is a proportion of
[0, 1] are recorded as

{〈ek, αk〉}5
k=1 = {〈e1, 0.6〉, 〈e2, 1〉, 〈e3, 0.5〉, 〈e4, 0.9〉, 〈e5, 0.7〉}

We will obtain the reorder of {〈ek, αk〉}5
k=1 and the weight as

{〈e2, 1〉, 〈e4, 0.9〉, 〈e5, 0.7〉, 〈e1, 0.6〉, 〈e3, 0.5〉}

ω1 = 0, ω2 = 0.42703, ω3 = 0.37838, ω4 = 0.19459, ω5 = 0

Applying the ELICIT-I-IOWA operator to {〈ek, αk〉}5
k=1, we will obtain the result

R = Σ5
k=1ωk ×Mσ(k) =


β1
β2
β3
β4

 =


T(0.25175, 0.33666, 0.57971, 0.68182)
T(0.32818, 0.43030, 0.66604, 0.73990)
T(0.36187, 0.47732, 0.70343, 0.80060)
T(0.24092, 0.34458, 0.53785, 0.66285)


where βi = Σ5

k=1ωk × aσ(k)
i for all i = 1, 2, 3, 4.

• Step 5: ranking βi to select top one alternative as a solution to this problem and then
complete the ELICIT-CW scheme [15] in order to obtain the final ELICIT expressions.

Because βi is a trapezoidal fuzzy number with no inherent order, we need to choose a
method for defining a comparison operator between fuzzy numbers. Here, we choose
the method, the so-called “Magnitude” function, provided by Abbasbandy and Hajjari
[45], because, the larger magnitude, the larger the fuzzy number. Following the defini-
tion of the “Magnitude”, Mag(·), we obtain the results: Mag(β1) = 0.45962; Mag(β2) =
0.54582; Mag(β3) = 0.58885; Mag(β4) = 0.44299, then β3>β2>β1>β4. Hence, the rank-
ing of alternatives is a4≺a1≺a2≺a3, so that the alternative a3 is the top one as a solution
to this problem. Table 3 represents the overall result upon “majority opinion”.
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Table 2. The overall distance measure for the 1st row of the matrix P1.

i = 1 p1
11 p1

12 p1
13 p1

14 Sum

p1
11 0 5

2
5
2

7
2 − 17

2

p1
12

5
2 0 5 1 − 17

2

p1
13

5
2 5 0 6 − 27

2

p1
14

7
2 2 6 0 − 21

2

Table 3. The overall result upon “majority opinion”.

Alternative βi ζ(βi)

a1 T(0.25175, 0.33666, 0.57971, 0.68182) between (S3,−0.31)0.04 and (S5,−0.36)−0.023

a2 T(0.32818, 0.43030, 0.66604, 0.73990) between (S3, 0.44)0.023 and (S5, 0.33)−0.051

a3 T(0.36187, 0.47732, 0.70343, 0.80060) between (S4,−0.18)0.009 and (S6,−0.37)−0.028

a4 T(0.24092, 0.34458, 0.53785, 0.66285) between (S3,−0.24)0.021 and (S4, 0.3)

6.3. Comparative Analysis

This section provides a comparative analysis that includes two different views in order
to show the performance of the previous GDM majority-driven solving process driven by
ELICIT-t1-OWA and ELICIT-I-IOWA:

1. In the previous resolution scheme, the ELICIT-t1-IOWA operator with fuzzy interval
weight is only computed by the type-2 linguistic quantifier “most” in order to aggre-
gate the most similar opinions. However, the weights of the ELICIT-I-IOWA operator
can be obtained from different linguistic quantifiers according to the aggregated
opinion chased. Therefore, we will apply various linguistic quantifiers to compute the
weights ELICIT-I-IOWA operator combining with the same ELICIT-t1-IOWA operator
and comparing the results.

2. A second view for comparison is related to previous operators in order to aggregate
ELICIT information. However, so far, just two of them have been introduced; namely,
the fuzzy arithmetic mean [15] and the Bonferroni mean aggregation operator [21].
Because of the type of problem that we are dealing with, the Bonferroni mean operator
cannot be used because there is no interaction among the criteria. Therefore, we
propose replacing the ELICIT-t1-IOWA operator with the fuzzy arithmetic mean in
the majority-driven GDM processes to combine it with the ELICIT-I-IOWA operator
in the previous GDM problem. Additionally, compare the final ranking results with
the ones from the previous subsection.

6.3.1. A Majority-Driven Solving Process Driven by Elicit-T1-Owa and Elicit-I-Iowa with
Different Linguistic Quantifiers

It is noticeable that the aggregation phase of the majority-driven GDM process consists
of the ELICIT-t1-IOWA operator to each ELICIT preference relation matrix P k for each
expert ek to obtainMk and the ELICIT-I-IOWA operator to the all matrixMk with a degree
of prestige of expert ek into an overall result R. The ELICIT-t1-IOWA operator and the
ELICIT-I-IOWA operator both use the linguistic quantifier “most” in order to consider
“majority opinion”. For the sake of clarity, when considering that the type-2 linguistic
quantifier only uses the interval-valued type-2 linguistic quantifier “most” [32] induced the
interval weight; therefore, we will compare the results that were obtained in the previous
example with the BUM function Q(r) that represents the linguistic quantifier “at least half ”
with α = 0, β = 0.5, linguistic quantifier “as many as possible” with α = 0.5, β = 0.8 and
linguistic quantifier “mean” with α = 0, β = 1.
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We apply the ELICIT-I-IOWA operator with different linguistic quantifiers toMk,
k = 1, 2, 3, 4, 5.

1. While using linguistic quantifier “at least half ” with α = 0, β = 0.5.

In this case, we obtain the weights

ω1 = 0.54054, ω2 = 0.45946, ω3 = 0, ω4 = 0, ω5 = 0

Applying the ELICIT-I-IOWA operator to {〈ek, αk〉}5
k=1 in order to obtain the result as

follows:

RCase1 =


β1
β2
β3
β4

 =


T(0.38750, 0.51250, 0.69879, 0.79917)
T(0.15622, 0.22763, 0.40979, 0.53479)
T(0.24421, 0.36921, 0.60826, 0.72367)
T(0.28406, 0.38609, 0.58642, 0.71142)


Implementing the “Magnitude” function Mag(·), we obtain

Mag(β1) = 0.60359; Mag(β2) = 0.32318; Mag(β3) = 0.48794; and, Mag(β4) = 0.48817.

Hence, the ranking of alternatives is a2≺a3≺a4≺a1.

2. Using linguistic quantifier “as many as possible” with α = 0.5, β = 0.8.

In this case we obtain the weights

ω1 = 0, ω2 = 0.045045, ω3 = 0.63063, ω4 = 0.32432, ω5 = 0

Applying the ELICIT-I-IOWA operator to {〈ek, αk〉}5
k=1 to obtain the result as follows:

RCase2 =


β1
β2
β3
β4

 =


T(0.16124, 0.21943, 0.48100, 0.60359)
T(0.44282, 0.56541, 0.83688, 0.87664)
T(0.26979, 0.37886, 0.61121, 0.70374)
T(0.29329, 0.41604, 0.58808, 0.71308)


Implementing the “Magnitude” function Mag(·), we obtain

Mag(β1) = 0.35558; Mag(β2) = 0.69424; Mag(β3) = 0.49366; Mag(β4) = 0.50225.

Hence, the ranking of alternatives is a1≺a3≺a4≺a2.

3. Using linguistic quantifier “mean”with α = 0, β = 1.

In this case, we obtain the weights

ω1 = 0.27027, ω2 = 0.24324, ω3 = 0.18919, ω4 = 0.16216, ω5 = 0.13513

Applying the ELICIT-I-IOWA operator to {〈ek, αk〉}5
k=1 to obtain the result as follows:

RCase3 =


β1
β2
β3
β4

 =


T(0.29622, 0.39458, 0.62051, 0.72571)
T(0.25286, 0.33465, 0.57620, 0.66752)
T(0.22051, 0.33754, 0.56207, 0.67253)
T(0.27708, 0.38992, 0.57612, 0.70112)


Implementing the “Magnitude” function Mag(·), we obtain

Mag(β1) = 0.50811; Mag(β2) = 0.45622; Mag(β3) = 0.44926; Mag(β4) = 0.48403.
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Hence, the ranking of alternatives is a3≺a2≺a4≺a1.

We can observe that the ranking changes according to the different linguistic quanti-
fiers, which means that we then add up the prestige of the experts until we obtain different
degrees of prestige. Based on the majority-driven GDM approach, we know that the result
of this method is reliable.

Finally, the aggregated resultsR are re-translated into ELICIT expressions by function
ζ [15]; for experts, these results are very intuitive (see Table 4).

Table 4. The overall result with ELICIT expressions.

Aggregated Results R ELICIT Expression ζ(R) Ranking Result

“most” T(0.25175, 0.33666, 0.57971, 0.68182) bt (S3,−0.31)0.04 and (S5,−0.36)−0.023 a4≺a1≺a2≺a3

T(0.32818, 0.43030, 0.66604, 0.73990) bt (S3, 0.44)0.023 and (S5, 0.33)−0.051

T(0.36187, 0.47732, 0.70343, 0.80060) bt (S4,−0.18)0.009 and (S6,−0.37)−0.028

T(0.24092, 0.34458, 0.53785, 0.66285) bt (S3,−0.24)0.021 and (S4, 0.3)
ine Case 1 T(0.38750, 0.51250, 0.69879, 0.79917) bt (S4, 0.1) and (S6,−0.41)−0.025 a2≺a3≺a4≺a1

T(0.15622, 0.22763, 0.40979, 0.53479) bt (S2,−0.18)0.054 and (S3, 0.28)
T(0.24421, 0.36921, 0.60826, 0.72367) bt (S3,−0.05) and (S5,−0.13)−0.01

T(0.28406, 0.38609, 0.58642, 0.71142) bt (S3, 0.09)0.023 and (S5,−0.31)
ine Case 2 T(0.16124, 0.21943, 0.48100, 0.60359) bt (S2,−0.24)0.066 and (S4,−0.15)−0.003 a1≺a3≺a4≺a2

T(0.44282, 0.56541, 0.83688, 0.87664) bt (S5,−0.48)0.003 and (S7,−0.3)−0.086

T(0.26979, 0.37886, 0.61121, 0.70374) bt (S3, 0.03)0.016 and (S5,−0.11)−0.033

T(0.29329, 0.41604, 0.58808, 0.71308) bt (S3, 0.33)0.002 and (S5,−0.3)0.001

ine Case 3 T(0.29622, 0.39458, 0.62051, 0.72571) bt (S3, 0.16)0.026 and (S5,−0.04)−0.019 a3≺a2≺a4≺a1

T(0.25286, 0.33465, 0.57620, 0.66752) bt (S3,−0.32)0.043 and (S5,−0.39)−0.034

T(0.22051, 0.33754, 0.56207, 0.67253) bt (S3,−0.3)0.008 and (S4, 0.5)−0.015

T(0.27708, 0.38992, 0.57612, 0.70112) bt (S3, 0.12)0.012 and (S5,−0.39)

In Table 4 “bt” stands for “between”.

6.3.2. A Solving Process Driven by Fuzzy Arithmetic Mean and The Elicit-I-Owa

If we consider that the order inducing variable is the same as the argument and
assigned with the weight

(
1
n , · · · , 1

n

)
, the fuzzy arithmetic mean operator is a special case

of the IOWA operator, thus we will replace the ELICIT-t1-IOWA operator with the fuzzy
arithmetic mean in the current proposal, the ELICIT-I-IOWA operator used will be guided
by the previous linguistic quantifiers that were used in previous sections. Finally, we
will compare the final ranking results between the ELICIT-t1-IOWA operator and fuzzy
arithmetic mean operator, with both of them combining the same ELICIT-I-IOWA operator
in the majority-driven process.

Inspired by the ELICIT-IOWA, we will obtain the formula of the application of the
fuzzy arithmetic mean operator to ELICIT information as the following one:

Fmean(x1, · · · , xn) = ζ

(
1
n
× Σn

i=1ζ−1(xi)

)
(40)

1. Using the same example in Section 6.1, applying the Equation (40) on the preference
relation matrix P k, k = 1, 2, 3, 4, 5, we will obtain the result as

A1 =


a1

1
a1

2
a1

3
a1

4

 =


T(0.25000, 0.34375, 0.46875, 0.59375)
T(0.53125, 0.65625, 0.87500, 0.90625)
T(0.12500, 0.21875, 0.34375, 0.46875)
T(0.40625, 0.50000, 0.59375, 0.71875)

 ;
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A2 =


a2

1
a2

2
a2

3
a2

4

 =


T(0.40625, 0.53125, 0.59375, 0.71875)
T(0.34375, 0.43750, 0.50000, 0.59375)
T(0.28125, 0.40625, 0.53125, 0.62500)
T(0.34375, 0.43750, 0.56250, 0.68750)

 ;

A3 =


a3

1
a3

2
a3

3
a3

4

 =


T(0.34375, 0.46875, 0.65625, 0.75000)
T(0.25000, 0.31250, 0.43750, 0.56250)
T(0.15625, 0.28125, 0.34375, 0.46875)
T(0.34375, 0.43750, 0.56250, 0.68750)

 ;

A4 =


a4

1
a4

2
a4

3
a4

4

 =


T(0.37500, 0.50000, 0.62500, 0.71875)
T(0.34375, 0.43750, 0.56250, 0.65625)
T(0.53125, 0.65625, 0.78125, 0.87500)
T(0.18750, 0.28125, 0.31250, 0.43750)

 ;

A5 =


a5

1
a5

2
a5

3
a5

4

 =


T([0.37500, 0.46875, 0.56250, 0.65625)
T(0.43750, 0.53125, 0.65625, 0.71875)
T(0.37500, 0.46875, 0.68750, 0.78125)
T(0.18750, 0.28125, 0.34375, 0.46875)

 ;

2. Utilizing various linguistic quantifiers of the ELICIT-I-IOWA operator on the ma-
trix Ak, k = 1, 2, 3, 4, 5: linguistic quantifier “most” with α = 0.3, β = 0.8, linguistic
quantifier “at least half ” with α = 0, β = 0.5, linguistic quantifier “as many as possible”
with α = 0.5, β = 0.8 and linguistic quantifier “mean” with α = 0, β = 1. Therefore,
the process is similar to the previous section; we will skip the process and directly
give the following results:

Rmost =


β1
β2
β3
β4

 =


T(0.35068, 0.45777, 0.57095, 0.67078)
T(0.41571, 0.51554, 0.65878, 0.72855)
T(0.39308, 0.50017, 0.66064, 0.76047)
T(0.23007, 0.32382, 0.37905, 0.50405)


Implementing the “Magnitude” function Mag(·), we will obtain

Mag(β1) = 0.51375; Mag(β2) = 0.58466; Mag(β3) = 0.57980; Mag(β4) = 0.35404.

Hence, the ranking of alternatives is a4≺a1≺a3≺a2.

Rat least hal f =


β1
β2
β3
β4

 =


T(0.39189, 0.51689, 0.60811, 0.71875)
T(0.34375, 0.43750, 0.52872, 0.62247)
T(0.39611, 0.52111, 0.64611, 0.73986)
T(0.27196, 0.36571, 0.44764, 0.57264)


Implementing the “Magnitude” function Mag(·), we will obtain

Mag(β1) = 0.56130; Mag(β2) = 0.48311; Mag(β3) = 0.58101; Mag(β4) = 0.40928.

Hence, the ranking of alternatives is a4≺a2≺a1≺a3.

Ras many as possible =


β1
β2
β3
β4

 =


T(0.33446, 0.42962, 0.53491, 0.63879)
T(0.46368, 0.56756, 0.72297, 0.77674)
T(0.30096, 0.39611, 0.58023, 0.68412)
T(0.25844, 0.35219, 0.42342, 0.54842)


Implementing the “Magnitude” function Mag(·), we will obtain

Mag(β1) = 0.48299; Mag(β2) = 0.64109; Mag(β3) = 0.48890; Mag(β4) = 0.39041.
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Hence, the ranking of alternatives is a4≺a1≺a3≺a2.

Rmean =


β1
β2
β3
β4

 =


T(0.35895, 0.47297, 0.58361, 0.69087)
T(0.37922, 0.47381, 0.59712, 0.67905)
T(0.31756, 0.43158, 0.56587, 0.66891)
T(0.28631, 0.38006, 0.46537, 0.59037)


Implementing the “Magnitude” function Mag(·), we will obtain

Mag(β1) = 0.52773; Mag(β2) = 0.53441; Mag(β3) = 0.49781; Mag(β4) = 0.42532.

Thence, the ranking of alternatives is a4≺a3≺a1≺a2.

3. Comparing the final ranking results between the fuzzy arithmetic mean operator
and ELICIT-t1-IOWA operator combining various ELICIT-I-IOWA operator. Looking
at Table 5, it can be observed that the overall results of applying the fuzzy arithmetic
mean operator to the previous example are quite steady disregarding the aggregation
of the ELICIT-I-IOWA operator and the linguistic quantifiers that are used by it. How-
ever, the ELICIT-t1-IOWA operator is much more sensitive to different situations that
are modeled by the linguistic quantifiers used in the ELICIT-I-IOWA operator. This
is due to there being significant differences when considering the induced similarity
order. Therefore, it can be concluded that ELICIT-t1-IOWA operator is more sensitive
to different situations that are modeled by linguistic quantifiers in the ELICIT-I-IOWA
operator. Hence, we can say that our proposal opens a way to deal with different
views of solving GDM problems with ELICIT information in a more flexible way that
could not be done previously.

Table 5. The comparative result with ELICIT expressions.

Family of ELICIT-I-IOWA Operator Ranking Result of FELICIT−t1−IOWA Ranking Result of Fmean

“most” a4≺a1≺a2≺a3 a4≺a1≺a3≺a2

“at least half ” a2≺a3≺a4≺a1 a4≺a2≺a1≺a3

“as many as possible” a1≺a3≺a4≺a2 a4≺a1≺a3≺a2

“mean” a3≺a2≺a4≺a1 a4≺a3≺a1≺a2

7. Concluding Remarks

In this article, when considering that the fuzzy representation of F has no inherent
order, where F is the set of all possible ELICIT expressions, we developed the induced
OWA (IOWA) operator for ELICIT information. Because the IOWA operator reorders the
argument variable by the order inducing variable instead of the arguments themselves.
For different types of weights, the operator based on the IOWA operator is also different
for ELICIT information. For example, if the operator with the classical crisp weight is
used, then it is called the ELICIT-IOWA operator. While considering fuzzy weights and
type-1 OWA operators, first obtain the type-1 IOWA operator and then obtain the ELICIT-
t1-IOWA operator according to Zadeh’s extension principle. Because they are all based
on the IOWA operator, they also have the properties of the classical IOWA operator, such
as idempotency, commutativity, monotonicity, and boundedness. When considering that
ELICIT information can be converted into trapezoidal fuzzy numbers, and that ELICIT
information is intuitive, easy to understand, and explain, on this basis we can compute
with the ELICIT information and also propose a proposal that the majority-driven GDM
process be used for ELICIT information based on majority opinions. The aggregation of
this process includes two aggregation stages. First, the ELICIT-t1-IOWA operator is used in
order to aggregate with interval weights that are computed by the interval-valued type-2
linguistic quantifier “most” to aggregate each preference relationship matrix represented by
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the ELICIT information. After that, based on each expert associated with the credibility
and combined with the linguistic quantifier “most”, where α = 0.3, β = 0.8, to obtain the
weight of the ELICIT-I-IOWA operator, the ELICIT-I-IOWA operator is used in order to
obtain an overall result for each alternative. Finally, a briefly introduces the comparison
among other linguistic quantifiers, such as “most”, “at least half ”, “as many as possible”, and
“mean”.

For future research, we will undertake research regarding the consensus reaching
process (CRP) to group decision-making issues for handling ELICIT information, in which
several experts believe that their opinions have not been considered.
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HFLTSs Hesitant fuzzy linguistic term sets
CLEs Comparative Linguistic Expressions
OWA Ordered weighted averaging
IOWA Induced ordered weighted averaging
BUM Basic unit-interval monotonic
C-OWA Continuous ordered weighted averaging
CW Computing with words
ELICIT-CW Computing with words for ELICIT information
ELICIT-IOWA Induced ordered weighted averaging aggregation over ELICIT information
ELICIT-I-IOWA Important induced ordered weighted averaging aggregation over ELICIT

information
FOU Footprint of uncertainty
t1-IOWA Type-1 induced ordered weighted averaging
ELICIT-t1-IOWA Type-1 induced ordered weighted averaging aggregation over ELICIT

information
WA Weighted average
QFIOWA Fuzzy induced quasi-arithmetic ordered weighted averaging
FIGOWA Fuzzy induced generalized ordered weighted averaging
ELICIT-QIOWA Induced quasi-arithmetic ordered weighted averaging aggregation over ELICIT

information
ELICIT-GIOWA Induced generalized ordered weighted averaging aggregation over ELICIT

information
EKM Enhanced Karnik-Mendel
CI Centroid index
NS Numerical scale
CRP Consensus reaching process
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