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Abstract

This study develops a power‐average‐operator‐based
hybrid multiattribute online product recommendation

model that considers the consumer's risk attitude to

rank categoric product options as a complement to

existing recommender systems. Online production re-

commendation plays a key role in the development of

e‐commerce, and can greatly improve consumers'

shopping experiences. However, few online shopping

sites provide interactive decision aids for consumers

such that they can articulate their preferences towards

multiple selection attributes with the purpose of miti-

gating choice difficulty and improving decision quality.

Additionally, consumers' risk attitudes to online

shopping dramatically impact their product choices. In

the model proposed in this paper, the risk attitude‐
based power average (RAPA) operator is used to in-

tegrate the risk attitude of the decision‐maker into the

information fusion process of multiple attribute

decision‐making. Subsequently, the risk attitude func-

tion, with several basic types, is introduced to quantify

the risk attitude of the decision‐maker for use in the

RAPA operator. A proportional hesitant fuzzy 2‐tuple
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linguistic term set (PHF2TLTS) is constructed by in-

corporating a binary of linguistic information aiming to

comprehensively analyze the hybrid product informa-

tion. With a focus on the information fusion process,

the proportional hesitant 2‐tuple linguistic RAPA op-

erator and weighted proportional hesitant 2‐tuple lin-

guistic RAPA operator are introduced to aggregate a

given set of PHF2TLTSs. The validity of the proposed

model is demonstrated using an illustrative example, a

comparison with existing approaches and detailed ex-

planations of the performance differences.
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1 | INTRODUCTION

Marketing models are central to modern marketing decision making. Modeling of marketing
phenomena to support and improve marketing decisions dates back to the 1950s,1,2 and the
field of marketing decision models has been in a permanent state of development and growth
ever since its incubation. With the advent of online shopping, consumers are now faced with an
increasingly vast range of choices and product alternatives. As e‐commerce develops, people are
becoming more inclined to purchase products online for increased convenience and choice.3 To
alleviate the information overload when shopping online, and to save consumers' time and
energy in product selection, researchers from diverse backgrounds have studied online product
recommendation systems. Online product recommendations have been demonstrated to exert
great influence on consumers' decision making and ultimately affect consumer loyalty.4‐8 Tsao9

found that the fitness of product information is a vital factor impacting the effectiveness of
recommendations. Liu et al.10 designed novel online recommendation approaches on the basis
of nonnegative matrix factorization and latent Dirichlet allocation for the purpose of predicting
user preferences and dynamically adjusting the recommendation list. Choi et al.11 proposed a
hybrid online‐product recommendation method integrating collaborative filtering and se-
quential pattern analysis to improve recommendation quality. Combining statistical parsing
approaches with traditional AI rule‐based technology, Chai et al.12 built a web‐based natural
language assistant to help users select relevant products. Häubl and Murray13 proposed a tool
that can provide (potential) consumers with personalized product recommendations. Sheng
and Zolfagharian14 examined the complex role of consumer participation by empirically testing
a theoretical model in the context of consumers using online product recommendation agents
that integrated consumer participation into the technology acceptance model. Some re-
searchers have focused on assessing consumers' acceptance and trust with online risk
attitudes.15,16 Wu et al.17 presented a Hybrid Shilling Attack Detector to respond to hybrid
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shilling attacks that bias the rating profiles of recommender systems to manipulate online
product recommendations. Hung18 constructed an online recommendation system based on a
modified product taxonomy and customer classification to identify customers' shopping be-
havior. Existing product recommendation systems have been diffusely applied in online retail
stores,19,20 hotel bookings,21 and for online sales of products such as cell phones,22,23 movies,24

books,25,26 and so on. Some additional issues in online product recommendation systems in-
clude cold‐start product recommendation,27 location‐based recommendation agents,28 and
group recommendations,29 to name just a few.

In the field of information fusion under decision‐making settings, power average (PA)30 is a
useful aggregation operator that can naturally reflect the interrelationships among aggregated
arguments by permitting them to support and reinforce each other.31‐33 Under this mechanism,
smaller weights are automatically assigned to unduly low or high arguments, which are usually
regarded as possibly “false” or “biased” inputs.34 Due to this characteristic, the PA operator has
been widely utilized in a variety of fields, such as software quality evaluation,35 multiple attribute
(group) decision‐making (MADM/MAGDM),36‐38 and green product development.39 Theoretical
expansions on PA are also quite rich. Xu and Yager34 proposed the power geometric (PG)
operator, which can analogously model the interactions among aggregated data. The PG operator
is considered more suitable for processing the multiplicative preference relationships. Zhou
et al.38 introduced a general form of PA operator, named the generalized power average, in which
the nonlinear weight for each aggregated argument does not change with the generalized
parameter. In practice, however, decision‐makers undoubtedly tend to assign sufficiently small
weights to “false” or “biased” elements to mitigate their influence on final aggregation results.
Inspired by Zhou et al.'s study, Xiong et al.40 proposed the variable PG operator, a generalization
of the PG in which arguments' weights can vary with a nonnegative parameter. More generally,
Xiong et al.41 introduced the extended power average operator to effectively model for practical
occasions where “false” or “biased” inputs may be of importance to the aggregation results.

In terms of information representational models, hesitant fuzzy sets (HFSs)42 are widely
used to deal with contexts in which experts may differ on the membership degree of an element
x to a set A. For instance, one expert may assign 0.2 but the other 0.3, and they cannot convince
each other to change their opinions.42,43 The hesitancy is caused by the two experts' different
opinions, and this problem can be represented by HFS {0.2, 0.3}. Rodríguez et al.44,45 introduced
an extension of HFS named hesitant fuzzy linguistic term set (HFLTS) to accommodate the
linguistic hesitation information. The main applications of HFLTS are situations where an
expert hesitates with several values in evaluating linguistic variables and where it is difficult for
them to provide a single linguistic term as an appropriate expression of their knowledge.
HFLTSs express the uncertainty of information with better effect than HFSs.46 Xiong et al.47

classified such differences into two aspects according to the source of hesitancy. HFLTS is an
individual information representational model in which assessment information is provided by
only one hesitant expert who thinks the membership degree may have a set of possible values.
HFS is a group information representational model, where experts' opinions are different and
they cannot convince each other to agree on a single opinion. HFLTS has been well received
due to the model's characteristics, and many HFLTS research are focused on issues of its
application to group decision‐making (GDM).48 Hao and Chiclana49 embed attitude quantifiers
and a new feedback mechanism into HFLTS to deal with GDM, to handle the hesitant fuzzy
linguistic GDM problems. Wang50 proposed the extended HFLTS (EHFLTS), whose underlying
meaning is consistent with that of HFS.51 Addressing the uncertainty of EHFTLS, Wei et al.52

proposed a quantification method based on comprehensive entropy. However, these methods
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do not consider the proportional information of each linguistic term in a GDM context, which
can represent the support for each linguistic term derived from the experts. There are also some
challenges in the development of HFLTS, such as modeling complex linguistic information
during decision‐making.46,53 Due to this, Wang and Hao54 introduced a proportional 2‐tuple
linguistic information representational model. Based on Wang and Hao's54 work, Zhang et al.55

proposed a natural generalization representational model, in which all linguistic terms are
assigned symbolic proportions. Wu and Xu56 provided a particular context where all possible
linguistic terms are assigned the same proportion. Chen et al.57 further proposed the propor-
tional hesitant fuzzy linguistic term set (PHFLTS) to simultaneously consider the linguistic
assessments and their proportional information. Taking into account the fact that the 2‐tuple
linguistic computational model is able to avoid information loss during linguistic information
aggregation,58 this paper extends the PHFLTS with the 2‐tuple linguistic computational model,
and we call the extended model the proportional hesitant fuzzy 2‐tuple linguistic term set
(PHF2TLTS).

Decision‐making plays a key role in the fields of management. When decision‐makers de-
termine the optimal alternative from multiple alternatives for multiple criteria during the process
of decision‐making, the process enters the field of multiattribute decision‐making (MADM). With
the increasing complexity of decision‐making problems, a single decision‐maker may be in-
sufficient to take into account all aspects of the problem. For scientific or democratic reasons, in
most cases decisions are made through GDM or multiattribute GDM (MAGDM).59 Although
GDM cannot perfectly substitute for an individual decision, it can provide assistance for decision‐
makers to avoid making irrational decisions. MAGDM has been applied in many fields, such as
education, the environment, investment, and resource management, among others.60 Classic
MADM methods include the Technique for Order Preference by Similarity to an Ideal Solution
(TOPSIS), VlseKriterijuska Optimizacija I Komoromisno Resenje (VIKOR), and Elimination and
Choice Expressing Reality (ELECTRE), among others.60 MAGDM has attracted much attention
from researchers due to its decision‐making characteristics, particularly in the fields of hesitation
and uncertainty.61 Chen et al.62 proposed a hybrid MAGDM model through an extended
ELECTRE method under uncertainty to select the optimal sustainable building material. Wu
et al.63 proposed an extended TOPSIS decision model on the basis of interval type‐2 variables to
select the optimal alternative under uncertainty. Wu et al.64 explored the compromise solution of
MAGDM through TOPSIS and VIKOR methods in the HFLTS context. However, two major
challenges are identified by literature reviews on MAGDM. One is the information loss during
the process of decision‐making, and the other is how to scientifically integrate the opinions of
decision‐makers into the MAGDM.65 Additionally, research in the field of behavior state that the
psychological state of a decision‐maker may greatly affect the result of decision‐making, as the
decision‐maker is not a perfectly rational person.66 Peng and Yang67 proposed an algorithm to
deal with fuzzy MADM problems through prospect theory and regret theory. Zhao et al.68

constructed an integrated fuzzy MADM model considering the impact of change in the risk
preference of the decision‐maker on the ranking results of alternatives. The psychological state of
decision‐makers in MAGDM is a field worthy of further research.61,69 The risk attitude of a
decision‐maker is part of their psychological state, and thus research on MAGDM under un-
certainty for online product recommendation, taking into account decision‐makers' risk attitude
during the process, is highly important.

The main motivation of this paper is to develop a power‐average‐operator‐based hybrid
multiattribute online product recommendation model in an effort to reduce choice difficulty and
improve decision quality. The main contributions of this study can be summarized as follows.

CHEN ET AL. | 2575



i) An extension form of the PA operator, the risk attitude‐based power average (RAPA)
operator, is proposed to integrate the risk attitude of the decision‐maker into the
information fusion process.

ii) The concept of the risk attitudefunction (RAF) is introduced to effectively quantify the risk
attitude of the decision maker into the RAPA operator, and several basic types of RAF are
proposed.

iii) To facilitate comprehensive analysis of hybrid product information, a novel 2‐tuple lin-
guistic representational model, PHF2TLTS, is constructed based on the PHFLTS.
PHF2TLTSs are not only similar to the cognitive processes of human beings, because they
encompass the quantitative proportional information hidden behind qualitative linguistic
expressions,57 but can also avoid information loss during the aggregation of linguistic term
variables.70

iv) Another main interest of this study is the development of a distance measure, the pro-
portional hesitant 2‐tuple linguistic normalized Hamming distance, and distance‐based
comparison method for PHF2TLTS.

v) This study also introduces the convex‐combination‐based proportional hesitant 2‐tuple
linguistic RAPA (PH2TLRAPA) operator and weighted proportional hesitant 2‐tuple lin-
guistic RAPA (WPH2TLRAPA) operator to aggregate the proportional hesitant 2‐tuple
linguistic assessment information.

vi) Finally, this study provides a power‐average‐operator‐based hybrid multiattribute online
product recommendation model on the basis of the aforementioned innovative work.

This paper is organized as follows. Section 2 briefly reviews several basic concepts related to
PHFLTSs and the PA operator. Section 3 presents the RAPA operator and its weighted form (known
as the WRAPA operator) and investigates several of their important properties. Especially, the
concept of risk attitude function (RAF) is also introduced in this section. Section 4 introduces
the notion of PHF2TLTS, and the distance measure and a comparison method for PHF2TLTSs are
provided in this section as well. Section 5 presents an MADM‐based online product re-
commendation model wherein the assessment information is gathered with hybrid representational
forms. Section 6 further provides a practical application of the proposed model with a detailed
illustrative example. Sections 3, 4, 5, and 6 contain the main original contributions of this study.
Finally, Section 7 presents the summary and conclusions of this study.

2 | PRELIMINARIES

Let R be the set of real numbers and n= {1, 2, …, } be the set of strictly positive integers.
Where there is no particular specification, this paper generally follows the conventions used in
Beliakov et al.71 and Chen et al.72,73

2.1 | Proportional hesitant fuzzy linguistic term set

Rodríguez et al.44 put forward the HFLTS to accommodate qualitative settings that require
efficient information elicitation methodologies. The prevalent adoption of Zadeh's74 fuzzy
linguistic approach and the computing with words (CW) paradigm promote computing with
HFLTSs within the subarea of linguistic computational intelligence systems. One promising
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endeavor is the advancement of HFLTS‐based linguistic representation models; the concept of
PHFLTS, developed by Chen et al.,57 has been proven to be particularly sophisticated in
handling complex group assessment via the simultaneous consideration of expert linguistic
assessments and their proportional information.

Definition 1 (Chen et al.57). Following Chen et al.,57 let  be a linguistic term set (LTS),
and P p p p= ( , , …, )g0 1

T be a proportional vector. A PHFLTS for a linguistic variable ϑ,
namely HS

P , is an ordered finite set:

∣ ∈s p s S i g(ϑ) = {( , ) , = 0, 1, …, },H i i iS
P

with the conditions that∑ ≤p 1
i

g
i=0

and ≤ ≤p i g0 1( = 0, 1, …, )i .

Given a PHFLTS, the proportional linguistic pairs s p i g( , )( = 0, 1, …, )i i in it are ranked in
accordance with their ordered linguistic terms s i g( = 0, 1, …, )i .

The aggregation paradigm for PHFLTSs was presented by Chen et al.57 with the following
concept of proportional convex combination of two PHFLTSs.

Definition 2 (Chen et al.57). Let s p s p s p= {( , ), ( , ), …, ( , )}H i i i i i i
1
S p p1 1 2 2

P and

s p s p s p= {( , ), ( , ), …, ( , )}H j j j j j j
2
S q q1 1 2 2

P be two PHFLTSs defined on the LTS  with a

weighting vector w ww = ( , )1 2
T . A proportional convex combination of the two PHFLTSs

is defined as

⊙
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where s pInd(( , ))i ip p
and s pInd( , )j jq q

are indexes ip and jq of the proportional linguistic
pairs s p( , )i ip p

and s p( , )j jq q
, respectively.

Because the set of proportional linguistic pairs obtained via the proportional convex com-
bination of two PHFLTSs may not be ordered and several linguistic terms may emerge more
than once with different proportions, the following ordered proportional convex combination
of two PHFLTSs was developed.

Definition 3 (Chen et al.57). Let s p s p s p= {( , ), ( , ), …, ( , )}H i i i i i i
1
S p p1 1 2 2

P and

s p s p s p= {( , ), ( , ), …, ( , )}H j j j j j j
2
S q q1 1 2 2

P be the two PHFLTSs defined on  with a
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weighting vector w ww = ( , )1 2
T . An ordered proportional convex combination of the two

PHFLTSs is defined as

〈

〉

〈 〉

( )( )w w w w s p s p s p
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can be simplified to s p{( , ),i i1 1
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2.2 | PA operator

Definition 4 (Yager30,75). A PA operator of dimension n is a mapping PA: →nR R,
according to the following formula:

PA
∑

∑
A

a a

a
( ) =

(1 + ( ))

(1 + ( ))
,i

n
i i

j

n
j

=1

=1

T

T

where the external support in degree (ESiD)

Sup∑ ∈
≠

a a a i( ) = ( , ), ,i

l l i

n

i l

=1,

T

and Sup a a( , )i l is the support for ai from al, which satisfies the following three properties:

1. Sup ∈a a( , ) [0, 1]i l ;
2. Sup Supa a a a( , ) = ( , )i l l i ;
3. Sup Sup≥a a x y( , ) ( , )i l , if ∣ ∣ ∣ ∣a a x y− < −i l .

The PA operator can be rewritten as follows:

PA ∑ ∑
∑

A
a

a
a w a( ) =

(1 + ( ))

(1 + ( ))
= ,

i

n
i

j

n
j

i

i

n

i i

=1 =1 =1

T

T

where ∕∑w a a= (1 + ( )) (1 + ( ))i i j

n
j=1

T T is the weight of argument ai. The PA operator
therefore is a nonlinear weighted average aggregation operator, which allows the input argu-
ments to support and reinforce each other.30 This useful characteristic gives the PA operator
the feature of discounting outliers, that is, assigning smaller weights to unduly high or low

2578 | CHEN ET AL.



arguments. Moreover, the support measure can be interpreted as a similarity index. Yager30

provided the following two support functions:

Sup

Sup ∣ ∣

a a e

a a a a

( , ) = ,

( , ) = (1 − − ),

i j
ε a a

i j i j
ε

− ( − )i j
2



where ∈ ≥ε[0, 1], 0 and ∈a a, [0, 1]i j .

3 | RAPA OPERATORS

The binary support function embedded in the PA operator is essential to its logical im-
plementation in real‐life scenarios because it establishes the weight assignment rules for a
given information fusion process. This interpretation explicitly indicates that: (i) an argument

∈a i( )i  gains the maximum weight if and only if it has the smallest total distances to the
remaining arguments, namely, Max ∣ ∈

∈

a a=i a iarg { ( ) }
i

i 


T ; and (ii) the weights of the remaining

arguments decrease nonlinearly with their increasing distances to the argument ai . In this
sense, these observations pinpoint a sophisticated formulation of a Limited Range Neighborhood
centered on argument ai where those arguments contained in it are assigned higher scales of
importance. The graphical explanation of the limited range neighborhood is depicted in
Figure 1, in which the arguments being aggregated are the first eleven terms of the Fibonacci
sequence (i.e., A = {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144}) and the support function is
Sup ∣ ∣∕a a a a( , ) = 10(1 − − 144)i j i j for ∈a a A,i j . Figure 1 depicts the details of nonlinear

weights and a( )iT for aggregated arguments, in which the blue curve represents the trend of
nonlinear weights by PA operator for aggregated arguments, and the red curve represents the trend
of a( )iT for aggregated arguments. Both curves gain their maximum values at the aggregated

FIGURE 1 Nonlinear weights and a( )iT for aggregated arguments [Color figure can be viewed at
wileyonlinelibrary.com]
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argument 13, which means the center of this instrumental limited range neighborhood

Max ∣ ∈
∈

a a= = 13i a iarg { ( ) }
i

i 


T has been obtained according to the aforementioned interpretation.

The limited range neighborhood centered on ai concludes the aggregated arguments
{1, 2, 5, 8, 13, 21, 34, 55}, which are assigned higher scales of importance; detailed information is
shown in Figure 1. The center of this instrumental limited range neighborhood is closely related to
the interrelationships among the input arguments and presents significant difficulties for its rea-
sonable implementation because the original method of binary support construction requires a
considerable number of duplicated calculations that hinder its applications by requiring substantial
computational efforts when very large amounts of data are involved.

Recall from the initial definition of the binary support function used in the PA operator, it is
observed that when the most trusted argument is identified from a given set of aggregates,
establishing a novel weight assignment rule based on the previous two observations can
facilitate the simplification of the ESiD function with significant reductions in binary support
calculations among all arguments. The aggregation mechanism of the PA operator interprets
itself as permitting the aggregated data inputs to support and reinforce each other, based on the
degrees of similarity among them. Our goal in this process is to shift the purely data‐driven
weight assignment paradigm into its context‐dependent counterpart. The argument assigned
maximum weight will be set as the referential argument to which the remaining arguments are
compared, and will be treated as the most likely true aggregate that the PA operator tends to
output. The weights for each of the other arguments are distributed nonlinearly.

In some real‐life decision‐making contexts, especially in online product recommendations,
the risk attitude of the decision‐maker may be important to the final decision results. This is the
main motivation for extending the concept of PA.

3.1 | RAPA operator

Definition 5. Let a a a( , , …, )n1 2 be a collection of distinct input arguments (the
situation with repeated input arguments will be discussed later), a RAPA operator of
dimension n is a mapping RAPA: →nR R, according to the following formula:

RAPA
∑

∑
a a a

a a

a
( , , …, ) =

(1 + ( ))

(1 + ( ))
,σ n

i

n
σ i i

j

n
σ j

1 2
=1

=1

T

T

where the ESiD

Sup ∈a a a i( ) = ( , ), ,σ i i σ T

with referential constant ∈a Aσ and where Sup a b( , ) is the support for a from b, which
satisfies the three properties previously described.

In Definition 5, Sup ∈a a i( , ),i σ  represents the similarity between input ai and (im-
portant limited) neighborhood center aσ . Similar to the classical PA operator, the nonlinear
weight for argument ai is decreasing with its distance to the neighborhood center aσ . It is worth
noting that the neighborhood center in the PA operator is only determined by the relationship
among the input arguments, whereas for the RAPA operator it is mainly determined by the risk
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attitude of the decision‐maker. Let A a a a= ( , , …, )n1 2 be a collection of distinct input argu-
ments and AM ∕ ∑A n a( ) = (1 )

i

n
i=1
be the arithmetic mean of A. When AM→a A( )σ , the ar-

guments near to aσ will be assigned larger weights, whereas the other inputs will be assigned
smaller weights. In this context, the arguments near to aσ represent the main decision‐making
information provided by experts, and indicate that the decision‐maker trusts such experts
highly and her/his risk attitude is sufficiently positive. On the contrary, if aσ is far enough away
from AM A( ), the risk attitude of the decision‐maker is sufficiently negative. Consequently, the
distance between aσ and AM A( ) can represent the risk attitude of the decision‐maker.

3.2 | RAF function

Definition 6. Let A be a collection of distinct input arguments and AM A( ) be the
arithmetic mean of A. A RAF AM aA ( )A σ( )  , which reflects the risk attitude of the decision‐
maker corresponding to the RAPA operator, satisfies the following five properties:

1) AM ∈aA ( ) [0, 1]A σ( )  ;
2) AM aA ( ) = 1A σ( )  , if AMa A= ( )σ ;
3) AM aA ( ) = 0A σ( )  , if AM Max AM∣ ∣ ∣ ∣∈a A a A− ( ) = { − ( ) }σ i i ;
4) AM AMa aA ( ) = A ( )A σ A σ( ) ( )1 2
    , if AM AM∣ ∣ ∣ ∣a A a A− ( ) = − ( )σ σ1 2

;
5) AM AMa aA ( ) > A ( )A σ A σ( ) ( )1 2
    , if AM AM∣ ∣ ∣ ∣a A a A− ( ) < − ( )σ σ1 2

,

where ∈a a a A, ,σ σ σ1 2
.

For convenience, let

Min AM∣ ∣
∈

i a A= arg { − ( ) },
i

i
(1)



and
Max AM∣ ∣
∈

i a A= arg { − ( ) }.
i

i
(0)



In Definition 6, a value of “1” indicates that the risk attitude of the decision‐maker is
completely positive, and will be obtained when aσ has the smallest distance to AM A( ), whereas
“0” indicates her/his risk attitude is completely negative and will be obtained when aσ has the
largest distance to AM A( ). The fourth property shows that the RAF AM aA ( )σA( )  is a sym-
metric function about a a=σ i(1). Furthermore, when aσ approaches ai(1), the risk attitude of the
decision‐maker becomes increasingly positive. The fifth property also implies that the RAF is
increasing with AM≤a A( )σ , but is decreasing with AMa A> ( )σ .

Example 1. Let A = {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144} and B = {−144, −89, −55, −

34, −21, −13, −8, −5, −3, −2, −1} be two collections of input arguments. It is easy to
verify that

AM

AM
AM

AM

AM
AM

AM

⎧
⎨
⎪⎪

⎩
⎪⎪

≤

a

a A

a A
a A

a A

a A
a A

A ( ) =

1 +
− ( )

− ( )
, ( )

1 −
− ( )

− ( )
, > ( )

A σ

σ

i
σ

σ

i
σ

( )

(0)

(0)

  (3)
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and
AM

AM
AM

AM

AM
AM

AM

⎧
⎨
⎪⎪

⎩
⎪⎪

≤

b

b B

b B
b B

b B

b B
b B

A ( ) =

1 −
− ( )

− ( )
, ( )

1 +
− ( )

− ( )
, > ( )

B σ

σ

i
σ

σ

i
σ

( )

(0)

(0)

  (4)

are linear RAFs corresponding to collections A and B, as shown in Figure 2.
AM A( ) = 34.1 > 0, thus, a = 34i(1) . According to Definition 6 we know that the closer aσ
is to ai(1), the greater the RAF value; when ≤a AM A0 < ( )σ , there is a positive corre-

lation between RAF and aσ; when a AM A> ( ) > 0σ , there is a negative correlation be-
tween RAF and aσ . Thus, Formula (3) is in good agreement with this case, whereas
Formula (4) is the opposite of this case, and is applicable to collection B. Linear RAFs
corresponding to collections A and B are shown in Figures 2A,B. These are perfectly
symmetric, which verifies that AM aA ( )A σ( )  is a symmetric function (i.e., the forth

property of Definition 6). However, Formula (3) is not a RAF for collection

B AM B, ( ) = −34.1 < 0, thus, b = −34i(1) , because b = −144i(0) and then AM

AM
1 +

b B

b B

− ( )

− ( )
σ

i(0)
is

decreasing with AM≤b B( )σ , whereas AM

AM
1 −

b B

b B

− ( )

− ( )
σ

i(0)
is increasing with AMb B> ( )σ .

Similarly, one may easily verify that Formula (4) is not a RAF for collection A be-
cause a = 144i(0) .
Example 1 provides a linear type RAF (denoted Type I), which is relatively simple but not a

continuously derivable function. Table 1 lists six basic types of RAF: linear, quadratic, sine/
cosine, tangent/cotangent, exponential, and Gaussian. The basic function and properties of
each type of RAF are also provided in this table. The various types of RAF provided can satisfy
the demands of different cases.

Because the RAF is fully dependent on the input collection and its average mean and i(0),
Algorithm 1 and Table 1 can be utilized to construct the RAF for a collection of distinct input
arguments. In particular, because the exponential and Gaussian functions can never achieve
“0” in their domains, as for point a( , 0)i(0) , a positive number ε, that is, sufficiently close to zero

FIGURE 2 Linear RAFs corresponding to collections A and B (A) Collection A; (B) Collection B. RAF, risk
attitude function [Color figure can be viewed at wileyonlinelibrary.com]
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is utilized to obtain an approximate result, such as a( , 10 )i
−5

(0) . It is worth noting that Algorithm

1 can also generate the RAF for the special collection in which Max AM∣ ∣
∈

i a A= arg { − ( ) }
i

i
(0)



has two different values. (The number of i(0) is always no more than two because the aggregated
collection considered in this section consists of distinct input arguments.) For example, we

have i = 11
(0) and i = 102

(0) for collection C = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Algorithm 1 Framework for Generating the RAF

Input: Aggregated collection, A; Serial number of the basic type as listed in Table 1, N .

Output: RAF for collection A.

1: AM ←A( ) mean(A);

2: if ∈N {II,III,VI} then

3: Max AM← ∣ ∣
∈

i a Aarg { − ( ) }
i

i
(0)



;

4: Min←a ai i( )(0) (0) ;

5: Generate RAF: Solve the parameter of basic type N on the basis of points AM A( ( ), 1) and a( , 0)i(0) ;

6: else

7: if AM Min Max AM≥A A A A( ) − { } { } − ( ) then

8: Min←a A{ }i(0) ;

9: Generate the right part of RAF: Solve the parameter of basic type N for AM≤a A( )σ on the basis of
points AM A( ( ), 1) and a( , 0)i(0) ;

10: Generate the left part of RAF: Solve the symmetric function of the right part of RAF about AMa A= ( )σ

for AMa A> ( )σ ;

11: else

12: Max←a A{ }i(0) ;

13: Generate the left part of RAF: Solve the parameter of basic type N for AMa A> ( )σ on the basis of
points AM A( ( ), 1) and a( , 0)i(0) ;

14: Generate the right part of RAF: Solve the symmetric function of the left part of RAF about AMa A= ( )σ

for AM≤a A( )σ ;

15: end if

16: end if

The RAF is important to the RAPA operator because it can quantitatively determine the risk
parameter ∈σ  according to the risk attitude of the decision‐maker. If the risk attitude value is θ,
the risk parameter ∈σ  can be obtained by Algorithm 2 on the basis of solving the formula

AM a θA ( ) =A σ( )  . A part illustration for Algorithm 2 is shown in Figure 3, which depicts the
relationship between the risk attitude value and argument ai under AM aA ( )A σ( )  . Among the risk
attitude values, θ θ θ, , < 0.51 2 , indicating the decision‐maker is more inclined to a negative risk
attitude, and θ θ, > 0.53 4 , indicating the decision‐maker is more inclined to a positive risk attitude.
The following four cases are included in Figure 3 (and the other cases can be analyzed similarly):

Case 1: (Line 7 in Algorithm 2, θ1 in Figure 3.) In this case, AM a θA ( ) =A σ( )  has a unique
solution and input a11 has the smallest distance to that solution. Consequently,
σ = 11.

Case 2: (Line 12 in Algorithm 2, θ2 in Figure 3.) In this case, AM a θA ( ) =A σ( )  has a unique
solution. Inputs a12 and a13 have the same distance, which is the smallest distance to
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the solution. Furthermore, θ < 0.52 indicates that the risk attitude of the decision‐
maker is more inclined to be negative, and therefore σ = 13 because a13 represents a
more negative risk attitude than a12.

Case 3: (Line 10 in Algorithm 2, θ3 in Figure 3.) In this case, AM a θA ( ) =A σ( )  has a unique
solution. Inputs a9 and a10 have the same distance, which is the smallest distance to
the solution. Moreover, θ > 0.53 indicates that the risk attitude of the decision‐maker
is more inclined to be positive, and therefore σ = 9 because a9 represents a more
positive risk attitude than a10.

Case 4: (Lines 10, 19, and 20 in Algorithm 2, θ4 in Figure 3.) In this case, AM a θA ( ) =A σ( ) 
has two solutions. Because the online shopping behavior of most consumers is more
likely to affect the purchasing decisions of new consumers, Algorithm 2 allocates
more attention to the solution AM AM∣a θA ( ) =A σ a A( ) < ( )σ

  . Consequently, similar to
Case 3, σ = 3.

Algorithm 2 Solving aσ for AM a θA ( ) =A σ( ) 

Input: Collection, A a a a= { , , …, }n1 2 ; RAF for AMA a, A ( )A σ( )  ; Risk attitude value, θ.

Output Risk attitude constant, aσ .

1: ←a* Solve formula AM a θA ( ) =A σ( )  ;

2: ←l a( *) The number of a*;

3: if l a( *) = 1 then

4: top:

5: Min ←∣ ∣
∈

( )l a *a aarg { − }
i

i


The number of Min ∣ ∣
∈

a *a aarg { − }
i

i


;

(Continues)

FIGURE 3 Part illustration for Algorithm 2 [Color figure can be viewed at wileyonlinelibrary.com]
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6: if Min ∣ ∣
∈

( )l a = 1*a aarg { − }
i

i


then

7: Min← ∣ ∣
∈

a a *σ a aarg { − }
i

i


;

8: else

9: if ≥θ 0.5 then

10: ←aσ the element in Min ∣ ∣
∈

a *a aarg { − }
i

i


which has a smaller distance to AM A( );

11: else

12: ←aσ the element in Min ∣ ∣
∈

a *a aarg { − }
i

i


which has a larger distance to AM A( );

13: end if

14: end if

15: else

16: ←lleft The number of arguments in A that are no more than AM A( );

17: ←lright The number of arguments in A that are no less than AM A( );

18: if ≥l lleft right then

19: Min←a a* { *};

20: goto top;

21: else

22: Max←a a* { *};

23: goto top

24: end if

25: end if

Following the definition of the RAPA operator, argument aσ will gain the maximum
nonlinear weight. This phenomenon is consistent with the real‐life decision‐making context
because σ is the representation of the decision‐maker's risk attitude and she/he tends to assign
aσ a larger weight. Similarly, the nonlinear weight for argument ∈a i,i  is decreasing with its
distance to input aσ . It can be interpreted that the RAPA operator is able to feed back to the
decision‐maker the information she/he really cares about.

Example 2. Figure 4 shows the consumer reviews of an iPhone X sold by Amazon.
Consumers use a 5‐star rating system to review the product, where a larger number of
stars indicates a more positive the assessment of the product. As shown in Figure 4, the
overall rating is 4.5 stars out of 5. We now analyze how the risk attitude of a new
consumer influences her/his comprehensive assessment value for the product.

There are 107 consumer assessments of this product. Because 63% of consumers rated it
5 stars, the number of consumers giving this rating can calculated as approximately 67.
Similarly, the number of consumers who rated it 1 star, 2 stars, 3 stars and 4 stars are 23, 5, 4
and 8, respectively. The assessment set for this product can therefore be represented as

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

A = 1, 1, …, 1 , 2, 2, …, 2 , 3, 3, …, 3 , 4, 4, …, 4 , 5, 5, …, 5 .

23 5 4 8 67

              

Definition 5 assumes that the input collection comprises distinct arguments, so it is necessary to
obtain the subset of A containing no duplicate elements, namely B = {1, 2, 3, 4, 5}. When risk
parameter σ ranges from 1 to 5, the aggregated results utilized by the RAPA operator (with
Sup ∣ ∣∕a b a b( , ) = (1 − − 5)) are 3.4641, 3.6513, 3.8335, 4.0043 and 4.1626, respectively. Because
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AM A( ) = 3.8505, argument 4 has the smallest distance from AM A( ) and argument 1 has the
largest distance from AM A( ). Consequently, if the risk attitude of the new consumer is sufficiently
positive, namely b = 4σ , her/his comprehensive assessment value is 4.0043, whereas if her/his risk
attitude is negative enough, namely b = 1σ , the comprehensive assessment value is 3.4641. Con-
versely, if her/his risk attitude and product comprehensive assessment threshold values are both
known, it is easy to quantitatively analyze whether she/he will purchase the product. Figure 5
shows the linear RAF and nonlinear weights for collection B = {1, 2, 3, 4, 5}, in which the non-
linear weight for each evaluation value varies from the risk attitude of the new consumer. The
blue line depicts the relationship between the RAF and evaluation values, which is linear. The five
dark lines depict the relationship between nonlinear weight and evaluation value; the different
lines/symbols indicate different values of bσ . The above‐mentioned observations highlight that the
diverse risk attitude bσ has a meaningful impact on the decision outcomes.

Example 2 not only indicates the necessity of our extension in a real practical context, but also
illustrates how to use the RAPA operator to aggregate a collection with repeated input arguments. In
the calculation process, Algorithm 1 is first used to generate the RAF for collection B, in which the
symmetry axis of the RAF is computed as AM A( ). Furthermore, the risk parameter σ (or the risk
attitude constant aσ) is determined on the basis of the risk attitude of the decision‐maker. Finally,
the RAPA operator is utilized to calculate the comprehensive assessment value of collection A.

Next, we investigate the desirable properties of the RAPA operator. Particularly, if all
supports to aσ are the same (namely, Sup ∈a a i( , ) = 1,i σ  ), then nonlinear weight

∕∑ ∕a a n(1 + ( )) (1 + ( )) = 1σ i j

n
σ j=1

T T and the RAPA operator therefore reduces to the ar-
ithmetic mean:

RAPA AM ∑a a a a a a
n

a( , , …, ) = ( , , …, ) =
1

.σ n n

i

n

i1 2 1 2

=1

FIGURE 4 An iPhone X sold on Amazon [Color figure can be viewed at wileyonlinelibrary.com]
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Theorem 1 (Idempotency). Let a a a( , , …, )n1 2 be a collection of n distinct arguments, if
a a=i for ∈i  , then

RAPA a a a a( , , …, ) = .σ n( ) 1 2

Theorem 2 (Boundedness). Let a a a( , , …, )n1 2 be a collection of n distinct arguments, then

Min RAPA Max≤ ≤
∈ ∈

a a a a a{ } ( , , …, ) { }.
i

i σ n
i

i( ) 1 2
 

Theorem 3 (Commutativity). Let a a a( , , …, )n1 2 be a collection of n distinct arguments, if
b b b( , , …, )n1 2 is any permutation of a a a( , , …, )n1 2 , then

RAPA RAPAa a a b b b( , , …, ) = ( , , …, ).σ n σ n( ) 1 2 ( ) 1 2

However, because nonlinear weight ∕∑w a a= (1 + ( )) (1 + ( ))i σ i j

n
σ j=1

T T depends upon
the input arguments, a larger weight may be assigned to a smaller argument and a larger input
may be assigned a smaller weight; the RAPA operator is therefore not monotonic.

The RAPA operator is able to simultaneously incorporate the relationship among the ar-
guments and the risk attitude of the decision‐maker in the aggregation process. However, it
cannot reflect the relationship originating from the importance difference of the decision at-
tributes in MADM/MAGDM problems. For this reason, Definition 7 introduces the weighted
risk attitude‐based power average (WRAPA) operator.

Definition 7. Let A a a a= ( , , …, )n1 2 be a collection of distinct input arguments, a
WRAPA operator of dimension n is a mapping WRAPA: →nR R, according to the
following formula:

FIGURE 5 Linear risk attitude function and nonlinear weights for collection B = {1, 2, 3, 4, 5} [Color figure
can be viewed at wileyonlinelibrary.com]
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WRAPA
∑

∑
a a a

w a a

w a
( , , …, ) =

(1 + ( ))

(1 + ( ))
,σ n

i

n
i σ i i

j

n
j σ j

1 2
=1

=1

T

T

where

Sup ∈a w a a i( ) = ( , ), ,σ i i i σ T

with risk attitude constant ∈a Aσ , and Sup a b( , ) is the support for a from b, which
satisfies the three aforementioned properties.

Similarly, one may verify that the WRAPA operator is idempotent, bounded, commutative
but not monotonic.

4 | RISK ATTITUDE ‐ORIENTED PROPORTIONAL
HESITANT 2 ‐TUPLE LINGUISTIC PA OPERATORS

Following the concept of PHFLTS and 2‐tuple linguistic representation models, the PHF2TLTS
can similarly be defined as follows.

Definition 8. Let s s s= { , , …, }g0 1 be a LTS. A PHF2TLTS for a linguistic variable ϑ,
namely, PH T2 S

, is an ordered finite set:

∣ ∈ ∈ ≥P s α p s S α i q q g(ϑ) = {(( , ), ) , [−0.5, 0.5), = 1, 2, …, , },H T i i i i i2 S

with the conditions that ≤ ≤ ≥p i q q g0 1( = 1, 2, …, , + 1)i and∑ p = 1
i

q
i=1

.

Similarly, proportional 2‐tuple linguistic pairs in PHF2TLTS s α p(( , ), )i i i are ranked
according to the ordered 2‐tuple linguistic variables ≥s α i q q g( , )( = 1, 2, …, , + 1)i i . Different
from the PHFLTS, the number within PHF2TLTS is no less than g, such

as P s s= {(( , 0), 0), (( , 0), 0.1),H T2 0 1S
s s s s s(( , 0.2), 0.2), (( , 0), 0), ( , 0), 0.3), (( , 0), 0), ((( , 0), 0),1 2 3 4 5

s s(( , −0.1), 0.2), (( , 0), 0.3)}6 6 , in which g = 6 and the number of the element contained in PH T2 S

is 9.

Let

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

s VL s L s ML s N

s MH s H s VH
=

= verylow( ), = low( ), = moderatelylow( ), = normal( ),

= moderatelyhigh( ), = high( ), = veryhigh( )

0 1 2 3

4 5 6



be a LTS. If the PHF2TLTS

P s s s s s s

s

= {(( , 0), 0), (( , 0.2), 0.2), (( , 0), 0), (( , 0), 0.3), (( , 0), 0), (( , 0), 0),

(( , −0.1), 0.5)}

H T2 0 1 2 3 4 5

6

S

is the comprehensive product review on performance provided by consumers, it can be in-
terpreted that 50% consumers think the performance of that product is “almost very high,” 30%
consumers think it is “normal” and 20% consumers think it is “relatively low.” Due to this, only
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elements s s s(( , 0.2), 0.2), (( , 0), 0.3), (( , −0.1), 0.5)1 3 6 with nonzero proportions make practical
contributions to PHF2TLTS PH T2 S

.

4.1 | Proportional hesitant 2‐tuple linguistic normalized hamming
distance (PH2TLNHD)

Let l A( ) be the number of elements in Set A. It is difficult to measure the distance between

PHF2TLTSs PH T2
1

S
and PH T2

2
S
because: (i) l P( )H T2

1
S

is usually not equal to l P( )H T2
2

S
; and (ii) the 2‐

tuple linguistic variable s α( , )i i contained in PH T2
1

S
may not be contained in PH T2

2
S
. This problem

can be handled by Algorithm 3, with which the number of elements in both PHF2TLTSs

expands to ⋃N l TLTS TLTS= (2 2 )total
1 2 . It is worth noting that “⋃,” “⋂,” and “−” in Algorithm

3 are the normal union, intersection and except operations for normal sets, respectively.

Moreover, if { (( ) )}P s α p s α p s α p= (( , ), ), (( , ), ), …, , ,H T i i i i i i i i i2
1

S N N N1 1 1 2 2 2 total total total
and P =H T2

2
S

{ (( ) )}s α p s α p s α p(( , ), ), (( , ), ), …, , ,j j j j j j j j jN N N1 1 1 2 2 2 total total total
are two extended PHF2TLTSs, by

utilizing Algorithm 3, ∈s s S=i jk k
holds for all k N= 1, 2, …, total.

Algorithm 3 Adding elements for PHF2TLTS distance measure

Input: PHF2TLTSs PH T2
1

S
and ≠P t q,H T2

2
S

.

Output: PHF2TLTSs, PH T2
1

S
and PH T2

2
S
.

1: ←P PH T H T2
1

2
1

S S
;

2: ←P PH T H T2
2

2
2

S S
;

3: ← ⋃TLTS s α2 ( , )k
t

i i
1

=1 k k ;

4: ← ⋃TLTS s α2 ( , )k
q

j j
2

=1 k k
;

5: ← ⋃ ⋂TLTS TLTS TLTS TLTS TLTS2 2 2 − 2 2Diff 1 2 1 2;

6: ←N number of elements in TLTS2 Different ;

7: for ≥k 1 and ≤k N do

8: if ∈TLTS TLTS2 2k
Diff 1 then

9: Add s α(( , ), 0)h hk k corresponding to TLTS2 k
Diff into PH T2

2
S
;

10: else

11: Add s α(( , ), 0)h hk k corresponding to TLTS2 k
Diff into PH T2

1
S
;

12: end if

13: end for

14: Arrange the elements in PH T2
1

S
and PH T2

2
S
in increasing order according to the ordered 2‐tuple linguistic

variables s α k N( , )( = 1, 2, …, )h h totalk k , in which Ntotal is the number of elements in ⋃TLTS TLTS2 21 2.

Xiong et al.47 proposed the proportional hesitant normalized Hamming distance by si-
multaneously taking into account the differences among membership degrees (i.e., opinion
differences) and proportions (i.e., preference differences) contained in proportional hesitant
fuzzy sets (PHFSs). Inspired by this idea, the PH2TLNHD is defined as follows.

Definition 9. Let  be a LTS, and {P s α p s α p= (( , ), ), (( , ), ), …,H T i i i i i i2
1

S 1 1 1 2 2 2

(( ) )}s α p, ,i i iN N Ntotal total total
and { (( )P s α p s α p s α= (( , ), ), (( , ), ), …, , ,H T j j j j j j j j2

2
S N N1 1 1 2 2 2 total total
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)}p jNtotal
be two extended PHF2TLTSs with respect to PH T2

1
S
and PH T2

2
S
obtained using

Algorithm 3. The PH2TLNHD is

⎡
⎣⎢

⎤
⎦⎥

∑ ∣ ∣

∣ ∣

( )d P P
N s

s α p s α p

p p

, =
1

2

1

Ind( ) + 0.5
Δ ( , ) − Δ ( , )

+ − ,

H T H T
k

N

i
i i i j j j

i j

2
1

2
2

total =1

−1 −1
S S

k

k k k k k k

k k

total

(5)

where N l P l P= ( ) = ( )H T H Ttotal 2
1

2
2

S S
, and ∈s gInd( ) {0, 1, 2, …, }ik is the index of linguistic

term ∈sik  . (It also can be sInd( )jk because s sInd( ) = Ind( )i jk k
)

One may easily verify that the PH2TLNHD satisfies the three basic axioms of the distance

measure, namely, (i) Boundary: ≤ ≤d P P0 ( , ) 1H T H T2
1

2
2

S S
; (ii) Reflexivity: d P P( , ) = 0H T H T2

1
2

2
S S

if

and only if P P=H T H T2
1

2
2

S S
; and (iii) Symmetry: d P P d P P( , ) = ( , )H T H T H T H T2

1
2

2
2

2
2

1
S S S S

. Without loss of

generality, this paper uses the PH2TLNHD to measure the distance between PHF2TLTSs.

The distance measure on PHF2TLTSs defined in Definition 9 has several advantages. First,
the element s α(( , ), 0)h hk k

added into PH T2
1

S
or PH T2

2
S
will not change their original information,

because the proportion of s α(( , ), 0)h hk k
is zero, as mentioned above, which means the added

element does not contribute to PH T2
1

S
or PH T2

2
S
. Furthermore, with proportion “0,” the element

s α(( , ), 0)h hk k
added into PH T2

1
S
or PH T2

2
S
also has no influence on the distance measure.

4.2 | A comparison method for PHF2TLTSs

The proportion contained in PHF2TLTSs originates from statistic, which should be considered
to render accurate decisions.57,76 Accordingly, the score and deviation functions are defined as
follows:

Definition 10. Let S s s s= { , , …, }g0 1 be a LTS and ∣ ∈ ∈P s α p s S α= {(( , ), ) ,H T i i i i i2 S

≥i q q g[−0.5, 0.5), = 1, 2, …, , } be a PHF2TLTS. The score function of PH T2 S
is defined as

∑s P s α p( ) = Δ ( , ) ,H T

i

q

i i i2

=1

−1
S

and the deviation function of PH T2 S
is defined as

∑ ⋅ ( ( ))t P p s α s P( ) = Δ ( , ) − .H T

i

q

i i i H T2

=1

−1
2

2
S S

In particular, the score function represents the comprehensive assessment information
contained in PHF2TLTSs.

Let a PHF2TLTS, s s s s s s{(( , 0), 0), (( , 0), 0.2), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0),0 1 2 3 4 5

s(( , 0), 1)}6 , be the best assessment value that an online product may obtain, which we denote
by PH T2

+
S
. Combined with the score and deviation functions, the following definition can be

utilized to compare PHF2TLTSs.
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Definition 11. Let s s s= { , , …, }g0 1 be a LTS, and PH T2
1

S
and PH T2

2
S
be two PHF2TLTSs;

(1) if ( ) ( )s P s P>H T H T2
1

2
2

S S
, then P P>H T H T2

1
2

2
S S

;

(2) if ( ) ( )s P s P=H T H T2
1

2
2

S S
and ( ) ( )t P t P<H T H T2

1
2

2
S S

, then P P>H T H T2
1

2
2

S S
;

(3) if ( ) ( )s P s P=H T H T2
1

2
2

S S
and ( ) ( )t P t P=H T H T2

1
2

2
S S

,

(a) and ( ) ( ){ } { }d P P d P P, = ,H T H T H T H T2
1

2
+

2
2

2
+

S S S S
, then P P=H T H T2

1
2

2
S S

;

(b) and ( ) ( ){ } { }d P P d P P, < ,H T H T H T H T2
1

2
+

2
2

2
+

S S S S
, then P P>H T H T2

1
2

2
S S

,

where d A B( , ) is the PH2TLNHD.

4.3 | PH2TLRAPA operator and WPH2TLRAPA operator

Based on Definitions 1 and 2, the proportional convex combination and the ordered propor-
tional convex combination of two PHF2TLTSs can be defined as follows.

Definition 12. Let s s s= { , , …, }g0 1 be a LTS, and P s α p s α p= {(( , ), ), (( , ), ),H T i i i i i i2
1

S 1 1 1 2 2 2

s α p…, (( , ), )}i i ip p p
and P =H T2

2
S

s α p s α p s α p{(( , ), ), (( , ), ), …, (( , ), )}j j j j j j j j jq q q1 1 1 2 2 2
be two

PHF2TLTSs with a weighting vector ≥ ≤bmw w w w w w w= ( , ) , , 0, + 11 2
T

1 2 1 2 . A
proportional convex combination of two PHF2TLTSs is defined as Equation (6), in which

∈η m n m n p q= × {1, 2, …, × , …, H}, H = × , with the condition given in Equation (7).

⊙

∣ ∈

∈

〈

〉

〈

〉

{
}

( )
( ) ( )

(

)

w P w P

w P w P

w s α p w s α p s α p P s α p

P

w w s α p p s α p p s α p p

s α p p

w w s α p s α p s α p

s α p

, , ,

= , ,

= , (( , ), ), , (( , ), ) (( , ), ) , (( , ), )

= + , {(( , ), ), (( , ), ), …, (( , ), ), …,

(( , ), )}

= + , {(( , ), ), (( , ), ), …, (( , ), ), …,

(( , ), )}

H T H T

H T H T

i i i j j j i i i H T j j j

H T

k k i j k k i j k k i j

k k i j

k k k k k k k k k

k k k

2
1 2

1
2 2

2

1 2
1

2 2
2

2
1 2 2

1

2
2

1 2

1 2

S S

S S

m m m n n n m m m S n n n

S

mn mn m n

pq pq p q

η η η

1 1 1 1 2 2 2 1

1 1 11 2 2 21

H H H





(6)

Min Max⎪

⎪

⎪

⎪

⎛
⎝
⎜⎜

⎧
⎨
⎩

⎫
⎬
⎭

⎞
⎠
⎟⎟

s α

s α s α
w p

w p w p
s α

w p

w p w p
s α

( , )

= Δ {Δ ( , ), Δ ( , )},
+

Δ ( , )

+
+

Δ ( , )

k k

i i j j
i

i j

i i

j

i j

j j

−1 −1 1

1 2

−1

2

1 2

−1

η η

p p q q

m

m n

m m

n

m n

n n

(7)
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Definition 13. Let s s s= { , , …, }g0 1 be a LTS, and P s α p s α p= {(( , ), ), (( , ), ),H T i i i i i i2
1

S 1 1 1 2 2 2

s α p…, (( , ), )}i i ip p p
and P =H T2

2
S

s α p s α p s α p{(( , ), ), (( , ), ), …, (( , ), )}j j j j j j j j jq q q1 1 1 2 2 2
be two

PHF2TLTSs with a weighting vector ≥ ≤w w w w w ww = ( , ) , , 0, + 11 2
T

1 2 1 2 .
An ordered proportional convex combination of the two PHF2TLTSs is defined

as in Equation (8), in which Min s α s α s α{Δ ( , )} = Δ ( , ) < Δ ( , ) <η H k k i i i i=1,2, …,
−1 −1 −1

η η 1 1 2 2

Maxs α s α…< Δ ( , ) = {Δ ( , )}i i η H k k
−1

=1,2, …,
−1

h h η η , and ∑p p χ k i= ( , )i η k η l=1

H

l η
. χ k i( , )η l is an

indicator function defined by the following:

⎪

⎪⎧⎨
⎩ ≠

χ k i
s α s α

s α s α
( , ) =

1, Δ ( , ) = Δ ( , ),

0, Δ ( , ) Δ ( , ).
η l

k k i i

k k i i

−1 −1

−1 −1

η η l l

η η l l

〈 〉

〈 〉

( )( )w P w P

w w s α p s α p s α p s α p

w w s α p s α p s α p s α p

, , ,

= + , {(( , ), ), (( , ), ), …, (( , ), ), …, (( , ), )}

= + , {(( , ), ), (( , ), ), …, (( , ), ), …, (( , ), )}

H T H T

k k k k k k k k k k k k

i i i i i i i i i i i i

2
1 2

1
2 2

2

1 2

1 2

S S

mn mn mn pq pq pq

l l l h h h

1 1 1 2 2 2

1 1 1 2 2 2

 



(8)

For convenience, we denote w P w P G w P w P( , , , ) = ( ( , , , ))H T H T H T H T
2

1 2
1

2 2
2 2

1 2
1

2 2
2

S S S S
  .

Based on the proportional convex combination and the ordered proportional convex
combination of two PHF2TLTSs, we extend the RAPA and WRAPA operators proposed in
Section 3.1 to accommodate the PHFLTS.

Definition 14. Let s s s= { , , …, }g0 1 be a LTS, and A P P P= { , , …, }H T H T H T
n

2
1

2
2

2S S S
be a

collection of n distinct PHF2TLTSs. The PH2TLRAPA operator is defined as follows:

PH TLRAPA

⊙( )

( )
( )

( ) ( )

P P P

w P i n

w P w P i n

2 , , …,

= , ; = 1, 2, …,

= , , ; = 2, 3, …, ,

σ H T H T H T
n

n
i H T

i

H T
n

i H T
i

2
1

2
2

2

2

1 2
1 −1

2

S S S

S

S S



 

where

Sup

∑
∑
∑

∈

( ) ( )
( )

( )
( )

( )
( ) ( )

w
P

P

T P

P

P P P i

=
1 +

1 +

1 +

1 +
,

= , , ,

i

σ H T
i

j

n
σ H T

j
i

n
σ H T

i

j

n
σ H T

j

σ H T
i

H T
i

H T
σ

2

=1 2 =1

2

=1 2

2 2 2

S

S

S

S

S S S



 

 

with risk attitude constant ∈P AH T
σ

2 S
, and Sup a b( , ) is the support for a from b, which

satisfies the following three properties:

1) Sup ∈a b( , ) [0, 1];
2) Sup Supa b b a( , ) = ( , );

CHEN ET AL. | 2593



3) Sup Sup≥a b x y( , ) ( , ), if d a b d x y( , ) < ( , ) and d (*) is the distance measure between
PHF2TLTSs.

Definition 15. Let s s s= { , , …, }g0 1 be a LTS, A P P P= { , , …, }H T H T H T
n

2
1

2
2

2S S S
be a

collection of n distinct PHF2TLTSs, and w w w w= ( , , …, )n1 2
T be a weighting vector of

P j n( = 1, 2, …, )H
j
S

with ≥w j n0( = 1, 2, …, )j and ∑ w = 1
j

n
j=1

. The WPH2TLRAPA

operator is defined as follows:

WPH TLRAPA

⊙( )

( )
( )

( ) ( )

P P P

w P i n

w P w P i n

2 , , …,

= , ; = 1, 2, …,

= , , ; = 2, 3, ., ,

σ H T H T H T
n

n
i H T

i

H T
n

i H T
i

2
1

2
2

2

2

1 2
1 −1

2

S S S

S

S S



 

where

∑
∑ ∑

( )
( )

( )
( )

( )
( )

( )
( )

w
w P

P

w P

P
=

1 +

1 +

1 +

1 +
,i

i σ H T
i

j

n
σ H T

j
i

n i σ H T
i

j

n
σ H T

j

2

=1 2 =1

2

=1 2

S

S

S

S








(9)

Sup ∈( ) ( )P w P P i= , , ,σ H T
i

i H T
i

H T
σ

2 2 2S S S
  (10)

with risk attitude constant ∈P AH T
σ

2 S
and Sup a b( , ) is the support for a from b, which

satisfies the following three properties:

1) Sup ∈a b( , ) [0, 1];
2) Sup Supa b b a( , ) = ( , );
3) Sup Sup≥a b x y( , ) ( , ), if d a b d x y( , ) < ( , ) and d (*) is the distance measure between

PHF2TLTSs.

Without loss of generality, this paper utilizes Sup a b d a b( , ) = 1 − ( , ) to calculate the
support for PHF2TLTSs a from b, where d (*) is the distance measure between PHF2TLTSs.

5 | HYBRID MULTIATTRIBUTE ONLINE PRODUCT
RECOMMENDATION FOR CONSUMER DECISION MAKING

In practice, consumers often make their purchasing decisions on the basis of online product
information, such as reviews, ratings and comments.77 This is often exploited by online retailers
that design product recommendation systems with the purpose of helping customers easily
identify products that meet their tastes and needs. In this process, the risk attitude of the
consumer is an important factor. Using product information from an online shopping website
and the risk attitude of the target consumer, this section proposes an MADM‐based hybrid
approach to online product recommendation with a risk attitude‐oriented proportional hesitant
2‐tuple linguistic PA operator. We first introduce the online product recommendation
environment under a MADM framework.
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• Target consumer (Decision‐maker): The decision‐maker in our online product re-
commendation system is a consumer who makes her/his purchasing decision on the basis of
her/his risk attitude and the product information from the online shopping website.

• Online products (Alternatives): Similar to the recommendation systems used by real online
shopping websites, products are recommended to the target consumer based on her/his
online browsing history. For simplicity, we denote m online products (namely, the alter-
natives for MAGDM) as A A A{ , , …, }m1 2 and the index set is denoted M m= {1, 2, …, }, in
which Ai is the ith online product.

• Online product attributes (Attributes): The target consumer's online browsing history is as-
sumed to indicate his/her demand for product. This is a common and basic assumption that
ensures the recommendation system will focus on useful product information. In our online
product recommendation system, the following four product information types are taken
into account (as the attributes for MADM): Performance (C1), Price (C2), Ratings (C3), and
Number of reviews (C4). These four attributes are the main areas of concern for most
decision‐makers when online shopping, and any one of them may play a decisive role in the
decision‐maker's final choice of product. In addition, the information about product attri-
butes presented to the consumer is limited, as shown in examples of the purchase interfaces
of the online shopping websites Amazon and Best Buy, featuring cell phones, in Figures 6
and 7. “Performance” and “Price” are two common product attributes that determine
whether an online product meets the basic needs of the target consumer. “Ratings” de-
termine the target consumer's first impression of the product. Furthermore, “Number of
reviews” may indirectly reflect the number of sales of the product. It is worth noting that the
online product recommendation is a hybrid representative system, in which attributes C C,1 2

and C4 can be represented by real numbers, and C3 can be represented by PHFLTS, which
will be illustrated in detail in Section 6.

• Decision‐making information: Decision‐making matrix rR = [ ]ij m×4 is the product informa-
tion gathered from an online shopping website and a related third party testing agency, in
which rij is the assessment value of product ∈A i M,i on attribute C i, = 1, 2, 3, 4j .

w w w ww = ( , , , )1 2 3 4
T is the weighting vector of the four product attributes.

The main steps of the MADM‐based hybrid data‐driven online product recommendation
approach with the risk attitude‐oriented proportional hesitant 2‐tuple linguistic PA operator are
as follows.

Step 1. Determining the risk attitude value of the target consumer.

A questionnaire (see Appendix A) containing 10 questions is designed to measure the risk
attitude of target consumer. Output θ is a real number in [0, 1] corresponding to the range of
the RAF defined in Section 3.1.

Step 2. Gathering the decision‐making matrix.

Using online products selected based on the target consumer's online browsing history, the
online product recommendation system gathers decision‐making assessment value rij of pro-
duct ∈A i M,i on attribute C i, = 1, 2, 3, 4j from the online shopping website and the related
third party testing agency, and hence decision‐making matrix rR = [ ]ij m×4 is constructed.
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Step 3. Obtaining the proportional hesitant fuzzy 2‐tuple linguistic decision‐making matrix.

For real number‐type attributes, the following formula is utilized to normalize them
into [0, 1]:

⎧
⎨
⎪⎪

⎩
⎪⎪

∈
∈

∈

r

j

j

i M¯ =

, for benifit attribute ,

, for cost attribute ,

.ij

r

r

r

r

Max{ }

Min{ }

ij

i M
ij

i M
ij

ij

(11)

After this, Definition 3 is used to transform ∈r i M j, , = 1, 2, 4ij into the PHF2TLTS. The value
under C2 can similarly be extended to the PHF2TLTS with Definition 4. The proportional
hesitant fuzzy 2‐tuple linguistic decision‐making matrix with the representation of PHF2TLTS
is denoted by uU = [ ]ij m×4.

Step 4. Solving the attribute weighting vector w w w ww = ( , , , )1 2 3 4
T.

Entropy is a useful measurement tool for the degree of disorder of a system, and is
widely utilized to determine weighting vectors in information fusion. We call this the
entropy weight method. Subsystems of the entropy weight method with smaller entropy
values tend towards more disorder and are assigned a larger weight, and vice versa. On the
basis of this idea, the distance entropy weight method,78 an extension of the entropy weight
method, (i) first chooses the “positive ideal point” for the subsystem, then (ii) measures the

FIGURE 6 Online product information
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distance between the elements in that subsystem and its “positive ideal point,” and finally
(iii) weights the subsystem according to the principle that a subsystem in which all ele-
ments are close to the “positive ideal point” tends towards full order, and is assigned a small
weight, and vice versa.

This paper proposes the following extended distance entropy weight method (described in
Steps 4.1–4.4) by considering the risk attitude of the target consumer.

Step 4.1. Choosing the “positive ideal point” u*j for attribute C j, = 1, 2, 3, 4j according to
the risk attitude of the target consumer. In this process, collection A u u u= { , , …, }j j mj1 2 is
considered as the input arguments, and Algorithm 1 is utilized to generate the RAF of A,
that is, AM u jA ( ), = 1, 2, 3, 4A σj( )  . It is worth noting that because Algorithm 1 is defined
for real numbers but A u u u= { , , …, }j j mj1 2 is composed of m PHF2TLTSs, without loss of
generality, we handle this by transforming PHF2TLTS into a real number by utilizing the
score function defined in Definition 10. Combining this with the risk attitude value θ
determined in Step 1, the score function value of the “positive ideal point” u j*, = 1, 2, 3, 4j

can be gained by Algorithm 2 and the “positive ideal point” u j*, = 1, 2, 3, 4j can be
therefore obtained.

Step 4.2. Computing the distance between ∈u i M j, , = 1, 2, 3, 4ij and u j*, = 1, 2, 3, 4j by
Definition 9 and Algorithm 3. Specifically:

∈( )d d u u i M j= , * , , = 1, 2, 3, 4,ij ij j (12)

which constructs the assessment information distance matrix dD = [ ]ij m×4.
Step 4.3. Calculating the average distance entropy

∑
∑

⋅
∑

E
d

d

d

d
= −

1

ln 4
lnj

i

m
ij

i

m
ij

ij

i

m
ij=1 =1 =1

(13)

for attribute C j, = 1, 2, 3, 4j . We have made the convention ⋅0 ln 0 = 0.
Step 4.4. Obtaining the distance entropy‐based weight corresponding to attribute
C j, = 1, 2, 3, 4j as

∑
w

E

E
j=

1 −

4 −
, = 1, 2, 3, 4.j

j

j j=1

4
(14)

Step 5. Calculating the comprehensive assessment values for online products.

Following weighting vector w w w ww = ( , , , )1 2 3 4
T obtained in Step 4, the comprehensive

assessment value for each online product ∈u i M,i is computed using the WPHF2TLRAPA
operator. In particular, the risk attitude value θ determined by Step 1 and Algorithms 1 and 2 is
used to incorporate the risk attitude of the target consumer into the aggregation process.
Similar to Step 4.1, the score function is utilized to solve the risk attitude constant for the
WPHF2TLRAPA operator.

Step 6. Ranking online products according to ∈u i M,i . The larger ∈u i M,i , the better the
respective product is considered to be.
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6 | ILLUSTRATIVE EXAMPLE AND COMPARISON

Consider a consumer planning to purchase a cell phone from online shopping website Best
Buy. According to their online browsing history, she/he prefers an iPhone with high perfor-
mance and 64 GB of internal memory. Consequently, the MADM‐based product re-
commendation system chooses iPhone X (64 GB) (A1), iPhone XR (64 GB) (A2), iPhone XS (64
GB) (A3), and iPhone XS Max (64 GB) (A4) as the alternatives. The basic information for
each alternative with respect to performance, price, ratings, and number of reviews is shown in
Figure 7, and was obtained from the web addresses shown in the footnote, accessed on
February 23, 2019.

It1 is easy to obtain the assessment values for the attributes “price” and “rating” from
Figure 7. The attribute “performance” for each cell phone is highly dependent on its
hardware and system optimizations, and is evaluated according to the average score from
AnTuTu Benchmark software, which is a professional grading software used to judge
the performance level of hardware. The average score of iPhone X is 249,030, the average
score of iPhone XR is 348,072, the average score of iPhone XS is 358,517 and the average
score of iPhone XS Max is 355,692. These scores are reported in Figure 8, which ranks
the top 10 best performing IOS devices in January 2019 and shows their corresponding
average scores.

To2 recommend the most suitable product for the consumer, we conduct the MADM‐based
product recommendation model proposed in Section 5, as follows:

Step 1. According to the questionnaire listed in Appendix A, the risk attitude value of the
target consumer is calculated as θ = 0.62.

Step 2. Obtaining the hybrid decision‐making matrix rR = [ ]ij 4×4.

The hybrid decision‐making matrix rR = [ ]ij 4×4 and information from Figures 7 and 8 are
listed in Table 2. For attributes C C,1 2, and C4, information can be taken directly from Figures 7
and 8. For the attribute “Ratings,” C3, proportional hesitant linguistic pair s p i( , ), = 0, 1, …, 4i i

is composed of rating values (number of stars) and their corresponding proportions. Therefore
the LTS with granularity 4 + 1 = 5 for attribute “Ratings” is s= { =0 “1 star,” s =1 “2 stars,” s =2

“3 stars,” s =3 “4 stars,” s =4 “5 stars” }. For example, for alternative A1 (iPhone X), the com-
prehensive rating is 4.8 stars and the proportion of “5 star” reviews is 84%, expressed as
s( , 0.84)4 using the proportional hesitant linguistic pair. Similarly, s s( , 0.01), …, ( , 0.12)0 3 can be
obtained, thus, the attribute “Rating” of A1 can be comprehensively obtained as a
set, s s s s s{( , 0.01), ( , 0.01), ( , 0.02), ( , 0.12), ( , 0.84)}0 1 3 3 4 .

Step 3. Obtaining the proportional hesitant fuzzy 2‐tuple linguistic decision‐making matrix.
We first utilize Formula (11) to normalize the values for attributes C C,1 2 and C4 into
[0, 1], and then transform them into the PHF2TLTs by using Definition 3 with gran-
ularity g + 1 = 7. Similarly, the values under attribute C3 are transformed into the
PHF2TLTs by using Definition 8. The element u i j, , = 1, 2, 3, 4ij in the proportional
hesitant fuzzy 2‐tuple linguistic decision‐making matrixU is computed, and is as listed
below.
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FIGURE 8 Global top 10 best performing iOS devices, January 2019 [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 Product information for four alternatives: (A) iPhone X (64 GB); (B) iPhone XR (64 GB); (C)
iPhone XS (64 GB); (D) iPhone XS Max (64 GB) [Color figure can be viewed at wileyonlinelibrary.com]
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• A1 (iPhone X [64 GB]):

u s s s s s s

s

u s s s s s s

s

u s s s s s

u s s s s s s

s

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0.0283), 1), (( , 0), 0),

(( , 0), 0)},

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , −1.85

× 10 ), 1), (( , 0), 0)},

= {(( , 0), 0.01), (( , 0), 0.01), (( , 0), 0.02), (( , 0), 0.12), (( , 0), 0.84)},

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0),

(( , 0), 1)}.

11 0 1 2 3 4 5

6

12 0 1 2 3 4 5

−6
6

13 0 1 2 3 4

14 0 1 2 3 4 5

6

• A2 (iPhone XR [64 GB]):

u s s s s s s

s

u s s s s s s

s

u s s s s s

u s s s s s s

s

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0),

(( , −0.0286), 1)},

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0),

(( , 0), 1)},

= {(( , 0), 0.00), (( , 0), 0.01), (( , 0), 0.02), (( , 0), 0.13), (( , 0), 0.84)},

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , −0.0520), 1), (( , 0), 0), (( , 0), 0),

(( , 0), 0)}.

21 0 1 2 3 4 5

6

22 0 1 2 3 4 5

6

23 0 1 2 3 4

24 0 1 2 3 4 5

6

• A3 (iPhone XS [64 GB]):

u s s s s s s

s

u s s s s s s

s

u s s s s s

u s s s s s s

s

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0),

(( , 0), 1)},

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0.0833), 1), (( , 0), 0),

(( , 0), 0)},

= {(( , 0), 0.01), (( , 0), 0.01), (( , 0), 0.01), (( , 0), 0.09), (( , 0), 0.88)},

= {(( , 0), 0), (( , 0.0450), 1), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0),

(( , 0), 0)}.

31 0 1 2 3 4 5

6

32 0 1 2 3 4 5

6

33 0 1 2 3 4

34 0 1 2 3 4 5

6

• A4 (iPhone XS Max [64 GB]):

u s s s s s s

s

u s s s s s s

s

u s s s s s

u s s s s s s

s

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0),

(( , −0.0073), 1)},

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0.0151), 0), (( , 0), 0),

(( , 0), 0)},

= {(( , 0), 0.01), (( , 0), 0.00), (( , 0), 0.02), (( , 0), 0.10), (( , 0), 0.87)},

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0),

(( , −0.0534), 1)}.

41 0 1 2 3 4 5

6

42 0 1 2 3 4 5

6

43 0 1 2 3 4

44 0 1 2 3 4 5

6

Step 4. Solving the attribute weighting vector w w w ww = ( , , , )1 2 3 4
T.
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Step 4.1. The score matrix of the proportional hesitant fuzzy 2‐tuple linguistic
decision‐making matrix U is calculated by Definition 10 as

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

SU =

4.0283 5.0000 3.7700 6.0000
5.9714 6.0000 3.8000 2.9480
6.0000 4.0833 3.8200 1.0450
5.9927 4.0151 3.8200 5.9466

.

Following Algorithm 1, Figure 9 shows the quadratic‐type RAFs for the score values of
alternatives under attribute C j, = 1, 2, 3, 4j . Line A 1  represents the quadratic‐type RAFs
for the score values of alternatives under attribute C1 and the four score values under
attribute C1 are marked by the symbol “o.” Similarly, the other three lines represent the
RAFs for attributes C C,2 3, and C4.

Following Algorithm 2 and risk attitude value θ = 0.62, the score values of the “positive
ideal point” u j*, = 1, 2, 3, 4j are calculated as 4.0283, 4.0151, 3.7700, and 2.9480, respec-
tively. Consequently, the “positive ideal point” for attributes C j, = 1, 2, 3, 4j are:

u s s s s s

s s

u s s s s s

s s

u s s s s

s

u s s s s s

s s

* = {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0.0283), 1),

(( , 0), 0), (( , 0), 0)},

* = {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0.0151), 0),

(( , 0), 0), (( , 0), 0)},

* = {(( , 0), 0.01), (( , 0), 0.01), (( , 0), 0.02), (( , 0), 0.12),

(( , 0), 0.84)},

* = {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , −0.0520), 1), (( , 0), 0),

(( , 0), 0), (( , 0), 0)}.

1 0 1 2 3 4

5 6

2 0 1 2 3 4

5 6

3 0 1 2 3

4

4 0 1 2 3 4

5 6

FIGURE 9 Quadratic‐type RAFs for the score values of alternatives under attribute C j, = 1, 2, 3, 4j .
RAF, risk attitude function [Color figure can be viewed at wileyonlinelibrary.com]
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Step 4.2. Utilizing Definition 9 and Algorithm 3, the distances between
u i j, , = 1, 2, 3, 4ij and the “positive ideal point” u j*, = 1, 2, 3, 4j are denoted by the
following distance matrix dD = [ ]ij 4×4:

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

D =

0.0000 0.2112 0.0000 0.2353
0.2119 0.2385 0.0029 0.0000
0.2386 0.2375 0.0149 0.1966
0.2121 0.0000 0.0110 0.2087

.

Step 4.3. The average distance entropy for each attribute is
E E= 0.7913, = 0.7914,1 2 E = 0.67623 , and E = 0.79044 , and therefore the weighting
vector of attribute is w = (0.2195, 0.2195, 0.3406, 0.2205)T.

Step 5. Calculating the comprehensive assessment values for online products.
Step 5.1. Similar to Step 4.1, the quadratic‐type RAFs, solved by Algorithm 1, for
the score values of attributes with respect to alternatives A i, = 1, 2, 3, 4i are shown
in Figure 10.

FIGURE 10 Quadratic‐type RAFs for the score values of attributes with respect to alternatives
A i, = 1, 2, 3, 4i . RAF, risk attitude function [Color figure can be viewed at wileyonlinelibrary.com]
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Following Algorithm 2 and risk attitude value θ = 0.62, the score values of the
risk attitude constant for alternative A i, = 1, 2, 3, 4i are calculated as 3.7700, 3.8000,
1.0450, and 4.0151, respectively. Consequently, the risk attitude constants for al-
ternative A i, = 1, 2, 3, 4i are:

u s s s s s

s s

u s s s s s

s s

u s s s s s

s s

u s s s s s

s s

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , −0.2300), 1),

(( , 0), 0), (( , 0), 0)},

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , −0.20000), 1),

(( , 0), 0), (( , 0), 0)},

= {(( , 0), 0), (( , 0.0450), 1), (( , 0), 0), (( , 0), 0), (( , 0), 0),

(( , 0), 0), (( , 0), 0)},

= {(( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0), 0), (( , 0.0151), 1),

(( , 0), 0), (( , 0), 0)}.

σ

σ

σ

σ

1 0 1 2 3 4

5 6

2 0 1 2 3 4

5 6

3 0 1 2 3 4

5 6

4 0 1 2 3 4

5 6

Step 5.2. Following Formula (10), the weighted support matrix is

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

T =

0.1678 0.1602 0.3406 0.1607
0.1599 0.1598 0.3406 0.1692
0.1698 0.1755 0.2646 0.2205
0.1730 0.2195 0.2604 0.1738

.

Therefore, the weighted nonlinear weight calculated by Formula (9) is

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

W =

0.2095 0.2081 0.3732 0.2092
0.2081 0.2081 0.3732 0.2107
0.2114 0.2124 0.3546 0.2215
0.2122 0.2206 0.3538 0.2133

.

Step 5.3. The comprehensive assessment values utilizing the WPHF2TLRAPA
operator are provided as follows:
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u s s s s

s

s s s s

s s s s

s

s s s

u s s s s

s

s s s s

s

s s s s

s

s s s

u s s s s

s s

s s

s s s s

s

s s s s

s

u s s s s

s

s s s s

s

s s s s

s

s s s s

= {(( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00),

(( , 0.000), 0.00),

(( , 0.4354), 0.00), (( , 0.4742), 0.00), (( , −0.4997), 0.00), (( , −0.4987), 0.00),

(( , −0.4966), 0.00), (( , 0.000), 0.00), (( , −0.0435, 0.84), (( , −0.0062, 0.12),

(( , −0.0010, 0.02),

(( , −5.097 × 10 ), 0.01), (( , −5.090 × 10 ), 0.01), (( , 0.000), 0.00)},

= {(( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00), (( , −0.0520), 0.00),

(( , −0.0509), 0.01),

(( , −0.0499), 0.02), (( , −0.0389), 0.13), (( , 0.000), 0.00), (( , 0.0243), 0.84),

(( , 0.000), 0.00),

(( , 0.000), 0.00), (( , −0.3068), 0.00), (( , −0.0921), 0.00), (( , −0.0307), 0.00),

(( , −0.0286), 0.00),

(( , −0.0246), 0.00), (( , −0.0144), 0.00), (( , 0.000), 0.00)},

= {(( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.0450), 0.00), (( , 4.6321

× 10 ), 0.01),

(( , 4.6322 × 10 ), 0.01), (( , 4.6323

× 10 ), 0.01), (( , 0.0571, 0.09), (( , 0.1567), 0.88),

(( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00), (( , −0.1119), 0.00),

(( , 0.000), 0.00),

(( , 0.0115), 0.00), (( , 0.0384), 0.00), (( , 0.0404), 0.00), (( , 0.0425), 0.00),

(( , 0.000), 0.00)},

= {(( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00),

(( , 0.000), 0.00),

(( , 0.0151), 0.00), (( , −0.1422), 0.00), (( , −0.0293), 0.00), (( , −0.0011), 0.00),

(( , 0.000), 0.00),

(( , 0.0009), 0.00), (( , 0.0112), 0.00), (( , −0.0847), 0.87), (( , −0.0567), 0.10),

(( , −0.0540), 0.02),

(( , −0.0537), 0.01), (( , −0.0534), 0.00), (( , −0.0073), 0.00), (( , 0.000), 0.00)}.

1 0 1 2 3

4

4 4 5 5

5 5 6 6

6

6
−4

6
−4

6

2 0 1 2 3

3

3 3 3 3

4

5 6 6 6

6

6 6 6

3 0 1 1 1

−2

1
−2

1

−2
1 1

2 3 4 5

5

5 5 5 5

6

4 0 1 2 3

4

4 5 5 5

5

5 5 6 6

6

6 6 6 6

Step 6. Following Definition 10, the scores and deviations with respect to u i, = 1, 2, 3, 4i are
s u s u s u s u( ) = 4.8449, ( ) = 4.4619, ( ) = 3.4954, ( ) = 5.00551 2 3 4 and t u( ) = 0.1133,1

t u t u t u( ) = 0.1215, ( ) = 0.4188, ( ) = 0.07402 3 4 , respectively. Thus, the ranking of the
four alternatives is ≻ ≻ ≻A A A A4 1 2 3 and product A4, namely the iPhone XS Max, is
the best choice, and our online recommendation model will recommend it to the target
consumer.

6.1 | Comparison with the proportional hesitant fuzzy 2‐tuple
linguistic weighted averaging (PHF2TLWA) operator

To further show the applicability of the proposed operator, we solve the above product re-
commendation problem by utilizing the PHF2TLWA operator, which is an extension of the
proportional hesitant fuzzy linguistic weighted averaging (PHFLWA) operator.57
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Definition 16. Let S s s s= { , , …, }g0 1 be a LTS, A P P P= { , , …, }H T H T H T
n

2
1

2
2

2S S S
be a

collection of n PHF2TLTSs and w w w w= ( , , …, )n1 2
T be a weighting vector of

P j n( = 1, 2, …, )H
j
S

with ≥w j n0( = 1, 2, …, )j and ∑ w = 1
j

n
j=1

. The PHF2TLWA

operator is defined as follows:

PHF TLWA

⊙( )

( )
( )

( ) ( )

P P P

w P i n

w P w P i n

2 , , …,

= , ; = 1, 2, …,

= , , ; = 2, 3, …, .

H T H T H T
n

n
i H T

i

H T
n

i H T
i

2
1

2
2

2

2

1 2
1 −1

2

S S S

S

S S



 

Especially, when ∕w w w n= = … = = 1n1 2 , the PHF2TLWA operator reduces to the Pro-
portional Hesitant Fuzzy 2‐Tuple Linguistic Averaging (PHF2TLA) operator.

PHF TLA

∕

∕ ⊙ ∕( )

( )
( )

( ) ( )

P P P

n P i n

n P n P i n

2 , , …,

= 1 , ; = 1, 2, …,

= 1 , 1 , ; = 2, 3, …, .

H T H T H T
n

n
H T
i

H T
n

H T
i

2
1

2
2

2

2

2
1 −1

2

S S S

S

S S



 

We solve the aforementioned product selection problem by utilizing the PHF2TLWA op-
erator as follows:

Step 1'. Gathering the hybrid decision‐making matrix rR = [ ]ij 4×4 as listed in Table 2.
Step 2'. Obtaining the proportional hesitant fuzzy 2‐tuple linguistic decision‐making matrix

uU = [ ]ij 4×4, which is the same as the results listed in Step 3, above, solved by the
model proposed in this paper.

Step 3'. Determining the attribute weighting vector w w w ww = ( , , , )1 2 3 4
T. The “positive ideal

point” for attribute C j, = 1, 2, 3, 4j is calculated by formula

PHF TLAu u u u u j* = 2 ( , , , ), = 1, 2, 3, 4.j j j j j1, 2, 3, 4,

Following Formulas (12) to (14), the attribute weighting vector is similarly computed
as w = (0.0137, 0.0135, 0.0056, 0.9671)T.

Step 4'. The comprehensive assessment values obtained by utilizing the PHF2TLWA op-
erator are

2606 | CHEN ET AL.



u s s s s s

s s s s

s s s s

s

s s s

u s s s s

s

s s s s

s

s s s s

s

s s s

u s s s s

s s s s

s s s s s

s s s s

s

u s s s s s

s s s s

s

s s s s

s

s s s s

= {(( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00),

(( , 0.4354), 0.00), (( , 0.4742), 0.00), (( , −0.4997), 0.00), (( , −0.4987), 0.00),

(( , −0.4966), 0.00), (( , 0.000), 0.00), (( , −0.0435, 0.84), (( , −0.0062, 0.12),

(( , −0.0010, 0.02),

(( , −5.097 × 10 ), 0.01), (( , −5.090 × 10 ), 0.01), (( , 0.000), 0.00)},

= {(( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00), (( , −0.0520), 0.00),

(( , −0.0509), 0.01),

(( , −0.0499), 0.02), (( , −0.0389), 0.13), (( , 0.000), 0.00), (( , 0.0243), 0.84),

(( , 0.000), 0.00),

(( , 0.000), 0.00), (( , −0.3068), 0.00), (( , −0.0921), 0.00), (( , −0.0307), 0.00),

(( , −0.0286), 0.00),

(( , −0.0246), 0.00), (( , −0.0144), 0.00), (( , 0.000), 0.00)},

= {(( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.0450), 0.00), (( , 4.6321 × 10 ), 0.01),

(( , 4.6322 × 10 ), 0.01), (( , 4.6323 × 10 ), 0.01), (( , 0.0571, 0.09), (( , 0.1567), 0.88),

(( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00), (( , −0.1119), 0.00), (( , 0.000), 0.00),

(( , 0.0115), 0.00), (( , 0.0384), 0.00), (( , 0.0404), 0.00), (( , 0.0425), 0.00),

(( , 0.000), 0.00)},

= {(( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00), (( , 0.000), 0.00),

(( , 0.0151), 0.00), (( , −0.1422), 0.00), (( , −0.0293), 0.00), (( , −0.0011), 0.00),

(( , 0.000), 0.00),

(( , 0.0009), 0.00), (( , 0.0112), 0.00), (( , −0.0847), 0.87), (( , −0.0567), 0.10),

(( , −0.0540), 0.02),

(( , −0.0537), 0.01), (( , −0.0534), 0.00), (( , −0.0073), 0.00), (( , 0.000), 0.00)}.

1 0 1 2 3 4

4 4 5 5

5 5 6 6

6

6
−4

6
−4

6

2 0 1 2 3

3

3 3 3 3

4

5 6 6 6

6

6 6 6

3 0 1 1 1
−2

1
−2

1
−2

1 1

2 3 4 5 5

5 5 5 5

6

4 0 1 2 3 4

4 5 5 5

5

5 5 6 6

6

6 6 6 6

Step 5'. Following Definition 10, the score and deviation with respect to u i, = 1, 2, 3, 4i are
s u s u s u s u( ) = 5.9627, ( ) = 3.0139, ( ) = 1.1444, ( ) = 5.91901 2 3 4 and t u( ) = 2.0142 ×1

t u t u t u10 , ( ) = 5.7731 × 10 , ( ) = 0.0011, ( ) = 9.2902 × 10−4
2

−4
3 4

−45. Thus, the ranking
order is ≻ ≻ ≻A A A A1 4 2 3.

6.2 | Comparison with other group decision‐making methods

To illustrate the performance of this study's proposed method, this section compares the
proposed method with two other group decision making methods, the TOPSIS and VIKOR
methods. The reason for performing these comparisons is because TOPSIS and VIKOR are two
popular decision methods that have been applied in many research fields, such as the man-
agement of markets, management of environment and chemical engineering, among others.79

The basic idea of TOPSIS is that it ranks the alternatives according to the degree of closeness to
the ideal solution and distance from the worst solution, to determine the optimal alternative
with the shortest distance to the ideal solution and farthest distance from the worst solution.
VIKOR ranks plans by weighting the maximum group utility of the “majority” and the mini-
mum individual regret of the “opponent.”64 This subsection solves the above production se-
lection problem using the TOPSIS and VIKOR methods. Their algorithms are developed as
Algorithms 4 and 5, to simplify the process of calculation.
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Algorithm 4 PHF2TLTS‐based TOPSIS method

Input: Hybrid decision‐making matrix, rR = [ ]ij m n× ; Proportional hesitant fuzzy 2‐tuple linguistic decision‐
making matrix, ∈{(( ) ) (( ) ) (( ) )}u u s α p s α p s α p k KU = [ ] , = , , , …, , , , …, , , ,ij m n ij ij ij ij ij ij ij ij ij ij× k k k K K K1 1 1

. The

attribute weighting vector of Cj is ωj.

Output: d d C f f, , *, ,i i i j j
+ − + −, obtained ranking of alternatives.

1: for ∈ ≠u u K KU, ,ij ij
1 2

1 2 do

2: run Algorithm 3

3: generate Ntotal
4: end for

5: for ∈ ∈ ∈u i m j nU, [1, …, ], [1, …, ]ij do

6: ∑ ( )s u arrow s α p( ) Δ ,ij k

N
ij ij ij=1

−1total

k k k

7: ← ∑ ⋅( ) ( ( ) )t u p s α s uΔ , − ( )ij k

N
ij ij ij ij=1

2total

k k k

8: end for

9: for ∈j n[1, …, ] do

10: if ∈( ) ( )s u s u u u U= , ,ij ij ij ij
1 2 1 2 then

11: if ( ) ( )t u t u<ij ij
1 2 then

12: u u>ij ij
1 2

13: else

14: u u<ij ij
1 2

15: end if

16: end if

17: ←f Max s u{ ( )}
j ij
+

18: ←f Min s u{ ( )}
j ij
−

19: end for

20 for ∈ ∈i m j n[1, …, ], [1, …, ] do

21:
⎡
⎣⎢

⎤
⎦⎥← ∑ ∣ ∣ ∣ ∣( )( ) ( )d u f s α p s α p p p, Δ , − Δ , + −

( )ij j N k

N

Ind s ij ij ij j j j ij j
+ 1

2 × =1

1

+0.5
−1 −1

total

total

ijk
k k k k k k k k

+ + + +

22:
⎡
⎣⎢

⎤
⎦⎥← ∑ ∣ ∣ ∣ ∣( ) ( )( )d u f s α p s α p p p, Δ , − Δ , + −

( )ij j N k

N

Ind s ij ij ij j j j ij j
− 1

2 × =1

1

+0.5
−1 −1

total

total

ijk
k k k k k k k k

− − − −

23: end for

24: for ∈i m[1, …, ] do

25: ← ∑ ( )d ω d u f,i j

n
j ij j

+
=1

+

26: ← ∑ ( )d ω d u f,i j

n
j ij j

−
=1

−

27: ← ∕( )C d d d* +i i i i
− + −

28: end for 29: rank alternatives in descending order of C*i .
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Algorithm 5 PHF2TLTS‐based VIKOR method

Input: Hybrid decision‐making matrix, rR = [ ]ij m n× ; Proportional hesitant fuzzy 2‐tuple linguistic decision‐
making matrix, ∈{(( ) ) (( ) ) (( ) )}u u s α p s α p s α p k KU = [ ] , = , , , …, , , , …, , , ,ij m n ij ij ij ij ij ij ij ij ij ij× k k k K K K1 1 1

. The

attribute weighting vector of Cj is ωj.

Output: ( ) ( )d u f d u f S R Q, , , , , ,ij j ij j i i i
+ − , obtained ranking of alternatives.

1: for ∈ ≠u u K KU, ,ij ij
1 2

1 2 do

2: run Algorithm 3

3: generate Ntotal
4: end for

5: for ∈ ∈ ∈u i m j nU, [1, …, ], [1, …, ]ij do

6: ← ∑ ( )s u s α p( ) Δ ,ij k

N
ij ij ij=1

−1total

k k k

7: ← ∑ ⋅( ( ) )t u p s α s u( ) Δ , − ( )ij k

N
ij ij ij ij=1

2total

k k k

8: end for

9: for ∈j n[1, …, ] do

10: if ∈( ) ( )s u s u u u U= , ,ij ij ij ij
1 2 1 2 then

11: if ( ) ( )t u t u<ij ij
1 2 then

12: u u>ij ij
1 2

13: else

14: u u<ij ij
1 2

15: end if

16: end if

17: ←f Max s u{ ( )}
j ij
+

18: ←f Min s u{ ( )}
j ij
−

19: end for

20: for ∈ ∈i m j n[1, …, ], [1, …, ] do

21:
⎡
⎣⎢

⎤
⎦⎥← ∑ ∣ ∣ ∣ ∣( )( ) ( )d u f s α p s α p p p, Δ , − Δ , + −

( )ij j N k

N

Ind s ij ij ij j j j ij j
+ 1

2 × =1

1

+0.5
−1 −1

total

total

ijk
k k k k k k k k

+ + + +

22:
⎡
⎣⎢

⎤
⎦⎥← ∑ ∣ ∣ ∣ ∣( ) ( )( )d u f s α p s α p p p, Δ , − Δ , + −

( )ij j N k

N

Ind s ij ij ij j j j ij j
− 1

2 × =1

1

+0.5
−1 −1

total

total

ijk
k k k k k k k k

− − − −

23:

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥← ∑ ∣ ∣( )( ) ( )

( )
d f f s α p s α p p p, Δ , − Δ , + −

j j N k

N

Ind s
j ij ij j j j j j

+ − 1

2 × =1

1

+ 0.5

−1 −1

total

total

jk

k k k k k k k k
+

+ + + − − − + −

24: end for

25: for ∈i m[1, …, ] do

26: ← ∑
( )
( )

S ωi j

n
j

d u f

d f f=1

,

,

ij j

j j

+

+ −

27: ←
( )
( )

R Max ωi j j

d u f

d f f

,

,

ij j

j j

+

+ −

28: ← ←S Max S S Min S( ), ( )i i
+ −

29: ← ←R Max R R Min R( ), ( )i i
+ −

30: ← ∕ ∕Q v S S S S v R R R R( − ) ( − ) + (1 − )( − ) ( − )i i i
− + − − + −

31: end for

32: rank alternatives in ascending order of Qi.
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The operating data used in Algorithms 4 and 5 are the same as the data used in the model
proposed in this paper. Specifically: (1) the hybrid decision‐making matrix is rR = [ ]ij 4×4, and is
as listed in Table 2; (2) the proportional hesitant fuzzy 2‐tuple linguistic decision‐making
matrix is obtained as uU = [ ]ij 4×4, and is the same as the results listed in Step 3, above, solved
by the model proposed in this paper; and (3) the attribute weighting vector of Cj is computed
using the PHF2TLA operator as w = (0.0137, 0.0135, 0.0056, 0.9671)T , and is the same as the
result obtained in Section 6.1. Carrying out Algorithm 4, the ideal solution

u u u uf = ( , , , )+
31 22 43 14 and worst solution u u u uf = ( , , , )−

11 42 13 34 are obtained. Then, the ma-
trices of ( )d u f,ij j

+ and ( )d u f,ij j
− are obtained as follows:

⎡⎣ ⎤⎦

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡⎣ ⎤⎦

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

( )

( )

d u f

d u f

D

D

= , =

2.2588 × 10 2.2230 × 10 0.0274 × 10 0

0.0043 × 10 0 0.0359 × 10 0.1576

0 2.2376 × 10 0.0181 × 10 0.1585

0.0011 × 10 2.2230 × 10 0 0.5675 × 10

,

= , =

0 2.2208 × 10 0 0.1585

2.2545 × 10 2.2230 × 10 0.0086 × 10 0.1568

2.2588 × 10 0.1146 × 10 0.0366 × 10 0

2.2577 × 10 0 0.0274 × 10 0.1580

,

ij j

ij j

+ +

4×4

−3 −3 −3

−3 −3

−3 −3

−3 −3 −3

− −

4×4

−3

−3 −3 −3

−3 −3 −3

−3 −3

with d d= (0.0045, 0.1577, 0.1608, 0.0028) , = (0.1608, 0.1612, 0.0023, 0.1602)T T+ − , and the re-

lative closeness coefficients C*i are obtained as C* = (0.9727, 0.5056, 0.0142, 0.9829)T . Finally,
the ranking result for the PHF2TLTS‐based TOPSIS method is obtained as A A A A> > >4 1 2 3.

Similarly, Algorithm 5 is used to obtain the matrices of f f d u f d u f d, , ( , ), ( , ),
j j ij j ij j i
+ − + − + and di

−.

The results are the same as those of the PHF2TLTS‐based TOPSIS method.

The values of S R Q, ,i i i are obtained as: S R= (0.0328, 0.9690, 0.9844, 0.0170) , =T

Q(0.0137, 0.9616, 0.9671, 0.0135) , = (0.5001, 0.9971, 1, 0)T T . Thus, the ranking result for the
PHF2TLTS‐based VIKOR method is obtained as A A A A> > >4 1 2 3. By comparison, we can
see that both of these results are the same as the result obtained using the approach proposed in
this paper.

6.3 | Discussion

The ranking result obtained using the PHF2TLWA operator is ≻ ≻ ≻A A A A1 4 2 3, whereas the
result obtained using the approach proposed in this paper is ≻ ≻ ≻A A A A4 1 2 3. The best
alternative according to the two methods is A1 and A4, respectively. The main reason for this
difference is that this paper's method takes the risk attitude of the decision‐maker into account,
whereas the method using the PHF2TLWA operator ignores this important information. In
particular, without the influence of the risk attitude, the PHF2TLWA approach assigns an
extremely large weight to attribute C4, which greatly reduces the effect of other three attributes.
This is not a common phenomenon in practical contexts because the PHF2TLWA approach
mainly focuses on the number of reviews, and a product with more reviews (but not with
higher performance, lower price or even higher ratings) will obtain a higher ranking. Conse-
quently, the decision result gained by this paper's method appears more reliable. Further, the
comparison of results of the proposed method in this study and the two popular MADM
methods—TOPSIS and VIKOR—under the PHF2TLTS context show that all three decision
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methods yield the ranking results A A A A> > >4 1 2 3, which verifies the validity and ration-
ality of the method proposed in this study.

It is worth noting that both methods assign product A3 (iPhone XS [64 GB]) the lowest
ranking, although it possesses the largest performance average score and the largest ratings
score (according to matrix SU). This is mainly because it has the lowest number of ratings,
which suggests the lowest number of sales, and is far lower than the numbers for other
products.

The result meaningfully reflects the importance of conformity of behavior, and this is also
one important reason why the iPhone XS Max (64 GB) gains the best ranking using the
WPHF2TLRAPA operator. More generally, Figure 11 shows that when the risk attitude value θ
varies in [0, 1], there are variations in the scores of the four alternatives obtained using the
WPHF2TLRAPA operator. The figure indicates that the ranking order does not change with
different ∈θ [0, 1] and product A4 always obtains the best ranking. However, the score for each
alternative varies with parameter ∈θ [0, 1], which implies that the risk attitude of the decision‐
maker meaningfully influences the decision‐making result. This is the initial motivation for
this paper to propose the risk attitude‐oriented PA operators.

7 | CONCLUSION

With the rapid development of e‐commerce, online product recommendation has become
an important way of influencing decision‐making by online shoppers. Online product
recommendation is a topic of significant academic research that seeks to help consumers
save time and energy in product selection. To extend the existing research on this topic,

FIGURE 11 Variations of scores with respect to risk attitude value ∈θ [0, 1] using the weighted
proportional hesitant 2‐tuple linguistic risk attitude‐based power average operator [Color figure can be viewed at
wileyonlinelibrary.com]
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the present study develops a power‐average‐operator‐based hybrid multiattribute online
product recommendation model. In this model, the RAPA operator is proposed to take
into account the risk attitude of the decision‐maker. As the essential components of RAPA
operators, this paper examines the framework for generating the RAF and the determi-
nation of risk attitude constant where four cases are involved. Algorithms 1 and 2 are
presented to elicit an appropriate RAPA operator for the special collection with the input
of risk attitude value, θ. Then, the PHF2TLTS is introduced to characterize the complexity
and uncertainty during the process of decision‐making. The PH2TLRAPA and
WPH2TLRAPA operators are then proposed for the process of integrating the PH2TLTS
with RAPA and WRAPA operators. In this study, a questionnaire is designed to measure
the risk attitude of target consumers in a credible way. Finally, an illustrative example of
recommendation of a model of iPhone and comparison with a PHF2TLWA operator
indicates that the risk attitude of the decision‐maker has a large influence on the decision‐
making result, thereby implying that our proposed model offers performance improve-
ments in online product recommendation. This study therefore provides valuable new
insights into online product recommendation.

The main contributions of this study are summarized as follows:

• The proposed RAPA operator expands the theory of PA operators by integrating the risk
attitude of the decision‐maker, which increases the applicability of PA operators in the field
of online product recommendations.

• The first proposed RAF can effectively quantify the risk attitude of the decision‐maker and
incorporate it into the RAPA operator, providing quantitative information for online sales
platforms to improve their marketing strategies. Several basic types have also been in-
troduced to facilitate their application according to different cases.

• The constructed PHF2TLTS can characterize the complexity and uncertainty behind the
qualitative linguistic expressions without information loss, which can further promote the
development of HFLTS models.

• The proposed PH2TLRAPA and WPH2TLRAPA operators play the roles of integrating the
PH2TLTS with RAPA and WRAPA operators to construct the model proposed, further ex-
tending the literature on RAPA and WRAPA operators.

Nevertheless, this study has some limitations, and there are several possible directions for
future research:

• This study emphasizes the effect of the decision‐maker's risk attitude on the final
decision‐making result. However, the study does not examine how the risk attitude of the
decision‐maker influences the online product recommendation result. It is necessary for
further research to examine the relationship between risk attitude values and final
results.

• Table 1 lists several basic types of RAF. Future research should study how to select a
suitable RAF type for a specific collection to help obtain credible and accurate
outcomes.

• The effect of other traits of the decision‐maker (e.g., trust), as well as the interaction
between traits, on the final result of decision‐making should be further explored.
Further research could also examine the factors that affect the risk attitude of
decision‐makers.
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ENDNOTES
* iPhone X (64 GB): https://www.bestbuy.com/site/apple‐iphone‐x‐64gb‐silver‐sprint/600979.p?skuId=6009792;
iPhone XR (64 GB): https://www.bestbuy.com/site/apple‐iphone‐xr‐64gb‐white‐sprint/5801307.p?skuId=
5801307; iPhone XS (64 GB): https://www.bestbuy.com/site/apple‐iphone‐xs‐64gb‐gold‐sprint/6009752.p?
skuId=6009752; iPhone XS Max (64 GB): https://www.bestbuy.com/site/apple‐iphone‐xs‐max‐64gb‐gold‐
sprint/6009766.p?skuId=6009766

†This data set is available from http://www.antutu.com/en/doc/11708.htm
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