

Contents

ID:1 Prior Knowledge Modeling for Joint Intent Detection and Slot Filling

ID:2 Distributed adaptive virtual impedance control for power sharing in industrial microgrids with complex impedances

ID:3 Unmanned powered parafoil system altitude control via DDPG-optimized linear active disturbance rejection controller

ID:4 Comprehensive Minimum Cost Consensus for Analyzing Different Agreed Solutions

ID:5 Nano-scPLA: an efficient nucleating agent and reinforcement for sustainable green polymer poly(lactic acid)

ID:6 Application of Deep Dictionary Learning in automatic classification of woven fabric texture

ID:7 Asymmetric distance-based Comprehensive Minimum Cost Consensus Model

ID:8 Fully Reusing Clause Method Based Standard Contradiction Separation Rule

ID:9 Modeling and Analysis of Networked Discrete Event Systems by Petri Nets

ID:10 Acoustic manipulation simulation based on the method of Deep Reinforcement Learning

ID:11 A model-free synchronization solution for linear discrete-time multi-agent systems based on A3C algorithm

ID:12 A Hierarchical Reconciliation Least Square Method for Linear Regression

ID:13 An Improved Contradiction Separation Dynamic Deduction Method Based on Complementary Ratio

ID:14 Distributed cooperative SLAM with adaptive Kalman fliter and dynamic consensus

ID:15 ADRC path following control based on double deep Q-network for parafoil system

ID;16 A Transmission Line Icing Prediction Method Based on Informer Attention Learning

ID:17 Learning Competitive Relationships with Relative Advantage Enhanced with Consumers' Perspective: A Heterogeneous Network Embedding Method

ID:18 A Lifelong Spectral Clustering Based on Bayesian Inference

ID:19 Prediction of Crowdfunding Project Success: An Interpretable Deep Learning Model Enhanced with Persuasion Effect

ID:20 Formation Problem of First-order Multi-agent Systems with Bounded Control Input

ID:21 Correlation analysis of traffic accidents based on multiple model fusion

ID:22 Recognition of train hydraulic brake oil level and reservoir water level based on FCOS and HSV algorithm

ID:23 Unsupervised clustering ensemble for traffic level prediction

ID:25 Graph Learning for Incomplete Multi-view Spectral Clustering

ID:26 Class-imbalance data preprocessing based on Generative Adversarial Networks

ID:27 Entity alignment between knowledge graphs via contrastive learning

ID:28 A Missing Value Filling Model Based on Feature Fusion Enhanced Autoencoder

ID:29 Unsupervised clustering ensemble for traffic level prediction

ID:30 Fuzzy Lattice Reasoning (FLR) for decision-making on an ontology of constraints toward agricultural robot harvest

ID:31 Online classification and diagnosis of COVID-19 symptoms by using an intelligent wearable system

ID:32 Influence of potential multi-condition data on soft sensor modeling

ID:33 A New Fuzzy Trapezoidal Naive Bayes Network as basis for Assessment in Training based

on Virtual Reality

ID:34 Pixel-by-pixel classification of edges with machine learning techniques

ID:35 New Rules for Combining Classifiers Using Fuzzy Majority and Plurality Voting

ID:37 A linguistic ELECTRE III method for heterogeneous multicriteria ranking problems

ID:38 Digital twin for energy optimization in the paper drying process based on genetic algorithm and CADSIM Plus

ID:39 A Coupled-Inductor-Network-Based High-step-up Converter for renewable energy

ID:40 A High-Frequency Input CCM PFC Converter for Bypass Switch Cabinet

ID:41 Assessing Drivers' Hazard Prediction Ability: A Multiple Layer Dea Application

ID:42 BERT-RS: A Neural Personalized Recommender System with BERT

ID:43 HOUSEHOLD MICRO-GRID FRAMEWORK AND GOSSIP POWER OPTIMIZATION ALGORITHM

ID:44 A Semi-Supervised Learning Method with Attention Mechanism for Pancreas Segmentation **ID:46** A Named Entity Recognition Model Based on Context and Multi-Granularity Feature Fusion for Chinese Medical Text

ID:47 Latest Research Trends of Wearable Sensor based Data Modeling for Fall Risk Prediction in Community-dwelling Elderly

ID:48 ExpandDetector: A Novel Platform of Android Malware Intelligent Detection

ID:49 Formal Modeling of Mobile Agent Control System in Uncertain Environment

ID:50 Lightweight fusion channel attention convolutional neural network for helmet recognition

ID:51 Research on the coordination of logistics service supply chain with the participation of Noncar Operating Carrier

ID:53 Risk Evaluation of Differential Security Checks for Metro

ID:54 Evaluation of a financial technology project decision in the central bank of Oman by the multistage one-shot decision-making approach

ID:55 Scoped Literature Review of Artificial Intelligence Marketing Adoptions for Ad Optimization with Reinforcement Learning

ID:56 Exploring Consumers' Discernment Ability of Autogenerated Advertisements

ID:57 Bearing Fault Diagnosis Based on STFT-SPWVD and Improved Convolutional Neural Network

ID:58 Dynamic Document Clustering Method Based on Neighborhood System and Text Connotation

ID:59 A principle of clause elimination: multi-literal implication modulo resolution

ID:60 Collaborative Control Model of Automatic Intersection based on Vehicle Networking Environment

ID:62 Treelet-edge-weighted graph neural network for premise selection in first-order logic

ID:63 Enable Anomaly detection in Electroplating

ID:64 Examining QFD based Omnichannel Capacity of Service Industries with Interval Type-2 Hesitant DEMATEL-TOPSIS

ID:66 Detection of Oocyte Nucleus Motion Based on Mean Drift Algorithm

ID:69 Component Preserving and Adaptive Laplacian Eigenmaps for Data Reconstruction and Dimensionality Reduction

ID:70 Rule Extraction Based on Fuzzy Linguistic Concept Knowledge

ID:71 Linguistic Truth-valued Fuzzy Negation Operator Based on Lattice Implication Algebra

ID:72 Intelligent assessment approach to garment fit degree for garment e-mass customization using probabilistic neural network

ID:74 TOPSIS decision making method based on linguistic formal context with fuzzy object

ID:75 The Best of Translation: RNN-based Machine Translation and Post-editing

ID:77 A transmission line tension prediction model based on auxiliary information

ID:78 Some discussions of Yager preference aggregation with uncertainty

ID:79 Differential Evolution Variants for finding D-optimal Designs

ID:80 Intelligent computational techniques for implementation of sustainable circular economy: review and perspectives

ID:81 Research on the Restoration of Costumes in the Paintings of Ladies in the Ming Dynasty

ID:82 Designing Wearables for Assistive Correction of Children's Sitting Posture

ID:83 Interactive Game-based Device for Sustainability Education Among Teenagers

ID:84 A Generalized Linguistic Variable and A Generalized Fuzzy Set GFScom

ID:85 Deep Learning-based Facial Expression Recognition

ID:86 Sustainability Driven Apparel Supplier Selection

ID:87 Research on the system of smart wearable design factors for aging in place in the sustainable perspective

ID:88 Ensemble Transfer Learning For Plant Leave Disease Identification

Author Indexes

A

H. Alm	ID:56
M. A. AL-SHANFARI	ID:54
Munir Ashraf	ID:82

<u>B</u>

Qiong Bao	ID:41
T. V. V. Batista	ID:35
B. R. C. Bedregal	ID:35
Bin Bian	ID:21
Tuba Bozaykut Bük	ID:64
Pascal Bruniaux	ID:72
Qinglei Bu	ID:83

<u>C</u>

Feng Cao	ID:8
Qi Cao	ID:57
Javier Castro	ID:34
Jorge Anselmo	Rodríguez
Castro	ID:37
Erliang Chai	ID:39
Erliang Chai	ID:40
Erliang Chai	ID:43
Taiqian Chai	ID:75
Guoqing Chen	ID:17
Guoqing Chen	ID:19
Jing Chen	ID:84
M. Chen	ID:47
Menging Chen	ID:75
Shuwei Chen	ID:8
Shuwei Chen	ID:13
Tailin Chen	ID:39
Tailin Chen	ID:40
Tailin Chen	ID:43
Qiuyang Chen	ID:22
Xiaohui Chen	ID:27
Zhen-Song Chen	ID:78
Zengqiang Chen	ID:3
Zengqiang Chen	ID:11
Zengqiang Chen	ID:15
BoQing Chu	ID:53

<u>D</u>	
Hasan Dinçer	ID:6
Weihong Ding	ID:2
Yu Ding	ID:6
Shanshan Dong	ID:2
Bo Du	ID:7
Shengdong Du	ID:2
Shengdong Du	ID:2
Feng Duan	ID:1
<u>E</u>	
Philipp Egger	ID:6
<u>F</u>	
Ye Fan	ID:3
Jodavid A. Ferreira	ID:3
Pablo Flores	ID:3

Xiaosong Cui

Philipp Egger	ID:6
F	

Ye Fan	ID:39
Jodavid A. Ferreira	ID:33
Pablo Flores	ID:34
Zhanru Fu	ID:39
Zhanru Fu	ID:40
Zhanru Fu	ID:43

G

Fei Gao	ID:81
Diego Garcıa-Zam	nora ID:4
Daniel Gómez	ID:34
Bo Gong	ID:16
Bo Gong	ID:77
Jin Guo	ID:21
Jin Guo	ID:23
Jin Guo	ID:29
Shiliang Guo	ID:2
Qing Guo	ID:70
<u>H</u>	

Ran Hao Ran Hao Jinqiang He Jinqiang He Wen He Xia He Xinging He Zhenglei He

ID:70	Zhenglei He	ID:38
	J. Holgersson	ID:55
	J. Holgersson	ID:56
ID:64	Mengna Hong	ID:32
ID:22	Mengna Hong	ID:38
ID:69	Chunning Hou	ID:1
ID:21	Tie Hou	ID:71
ID:79	WIN SANDAR HTAY	ID:25
ID:27	Jie Hu	ID:27
ID:28	Huan Huang	ID:16
ID:15	Huan Huang	ID:77
	Zenghao Huang	ID:16
	Zenghao Huang	ID:77
ID:63	Zongshan Huang	ID:18

J

Guang Ji	ID:53
Zhen Jia	ID:46
Xiaodong Jiao	ID:10
LeSheng Jin	ID:78
Nkengue Marc Junior	ID:31

<u>K</u>

V. G. Kaburlasos	ID:30
Ranjith Thaivalappil Karu	
	ID:88
Yuting Kan	ID:75
Ludovic Koehl	ID:31

L

10.21		
ID:23	Alvaro Labella	ID:4
ID:29	Yongqi Lan	ID:62
ID:2	Biao Li	ID:22
ID:70	Caizheng Li	ID:44
	Chongshou Li	ID:12
	Jigeng Li	ID:32
ID:23	Jigeng Li	ID:38
ID:29	Jinpeng Li	ID:1
ID:16	Tianrui Li	ID:12
ID:77	Tianrui Li	ID:28
ID:7	Tianrui Li	ID:46
ID:75	Qing Li	ID:82
ID:62	Ruihai Li	ID:16
ID:32	Ruihai Li	ID:77

Xiaoning Li	ID:81	Luis Martinez	ID:4	J. Sahlin	ID:55
Ye Li	ID:11	Luis Martinez	ID:7	J. Sahlin	ID:56
Yueying Li	ID:23	Luis Martinez	ID:64	Jingsong Shan	ID:22
Yueying Li	ID:29	Luis Martinez	ID:78	Qingqing Shao	ID:6
Y. Li	ID:20	Hua Meng	ID:69	Yongjun Shen	ID:41
Guibin Liao	ID:39	G. Mbiydzenyuy	ID:55	G. Siavalas	ID:30
Guibin Liao	ID:40	G. Mbiydzenyuy	ID:56	Chengfu Sun	ID:22
Guibin Liao	ID:43	Baofeng Miao	ID:39	Hao Sun	ID:3
Xiong Liao	ID:46	Baofeng Miao	ID:40	Hao Sun	ID:10
Eng Gee Lim	ID:83	Baofeng Miao	ID:43	Jie Sun	ID:83
Hongyi Liu	ID:57	Yuhao Mo	ID:44	Meiqiao Sun	ID:74
Jun Liu	ID:49	Ronei M. Moraes	ID:33	Mingwei Sun	ID:3
Kaixuan Liu	ID:81	Ronei M. Moraes	ID:35	Qinglin Sun	ID:3
P. Liu	ID:59	NT		Qinglin Sun	ID:10
Pengsen Liu	ID:71	<u>N</u>		Qinglin Sun	ID:15
Peiyao Liu	ID:8	X. Ning	ID:59	C. Suhonen	ID:56
Peiyao Liu	ID:57	Hadi Parayil Nisar	nudeen	H. Sundell	ID:55
Shasha Liu	ID:51		ID:85	H. Sundell	ID:56
Xinyao Liu	ID:28	Jesús Jaime Solano N	loriega	т	
XueYing Liu	ID:53		ID:37	<u>T</u>	
Y.W. Liu	ID:66	0		KayChen Tan	ID:79
Qingkun Liu	ID:71	<u>0</u>		Chao Tang	ID:26
Zhongxin Liu	ID:11	Moussab Orabi	ID:63	Jianfei Tang	ID:48
Arthur R. R. Lopes	ID:33	р		Jin Tao	ID:3
Juan Carlos Leyva	López	<u>P</u>		Xuyuan Tao	ID:31
	ID:37	T. Pachidis	ID:30	Xuyuan Tao	ID:72
Luis Martínez López	z ID:37	Kaixin Pan	ID:22	Fei Teng	ID:27
Zhiguo Long	ID:69	Kuo Pang	ID:70	Fei Teng	ID:28
Jie Lu	ID:42	Bo Pang	ID:26	Fei Teng	ID:44
Kezhi Lu	ID:42	Bo Peng	ID:44	S. Theocharis	ID:30
Yifan Lu	ID:70	0		S'ebastien Thomass	ey ID:63
Zhengyang Lu	ID:87	Q		Jinyu Tian	ID:50
J. Luo	ID:47	Jiwei Qian	ID:32	Ye Tian	ID:79
Xiangfeng Luo	ID:1	Jiwei Qian	ID:38	Minjie Tong	ID:5
C. Lytridis	ID:30	Xiaoping Qiu	ID:51	Lyuyang Tong	ID:79
Ъſ		Chang Qu	ID:74	Kim Phuc Tran	ID:63
<u>M</u>		D			
Bomou Ma	ID:5	<u>R</u>		\mathbf{W}	
Kai Ma	ID:2	Ruoan Ren	ID:87	H. Wang	ID:47
Shuxia Ma	ID:69	Rosa M. Rodriguez	ID:4	Hongjun Wang	ID:21
Xue Ma	ID:62	Rosa M. Rodriguez	ID:7	Hongjun Wang	ID:23
Liliane S. Machado	ID:33	Rosa M. Rodriguez	ID:64	Hongjun Wang	ID:26
	10.44	C			

ID:29

ID:21

Hongjun Wang

Jian Wang

Yi Man

Yi Man

ID:32

ID:38

<u>S</u>

Jian Wang	ID:23	Ronald R. Yager	ID:78	Yiling Zhang	ID:25
Jian Wang	ID:29	Ling Yan	ID:58	Yishui Zhang	ID:32
Jun Wang	ID:6	Ling Yan	ID:60	Yishui Zhang	ID:38
Keming Wang	ID:49	Chengwang Yang	ID:14	Yudian Zhang	ID:87
Xia Wang	ID:49	Dongqiang Yang	ID:71	Zhipeng Zhang	ID:9
Xueli Wang	ID:5	Jie Yang	ID:2	Hailiang Zhao	ID:58
Zhujun Wang	ID:72	Lei Yang	ID:84	Hailiang Zhao	ID:60
Z.Q. Wang	ID:66	Xinran Yang	ID:71	Jianyang Zhao	ID:22
Qiang Wei	ID:17	Yan Yang	ID:18	Hui Zhao	ID:48
Qiang Wei	ID:19	Yan Yang	ID:25	Peng Zhao	ID:2
Yi Wen	ID:16	Z. Q. Yang	ID:20	X. Zhao	ID:66
Yi Wen	ID:77	E. H. K. Yeung	ID:47	X.F. Zhao	ID:66
WengKee Wong	ID:79	Hang Yu	ID:1	Y. Zhao	ID:47
G. Wu	ID:59	L. Yu	ID:47	Hongliang Zheng	ID:74
Guanfeng Wu	ID:49	Haoyu Yuan	ID:19	Yuemin Zheng	ID:3
Guanfeng Wu	ID:57	Serhat Yüksel	ID:64	Xiaomei Zhong	ID:62
Jianrong Wu	ID:16	7		Yuxin Zhong	ID:26
Jianrong Wu	ID:77	<u>Z</u>		Dengjie Zhu	ID:16
Lechen Wu	ID:83	Guoyan Zeng	ID:13	Hong Zhu	ID:15
Ke Wu	ID:9	Guoyan Zeng	ID:62	Zhongyi Zhu	ID:86
Yanjiao Wu	ID:51	Xianyi Zeng	ID:6	Li Zou	ID:70
V		Xianyi Zeng	ID:15	Li Zou	ID:74
X		Xianyi Zeng	ID:31		
Chengyi Xia	ID:9	Xianyi Zeng	ID:72		
Jie Xian	ID:58	Xianyi Zeng	ID:80		
Jie Xian	ID:60	Xianyi Zeng	ID:86		
Linying Xiang	ID:14	Zhiqiang Zeng	ID:50		
Shaorong Xie	ID:1	Zegang Zhai	ID:41		
Y. Xie	ID:59	Cong Zhang	ID:12		
Guan Xin	ID:75	Fan Zhang	ID:46		
Bo Xing	ID:6	Guangquan Zhang	ID:42		
Yingmei Xing	ID:72	Hanlin Zhang	ID:69		
Mei Xiong	ID:39	Hourong Zhang	ID:16		
Mei Xiong	ID:40	Hourong Zhang	ID:77		
Chang Xu	ID:50	Jie Zhang	ID:26		
Y. Xu	ID:59	Jinghui Zhang	ID:17		
Yang Xu	ID:8	Li Zhang	ID:85		
Yang Xu	ID:13	Li Zhang	ID:88		
Yang Xu	ID:49	Linghao Zhang	ID:26		
Zhebin Xue	ID:80	Ning Zhang	ID:53		
Zhebin Xue	ID:82	Qian Zhang	ID:42		
Zhebin Xue	ID:86	Quang Zhang	ID:83		
Y		Shengli Zhang	ID:84		
_		Yiling Zhang	ID:18		

Comprehensive Minimum Cost Consensus for Analyzing Different Agreed Solutions

Diego García-Zamora*, Álvaro Labella, Rosa M. Rodríguez and Luis Martínez

Department of Computer Sciences, University of Jaén, Jaén, Spain

*E-mail: dgzamora@ujaen.es

Consensus Reaching Processes (CRPs) aim at guaranteeing that the decisionmakers (DMs) involved in a Group Decision-Making (GDM) problem achieve an agreed solution for the decision situation. Among other proposals to obtain such agreed solutions, the Minimum Cost Consensus (MCC) models stand out because of their reformulation of the GDM problem in terms of mathematical optimization models. Originally, MCC models were limited to compute agreed solutions from a simple distance measure that cannot guarantee to achieve a certain consensus threshold. This drawback was lately fixed by the Comprehensive MCC (CMCC) models, which include consensus measures in the classic MCC approach. However, some real-world problems require analyzing the feasibility of the DMs to choose a certain alternative regarding the others, namely, the cost of achieving an agreed solution on a certain alternative. For this reason, this contribution introduces new CMCC models that drive DMs to an agreed solution on a given alternative and, in such a way, it provides a method to analyze the cost and appropriateness of guiding such group to a specific solution.

Keywords: Comprehensive Minimum Cost Consensus; Persuading model; Group Decision-Making

1. Introduction

The participation of multiple DMs in the resolution of a decision problem provides a heterogeneous view about such a problem, but also gives place to a significant phenomenon: the possibility of disagreements among the DMs. When discrepancies in GDM are neglected, it is possible that the reached solution does not satisfy some DMs, and they may even call into question the decision process¹. The CRPs were proposed to avoid this situation. A CRP was initially proposed as a discussion process, usually coordinated by a moderator, which aims at smoothing such disagreements and obtaining a consensual solution to the decision problem that satisfies all members of the group. In order to model these consensus processes, the classic liter $\mathbf{2}$

ature essentially considers two kinds of approaches² depending on if they use a feedback process, in which DMs are asked about if they want to accept the suggestions provided by the moderator, or without feedback, in which the participation of the DMs is omitted, and the changes are applied automatically without asking to achieve an optimal solution. Among the latter models, the well-known MCC models^{3,4} stand out because of their simplicity and unique interpretation of the notion of consensus. Such MCC models are mathematical optimization problems that try to find a feasible agreed solution for a GDM problem according to a maximal allowed distance among the DMs' preferences and the collective opinion by preserving as much as possible the initial DMs' opinions. Over the years, these models have been studied in greater depth. Labella et al.⁵ argued that the maximal distances between the DMs' preferences and collective opinion do not guarantee to reach a desired consensus threshold, and thus, it was necessary to include consensus measures in the optimization models, giving place to the CMCC models 5 .

Even though, classic GDM and its MCC models aim at providing collective solutions to decision problems, traditional literature usually neglects the study of the cost of guiding/persuading the group towards a predetermined solution, in spite of achieving a given alternative under agreement could be necessary in certain real-world problems⁶. Hence, it would be interesting to analyze how to include mechanisms to guide the CMCC model to obtain an agreement from DMs' opinions on choosing a certain alternative in the decision process.

For instance, we can think about a financial institution which desires to establish a certain policy P which needs the approval of the regional managers. For such a policy P, there are several alternatives $p_1, p_2, ..., p_n$ with different characteristics: some of them could be more beneficial to the DMs, namely, the regional managers, but others could be more profitable for the interests of the institution. In this context, the institution would be interested in analyzing how feasible it is to convince these managers about the election of a predetermined alternative p_k by analyzing the cost of guiding the involved DMs to choose such an alternative p_k .

Therefore, this contribution proposes CMCC models for GDM which aim at driving the involved DMs to agree their opinions for choosing a predetermined alternative in order to analyze the cost of agreement on different alternatives in a GDM problem. To do so, our proposal extends the CMCC model to include a *persuading constraint*, such that the Persuasive-CMCC (P-CMCC) output provides an agreed solution which minimizes the

cost of modifying DMs' opinions and guarantees an agreed solution on a predefined alternative. Our proposal deals with Fuzzy Preference Relations (FPRs)⁵ to model DMs' preferences, because they are the most widely used preference structures in the GDM and CRP specialized literature.

The remainder of this contribution is summarized below: Section 2 reviews some basic concepts related to the proposal. Section 3 introduces the P-CMCC models and their performance is shown in Section 4. Finally, Section 5 draws some conclusions and future works.

2. Preliminaries

A GDM problem is a situation in which a group of DMs has to reach a common solution for a certain decision problem². Formally, such problems are modelled by a finite set of alternatives $A = \{A_1, A_2, ..., A_n\}$ of possible solutions for the considered problem and the DMs set $E = \{E_1, E_2, ..., E_m\}$ who rate the alternatives in A.

Butler and Rothstein⁷ proposed several rules like the majority rule or the Borda Count to model these decision situations. However, when using such algorithms, some DMs involved in the decision problem could feel that their opinions were not sufficiently considered during the process because they fully disagree with the solution. To overcome such limitations, CRPs were developed, which support discussion processes and aim for DMs to modify their preferences to obtain a collective group opinion which satisfies all DMs up to a certain degree, the so-called consensus threshold μ^2 .

In the literature, several types of preference structures have been introduced to model the DMs' opinions. This contribution focuses on the well-known FPRs⁵ because of their simplicity and easy construction. Formally, an FPR is a fuzzy set $P: A \times A \rightarrow [0,1]$ defined on the alternative set A whose membership function satisfies $P(A_i, A_j) + P(A_j, A_i) = 1$ for all $i, j \in \{1, 2, ..., n\}$, where $P(A_i, A_j)$ represents the degree of preference of the alternative A_i over A_j according to a certain DM.

In the literature about consensus models, MCC models^{3,4} highlight as models without feedback mechanism because they allow to translate the discussion process into a mathematical programming problem in which the objective function is the cost of modifying the original preferences of the corresponding DMs. In addition, these models ensure that the absolute deviation between the modified opinions and the group collective opinion is lower than a certain parameter ε . Formally, if the original DMs' preferences are modeled by the numerical vector $(o_1, o_2, ..., o_m) \in \mathbb{R}^m$ and a vector $(c_1, c_2, ..., c_m) \in \mathbb{R}^m_+$ is used to represent the cost of moving the opinion of each DM, the resulting consensus model would be given as³:

$$\min \sum_{k=1}^{m} c_k |x_k - o_k|$$
s.t. $|x_k - \overline{x}| \le \varepsilon, k = 1, 2, \dots, m.$
(MCC)

where (x_1, \ldots, x_m) are the adjusted opinions of the DMs, \overline{x} represents the collective opinion computed by using an arithmetic mean operator and ε is the maximum allowed absolute deviation between the modified opinions and the collective one.

Traditionally, the consensus computation has been established from two different kinds of consensus measures: those which compute the distance between DMs and group opinion and those based on the distances between DMs². Nevertheless, classical MCC models use the distance between modified opinions and the collective one, i.e., $\max_{i=1,...,m} |x_i - \overline{x}|$ to obtain agreed solutions which cannot guarantee to reach a predefined consensus threshold, but a maximal distance between the DMs' preferences and the collective opinion. For this reason, Labella et al.⁵ generalized the former proposal by introducing CMCC models which include the above consensus measures:

$$\min \sum_{i=1}^{m} c_i |x_i - o_i|$$

$$s.t. \begin{cases} \overline{x} = F(x_1, \dots, x_m) \\ |x_i - \overline{x}| \le \varepsilon, i = 1, 2, \dots, m \\ consensus(x_1, \dots, x_n) \ge \mu. \end{cases}$$
(CMCC)

where $consensus(\cdot)$ represents the desired consensus measure and $\mu \in [0, 1[$ is the consensus threshold, which is fixed a priori.

3. CMCC persuasion model for analyzing the cost of agreeing on alternatives

This section is devoted to introducing P-CMCC models, which are able to guide DMs towards an agreement on selecting a certain alternative by modifying their preferences as little as possible. To do so, the CMCC models⁵ are extended by including a linear constraint, which guarantees that the desired alternative will be chosen by the group. Since such models consider two types of consensus measures, depending on the distance between DMs and collective opinion and the distance between DMs, we propose two different nonlinear optimization P-CMCC models with nonlinear constraints.

Let $O_1, O_2, ..., O_m$ be the initial FPRs given by the DMs in $E = \{E_1, E_2, ..., E_m\}$, which contain their opinions about the alternatives A =

4

 $\{A_1, A_2, ..., A_n\}$. The cost of moving one unit the DM E_k 's rating of the alternative A_i over A_j is modeled by using the values $c_{ij}^k \in [0, 1]$, which satisfies $\sum_{k=1}^m \sum_{i < j} c_{ij}^k = 1$. In order to guarantee that the chosen alternative is A_{i0} , the corresponding consensus model is as follows:

• Consensus model based on distance between DMs and collective opinion

$$\begin{split} & min_{X_1,X_2,...,X_m \in \mathcal{M}_{n \times n}([0,1])} \sum_{k=1}^m \sum_{i=1}^{n-1} \sum_{j=i+1}^n c_{ij}^k |x_{ij}^k - o_{ij}^k| \\ & s.t. \begin{cases} \overline{x}_{ij} = \frac{1}{m} \sum_{k=1}^m x_{ij}^k & 1 \le i < j \le n, \\ |x_{ij}^k - \overline{x}_{ij}| \le \varepsilon, & 1 \le i < j \le n, k = 1, 2, \dots, m, \\ 1 - \frac{2}{mn(n-1)} \sum_{k=1}^m \sum_{i=1}^{n-1} \sum_{j=i+1}^n |x_{ij}^k - \overline{x}_{ij}| \ge \mu. \\ x_{ij}^k + x_{ji}^k = 1 & 1 \le i < j \le n, k = 1, 2, \dots, m, \\ \sum_{j=1}^n \overline{x}_{i_0,j} \ge \sum_{j=1}^n \overline{x}_{i,j} & i \ne i_0. \end{cases}$$
(P-CMCC:1)

• Consensus model based on distance between DMs

$$\min_{X_1, X_2, \dots, X_m \in \mathcal{M}_{n \times n}([0,1])} \sum_{k=1}^m \sum_{i=1}^{n-1} \sum_{j=i+1}^n c_{ij}^k |x_{ij}^k - o_{ij}^k|$$

$$s.t. \begin{cases} \overline{x}_{ij} = \frac{1}{m} \sum_{k=1}^m x_{ij}^k & 1 \le i < j \le n, \\ |x_{ij}^k - \overline{x}_{ij}| \le \varepsilon, & 1 \le i < j \le n, k = 1, 2, \dots, m, \\ 1 - \frac{4}{m(m-1)n(n-1)} \sum_{k=1}^{m-1} \sum_{l=k+1}^m \sum_{i=1}^{n-1} \sum_{j=i+1}^n |x_{ij}^k - x_{ij}^l| \ge \mu. \\ x_{ij}^k + x_{ji}^k = 1 & 1 \le i < j \le n, k = 1, 2, \dots, m, \\ \sum_{j=1}^m \overline{x}_{i_0,j} \ge \sum_{j=1}^n \overline{x}_{i,j} & i \ne i_0. \end{cases}$$

$$(P-CMCC:2)$$

where $X_1, X_2, ..., X_m$ are the FPRs which contain DMs' modified preferences, i.e., $X_k = (x_{ij}^k) \in \mathcal{M}_{n \times n}([0,1])$, where $x_{ij}^k + x_{ji}^k = 1 \quad \forall i, j =$ $1, 2, ..., n, \quad \forall k = 1, 2, ..., m, \quad \overline{X}$ is the group collective opinion, the parameter $\varepsilon \in]0, 1]$ represents the maximum distance between DMs and collective opinion and $\mu \in [0, 1[$ is the consensus threshold. The GDM significance of the constraints in these models is as follows:

- The first one guarantees that the collective opinion is computed by the arithmetic mean.
- The second and the third constraints ensure that the desired consensus between the experts in the group is achieved.
- The purpose of the fourth one is to guarantee that the FPR structure is preserved during the optimization process.
- The last inequality guarantees that the overall preference of the alternative A_{io} over the others is greater than the same overall

preference of any other alternative and, consequently, that the alternative A_{i_0} will be chosen by the group.

4. Case study

Let us assume that is required to analyze the costs of guiding DMs to achieve an agreement on selecting a certain alternative regarding the costs obtained by the CMCC approach to analyze the feasibility of choosing such alternative.

Our example is based on a GDM problem that involves the financial company JaenBank, whose executive committee intends to implement a novel policy with the aim of reducing costs. Several possible measures $\{A_1, A_2, A_3, A_4\}$ are put to the financial directors of the different branches of the company $\{E_1, E_2, E_3, E_4\}$, who have to reach an agreement among themselves to implement the most convenient one according to their view. However, the top executives are interested in implementing the measure A_2 , which could represent a better solution for the medium-long term. Since the financial directors are more interesting on the short-term feasibility of the policy, the top executives want to know a priori how much effort would be involved in convincing all directors to choose the A_2 policy according to their initial preferences. The financial directors have provided their opinions by means of FPRs as follows:

$$E_{1} = \begin{pmatrix} -0.5 & 0.4 & 0.8 \\ 0.5 & - & 0.4 & 0.8 \\ 0.6 & 0.6 & - & 0.85 \\ 0.2 & 0.2 & 0.15 & - \end{pmatrix} E_{2} = \begin{pmatrix} -0.95 & 1.0 & 1.0 \\ 0.05 & - & 0.92 & 0.94 \\ 0.0 & 0.08 & - & 0.58 \\ 0.0 & 0.06 & 0.42 & - \end{pmatrix} E_{3} = \begin{pmatrix} -0.6 & 0.33 & 1.0 \\ 0.4 & - & 0.25 & 1.0 \\ 0.67 & 0.75 & - & 1.0 \\ 0.0 & 0.0 & 0.0 & - \end{pmatrix} E_{4} = \begin{pmatrix} -0.57 & 0.72 & 0.58 \\ 0.43 & - & 0.67 & 0.51 \\ 0.28 & 0.33 & - & 0.34 \\ 0.42 & 0.49 & 0.66 & - \end{pmatrix}$$

From these preferences, several consensus models are applied. Firstly, the previous GDM problem is solved by using the classical CMCC model, in which the consensus measure is based on the distance between the DMs' preferences and collective opinion. To do so, the consensus threshold is set as $\mu = 0.8$, the maximum allowed distance between DMs and collective opinion is $\varepsilon = 0.2$ and the cost of moving E_k 's rating for the alternative A_i over A_j is assumed to be $c_k = \frac{2}{mn(n-1)}$ for the sake of simplicity. Afterwards, by solving the same GDM problem with the P-CMCC:1 model, it is analyzed the cost of agreeing on each alternative to evaluate the feasibility

of guiding the DMs to choose each one and provide valuable information to the executives.

Consensus model	Consensus parameters	Desired alternative	Cost	Ranking of alternatives
CMCC	$\mu=0.8, \varepsilon=0.2$	-	0.048	$A_1 \succ A_2 \succ A_3 \succ A_4$
P-CMCC:1	$\mu=0.8, \varepsilon=0.2$	$\begin{array}{c}A_1\\A_2\\A_3\\A_4\end{array}$	0.048 0.072 0.081 0.173	$A_1 \succ A_2 \succ A_3 \succ A_4$ $A_2 = A_1 \succ A_3 \succ A_4$ $A_3 = A_1 \succ A_2 \succ A_4$ $A_4 = A_1 = A_2 \succ A_3$

Table 1. Comparative results between P-CMCC and CMCC.

Remark 1. Note that the minimum cost solutions to the P-CMCC:1 model are ranked the same as the minimum cost solution to the CMCC model. From the decision-making point of view, this means that the easier way to drive the DMs to choose a predefined alternative is to convince them that such alternative is as good as the one that they initially prefer.

The results of the CMCC model (see Table 1) show that the best policy according to the financial directors' point of view (short-term and possibly selfish) is the first alternative, whose cost in a 0-1 scale is equal to 0.048 and thus, the most feasible to agree their opinions. However, by analyzing the results of the persuading models, the cost of choosing the alternative A_2 , the preferred one by the top executives (long-term view), is 0.072, which is a 50% extra relative cost regarding the DMs' most preferred alternative A_1 . Therefore, the executive should decide if such an extra cost is worthy to adopt the desired policy. Regarding the rest of the alternatives, their selection implies not only a greater extra cost, but also more changes than the optimal solution. Particularly, the most unfeasible alternative is A_4 because its cost is the highest one and thus its selection requires the greatest change in the DMs' preferences.

5. Conclusions

This contribution has extended CMCC models to propose two automatic consensus models, namely P-CMCC:1 and P-CMCC:2, which allow analyzing the cost of driving the DMs involved in a decision process to reach a predetermined agreed solution. To do so, these models provide a measure of the cost of convincing DMs of choosing a certain alternative over the others. By comparing the cost obtained in either P-CMCC:1 or P-CMCC:2 with the solution obtained in CMCC, it is possible to determine if it would

be worthy in practice to convince the DMs of adopting a concrete alternative instead of the one preferred by the group. In addition, the practical applications of these persuasion models have been shown in an illustrative example.

Future research may be addressed by using the concept of persuasive consensus models. It would be interesting to study such an approach in classical CRPs that use feedback mechanisms and take into account the DMs' attitude. Regarding formal issues, a linearized version of the model could be proposed to deal with GDM problems with many DMs.

Acknowledgements

This work is partially supported by the Spanish Ministry of Economy and Competitiveness through the Spanish National Project PGC2018-099402-B-I00, and the Postdoctoral fellow Ramón y Cajal (RYC-2017-21978), the FEDER-UJA project 1380637 and ERDF, by the Spanish Ministry of Science, Innovation and Universities through a Formación de Profesorado Universitario grant (FPU2019/01203) and by the Junta de Andalucía, Andalusian Plan for Research, Development, and Innovation (POSTDOC 21-00461)

References

- S. Saint and J. R. Lawson, Rules for Reaching Consensus. A Modern Approach to Decision Making (Jossey-Bass, 1994).
- I. Palomares, F. Estrella, L. Martínez and F. Herrera, Consensus under a fuzzy context: Taxonomy, analysis framework AFRYCA and experimental case of study, *Information Fusion* 20, 252 (2014).
- D. Ben-Arieh and T. Easton, Multi-criteria group consensus under linear cost opinion elasticity, *Decision Support Systems* 43, 713 (2007).
- G. Zhang, Y. Dong, Y. Xu and H. Li, Minimum-cost consensus models under aggregation operators, *IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans* 41, 1253 (2011).
- A. Labella, H. Liu, R. Rodríguez and L. Martínez, A cost consensus metric for consensus reaching processes based on a comprehensive minimum cost model, *European Journal of Operational Research* 281, 316 (2020).
- B. Caillaud and J. Tirole, Consensus building: How to persuade a group, American Economic Review 97, 1877 (2007).
- C. Butler and A. Rothstein, On Conflict and Consensus: A Handbook on Formal Consensus Decision Making (Takoma Park, 2006).