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Abstract
Inducing information and bi-polar preference-based weights allocation and relevant decision-making are one important branch 
of Yager’s decision theory. In the context of basic uncertain information environment, there exist more than one inducing 
factor and the relative importance between them should be determined. Some subjective methods require decision makers to 
indicate the bi-polar preference extents for each inducing factor as well as the relative importance between all the involved 
inducing factors. However, although the bi-polar preference extents for inducing factors can often be elicited, sometimes 
decision makers cannot provide the required relative importance. This work presents some approaches to address such 
problem in basic uncertain information environment. From the mere bi-polar preference extents offered by decision makers, 
we propose three methods, statistic method, distance method and linguistic variable method, to derive relative importance 
between different inducing factors, respectively. Each of them has advantages and disadvantages, and the third method serves 
as a trade-off between the first two methods. The rationale of preference and uncertainty involved evaluation is analyzed, 
detailed evaluation procedure is presented, and numerical example is given to illustrate the proposals.

Keywords Aggregation operators · Basic uncertain information · Bi-polar preferences · Induced ordered weighted 
averaging operators · Ordered weighted averaging · Weights allocation

1 Introduction

1.1  Induced Information Fusion and Induced 
Aggregation Operators

The general information fusion theory and techniques are of 
wide applicability and have been hot areas of research for 
decades [1–6]. Aggregation operators [4] serve as an impor-
tant theoretical basis and strict paradigm for information 
fusion practices. With a vector of input values � = (xi)

n
i=1

 , 
a real valued aggregation operator (otherwise known as 
aggregation function) is a function A ∶ [0, 1]n → [0, 1] such 
that: (I) (monotonicities) A(�) ≤ A(�) whenever � < � (i.e., 
xi ≤ yi and � ≠ � ); (ii) (boundary conditions) A(�) = 0 and 
A(�) = 1 ( � = (0,⋯ , 0) and � = (1,⋯ , 1) ). Aggregation 
operators are particularly useful in multi-criteria decision-
making (MCDM) and multi-agent evaluation problems [7].

Some aggregation operators do not involve any outside 
preference and consist in their only structural characteris-
tics; this part mainly includes some logic operators such as 
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t-norms, t-conorms, semi-copulas [5], and numerous vari-
ous mean operators (without involving weight vectors or 
preferences). The other part of aggregation operators are 
attached with preferences (e.g., from decision makers) such 
as weighted mean, ordered weighted averaging (OWA) 
operators [8], induced ordered weighted averaging (IOWA) 
operators [9], Choquet integrals [3] and other fuzzy meas-
ure-based operators [7, 10].

In general, there are two categories of preferences: non-
ordered and ordered (or bi-polar). The non-ordered prefer-
ences mainly refer to weight preference (e.g., in MCDM 
problems), whereas the ordered (or bi-polar) preferences are 
majorly related to OWA and IOWA aggregation. Note that 
fuzzy measure-based aggregation operators (e.g., Choquet 
integrals) will use fuzzy measures (or capacities) [3] as their 
involved preferences which can simultaneously embody both 
non-ordered and ordered preferences. For a successful and 
accurate method of merging these two categories of prefer-
ences into fuzzy measures, one may refer to [11].

Given a vector of inputs, non-ordered preference allo-
cation mainly use some objective or subjective weighting 
techniques, whereas ordered preference allocation gener-
ates weights according to some inducing factors such as the 
magnitudes, certainty degrees, and chronological orders of 
the inputs. Recall that these inducing factors correspond to 
bi-polar preferences with different practical meanings: opti-
mism–pessimism preference, certainty strong–neutral pref-
erence, and time-related future–present preference, respec-
tively. Numerous OWA- and IOWA-related studies provide 
with variety of techniques to generate weights with inducing 
factors and inducing information [9, 12–14]. Put simply, if 
a bi-polar preference is over inputs with larger magnitudes 
(or earlier obtained), then we generally should assign more 
weights to those entries with larger magnitudes (or earlier 
obtained). In words, to comprehensively aggregate the given 
vector of uncertain information, we need a weight vector 
which is the embodiment or representation of the desired 
ordered preference or non-ordered preference.

As data can be aggregated, different preferences (and 
their corresponding weight vectors) can also be merged. On 
one hand, for non-ordered preferences, if they are with the 
same dimension, it is trivial to know that the convex combi-
nation of them is the most natural form. On the other hand, 
for different ordered preferences, since they may come from 
different practical meanings of inducing information such 
as magnitude order, certainty order, confidence order, and 
chronological order, the direct use of convex combination 
method apparently does not valid or reasonable. Neverthe-
less, with some special permutation-based technique [15], 
the aggregation operators and processes with ordered pref-
erences formally can be reformulated as non-ordered ones, 
which enable the convex combination of several different 

ordered preferences (or convex form of both ordered and 
non-ordered preferences), significantly facilitating and 
increasing the flexibility of preferences merging.

This work focuses on bi-polar preferences involved aggre-
gation operators and processes, although in some certain 
aggregation and decision stage we may also use a permuta-
tion-based technique to formally transform them into non-
ordered ones.

1.2  Multi‑source Induced Aggregation with Basic 
Uncertain Information

Instead of definite information, in practice uncertain infor-
mation is ever-increasingly pervasive in numerous areas. 
Some well-known numerical uncertain information includes 
interval information, intuitionistic fuzzy information [16], 
vague information [17], and the recently proposed basic 
uncertain information (BUI) [18, 19]. Basic uncertain 
information can serve as an uncertainty paradigm to gen-
eralize several kinds of uncertain information. In recent 
years, the theory of BUI has been further developed and 
applied [20–26]. A BUI granule is expressed with a pair 
(x, c) ∈ [0, 1]2 in which c is the certainty degree of the main 
value x. Certainty degree can flexibly have various mean-
ings. For instance, it may indicate the extent to which deci-
sion makers are confident, sure, certain or definite of the 
main values, whereas uncertainty degrees ( 1 − c ) can show 
the extents to which they are unconfident, unsure, uncertain, 
or indefinite of the main values.

The aggregation for uncertain information is with signifi-
cant importance and has been gradually studied during the 
past decades [7, 10, 27–30]. Be it as it may, the studies of 
bi-polar preference-based aggregations for uncertain infor-
mation are still insufficient and far from systematic.

Recall that when performing OWA aggregation, we only 
consider the magnitude information of inputs as the sole 
inducing factor, and once involving another inducing fac-
tor such as chronological information of input, it becomes 
IOWA aggregation. However, most of uncertain informa-
tion is with more complex forms. For example, a vector of 
interval information granules take the form ([ai, bi])ni=1 which 
may contain different kinds of inducing information includ-
ing (ai) , (bi) , (aibi) , (�ai + (1 − �)bi) and so on. Similarly, 
intuitionistic fuzzy information and vague information also 
contain several inducing factors since they are with the same 
mathematical structure as interval information though with 
differing practical meanings. Literature [12] discussed some 
convex combination methods to consider all the inducing 
factors and merge their respectively derived weight vec-
tors to generate a final single weight vector embodying all 
factors. However, the method to derive the special weights 
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to carry out the combination in BUI environment is not 
discussed.

With a vector of BUI granules ((xi, ci))ni=1 , there also 
may have several inducing factors such as (xi) , (ci) , (xici) , 
(min(xi, ci)) and so on. Therefore, ordered preferences can 
be based on any one of the mentioned inducing factors. 
Recently, some literatures consider and include the situ-
ation where no such bi-polar preference can be obtained 
[22, 31]. Besides, those literatures discuss and propose 
some methods to derive the special weights to carry out 
the combination of the weight vectors generated, respec-
tively, from different inducing factors. However, the limi-
tations therein are also clear. It points out that when dif-
ferent factors of preferences are obtained from a single 
expert, sometimes some subtle cognitive inconsistency 
may occur [31]. Although such cognitive inconsistency 
can be removed or ameliorated, actually some key infor-
mation for determining the special weights to carry out 
the combination may not always be obtained from a same 
group of experts. That is, when the special weights (to 
carry out the combination) cannot be obtained or elicited 
from experts who are requested to provide some of the 
information about bi-polar preference extents, the com-
bination method to merge different preferences (and their 
derived weight vectors) cannot work.

To address the above problem, this work will propose 
some auto-generation methods to obtain relative impor-
tance between each inducing factor and hence to perform 
the required convex combination form. These methods 
only need experts to provide with some certain types of 
information about the bi-polar preference extents for dif-
ferent inducing factors from which the relative impor-
tance between all inducing factors will be automatically 
derived in some reasonable and workable way. Under the 
same decision environment involving multiple experts, we 
consider three different ways to elicit some initial infor-
mation provided by experts, from which we further derive 
out the two parts of key information, bi-polar preference 
extents and relative information for inducing factors to 
determine a final weight vector for performing compre-
hensive evaluation over given vector of BUI granules.

The remainder of this work is organized as follows. 
Section  2 reviews some necessary knowledge and fixes 
some notations. In Sect. 3, some methodologies for pref-
erence and uncertainty involved information fusion are 
discussed as the basis and rational for the later proposed 
evaluation procedures. Section 4 discusses three methods, 
statistic method, distance method and linguistic variable 
method, to derive relative importance between differ-
ent inducing factors. Section 5 elaborates on the whole 
evaluation procedure. A numerical example is presented 
in Sect. 6. Section 7 concludes and remarks this work.

2  Preparations

This section reviews some necessary knowledge mainly 
about BUI and OWA aggregation, and fixes some notations 
for use throughout this work.

Definition 1 [18, 19] A BUI granule is with a pair (x, c) in 
which x ∈ [0, 1] is a main value and c ∈ [0, 1] the associ-
ated certainty degree to x. 1 − c ∈ [0, 1] is the associated 
uncertain degree of x.

Remark The BUI granule (x, 1) practically degenerates into 
the real number x because its full certainty is achieved for 
the main value x; conversely, the BUI granule (x, 0) tells the 
full uncertainty is reached for the main value x, and thus no 
substantial information is available for use.

� = (xi)
n
i=1

∈ [0, 1]n denotes a real valued vector of dimen-
sion n. The set of all BUI granules (x, c) is denoted by B . 
A BUI vector is denoted by (�, �) = (xi, ci)

n
i=1

∈ B
n , where 

� = (xi)
n
i=1

∈ [0, 1]n is a main vector and � = (ci)
n
i=1

∈ [0, 1]n 
is the certainty vector associated with x. A (normal-
ized) weight vector (of dimension n) is with the form 
� = (wi)

n
i=1

∈ [0, 1]n ( 
∑n

i=1
wi = 1 ), and the space of all such 

weight vectors of dimension n is denoted by W(n).
The weighted arithmetic mean for a vector of real values 

and BUI granules take the following modalities, respectively.

Definition 2 The weighted arithmetic mean (with weight 
vector w) (WAM) is defined with

Definition 3 [18] The BUI weighted arithmetic mean (with 
weight vector w) (BWAM) 𝖡𝖶𝖠𝖬� ∶ B

n
→ B is defined 

with

The well-known OWA operator is introduced by Yager and 
its original definition is below.

Definition 4 [8] (OWA operator) An OWA opera-
tor (of dimension n) with weight vector w is a mapping 
𝖮𝖶𝖠� ∶ [0, 1]n → [0, 1] such that

where � ∶ {1,… , n} → {1,… , n} is any suitable permuta-
tion on {1,… , n} such that x�(i) ≥ x�(j) whenever i < j.

(1)����(�) =

n∑

i=1

wixi.

(2)�����(�, �) =

(
n∑

i=1

wixi,

n∑

i=1

wici

)
.

(3)����(�) =

n∑

i=1

wix�(i),
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Yager also used orness/andness to numerically express 
the extent of optimism–pessimism preference contained in 
w. Note that orness/andness can be also flexibly used to indi-
cate the extents of preferences from other inducing factors.

Definition 5 [8] The orness/andness of any weight vector w 
(applied in OWA aggregation) is defined as follows

In this work, we do not discuss the formal definition of 
IOWA operators or IOWA aggregations for the reason that 
both OWA and IOWA aggregation can be equivalently 
expressed as WAM aggregation with some transformed 
weighted using some special techniques [15]. Recall that 
in Yager’s original definitions for IOWA, a vector of inputs 
consists of several pairs (like BUI granules) (xi;ti)ni=1 in which 
(xi)

n
i=1

 is the mainly concerned value for evaluating and 
assessing, and (ti)ni=1 is called an inducing vector or induc-
ing variable (information or factor). It is inducing variable 
that determine the weight allocation when a weight vector 
� = (wi)

n
i=1

 is obtained, which can be regarded as “ordered” 
to differentiate from a usual weight vector that is not related 
to ordered preference. Put simply, in IOWA-related weights 
allocation process, the weights in w with lower subscripts 
will be assigned to the pairs (xi;ti) that have bigger or smaller 
ti . For more specific weights allocation techniques related to 
OWA and IOWA aggregation, refers to [6, 32–34].

3  Some Methodologies for Preference 
and Uncertainty Involved Information 
Fusion

3.1  Bi‑polar Preferences Over Given Vector of Real 
Values

In WAM and formula (1), given a vector of real values, 
another prerequisite is a certain weight vector which actu-
ally can be derived from different means or have various 
meanings. For example, the vector w can be derived from 
some mathematical optimization method with certain appli-
cation backgrounds, from subjective opinions, from statistics 
or even directly from a mere identical discrete probability 
vector. The preferences derived from above mentioned 
methods can be subsumed into non-ordered preference. In 
WAM and formula (1), we can recognize that the “values” 

(4)orness (�) =

n∑

i=1

n − i

n − 1
wi,

(5)andness (�) =

n∑

i=1

i − 1

n − 1
wi = 1 − orness (�).

have taken their position in order of natural numbers prior 
to the “weights” positioning process; then, each determined 
weight is inserted into a suitable position corresponding to 
an existing value.

In contrast, Yager proposed the OWA (IOWA) aggrega-
tion and the weights determination mechanism which are 
based on ordered preferences or bi-polar preferences. Apart 
from the existing differences in practical meanings and back-
grounds, the major formative difference lies in that OWA 
(IOWA) weights determination method firstly determine a 
weight vector only according to a given preference degree 
(say, orness/andness), irrespective of the involved multiple 
agents or criteria. Then, with the determined weight vector, 
the OWA aggregation in (3) is practically a weight-value 
coordinating process in which “value” should be inserted 
into the suitable position where the“weight” have already 
taken position in order of natural numbers in advance.

Put simply, the weight vector � = (wi)
n
i=1

 used to perform 
OWA aggregation is “ordere” and thus, to avoid spoiling 
such “orde” (which entails that larger values in � = (xi)

n
i=1

 
correspond to the weights entries in the front positions of 
� = (wi)

n
i=1

 with lower subscripts), we have to reorder the 
value vector � = (xi)

n
i=1

 into the form �� = (x�
i
)n
i=1

= (x�(i))
n
i=1

 
whose entries with smaller subscripts just correspond to 
the weights entries with lower subscripts. In this sense, the 
value vector x can be seen as somewhat “passive” because 
the weight vector has been determined beforehand and the 
reordering of x will be done afterwards.

Orness/andness can be applied to measure the bi-polar 
preference strength. Usually, there are two preference modes: 
for the first one, larger orness values correspond to larger 
preference strengths, and smaller orness values to smaller 
preference strengths; for the second one, larger and smaller 
orness values correspond to larger preference strengths, and 
the orness values near 0.5 correspond to smaller preference 
strength. For example, when modeling optimism, we use the 
first mode; and when modeling the certainty strong–neutral 
preference, we may use a half range of orness values and the 
second preference mode usually applies well.

Given any weight vector w (used in OWA or IOWA 
aggregation), its orness/andness is unique. However, the 
converse is apparently not true. For example, suppose 
given a orness value � = 0.5 , with dimension 4 we have 
� = (0.25, 0.25, 0.25, 0.25) and � = (0.5, 0, 0, 0.5) , and then 
observe orness(�) = orness(�) = 0.5 but � ≠ � . Notwithstand-
ing several developed methods to generate weight vectors for 
OWA aggregation with given orness values, it is more con-
venient to use parameterized family of weight vectors. Recall 
for two weight vectors �1,�2 ∈ W

(n) , we say �1 ≤ �2 if and 
only if 

∑i

k=1
w1k ≤

∑i

k=1
w2k for all i ∈ {1,⋯ , n} (we speak 

of �1 < �2 if �1 ≤ �2 and �1 ≠ �2 ) [35]. It can be observed 
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that for any two weight vectors �1,�2 ∈ W
(n) , if �1 ≤ �2 then 

orness(�1) ≤ orness(�2) , whereas the reverse proposal does 
not hold. Nevertheless, recall that a (parameterized) family of 
weight vectors (in OWA/IOWA aggregation) {�<𝛼>}𝛼∈[0,1] 
[36] satisfies (I) �<𝛼1> < �<𝛼2> whenever 𝛼1 < 𝛼2 ; (II) 
orness(�<𝛼>) = 𝛼 for all � ∈ [0, 1] . The forgoing definition 
immediately implies that in practice using a certain family of 
weight vector guarantees both the differentiation and compari-
son of any two weight vectors whose orness values are distinct.

It deserves to emphasize that with a given weight vector 
� = (wi)

n
i=1

 (whose subscripts are in the order of natural num-
bers), if it is for OWA aggregation (or related weights alloca-
tion), then the weights with lower subscripts will correspond 
to the values with higher magnitudes, but if it is for IOWA 
aggregation (or related weights allocation), then the weights 
with lower subscripts will correspond to the values with the 
attached inducing variables that are bigger or smaller.

In this work, we mainly concern the two bi-polar pref-
erences: optimism–pessimism preference and certainty 
strong–neutral preference. The meaning for the first preference 
is clear; it refers to whether some decision maker prefers big 
input values or small input values. The related orness range is 
[0, 1] in which the maximum value 1 corresponds solely to the 
extreme optimism and the weight vector �∗ = (1,⋯ , 0) , and 
the minimum value 0 corresponds solely to the extreme pes-
simism and the weight vector �∗ = (0,⋯ , 1) . For any other 
orness value � ∈ [0, 1] , if 𝛼 > 0.5 , it is related to an optimistic 
attitude while if 𝛼 < 0.5 , it is related to a pessimistic attitude. 
As for the second preference, it is aimed for the inducing varia-
ble of certainty degrees in a vector of BUI granules. Note that in 
practice decision makers usually will not attach higher impor-
tance to those granules with lower certainties, then an orness 
range of [0.5, 1] is sufficient and reasonable; and the larger the 
orness, the more weights will be assigned to those granules with 
higher certainties and in this case orness 0.5 corresponds to 
the sole weight vector � = (1∕n,⋯ , 1∕n) and neutral attitude.

Note that with an obtained weight vector, we need not 
practically perform the OWA or IOWA aggregation with it. 
In this work, with obtaining such a weight, we only use it 
to carry out the corresponding weights allocation process, 
as we will see later, because the input vector of granules 
is of BUI wherein several inducing factors/variables exist 
and thus, a single weight vector cannot be directly and suf-
ficiently applied to aggregate the input vector.

3.2  Merging Ordered and Non‑ordered Preference

In formula (1), the involved weight vector w can be of any 
type. That is, the weight vector can be derived either from 

a single ordered preference (bi-polar preference) or from a 
single non-ordered preference. Moreover, the weight vec-
tor can also assume some merged form by merging several 
ordered or non-ordered preferences. Note that, however, 
once there is at least one ordered preference involved, then 
some permutation-based techniques should be applied to 
first re-transform into a consistent form in line with the 
order of the entries in the input vector. To clarify, within 
formula (3) we note that the weight vector � = (wi)

n
i=1

 is 
derived from an ordered preference; when we want to 
merge it with another weight vector � = (vi)

n
i=1

 used in 
weighted arithmetic mean, some ordering inconsistency 
arise. This is because in (3), the ith position corresponds 
to x�(i) , while in (1), the ith position corresponds to xi , 
and thus w and v cannot be merged directly unless after 
some permutation they all pertain to the same situation 
where the ith position corresponds to xi . To achieve this, 
we observe that in (3), there is an equivalent expression 
����(�) =

∑n

i=1
wix�(i) =

∑n

i=1
w�−1(i)xi = WA�� (�) , where 

�� = (w�
i
)n
i=1

= (w�−1(i))
n
i=1

 . Therefore, we can replace �′ 
with w and merge it with v to have the desired merged 
convex combination form ��� + (1 − �)� , which is con-
sistent because �′ and v are commensurable in sense that 
they both correspond to the same modality of weighted 
arithmetic mean where the ith position corresponds to xi.

Similarly, when we want to merge two weight vectors, 
� = (wi)

n
i=1

 and � = (vi)
n
i=1

 , both from ordered preference 
and used in (3), the involved permutation �� (for w) and 
�� (for v) are different and in generally inconsistent in sense 
that their ith positions correspond to x��(i) and x��(i) which 
may be with different subscripts. Therefore, we may still first 
obtain two intermediate weight vectors from w and v, namely, 
�� = (w�

i
)n
i=1

= (w��
−1(i))

n
i=1

 and �� = (v�
i
)n
i=1

= (v��−1(i))
n
i=1

 , and 
then take convex combination form of them by ��� + (1 − �)��.

4  Eliciting Initial Preference Information 
in Three Different Ways of Inquiry 
and Deriving Workable Weight Vectors

To derive relative importance between different inducing fac-
tors, this Section discusses three methods, statistic method, 
distance method and linguistic variable method from the mere 
bi-polar preference extents offered by decision makers. Each of 
them has advantages and disadvantages, and the third method 
serves as a trade-off between the first two methods. To show 
the establishment process of each method, we expound the 
ideas of them in turn, as well as the corresponding advantages 
and disadvantages, and summarize the relative feasibility and 
effectiveness of the language variable method.
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4.1  Statistic Method to Derive Relative Importance 
Between Different Inducing Factors

We first briefly outline some schematic evaluation process 
in the triple environment of multi-experts, subjective prefer-
ences and BUI. In literature [22], some questionnaire based 
method is used to elicit original information from experts 
to further carry out the weights determination procedure in 
that complex environment. With the input for aggregation 
being a vector of BUI granules (�, �) = (xi, ci)

n
i=1

 , a panel of 
experts are inquired and requested to answer the following 
three questions as rephrased in what follows:

However, literature [31] pointed out that requesting indi-
vidual expert to simultaneously answer Questions 1, 2 and 
3 may cause some cognitive inconsistency in certain seman-
tics. In actual, apart from this downside, in practice very 
frequently some experts even are not willing or unable to 
answer Question 3, while it is generally much easier for them 
to answer Question 1 and 2, due to the relative difficulty in 
answering Question 3.

Therefore, it is appealing that there are some methods that 
can only request experts to answer Questions 1 and 2 from 
which the information that would have been known from 
Question 3 can be automatically derived.

This subsection discusses a method using simple sta-
tistics. As presented in [31], we still assume M experts 
are inquired and each of them is with equal importance. 
Suppose for question 1 there are sO , sP and sN experts 
( sO + sP + sN = M ) who select “optimism”, “pessimism” 
and “neutral” preferences, respectively. Similarly, for ques-
tion 2 assume there are tS and tN experts ( tS + tN = M ) who 
select “strong” and “neutral” preferences, respectively.

Solely based on the above-elicited original information 
from experts as a whole, we can determine a normalized 
weight vector � = (qOP, qSN , qN) to indicate the relative 
importance of “optimism–pessimism preference” (cor-
responding to qOP ), “certainty strong–neutral preference” 
(corresponding to qSN ), and “indifference” (corresponding to 
qN ), respectively. Note that if an individual expert expresses 
“neutral” (attitude to the main input information (xi)ni=1 ), then 

he actually expressed the opinion of “indifference” to the 
bi-polar optimism–pessimism preference or of “none of 
the two preferences is important”. Hence, his opinion and 
vote should count for and contribute to “indifference” part 
to further form the weight vector q (i.e., corresponding to 
qN ). If he expresses either “optimism” or “pessimism”, then 
this amounts to indicating that he thinks “optimism–pes-
simism” preference is concerned and important. Therefore, 
all the opinions and votes with these two preferences should 
constitute “optimism–pessimism” part to further form the 
weight vector q (i.e., corresponding to qOP ). As for Question 
2, if an expert expresses “neutral” preference, in a similar 
reasoning, his opinion and vote should also count for and 

contribute to “indifference” part (i.e., corresponding to qN ). 
If he expresses “strong”, then this equals to indicating that 
he thinks “certainty strong–neutral” preference is concerned 
and important. Note that all the “votes” to “neutral” in both 
Question 1 and Question 2 will contribute to “none of them 
(indifference)” in the original Question 3, and thus sN + tN 
constitutes the proportion of qN . That is, any one expert actu-
ally has two “votes”, one for answering Question 1 and the 
other for Question 2, and having this in mind we can natu-
rally have the following formula based on simple statistics.

Observe that qOP + qSN + qN = 1.
The main advantage of this simple statistic method is 

that the invited experts can easily express their attitudes 
because there are only very few options for them to choose. 
The shortcoming of it, however, lies in that when the number 
of inquired experts is few, then the statistic result may not 
be convincing or even the inquiring process cannot actually 
workable.

(6)qOP =
sO + sP

2M
,

(7)qSN =
tS

2M
,

(8)qN =
sN + tN

2M
.
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The remaining task is to determine a desired numeri-
cal orness � for optimism–pessimism preference from the 
answers of experts to Question 1, and determine a reason-
able orness � to represent the preference strength for cer-
tainty strong–neutral preference from the answers of experts 
to Question 2. Still by simple statistic, we naturally have to 
use the following formulas.

In (9), we actually give coefficient 1, 0.5 and 0 to sO , sN 
and sP is because � represents optimism extent and sO is the 
number of the experts who are “optimism”, sP is the number 
of the experts who are “pessimism” and sN is the number of 
the expert who are neither optimism nor pessimism and thus 
using the middle point between 1 and 0, i.e., 0.5, appears to 
be more appropriate.

4.2  Distance Method to Derive Relative Importance 
Between Different Inducing Factors

In some circumstance, the expert resource is limited and there 
may be only few or even one expert who is available to be 
inquired. Hence, some methods that can accommodate to such 
circumstance are important and practical. In such circum-
stance, we should replace the original Question 1 and Question 
2 with the two new corresponding questions.

(9)� =
sO

M
+ 0.5

sN

M
,

(10)� =
tS

M
.

Suppose an individual expert could answer Questions 1 and 
2, and can indicate that � ∈ [0, 1] is his optimism extent for 
Question 1 and � ∈ [0.5, 1] is his expressed extent to which 
he prefer higher certainty degrees. Note that if � = 1 or � = 0 , 
then it is clear that he fully shows “optimism” or “pessimism” 
(as in the original Question 1) which implies “optimism–pes-
simism” preference as needed to be answered for the original 
Question 3 (i.e., corresponding to qOP ); if � = 0.5 , then this 
“neutral” preference actually implies “indifference” (corre-
sponding to qN ). On the other hand, if � = 1 , then it is also 

clear that he fully shows “strong” preferences (as in the origi-
nal Question 2) which implies “certainty strong–neutral” as for 
answering the original Question 3 (i.e., corresponding to qN ); 
if � = 0.5 , then this “neutral” preference also implies “indif-
ference” (corresponding to qN ). When � ∈ (0, 0.5) ∪ (0.5, 1) , 
then we can reasonably use the distance from it to 0.5 (i.e., 
d1 = 2 ⋅ |� − 0.5| with normalization to unit) to indicate the 
preference extent of “optimism–pessimism” to original Ques-
tion 3 (i.e., corresponding to qOP ); similarly, if � ∈ (0.5, 1) , 
we can also reasonably use the distance from it to 0.5 (i.e., 
d2 = 2 ⋅ (� − 0.5) with normalization to unit) to indicate the 
preference extent of “certainty strong–neutral” to original 
Question 3 (i.e., corresponding to qSN ). With above analysis, 
we have the following detailed formulas after some suitable 
normalization

The main advantage of this method is that it allows the situ-
ation where there is very few or even only one expert to 
answer questions to derive relative importance between dif-
ferent inducing factors. In this manner, with any individual 
expert, we can obtain � , � and � = (qOP, qSN , qN) accord-
ingly. When several experts are invited, we can take average 
form for these three types of information since they all allow 
combination and average forms.

4.3  Linguistic Variable Method to Derive Relative 
Importance Between Different Inducing Factors

The statistic method proposed in Sect. 4.1 requires any indi-
vidual expert to choose from three options (for Question 1) 
and two options (for Question 2), respectively, and thus, this 
may be lacking in precision when there are relatively few 
experts invited. In contrast, the method presented in Sect. 4.2 
requires any individual expert to choose from infinitely more 
options which belong to [0, 1] or [0.5, 1], which, though has 
fewer limiting on the number of experts invited, sometimes 

(11)qOP = |� − 0.5|,

(12)qSN = � − 0.5,

(13)qN = 1 − qOP − qSN .
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may be a harder choosing problem for experts. To balance 
the relative advantage and disadvantage as above, the use 
discrete linguistic variables that have finite linguistic scales 
is proposed, refer to [37].

We define that a symmetrical linguistic variable set with 
degree J ( J ∈ {1, 2,⋯} ) is expressed as an ordered set 
{lk}

J
k=−J

 . For example, to be applied as a scale to measure 
“optimism–pessimism” preference, we can have {lk}3k=−3 = 
3 very optimism, 2 optimism, 1 slightly optimism, 0 neu-
tral, − 1 slightly pessimism, − 2 pessimism, − 3 very pes-
simism, or {lk}2k=−2 = 2 very optimism, 1 optimism, 0 neutral, 
− 1 pessimism, − 2 very pessimism. As another form, we 
define that a unilateral linguistic variable set with degree J 
( J ∈ {1, 2,⋯} ) is expressed as an ordered set {lk}Jk=0 . For 
example, to serve as a suitable scale to measure “certainty 
strong–neutral” preference, we can have {lk}3k=0 = 3 very 
strong, 2 strong, 1 slightly strong, 0 neutral, or {lk}2k=0 = 2 
very strong, 1 strong, 0 neutral. With such setting, we may 
select the two new questions to ask experts.

When an option (answer) is obtained by an ordered 
set {lk}Jk=−J , with a preset numerical scale for it, we can 
derive an orness degree closely related to � by using a 
scale function, i.e., numerical optimism extent for Ques-
tion 1. That is, a desired numerical scale can be a mapping 
H ∶ {J, J − 1,… , 0,… ,−J + 1,−J} → [0, 1] such that 
(I) H is increasing; and (II) H(J) = 1 and H(−J) = 0 . For 
example, when {lk}2k=−2 = 2 very optimism, 1 optimism, 0 
neutral, − 1 pessimism, − 2 very pessimism, we may set a 
vector H = (1, 0.75, 0.5, 0.25, 0) . When an option (answer) 

is obtained by an ordered set {lk}Jk=0 , with a preset numeri-
cal scale for it, we can derive an extent degree � to which 
he prefers higher certainty degrees, i.e., numerical extent 
degree for Question 2. That is, a pertinent numerical scale in 
this setting can be a mapping H+ ∶ {J, J − 1,… , 0} → [0, 1] 
such that (I) H is increasing; and (II) H(J) = 1 and 
H(0) = 0.5 . For example, when {lk}3k=0 = 3 very strong, 2 
strong, 1 slightly strong, 0 neutral, we may appropriately set 
a vector H+ = (1, 0.8, 0.6, 0.5).

Subsequently, we analyze and derive relative importance 
between inducing factors in a similar manner to the distance 
method as discussed in the preceding subsection.

Assume an individual expert could answer Question 
1 and 2, and can indicate that � ∈ {lk}

2

k=−2
 is his opti-

mism extent choice for Question 1 and � ∈ {lk}
3

k=0
 is his 

expressed extent choice to which he prefers higher cer-
tainty degrees. Note that if � = ±2 (i.e., “2 very optimism” 
or “− 2 very pessimism”), then it is clear that he fully 
shows “optimism” or “pessimism” (as in the original 

Question 1) which implies “optimism–pessimism” prefer-
ence as needed to be answered for the original Question 
3 (i.e., corresponding to qOP ); if � = 0 (i.e., “0 neutral”), 
then this “neutral” preference actually implies “indiffer-
ence” (corresponding to qN ). On the other hand, if � = 3 
(i.e., “3 very strong”), then it is also clear that he fully 
shows “strong” preferences (as in the original Question 2) 
which implies “certainty strong–neutral” as for answer-
ing the original Question 3 (i.e., corresponding to qSN ); 
if � = 0 (i.e., “0 neutral”), then this “neutral” preference 

Table 1  Comparison of the three methods

Methods Advantages Disadvantages

Statistic method Ease of expression of experts’ attitudes (1) Limited expert resource (2) Unconvincing 
statistic result or even unworkable inquiring 
process.

Distance method (1) Few limits of expert resource (2) Combination and average 
forms

Hard choosing problems for experts

Linguistic variable method (1) Combination and average forms (2) Easily expression of 
experts’ attitudes (3) Few limits of expert resource (4)Convinc-
ing statistic results

Further improvement chances



International Journal of Computational Intelligence Systems          (2022) 15:108  

1 3

Page 9 of 12   108 

also implies “indifference” (corresponding to qN ). When 
� = ±1 , then we can reasonably use the distance from it to 
H(0) = 0.5 (i.e., d1 = 2 ⋅ |H(�) − H(0)| with normalization 
to unit) to indicate the preference extent of “optimism–pes-
simism” to original Question 3 (i.e., corresponding to qOP ); 
similarly, if � ∈ {2, 1} , we can also reasonably use the dis-
tance from it to H+(0) (i.e., d2 = 2 ⋅ (H+(�) − H+(0)) with 
normalization to unit) to indicate the preference extent of 
“certainty strong–neutral” to original Question 3 (i.e., cor-
responding to qSN ). With above analysis, we have the fol-
lowing detailed formulas after some suitable normalization

4.4  Discussion of the Three Methods

These three methods have different advantages and disad-
vantages, shown in Table 1. The linguistic variable based 
method serves as a trade-off between the two methods pro-
posed beforehand. When several experts are invited, we can 
take average form for these three types of information since 
there all allow combination and average forms. In the actual 
application process, one of the methods can be selected 
according to different situations.

5  The Complete Evaluation Process 
Encompassing the Forgoing Analyses

This section provides with a complete evaluation and deci-
sion-making procedure with bi-polar preferences involved 
aggregation in BUI and multi-agent environments in a sys-
tematic way. The whole evaluation process chooses to use 
linguistic variable method as presented in Sect. 4.3 and con-
tains some main stages, each of which may have several 
sub-steps.

Stage I Information, preference collection and preparation
Step 1.1 Collect a vector of n BUI granules 

(�, �) = (xi, ci)
n
i=1

∈ B
n.

Step 1.2 Invite a group of M experts and request them to 
merely provide the two questions as put in Sect. 4.3.

Step 1.3 Require each expert j ( j = 1,⋯ ,M ) to give 
an answer �j from linguistic variable set {lk}2k=−2 = 2 very 
optimism, 1 optimism, 0 neutral, – 1 pessimism, – 2 very 
pessimism.

(14)qOP = |H(�) − H(0)|,

(15)qSN = H+(�) − H+(0),

(16)qN = 1 − qOP − qSN .

Step 1.4 Require each expert j ( j = 1,⋯ ,M ) to give 
an answer �j from linguistic variable set {lk}3k=0 = 3 very 
strong, 2 strong, 1 slightly strong, 0 neutral.

Stage II Preference elicitation, orness derivation and the 
determination of relative importance between inducing 
factors and indifference factor

Step 2.1 For each expert j ( j = 1,⋯ ,M ), obtain orness 
H(�j) for his optimism–pessimism preference. Take the 
average of H(�j) to obtain H(�) =

1

M

∑M

j=1
H(�j).

Step 2.2 For each expert j ( j = 1,⋯ ,M ), obtain orness 
H+(�) to represent his preference strength for certainty 
strong–neutral preference. Take the average of H+(�j) to 
obtain H+(�) =

1

M

∑M

j=1
H+(�j).

Step 2.3 For each expert j ( j = 1,⋯ ,M ), from (14), (15) 
and (16), respectively, to derive a normalized weight vec-
tor �j = (qj_OP, qj_SN , qj_N) to indicate, from his perspective, 
the relative importance of “optimism–pessimism prefer-
ence”, “certainty strong–neutral preference”, and “indif-
ference”, respectively. Take the average of �j to obtain 
� =

1

M

∑M

j=1
�j.

Stage III Weight vector obtaining and permuting
Step 3.1 Using the obtained � and � , immediately obtain 

the three weight vectors �<H(𝛼)> , �<H+(𝛽)> and a, where 
�<H(𝛼)> is from a certain (parameterized) family of vectors 
{�<𝛼>}𝛼∈[0,1] , �<H

+(𝛽)> is also from the half of this family 
of vectors {�<𝛽>}𝛽∈[0.5,1] , and �<0.5> = � = (1∕n)n

i=1
 . This 

is because it is reasonable for “indifference” of expert to 
correspond to a with Laplace decision criterion. For more 
detailed explanations, refer to literature [22].

Step 3.2 As analyzed in Sect. 3.2, with the obtained 
�<H(𝛼)> , we should permute it into a new permuted vector 
�� = (r�

i
)n
i=1

= (r
<H(𝛼)>

𝜎−1(i)
)n
i=1

 according to the magnitudes of 
(xi)

n
i=1

 such that � ∶ {1,⋯ , n} → {1,⋯ , n} is any suitable 
permutation satisfying x�(i) ≥ x�(j) whenever i < j.

Step 3.3 As analyzed in Sect. 3.2, with the obtained 
�<H

+(𝛽)> , we should also permute it into a new permuted 
vector ��� = (r��

i
)n
i=1

= (r
<H+(𝛽)>

𝜂−1(i)
)n
i=1

 according to the magni-
t u d e s  o f  c e r t a i n t i e s  (ci)

n
i=1

 s u c h  t h a t 
� ∶ {1,⋯ , n} → {1,⋯ , n} is any suitable permutation sat-
isfying c�(i) ≥ c�(j) whenever i < j.

Stage IV BUI aggregation and decision-making (this stage 
is the virtually identical to Stage IV of the decision proce-
dure in literature [22])
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Step 4.1 Take the convex combination form using q 
to obtain a final weight vector � = qOP�

� + qSN�
�� + qN� , 

which can comprehensively embody all the involved pref-
erences and opinions.

Step 4.2 Performing BWAM by (2) with w and 
(�, �) = (xi, ci)

n
i=1

 , obtain one final comprehensively merged 
BUI granule (x, c) = BWAM�(�, �) =

�∑n

i=1
wixi,

∑n

i=1
wici

�
.

Step 4.3 Do some necessary comparison, judgments or 
decision makings according to the obtained merged BUI 
granule(s). For example, rules-based decision-making 
[38–41] can be suggested to use in a wide range of evalua-
tion problems with uncertainties involved.

6  A Numerical Example in Product 
Management

In this part, we demonstrate the usage of the previously pro-
posed evaluation procedure with numerical case with the 
same background of manufacture management as in litera-
ture [22] to make some comparison.

Stage I Information, preference collection and preparation
Step 1.1 Still assume that a company needs to decide 

if one certain product should be considered to manufac-
ture. The decision will be made according to the mar-
ket share prediction of that product. The predictions are 
still collected from a group of n = 4 different investiga-
tors and they may show differing uncertainties about 
their respective predictions. This assumption allows the 
information to be expressed by a vector of BUI granules 
(�, �) = (xi, ci)

4

i=1
= ((0.6, 0.7), (0.5, 0.3), (0.3, 0.8), (0.8, 0.6))  , 

in which (xi, ci) is obtained from the information communi-
cated by investigator i so that he feels the market share of the 
product next year will be around 100xi% but with confidence 
about 100ci%.

Step 1.2 Assume the executive consults with a panel of 
M = 6 experts of this company about the two questions pro-
posed in Sect. 4.3.

Step 1.3 Suppose the six experts give their answers to 
Question 1 from linguistic variable set {lk}2k=−2 : �1 = �2 = 2 , 
�3 = �5 = 0 , �4 = 1 and �6 = −1 , with the orness degrees: 
H(�1) = H(�2) = 1 , H(�3) = H(�5) = 0.5 , H(�4) = 0.75 and 
H(�6) = 0.25.

Step 1.4 Suppose they also give their answers to Question 
2 from linguistic variable set {lk}3k=0 : �1 = 2 , �2 = �5 = 0 , 
�3 = 3 , �4 = �6 = 1 , with the orness degrees: H+(�1) = 0.8 , 
H+(�2) = H+(�5) = 0.5 , H+(�3) = 1 , H+(�4) = H+(�6) = 0.6.

Stage II Preference elicitation, orness derivation, and the 
determination of relative importance between inducing fac-
tors and indifference factor

Step 2.1 Take the average of H(�j) to obtain an overall 
orness H(�) =

1

M

∑M

j=1
H(�j) = 2∕3.

Step 2.2 Take the average of H+(�j) to obtain 
H+(�) =

1

M

∑M

j=1
H+(�j) = 2∕3.

Step 2.3 For each expert j ( j = 1,⋯ ,M  ), from 
(14), (15) and (16), respectively, to derive a normal-
ized weight vector �j = (qj_OP, qj_SN , qj_N) . By com-
puting, we have �1 = (0.5, 0.3, 0.2) , �2 = (0.5, 0, 0.5) , 
�3 = (0, 0.5, 0.5) ,  �4 = (0.25, 0.1, 0.65)  ,  �5 = (0, 0, 1) , 
�6 = (0.25, 0.1, 0.65) . Take the average of �j to obtain 
� =

1

M

∑M

j=1
�j

.
= (0.25, 0.167, 0.583).

Stage III Weight vector obtaining and permuting
Step 3.1 We still choose to use the recursive fam-

ily of weight vectors {�<𝛼>}𝛼∈[0,1] [34]. Then, we have 
�<H(𝛼)> = �<2∕3> = (0.4, 0.3, 0.2, 0.1) . Likewise, we adopt 
half of this family of vectors {�<𝛽>}𝛽∈[0.5,1] and then obtain 
�<H

+(𝛽)> = �<2∕3> = (0.4, 0.3, 0.2, 0.1).
Step  3 .2  & Step  3 .3  Af te r  re -per mut ing 

w e  h a v e  �� = (r�
i
)4
i=1

= (0.3, 0.2, 0.1, 0.4)  a n d 
��� = (r��

i
)4
i=1

= (0.3, 0.1, 0.4, 0.2).

Stage IV BUI aggregation and decision-making
S t e p  4 . 1  W i t h  � = (0.25, 0.25, 0.25, 0.25) 

a n d  o b t a i n e d  �
.
= (0.25, 0.167, 0.583)  ,  we  g e t 

� = qOP�
� + qSN�

�� + qN� = (0.27085, 0.21245, 0.23755, 0.27915).
Step 4.2  Last ly,  car ry out  BWAM by (2) 

w i t h  w  a n d  (�, �) = (xi, ci)
n
i=1

 ,  we  o b t a i n  a 
f ina l  comprehens ive ly  merged  BUI  g ranule 
(x, c) = �����(�, �) =

�∑n

i=1
wixi,

∑n

i=1
wici

�
= (0.56332, 0.61086).

Step 4.3 With the obtained resultant BUI granule 
(x, c) = (0.4851, 0.652) we can also do further assessment 
and take corresponding decisions according to rules-
based decision-making [38–41]. If the threshold is preset 
such that if the predicted market share is more than 40% 
with confidence larger than 60%, then the product should 
be suggested to manufacture. Hence, the BUI granule 
(x, c) = (0.56332, 0.61086) represents the predicted market 
share is about 56.332% with approximately 61.086% con-
fidence, and thus the product is suggested to manufacture.

7  Conclusion

If bi-polar preferences and uncertainty arise simultane-
ously in evaluation, the consideration of relative importance 
between different inducing factors (inducing variables) is 
inevitable. Put simply, there usually involves two inducing 
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factors, main values and their certainty degrees, together 
with indifference which corresponds to Laplace decision 
criterion. Recently few literatures proposed some decision 
methods and evaluation procedures that presuppose the 
invited experts can provide some direct information that 
can be elicited and transformed into the required relative 
importance between the two mentioned inducing factors and 
indifference factor. Nevertheless, apart from some possible 
cognitive inconsistency, frequently the experts inquired may 
be not able to provide the information to obtain the required 
relative importance notwithstanding that the bi-polar prefer-
ences can be available.

Based on the adapted two questions for experts to answer, 
this work proposed three methods, statistic method, distance 
method, and linguistic variable method, to derive relative 
importance between the two inducing factors and indiffer-
ence factor. The first method does this from simple descrip-
tive statistics and thus it might become unsuitable when the 
number of the invited experts is few. The second method 
uses the distance from the preference extent to the neutral 
attitude indirectly to derive the required relative importance; 
it can be performed with only one expert, but sometimes the 
preference extent is hard to be answered from the expert due 
to choosing difficulty or dilemma. The third method using 
linguistic variable is a compromise between the other two 
methods.

The detailed evaluation procedure is presented with 
numerical example to compare the proposed methods with 
the existing ones in literatures. The methods can be applied 
in more detailed problems which allow for uncertainty 
and bi-polar preferences. However, the proposed methods 
may fail when the vector of inputs cannot be of BUI form; 
besides, the proposed evaluation processes have not con-
tained any negotiation mechanism when facing the complex 
group decision-making environment.

Based on the above analysis, this paper proposes some meth-
ods to solve the problem that decision makers cannot provide the 
relative importance needed in the basic uncertain information 
environment. The specific contributions are as follows: 

(1) This paper addresses the research gap based on bi-polar 
preference aggregation of uncertain information, and 
proposes a sufficient and systematic research method 
to measure bi-polar preferences involved aggregation 
operators and processes.

(2) This study proposes the method of deriving the special 
weights to carry out the combination in BUI environ-
ment to eliminate or ameliorate cognitive inconsist-
ency.

(3) This paper considers three different approaches to 
elicit some initial information provided by experts, 
from which we further derive out the two parts of 
key information, bi-polar preference extents and rela-

tive information for inducing factors to obtain relative 
importance between each inducing factor and hence to 
perform the required convex combination form.

(4) This study provides detailed evaluation procedure and 
numerical example to illustrate and verify the feasibil-
ity.
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