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a b s t r a c t

The need of increasing trustworthiness and transparency in artificial intelligence (AI)-based systems
that adhere ethical principles of respect for human autonomy, prevention of harm, fairness, and ex-
plainability; has boosting the development of systems that incorporate such issues as a key component.
Recommender systems (RSs) are included in such AI-based systems, because they use intelligent
algorithms for providing the most suitable items to active users according to other users’ preferences.
The RSs success is based on how much customers trust on the system, therefore recommendation
explainability has become a crucial dimension for RSs adoption in real-world scenarios. Among
the different successful applications of RS, it is remarkable the recent and exponential importance
of recommendations for health and wellness areas. Hence, this paper aims at exploring, adapting
and applying explanations for nutrition/recipes recommendations, that not only explain why the
recommendation is enjoyable but also, it is aware of how healthy is the recommendation. Among the
different methodologies to explain recommendations, this paper is focused on post-hoc explainability
approaches and its adaptation, application and evaluation for nutrition/recipes recommendation.
Eventually, it is included a comprehensive experimental study for characterizing the strengths and
weaknesses of such explainability approaches in the recipe recommendation context.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recommender systems (RSs) are AI-based systems focused on
roviding users with items that best fit their preferences and
eeds, in an overloaded search space of possible options [1,2].
Ss have been widely used in a wide range of domains, such
s e-commerce, e-learning, e-health, e-business, wellness, and so
n [3–7].
Two main paradigms have driven the development of RSs.

t first, content-based recommendation [8] focuses on repre-
enting user and item profiles through the same feature space
losely related to item characteristics. On the other hand, col-
aborative filtering-based recommendation [9,10] focuses on the
reference of similar users, to generate suggestions for the active
ne. Recently, successful recommendation approaches have been
ocused on the incorporation into this scenario, of computa-
ional intelligence techniques such as matrix factorization or deep
earning-based for predicting the users’ unknown preferences
nd generating the recommendation lists [2,11]. However, such
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c-nd/4.0/).
techniques have an important drawback related to their black-
box behavior, generating a lack of transparency that affects their
trustworthiness.

Furthermore, within these successful recommendation ap-
proaches the major goal of RSs research has been the improve-
ment of the accuracy of the recommendation algorithms [12].
However, recently several authors have pointed out that beyond
the accuracy improvement, it is very important the capacity to
explain the recommendation results [13]. Such facts have been
raised among others by the European Union Ethics Guidelines for
a Trustworthy Artificial Intelligence, boosting the development
and use of artificial intelligence systems in a way that adheres to
the ethical principles of respect for human autonomy, including
explainability.1

Nowadays, explainable recommendation is a key dimension in
highly-risk domains such as e-health and e-business in order to
facilitate the final decision made by the active user in a transpar-
ent and trustworthy way [14]. Furthermore, it is becoming a must
in other low risky but very popular domains such as e-commerce
and e-learning [14].

1 https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-
trustworthy-ai
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Specifically, explainable recommendations have been mainly
focused on the development of intrinsic models, centered on ex-
plaining the recommendation method; or post-hoc models, which
are focused on explaining the recommendation results [14]. Most
of research was focused on the use of intrinsic models, in which
appears an important shortcoming such as the strong dependency
of the associated recommendation approach, being coupled with
such an approach, the final recommendation effectiveness. On
the other hand, post-hoc explanation approaches have recently
received an increasing attention, considering they are completely
independent of the main recommendation algorithm [14–16], and
therefore they have the potential to be used across a greater
diversity of domains in RSs.

Formally, post-hoc methods are centered on explaining the
recommendation results, focused on coupling any main recom-
mendation method with a white-box explainable method that
facilitates the explanation of the main approach [14]. Key re-
search works in this direction have been developed by Peake
and Wang [15], presenting an early post-hoc approach for in-
dividual RS, that extracts explanations from latent factor-based
recommendation systems by training rule mining models on the
output of a matrix factorization black-box model. Furthermore,
Nóbrega and Marinho [17] introduced the generation of locally
interpretable model-agnostic explanations (LIME-RS) which is
focused on discovering the top-n item features that better ex-
plain the individual recommendations delivered by the factoriza-
tion machine method. LIME-RS was later extended by Chanson
et al. [18], being focused on improving the sampling process
around the recommendation instance to explain, to finally learn
a proper explanation model. In a different direction, SHapley
Additive exPlanation values (SHAP) have been raised as post-
hoc RS explanation model [19], being focused on computing the
average of the marginal contributions of each feature value to the
model prediction across all permutations. Recently, Shmaryahu
et al. [16] have pointed out the use of simple-to-explain content-
based and collaborative filtering-based explanation approaches,
for explaining complex recommendation methods such as ma-
trix factorization-based collaborative filtering. Here, it must be
pointed out that post-hoc explanations do not precisely reflect
the computation used by the underlying recommendation model,
but they commonly present rationale, plausible, and valuable
information for the user [20].

The need of improving trustworthiness and transparency
about recommendations in general and health and wellness rec-
ommendation in particular, in addition to the features of post-hoc
approaches, drives this paper at exploring the use and adaptation
of post-hoc explanation approaches in cooking recipe recom-
mendations [21–24]. Recipe recommendation has become an
important RS domain, gaining popularity in the last few years
together with other domains such as movies, books, or travel
packages [4]. Particularly, most of current proposals for recipe
recommendation are based on complex models that lack of trans-
parency and do not provide any add value regarding trustworthi-
ness [6,23]. Furthermore, recipe recommendation is a domain in
which it is necessary to take into account both the suitability of
suggested items (enjoyability) and their appropriateness from the
nutritional viewpoint [6,23]. Hence, it is necessary the contextual-
ization and adaptation of post-hoc recommendation explanation
approaches to recipe recommendation. Consequently, this work is
then focused on exploring, adapting and applying post-hoc rec-
ommendation explanation models in this domain, to characterize
their explanation ability in relation to the preference-aware and
health-aware viewpoints.

Specifically, our goal is to explain why the recommended
cooking recipes are enjoyable, as well as controlling how the
incorporation of the nutrition-aware criteria affects such expla-
nation capability.

Our paper is then chasing the following objectives:
2

Fig. 1. Basic scheme of a recommendation approach.

• The contextualization and adaptation of post-hoc recom-
mendation explanation approaches to the recipe recommen-
dation domain.

• The incorporation of nutritional knowledge domain into the
explainable recipe recommendation approaches.

• The evaluation of the contextualized explanation approaches
with and without incorporating the nutritional knowledge
domain, by using measures specifically focused on explana-
tion capabilities.

The paper is structured as follows. Section 2 incorporates the
ecessary background for the proposal understanding, includ-
ng recommender systems, the recipe recommendation domain,
nd explainable recommendations. Section 3 contextualizes and
dapts several recommendation explanation approaches to the
ooking recipe domain. Furthermore, Section 4 develops an ex-
ensive evaluation protocol for evaluating and comparing the
roposed explanation approaches, which also explores the effect
f considering the nutritional information in the final recom-
endation generation, in relation to the explanation capability.
ection 5 concludes the paper, pointing out future works.

. Background

This section briefly presents the necessary background for this
esearch proposal. It includes basics on recommender systems,
he recipe recommendation domain, and explaining recommen-
ations.

.1. Recommender systems

Recommender systems are tools focused on providing users
ith the information that best fits their preferences and needs in
search space overloaded with possible options [25] (Fig. 1).
Beyond the current diversity of proposals for the development

f recommendation technologies, they have been mainly based on
wo paradigms: content-based recommendation, or collaborative
iltering-based recommendation [1]. Such paradigms are detailed
riefly in the next subsections.

.1.1. Content-based recommendation
Content-based recommender systems [8] assume that items

re characterized by a set of attributes, that are used as the key
or recommendation generation. Such systems are based on the
act that items with similar attributes, receive similar preferences
y the same user.
Content-based recommendation usually comprises four steps:

1) Item profiling, (2) User profiling, (3) User–item utility calcula-
ion, and (4) Recommendation [26]. Being the items represented
y a set of attributes that characterize them, user profiles are
alculated by using the profiles linked to the items preferred
y the associated user, being based on the same item feature
pace. Subsequently, the user–item matching calculation is usu-
lly represented by information retrieval-related functions such
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s cosine or Jaccard measures [1,11]. These matching values are
inally used for retrieving the items with higher utility as the top
recommendation list for each user.
Recently, Pérez-Almaguer et al. [26] extend individual content-

ased recommender systems to be used in the group recom-
endation problem, by proposing several approaches adapted

o such scenario. In this way, they propose content-based group
ecommendation approaches based on recommendation aggrega-
ion and ranking, on recommendation aggregation and user–item
atching values, and on the aggregation of the user profiles.

.1.2. Collaborative filtering-based recommendation
On the other hand, collaborative filtering is focused on using

he preferences of similar users, as a starting point for generating
ecommendation to the active one [9]. Collaborative filtering
s usually divided into memory-based and model-based meth-
ds [1]. Specifically, memory-based collaborative filtering [27]
mplements this paradigm in a direct way, by using a similarity
unction for identifying the top k users who are more similar to
he active one. In a second stage, it aggregates the preferences of
uch neighbor users for calculating the preferences of the active
ser and generates then the top n recommendation list.
In contrast, model-based collaborative filtering does not de-

elop a direct calculation of the similarity values between users
28]. Instead, it usually builds a user–item model that comprises
ll the preferences information in a reduced feature space, and
llows a direct calculation of the user rating over certain items.
he building of the compact user–item model, usually removes
ome data disturbance, leading therefore to an improvement
n the recommendation accuracy compared to memory-based
pproaches [28].
A key approach in model-based collaborative filtering is the

atrix factorization approach, popularized by Koren et al. in
he context of the Netflix Prize [29]. The matrix factorization
pproach maps users and items into a joint latent factor space
f dimensionality f , where user–item interactions are modeled as
nner products in that space. Each item i is then associated with a
ector qi ∈ Rf , and each user u is associated with a vector pu ∈ Rf .
or item i, qi measures the extent to which the item possesses
hose latent factors. Similarly, for a given user u, the elements of
u measure the interest of u in items i, represented by the same
actor space. The resulting dot product (qi)Tpu, represents the
nteraction between user u and item i, which can be interpreted
s the user’s interest in the item’s characteristics. In this context,
his is regarded as the approximates user u’s rating of item i, rui,
eading to the estimate r̃ui = qTi pu.

In this framework, the goal is to compute the factor vectors
i, pu ∈ Rf , which is usually done by minimizing the regularized
quared error on the set of known ratings:

inq∗,p∗

∑
(u,i)∈κ

(rui − qTi pu)
2
+ λ(∥qi∥2

+ ∥pu∥2) (1)

here κ is the set of the (u, i) pairs for which rui is known.
This basic framework has been extended into more

omplex model-based collaborative filtering methods, such as
ethods based on matrix factorization incorporating temporal
ynamics [30], non-negative matrix factorization [31], or matrix
actorization-based list-wise learning [32]. Furthermore, recently
eural collaborative filtering methods [33] have been also devel-
ped as a successful paradigm for building effective model-based
ecommendation systems.

Beyond its success in achieving a high recommendation ac-
uracy, an important shortcoming of model-based approaches is
heir lack of transparency [1], because they are black-box models
here the final users are not aware of their working principle
3

see Fig. 1), affecting in this way the trust on the delivered
ecommendations.

In this way, post-hoc explanation models [14] are currently
sed to complement model-based recommendation methods in
rder to provide such methods with explainability capabilities.
ection 2.3 presents some notions on post-hoc explanations mod-

els. Furthermore, the main goal of this work is exploring the
performance of post-hoc recommendation explanation models,
coupled with model-based collaborative filtering, in the particular
recipe recommendation domain.

2.2. The recipe recommendation domain

Recipe recommendation is a domain that has historically re-
ceived comparatively less attention in RS than other areas re-
lated to leisure and entertainment [34,35]. However, in the last
few years it has been identified as a domain with great impor-
tance considering it incorporates a relevant health-aware com-
ponent [35].

In this way, Trattner and Elsweiler [34] developed a survey
that includes the more relevant research results associated to
this recommendation problem. Here, such authors reported more
than 15 research works focused on the use of traditional rec-
ommendation algorithms for recipe recommendation. It includes
the use of memory-based methods [23,36], matrix factorization-
based methods [37], learning to rank approaches [38], and so on.
Furthermore, beyond the necessary user preferences, in several
cases they work over heterogeneous data sources that include
tags [37], image embedding [38], or text sentiments [39].

Table 1 presents previous works on recipe recommendation,
identified as relevant by the research literature. Specifically, we
have considered works focused on recipe recommendation that
have been highlighted at the survey by Trattner and Elsweiler
[34], as well as research linked to recent relevant venues on food
recommendations, such as ACM UMAP and ACM RecSys main
conference and workshops.

The analysis behind Table 1 suggests that recent works such
as Ludwig et al. [40], Chen et al. [41] and Pecune et al. [42], have
been focused on the use of black-box models for recipe recom-
mendation, evidencing a better performance in relation to other
recommendation techniques. Furthermore, it is also relevant the
use of ingredients and nutritional information of recipes [40,41,
44,46,47], as a data source for recommendation generation. Other
group of works, such as Yang et al. [38] and Elsweiler et al. [44]
also use images for characterizing recipes, being their use limited
to some specific scenarios. It is also worthy to mention that some
recent works are not exactly focused on recipe recommendation.
Instead, they work on different problems, such as recipe comple-
tion [41], or healthier recipe replacement [44]. Finally, it is also
necessary to note that there are only few works incorporating di-
etary constraints in recipe recommendation (e.g. Chen et al. [41],
Yang et al. [38], Bianchini et al. [46]), and some of them are not
directly focused on the recipe recommendation problem.

Previous analysis shows clearly the necessity of developing
more transparent recipe recommendation approaches, that can
explain the performance associate to recent successful black-box
models in this direction. This goal can be currently reached, by
taking into account the availability of relevant recipe data like
ingredients and nutritional information, as discussed in this sec-
tion. Finally, it is necessary to incorporate nutritional constraints
as component of the recipe recommendations.

Therefore our proposal is focused at this direction, by dis-
cussing model-agnostic post-hoc explanation methods in the
recipe recommendation domain.
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Table 1
Relevant works on recipe recommendation. ALS—Alternating Least Square. BPR—Bayesian Personalized Ranking. MF—Matrix Factorization.LMF—Logistic Matrix
Factorization. CB—Content based. CF—Collaborative filtering. LDA—Latent Dirichlet Allocation. WRMF—Weighted Matrix Factorization.AR—Association Rules. NB—Naive
Bayes.SVD—Singular Value Decomposition.SLIM—Sparse Lineal Methods. RF—Random Forest.
Authors Algorithms Used information Dietary constraint

Ludwig et al. [40] MF, nutritional User’s nutritional No
validity by requirements
post-filtering

Chen et al. [41] Deep learning Ingredients Yes
focused on
recipe completion

Pecune et al. [42] ALS,BPR, LMF FSA health score No

Khan et al. [43] Ensemble topic modeling Food features from text No
(e.g. ingredients, category, context)

Elsweiler et al. [44] RF,NB, Image, ingredients No
for predicting
suitability of a healthier
recipe replacement

Trattner and Elsweiler [23] LDA,WRMF,AR WHO-FSA No
SLIM,BPR,Mostpop Health score
User–ItemKNN

Cheng, Rokicki and Herder [45] BPR, Mostpop City size No

Yang et al. [38] Learning to rank Image embeddings Yes

Bianchini et al. [46] Content-based Ingredients, Yes
recommendation recipe type, country

Ge et al. [37] MF, CB Tags No

Trevisiol et al. [39] UserKNN,CB Text sentiment No

Harvey et al. [47] CB, CF, Logistic Reg., Ingredients No
SVD-Hybrid

Forbes and Zhu [48] MF Ingredients No

Freyne and Berkovsky [36] UserKNN, CB, Hybrid Ingredients No
2.3. Building explainable recommendations

The necessity of explainable recommendation in real-world
cenarios comes from the users’ low understanding on why
ystems make decisions or exhibit certain behaviors [13,14].
uch inscrutability can hamper users’ trust in the system, espe-
ially in contexts where the consequences are significant such
s e-business, e-health, or software engineering, and lead to the
ejection of the systems. An explanation for the delivered recom-
endations is then likely to make the information more useful to

he user/group and has a stronger influence on their actions.
In a recent survey, Zhang and Chen [14] have revised more

han 170 works on recommendation explainability, pointing out
two-dimensional classification according to: (i) the compu-

ational model used for recommendation (neighbor-based, ma-
rix factorization, deep learning, topic modeling, graph-based,
nowledge-based, rule mining, and post-hoc), and (ii) the infor-
ation/style of the generated explanations (relevant user/item,
ser/item features, textual sentences, social explanation etc.).
Overall, explainable recommendations have been mainly fo-

used on the development of: (1) model-intrinsic explanation
pproaches, and (2) model-agnostic explanation approaches, also
alled post-hoc approaches. The next subsection will be focused
n briefly discussing such approaches.

.3.1. Model-intrinsic explanation approaches
The model-intrinsic explanation approach develops interpre-

able models whose decision mechanism is transparent and thus,
hey can naturally provide explanations for the model’s decision.

Intrinsic explanation contexts are usually coupled to some
pecific recommendation techniques, considering the nature of
uch explanation type. Therefore, most of works in this direction
re focused on extending factorization-based, topic modeling,
raph-based, deep learning, or knowledge-based approaches, to
4

devise interpretable models that increase transparency, leading
then to the explainability of the recommendation results [14].

Focused on this goal, Zhang et al. [49] proposed Explicit
Factor Models, for recommending products that perform well
on the user’s favorite features, aligning then each latent di-
mension of matrix factorization with an explicit feature. Such
alignment makes trackable the factorization and the prediction
procedures, allowing the generation of explicit explanations.
Wang et al. [50] also proposed a tree-enhanced embedding model
for explainable recommendation to combine the generalization
ability of embedding-based models and the explainability of tree-
based models. In a different direction, several researchers have
recently leveraged deep learning and representation learning
for explainable recommendations [51]. Furthermore, knowledge
graphs have also helped to explain black-box recommendation
models. Herein, Zhang et al. [14] proposed an end-to-end joint
learning framework to combine the advantages of embedding-
based recommendation models and path-based recommendation
models, for explaining the generated suggestions.

A recognized limitation of model-intrinsic explanation ap-
proaches is that they are necessary coupled with the specific
associated model. This lack of flexibility makes difficult their
generalization to more complex recommendation scenarios such
as the cooking recipe domain. For such reasons, at this stage
this explanation paradigm was not selected to be studied in the
current research work.

2.3.2. Model-agnostic explanation approaches
The model-agnostic explanation approach, also called the post-

hoc approach, allows to the decision mechanism to be a black
box. It then develops a model that generates explanations after a
recommendation has been made. Therefore, they are centered on
explaining the recommendation results and not the recommen-
dation process [14]. In post-hoc explanations in recommender
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ystems, recommendations and explanations are obtained from
ifferent models. An explanation model (independent from the
ecommendation mechanism) provides explanations for the main
ecommendation model after the recommendations have been
rovided (thus ‘‘post-hoc’’).
On the other hand, in typical applications the recommendation

echanism is composed by several components and therefore
ay be too complex to explain. In such complex contexts, such
s recipe recommendations, post-hoc explanation can become a
uitable approach for explaining recommendations [14].
In this way, post-hoc explanation models are currently a grow-

ng research trend in explainable recommendation. Peake and
ang [15] presented a pioneer post-hoc approach for individual
S, that extracts explanations from latent factor recommendation
ystems by training rule mining models on the output of a matrix
actorization black-box model.

Furthermore, Singh and Anand [52] focused on post-hoc expla-
ation of learning to rank algorithms. Here the authors based the
anking explainability on an interpretable feature space, reached
n a model-agnostic way. McInerney et al. [53] also developed a
andit approach to explainable recommendation. They assume
hat users would respond to explanations differently and dy-
amically, and based on such issue, develop an exploitation–
xploration bandit-based approach to find the best explanation
rderings for each user. Eventually, Cheng et al. [20] also pro-
osed an explanation method named FIA (Fast Influence Analy-
is), which helps to understanding the prediction of trained latent
actor models by tracing back to the training data with influence
unctions.

Focusing on a machine learning context, Ribeiro et al. [54]
roposed the development of Local Interpretable Model-agnostic
xplanation models (LIME), which adopts sparse linear models to
pproximate a black-box classifier around a sample. Such linear
odel can thus explain which sample features contributed in a
igh extent to its predicted label. Using the LIME framework,
óbrega and Marinho [17] introduced the generation of locally
nterpretable model-agnostic explanations for recommender sys-
ems (LIME-RS) focused on discovering the top-n item features
hat better explain the individual recommendations delivered by
factorization machine method. Furthermore, Chanson et al. [18]
ntroduced LIRE, an improved LIME framework for recommender
ystems in the sense that it introduces an efficient sampling
round the recommendation instance to explain, to finally learn
proper local surrogate model.
Also, Shmaryahu et al. [16] provided post-hoc explanations

or why a recommended item may be appropriate for the user,
y using a set of simple, easily explainable recommendation
lgorithms supported by collaborative filtering and content-based
ecommendation.

Summarizing, although in the last few years several research
orks have been focused on post-hoc recommendation explana-
ions, it is also necessary to mention that some of them were
nitially focused on other scenarios such as learning to rank or
lassification. The next section further details several of these ap-
roaches that will be used and adapted for our proposal of recom-
endation explanation in the recipe recommendation domain.
aking into account that it is a complex recommendation sce-
ario, post-hoc approaches are considered more appropriate than
ntrinsic explanation approaches for recipe recommendation, as it
as been previously mentioned.

. Explainable recipe recommender systems based on post-
oc explanations

This section is focused on exploring in detail four post-hoc
xplanation approaches, and how to adapt them to be used in
he cooking recipe domain.

The selected approaches are:
5

Table 2
Basic notation.
Notation Meaning

u User
c Cooking recipe
ckcal Amount of kilo-calories of recipe c
fats Fats of recipe c (in grams)
carb Carbohydrates of recipe c (in grams)
prot Proteins of recipe c (in grams)

1. The recommendation supported by simple-but-effective
post-hoc explanation approaches, due to its simplicity and
intuitiveness [16] (Section 3.1).

2. The Global Explanation Mining for post-hoc interpretability
for Recommender Systems (Section 3.2), taking as base
the Peake and Wang’s framework [15] which is one of
the former approaches in post-hoc explanation, and based
on rule mining which is a traditional tool for generating
explanations.

3. The Local Explanation Mining for post-hoc interpretability
for Recommender Systems (Section 3.3), as a particular ap-
proach based on a local rule mining process which has out-
performed previous proposals based on this direction [15].

4. An improved locally interpretable model-agnostic explana-
tion model, proposed by Chanson et al. [18] (Section 3.4),
which is an improved version of LIME [17] contextualized
to the recommendation scenario, being LIME a recently
featured state-of-art model in AI explainability [55].

These approaches have been identified as generalizable and
well-established methodologies for supporting post-hoc recom-
mendation explanations [14] in traditional recommendation sce-
narios such as Movies, TV Shows, etc. [15,16]. Therefore, they are
an appropriate choice to be used as starting-point for generat-
ing explanations in the cooking recipe domain. In this way, we
remark that for this study we do not consider other explanation
approaches, such as SHAP [19], which are focused on providing
explanation for a more holistic viewpoint, and less focused on
justifying the personalized recommendations centered on each
specific user [14].

In order to incorporate nutritional information of the recipes
for accomplishing the dual goal related to provide both enjoyable
and healthy recommendations, it will be considered as available
some nutritional values associated to recipes. The basic used
notation is represented at Table 2.

3.1. Recommendation supported by simple-but-effective post-hoc
explanation approaches

This subsection adopts a general framework introduced by
Shmaryahu et al. [16], to be used in the recipe recommendation
domain. It is focused on using simple and transparent methods
for explaining the output of complex recommendation models.
In the context of the cooking recipe recommendation domain,
the former framework is extended through the incorporation
of a stage that introduces a nutritional value-aware re-ranking
procedure of the recipes initially recommended by the black-box
recommendation model (see Fig. 2). Furthermore, two specific
simple-to-explain recommendation approaches are brought to be
used in the current scenario, based on the available information of
recipes, which are mainly represented by their list of ingredients.

In further detail, this approach works across several stages de-

picted at Fig. 2 and contextualized to the cooking recipe domain:
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Fig. 2. Simpler methods-based recommendation explanations for recipe recommendation.
1. At first, a black-box main recommendation model receives
as input the preferences data and retrieves appropriate rec-
ommendations (Step 1 in Fig. 2). The preference data is rep-
resented by a user-recipe rating matrix, that is processed
by a black-box recommendation algorithm, to obtain a top
n recipe recommendation list. In the current scenario it is
used a matrix factorization-based recommendation algo-
rithm previously detailed in Section 2.1.2 [29], which effec-
tiveness has been proved across several domains (Eq. (2)).

minl∗,p∗

∑
(u,c)∈κ

(ruc − lTc pu)
2
+ λ(∥lc∥2

+ ∥pu∥2) (2)

In Eq. (2), lc represents the latent factors associated to the
recipes, while pu represents the interest of u toward such
latent factors. Here the vectors l∗, p∗ are learned through a
gradient descendent method [29].

2. Furthermore, it is executed a re-ranking stage of the recipes
at the top n recipe recommendation list (Step 2 in Fig. 2).
This re-ranking is based on the nutritional score nut(p)
of the recipe (Eq. (6)), represented by how close it is to
the ideal balance of macronutrients (e.g. proteins, carbo-
hydrates and fats) in a food intake.
To perform this analysis, two facts considered in previous
works are taken into account [6]:

(a) The daily energy intake should be composed of 50%
of carbohydrates, 20% of proteins, and 30% of fats.

(b) The energy values of carbohydrates, proteins, and
fats, are represented through the following equiva-
lences:

1g of proteins = 4kcal (3)

1g of carbohydrates = 4kcal (4)

1g of lipids = 9kcal (5)

Based on the amount of kilo-calories ckcal of a recipe c , such
facts allow to calculate the ideal expected amount of carbo-
hydrates, proteins and fats that some food should have con-
taining such kilo-calories. The deviation of the actual values
of such macronutrients at the recipe, can be regarded as its
nutritional score. A higher score, a less nutritional value of
the recipe. Eq. (6) formalizes such value.

nut(p) = |4carb − 0.5ckcal|+|4prot − 0.2ckcal|+|9fats − 0.3ckcal|
(6)

After the re-ranking of the top n recipes according to their
nutritional value, only the top p are retrieved and used as
input for the further steps.
6

3. The delivered recommendations are then given as input
for several simpler and explainable recommendation algo-
rithms, which can also use additional information sources
(e.g. item features, user demographic information, and so
on) (Step 3 in Fig. 2). The explainable algorithm is used
for generating a score for the initially recommended items,
and if such score is sufficiently high, then the explainable
algorithm considers its associate explanation as valid, and
retrieves it as a possible output of the whole framework.
Formerly, Shmaryahu et al. [16] specifically implemented
six simple-to-explain algorithms. Each algorithm takes as
input a user profile, and an item i that is recommended by a
complex black-box model. Such six simply-to-explain algo-
rithms are Popularity, Item–item content-based, User–item
content-based, Item–item overview, Item–item collabora-
tive filtering, and User–user collaborative filtering.
Considering the expected sparsity of the cooking recipe
recommendation domain, here it will be considered item–
item recommendation algorithms which usually perform
well in sparse scenarios [56]. Particularly, it will be consid-
ered the item–item content-based and item–item collabo-
rative filtering explanation algorithms.

(a) Item–item content-based (I2ICB): Considering the
initial goal of explaining the recommendation of a
recipe c , in this approach for each recipe d that
the user has rated, it is computed a similarity value
between d and c. The explanation is then generated
through the features of such recipes more similar to
the currently recommended recipe c , or through all
the recipes which similarity is over a threshold δ:

sim(c, d) > δ → c is explainable through features of d
(7)

Here Jaccard coefficient [57] is used for calculating
similarities between recipes. In this particular sce-
nario, the ingredients are considered as the features
of the recipes. A sample of the provided explanation
would be:
Recipe c is recommended, because you love d in the
past, and both recipes have in common tomato and
cheese as main ingredients.

(b) Item–item collaborative filtering (I2ICF): It is com-
puted the item–item similarity score between each
recipe d rated by the user, and the currently recom-
mended recipe c . This score is represented as the
ratio between the number of users who preferred
both recipes, and the number that preferred at least
one. The explanation is then focused on presenting
items with a high Jaccard values in relation to the
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Fig. 3. Global Explanation Mining for post hoc interpretability in Recommender Systems.
current item, regarding a threshold δ:

sim(c, d) > δ → c is explainable through users preferring d
(8)

A sample of the provided explanation would be:
Recipe c is recommended, because in the past you
preferred d, and many people that preferred d, also
preferred c.

4. Finally, the valid recommendations provided by all the
explainable algorithms are ranked, finally shown the best
scored explanation to the final user (Step 4 in Fig. 2).
The authors point out that this final selection could be
subjective, regarding each algorithm provides scores in a
different way.

3.2. Global explanation mining: Post-hoc interpretability for recom-
mender systems

This subsection contextualizes to the recipe recommendation
domain one of the firstly presented post-hoc approaches for
explaining black-box recommendation models. This method, pro-
posed by Peake and Wang [15], is focused on the training of
association rules on the output of a matrix factorization black-box
model. Such association rules contribute to the explanation of the
recipe recommendations generated by the main recommendation
model, by extracting explanations that can be used to understand
the model behavior.

Specifically, the association rules used in this method are ob-
tained across the entire dataset, therefore the recommendations
generated for any user are explained by taking as basis the same
set of association rules. Based on this fact, the method is coined
as global explanation mining.

This approach comprises the following steps, which are also
represented in Fig. 3 over the same overall scheme linked to
the simpler methods-based recommendation explanations (see
Fig. 2). Such steps are also detailed at Algorithm 1:

1. Input data: The input data is a user–item matrix of ob-
served interactions or preferences, as described by Koren
et al. [29].

2. Train matrix factorization model and prediction: The tradi-
tional black-box matrix factorization training [29] is
performed over the input data of the previous step. Subse-
quently, it is calculated the output prediction of the model,
which is the completed user-recipe matrix with predicted
ratings for all user-recipe pair (Step 1 in Fig. 3). To pro-
cess this output for the final recommendation generation,

ratings from the training data are filtered out. For the

7

remaining items, the top n with the higher scores for each
user, compose the recommendation list that is used in the
subsequent steps (Line 1 at Algorithm 1).

3. Nutrition-aware re-ranking of the recommendation list:
The recipes in the retrieved recommendation list are re-
ranked according to the criteria presented at Eq. (6) (Step
2 in Fig. 3), in the previous Section 3.1. Afterwards, the top
p recommendations of the re-ranked list are subsequently
used in the following steps.

4. Train Association Rules (the interpretable model): Here the
required set of transactions T [58] are generated by taking
the predicted recipe ratings for each user from the unfil-
tered matrix factorization output (Line 5 at Algorithm 1).
These transactions are used for building association rules,
following the traditional approach formerly pointed out by
Sarwar et al. [59] for recommendation scenarios (Line 6 at
Algorithm 1) (see also Step 3 in Fig. 3).

5. Output association rules: The output of the previous stage
is a list of all rules representing relationships between
recipes in the matrix factorization predictions and their
corresponding support, confidence, and lift measures. In
order to contextualize such rules to the current recommen-
dation scenario, for each user it is only filtered to a subset
the rules where the antecedent X is in the user training
data and the consequent Y is in the top p nutrition-aware
recommendation list (Line 8 at Algorithm 1) (Step 4 in
Fig. 3). The corresponding explanation can be then seen as
the antecedents of the corresponding rules, and therefore
they are both retrieved (Line 9) (Step 5 in Fig. 3).

Overall, this method can be considered as a particular item-
to-item explanation style, having some common points with the
I2ICB, and I2ICF explanation approaches, discussed in the previ-
ous Section 3.1.

3.3. Local explanation mining

Here, it is introduced a more sophisticated approach for ex-
plaining recipe recommendations, which is also based on the
Explanation Mining framework [15].

This new approach, coined as Local Explanation Mining, as-
sumes that the global association rules that are identified in the
Global Explanation Mining approach (Section 3.2) are too general
and might be insufficient for generating proper explanations for
the active user [15]. Instead, Local Explanation Mining calculates
first the neighborhood of the current user, and executes the
rule mining method considering as transactional data only the
associated to such users. Therefore, for each different user is
necessary to execute a new association rule mining detection, for
using them in the subsequent explanation generation process.
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Fig. 4. Local Explanation Mining for post hoc interpretability in Recommender Systems.
This approach comprises the following steps, which are also
epresented in Fig. 4, build over the Global Explanation Mining
pproach (Fig. 3). Local Explanation Mining is also formalized in
lgorithm 2, and detailed as follows.

1. Input data: The input data for Local Explanation Mining
is very similar to the associated to the previous approach.
In addition to the recipe information and the preference
matrix, in this case it is also necessary the amount of
nearest neighbors that will be used for building the local
8

transactional dataset that is used as base for rule mining
for the current user.

2. Train matrix factorization model and prediction: In a sim-
ilar way to the Global Explanation Mining method, in
this case the traditional black-box matrix factorization
method [29] is used for recommendation generation (Step
1 in Fig. 4).

3. Nutrition-aware re-ranking of the recommendation list:
Here the recipes in the retrieved recommendation list are
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Fig. 5. Locally interpretable model-agnostic explanation model.
re-ranked according to the criteria presented at Eq. (6), in
Section 3.1. Afterwards the top p recommendations of the
re-ranked list are used (Step 2 in Fig. 4).

4. Train Association Rules (the interpretable model): This
stage contains the most substantial difference of this ap-
proach in relation to Global Explanation Mining.
In this case, for each user it is generated a different set
of the required transactions T for rule mining [58], taking
as base the preferences associated to the users in the
neighborhood of the active one (Line 7 at Algorithm 2)
(see also Step 3 in Fig. 4). These transactions are used for
building local association rules, following the traditional
approach formerly pointed out by Sarwar et al. [59] (Line
8 at Algorithm 2) (see also Step 4 in Fig. 4).

5. Output association rules: The output of the previous stage
is a list of local rules representing relationships between
recipes in the matrix factorization predictions, in the con-
text of the neighborhood of the current user. In a similar
way to Global Explanation Mining, for such user it is only
filtered to a subset the rules where the antecedent X is in
the user training data and the consequent Y is in the top p
nutrition-aware recommendation list (Line 9 at Algorithm
2) (see also Step 5 in Fig. 4). The corresponding explanation
can be then seen as the antecedents of the corresponding
rules, and therefore they are both retrieved (Line 10) (Step
6 in Fig. 4).

.4. An improved locally interpretable model-agnostic explanation
odel (LIRE)

This section adapts a locally interpretable model-agnostic ex-
lanation model to the recipe recommendation framework, re-
ently proposed [18]. In this work, a explanation instance is a
-tuple (u, i, f (u, i)) where u ∈ U , i ∈ I , and f (u, i) ∈ R+

epresents a rating prediction that is obtained by a black-box RS.
ere the authors are focused on reaching the main interpretable
eatures that are able to explain f (u, i), instead of showing the
orking principle of the black-box model.
Fig. 5 presents the steps of this model, which are explained in

etail as follows:

1. Black-box model training, execution, and nutrition-aware
re-ranking: In a similar way to the previous works, here
a traditional matrix factorization approach [29] will be
used as black-box model for recommendation generation.
Such model leads to the top n recommendation list, which
9

are re-ranked according to the nutrition-aware criteria al-
ready pointed out in Eq. (6), to obtain the final top p
recommendation list (Steps 1 and 2 in Fig. 5).

2. Generation of the locally-perturbed instances, based on
the instance to explain: The concept of locally-perturbed
instance is closely related to the locally interpretable fea-
tures, regarding such features are used to represent the
instances.
Such interpretable features are related to feature names
that represent directly comprehensible pieces of domain
knowledge. Formally, in this work a set of interpretable
features is represented by the set I of n items names
I = {I1, I2, . . . , In}, each one associated with a domain of
value dom(I1), . . . , dom(In) = Rn

+
. A feature vector over I is

represented then as a n-tuple t = (c1, c2, . . . , cn), t ∈ R+.
Equivalently, the tuple is viewed as a function t as I →

∪kdom(Ik), being t(Ik) the value ck and t|I ′ is the restriction
of t to the subset I ′ ⊆ I . t(Ik) = t|Ik .
Summarizing, for a 3-tuple (u, i, f (u, i)), the list of inter-
pretable features is formalized as the tuple tu

|∪j̸=iIj
. This can

be considered as the restrictions of t to the subset of items
j ∈ I , being j ̸= i. This representation is focused on asso-
ciating a real value to each feature name that represents
the importance of the feature for the current explanation
instance.
Taking as base this context and using as input the in-
stance to explain, the perturbations are defined as a ran-
dom modification of the values of the tuple tu

|∪j̸=iIj
, based on

some Gaussian distribution [18]. As alternative, perturba-
tions will be considered as randomly picked users from the
same cluster as the user u for which the explanation is to be
computed (Step 3 in Fig. 5). In practice, a mixed approach
will be used, where 50% of training instances originates
from perturbations and the other 50% is generated from the
cluster neighbors.

3. Training of the local-agnostic explanation models over the
local surrogate instances: In Chanson et al. [18], the authors
assume the definition previously pointed out by Nobrega
and Marinho [17] and Ribeiro et al. [54], where the task
of explaining a recommendation for certain user u over
certain item i, is associated to finding the top n or minimal
subset of interpretable features that maximize the fidelity
of the surrogate model to the original model.
This surrogate model represents the explainable model
and needs to be approximated. As surrogate models, this

proposal is focused on linear explanation models with the
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form g(z) = w•tu, being tu the vector of values constructed
from tu

|∪j̸=iIj
; and linked to interpretable features of user u

in the explanation instance (u, i, f (u, i)). The explanation
model ef (u, i) is formalized as:

ef (u, i) = arg minw∈RnL(f (u, i), w•tu) + ω(w) (9)

Here L is a loss function that penalizes any difference be-
tween the original prediction f (u, i) and the value predicted
by the surrogate, explainable linear model w•tu. ω(w) is
the complexity of the linear explanation model.
Therefore, the problem is reduced to find the most appro-
priate interpretable feature weight vector w. To this end,
for explaining each independent prediction the current
approach needs to identify a set of instances that are close
to the instance to explain, for using such set as training
for learning the local explanation model (Eq. (9)) (Step
4 in Fig. 5). This task is accomplished by two different
approaches: (1) generating gradually perturbed instances
around the instance to explain, finding the appropriate
vector w for such set of instances, or (2) finding natu-
ral grouping of neighbors that share similar evaluation
patterns, to estimate a local explanation.
The underlying problem is then formalized as a simple
regression problem between this local training set Ttrain
of instances expressed on interpretable features contain-
ing perturbations or cluster neighbors of user u, and the
respective predictions Ytrain either obtained by the main
black-box recommendation model, or by the explainable
lineal regression approach.
To solve the problem, the authors consider a LASSO re-
gression model [60], that introduces a penalty term ∥w∥1
similar to ω(w) in Eq. (9):

diff = Ytrain − w ∗ Ttrain (10)

ef u, i = argminw∈Rn{diff ∗ diff t + λ∥w∥1} (11)

being λ the Lagrangian coefficient linked to the constraint
that minimizes the sum of weights w.

4. Explanation generation: The obtained surrogate model con-
tains a set of weights associated to each interpretable
feature (see Step 5 in Fig. 5), focused on showing the local
importance of the corresponding feature in the current
instance. Therefore such features, in this case represented
as other recipe names, can be used as a way to explain
the current recommendation generation (Step 6 in Fig. 5).
Such set will be referred as the ‘‘explanation set’’ in the
remaining of the paper.

. Experiment and analysis

This section evaluates the performance of the discussed ex-
lanation algorithms which have been explored, adapted, and
pplied to the cooking recipe recommendation domain [34]. With
his goal in mind, such evaluation is developed over a cooking
ecipe recommendation dataset. At first, some details on the
ataset, the evaluation metric, and the experimental protocol
sed, are presented. Specifically, we plan to analyze our results
n issues such as:

• To study the explanation capability of the analyzed post-hoc
models over a cooking recipe recommendation environment
(Objective 1).

• To evaluate the effect of adding some nutritionally-aware
criteria into the explainable recommendation frameworks
(Objective 2).

• To compare the performance of each analyzed post-hoc
explanation model, in the cooking recipe recommendation
domain (Objective 3).
10
Table 3
General information on Food.com dataset.
Data Description

Users 25075
Recipes 178264
Interactions 1125284
Rating range [0,5]

4.1. Dataset

This evaluation uses the popular Food.com cooking recipes
dataset, taking from Kaggle [61]. Such dataset, which main figures
are presented at Table 3, covers 18 years of user interactions
and uploads on Food.com (formerly GeniusKitchen). Each recipe
contains associated ingredients, list of used techniques, and nu-
tritional information. In addition, for each user interaction with
certain recipe, it is a registered a rating value in the range [0,
5] and a textual review. Considering the sparsity of the dataset,
this work will consider the interactions of users with more than
150 interactions, over the items with more that 500 associated
interactions.

Some of the methods presented across this work depend on
item features for recommendation/explanation generation. In this
context, we will consider recipe’s ingredients as features. They
are represented as binary features, that consider the presence or
absence of the ingredient in the current cooking recipe.

4.2. Evaluation metrics

The main evaluation metric that is included in this study is
Model Fidelity [15]. Model fidelity is defined as the proportion
of the recommendations provided by the black-box model, that
can be explained by the white box explainable recommendation
model (Eq. (12)):

Modelfidelity =
|explainable items ∩ recommended items|

|recommended items|
(12)

In this direction, it is worthy to mention that in this work we
are not focused on evaluating the performance of the main black-
box recommendation method, and for this reason we do not
use accuracy-oriented metrics such as Precision, NDCG, etc [62].
Instead, we are focused on measuring the explanation capabil-
ities of the discussed explanation models, over the recommen-
dations generated by the black-box approach. Therefore, we use
explanation-oriented evaluation measures, such as the model
fidelity [14,15].

4.3. Evaluation protocol

The post-hoc explanation models discussed across this work,
will be tested using the dataset built from Food.com data (Sec-
tion 4.1). The popular Surprise Python scikit will be used as base
for implementing the experiments [63].

The training of the black-box recommendation model will be
developed by considering the basic matrix factorization approach,
also known as Funk SVD by some authors [29]. As parameters,
it will be used the default values of this method in the Surprise
framework (see Table 4). The tuning of these values is out of the
scope of this work; however they were obtained from the related
literature [29,63], and are usual choices for reaching effective
recommendations.

Furthermore, it will be considered the reaching of the per-
formance criteria (i.e. model fidelity), with and without incor-
porating the top n recommendations re-ranking stage based on
the nutritional value of the recipe. As was previously stated,
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Table 4
Parameters for the matrix factorization approach
used as black-box in the proposal.
Parameter Value

n − factors 20
n − epochs 20
init − mean 0
init − std − dev 0.1
learning − rate 0.007
regularization − term 0.02

the objective is to evaluate whether this nutritional knowledge
domain criterion impacts on the explanation capabilities of the
proposal.

We want to evaluate the explanation capabilities of the dis-
ussed approaches, over any top scored unknown item for each
ser. To reach this goal we follow the subsequent steps:

1. Train the black-box recommendation model using the
available dataset.

2. For each unknown item of each user in the dataset, predict
a rating value using the trained model.

3. For each user, generate the top n recommendation list
based on the predicted values.

4. For each recommended item, generate the corresponding
explanation using methods presented at Section 3.

5. Calculate the model fidelity (Eq. (12)) of each explanation
model.

.4. Results

This section presents the experimental results associated to
he presented protocol, focused on the cooking recipe recom-
endation domain. According to the initial objectives presented
t the beginning of this section, it is focused on exploring the
xplanation capability of the analyzed post-hoc models (Objec-
ive 1, Section 4.4.1), exploring the effect of adding the nutri-
ional information into the explanation performance (Objective
, Section 4.4.2), and performing a comparison across the dif-
erent models (Objective 3, Section 4.4.3). Eventually, some case
tudies are also presented (Section 4.4.4), and finally the main
xperimental findings are briefly synthesized (Section 4.4.5).

.4.1. Exploring the explanation capability of the analyzed post-hoc
odels
This subsection is focused on evaluating the explanation capa-

ility of the analyzed post-hoc approaches, based on the model
idelity criteria, and without considering the nutritional rec-
mmendations re-ranking. Such approaches are: the simply-to-
xplain post-hoc explanation schemes of Shmaryahu et al. [16],
he global explanation mining approach [15], the local explana-
ion mining approach [15], and the LIRE approach [18].

imple post-hoc explanations:. Here it is explored in the cooking
ecipe recommendation domain, two simple post-hoc explana-
ion schemes pointed out at Section 3.1. These methods are
he item–item content-based explanation scheme (I2ICB), and
he item–item collaborative filtering explanation scheme (I2ICF).
ere we recall that cooking recipe features are represented by
heir associated ingredients.

Following the overall experimental procedure presented at
ection 4.3, we evaluate this approach by calculating the model
idelity of the proposal, on the discussed dataset (see Section 4.1).
o reach this goal, we generate the top n recommendation list
exploring n = {3, 5, 10}) for each user using the matrix factor-
zation method.
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Table 5
Model fidelity of the I2ICB explanation scheme in top n recommendations. δ

represents the minimum exclusive threshold for a Jaccard similarity between
a previously preferred item and the recommended item, to be considered the
former as a valid explanation.
δ 0 0.1 0.2 0.3 0.4

I2ICB (top 3) 0.763 0.56 0.182 0.128 0.078
I2ICB (top 5) 0.764 0.54 0.176 0.133 0.076
I2ICB (top 10) 0.746 0.506 0.158 0.123 0.067

Subsequently we try to explain each item recommendation,
by using the two mentioned explanation schemes, for identi-
fying relationships between current recommendations and the
set of previously preferred items. In practice, the model fidelity
(Eq. (12)) is then characterized as the proportion of recommended
items that could be connected with previous preferences of the
current user.

At first, Tables 5 and 6 present the fidelity of the I2ICB scheme,
or explaining the top n recommendations for each user, con-
idering different values of n. For building Table 5 it is taken
into account for each top n recommended item, the similarity
between them and the previously preferred items by the current
user (i.e. those with a rating value equal or greater than 4). If such
similarity is greater than a threshold δ (see Eq. (7)), then the item
is considered as explainable, and contributes to the calculation
of the model fidelity value (Eq. (12)). In this way, Table 5 shows
the fidelity values for δ ∈ [0; 0.4]. At first, for δ = 0 (assuming
as explainable any item with at least some common feature
with previously preferred items), the fidelity values yield around
0.75 for all the considered sizes of the recommendation lists. In
practice, it means that for each 3 out of 4 recommended cooking
recipes, they can be connected and justified with a previously
preferred recipe by the current user.

However, for larger values of δ, Table 5 also shows that too few
recipes can be justified with strongly connected and previously
preferred items. In fact, when a previously preferred recipe is
considered as a proper explanation if the similarity threshold is
higher than δ = 0.4, only the 6%–7% of recommended recipes are
able to find proper explanations. Furthermore, for larger values of
δ, the fidelity values decrease substantially, tending to 0. For this
reason, δ was evaluated in the range [0; 0.4].

Finally, it is also relevant that a best fidelity tends to be
obtained for small recommendation lists. It suggests that it is
more possible to find a proper explanation for those items at the
top of the recommendation list, as could be expected.

Beyond these results associate to the parameter δ, it is also
necessary to characterize the I2ICB post-hoc explanation scheme
using other criteria more representative of the current cooking
recipe domain. In this direction the parameter m is introduced,
for representing in this case the minimum number of common
features (i.e. ingredients, see Section 4.1) that should have a
previously preferred recipe in common with someone in the cur-
rent recommendation list, to be considered a valid explanation.
Table 6 presents these results. Here it is worthy to note than even
considering at least two common ingredients with a preferred
item (m = 2), the discussed framework is able to explain around
the half of the recommended items. Furthermore in a more strict
scenario that considers at least 5 common items (m = 5), the
framework is able to achieve a model fidelity over 0.1.

In addition to these numerical results it is necessary the de-
velopment of a qualitative analysis, to verify according to the
cooking recipe domain, whether the generated explanations fol-
low the common sense and whether the common ingredients
used for generating it are actually relevant features to connect
past preferences and currently top n recommended recipes.
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Fig. 6. Most common ingredients used as base in the I2ICB recommendation explanation method (m = 1).
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Table 6
Model fidelity of the I2ICB explanation scheme in top n recommendations.
m represents the minimum exclusive threshold for a number of common
features between a previously preferred item and the recommended item, to
be considered the former as a valid explanation.
m 1 2 3 4 5

I2ICB(top 3) 0.763 0.534 0.211 0.128 0.104
I2ICB (top 5) 0.764 0.505 0.202 0.133 0.107
I2ICB (top 10) 0.746 0.448 0.182 0.123 0.1

Fig. 6 illustrates the most relevant features (i.e. ingredients)
hat were used as base for linking the recommendation list with
ast preferences through I2ICB approach with m = 1, as well
s the amount of generated explanations based on such features.
s it could be expected, the figure reflects some ingredients that
re pretty irrelevant for linking two recipes, such as salt, sugar,
nions, or water. However, we think that it is relevant that several
ngredients with a higher specificity degree (e.g. eggs, Parmesan
heese, ground beef, chicken broth, vanilla), have also driven
o explanation generation. The preference over foods with such
ngredients can be associated to more specific user characteristic,
videncing this result that the explanation scheme can be coupled
o such characteristic, and therefore contributing to the desired
ow effect of the generated explanations [64].
In a different direction, Table 7 presents the results of the I2ICF

explanation scheme, also proposed by Shmaryahu et al. [16]. This
table is similar to Table 5 in the sense that it used a threshold
δ to compare a currently recommended item and a previously
preferred one, to determine whether the last one can be used
as explanation for the current recommendation. However, here
we found out that the similarity values among items, tend to be
close overall. Particularly, it is showed that for δ = 0.06, it can be
reached a fidelity greater than 0.97; however, for δ = 0.18, the
fidelity is already around 0.3. These close similarity values make
this approach unable to discriminate between items that can be
valuable explanations for a current recommendation. Therefore,
at least for the current data, I2ICF cannot be identified as a proper
explanation scheme for supporting recipe recommendations.

Here it is also worthy to note that for δ < 0.06 the obtained
fidelity is very close to 1, while it substantially decreases for
δ > 0.18. Therefore, we report only the values in the range

[0.06, 0.18].
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Table 7
Model fidelity of the I2ICF explanation scheme in top n recommendations. δ

represents the minimum exclusive threshold for a Jaccard similarity between
a previously preferred item and the recommended item, to be considered the
former one as a valid explanation.
δ 0.06 0.09 0.12 0.15 0.18

I2ICF (top 3) 0.977 0.972 0.879 0.717 0.375
I2ICF (top 5) 0.977 0.972 0.869 0.678 0.34
I2ICF (top 10) 0.977 0.972 0.857 0.628 0.297

Global explanation mining. In this scenario we are focused on
exploring the behavior of the Global Explanation Mining approach
in the cooking recipe recommendation domain.

In a similar way to the previous approach based on simple-to-
explain methods, exposed at Section 3.1, here Global Explanation
Mining is used to explain the top n recommendation list (n =

3, 5, 10}) generated through a matrix factorization method.
Specifically, the rule mining procedure considers as optimal

alues min − support = 0.015 and min − confidence = {0.2, 0.3,
0.4, 0.5, 0.6, 0.7}, being such values in correspondence with the
typical values of minimum support and confidence in traditional
RS datasets, initially reported in this explanation method [15].
Furthermore, in a similar way to Peake and Wang [15], we focus
on rules with consequents of size 1.

Table 8 presents the fidelity of this approach in the food
recommendation dataset, as well as the average number of ex-
planation rules mined for each user. The table shows that this
explanation approach is able to reach a high fidelity for lower
minimum confidence values (e.g. a fidelity over 0.91 for min −

conf = 0.2). However, it has the cost of managing a higher
number of rules for explanation, as well as the possibility that
some of them were actually not an appropriate explanation. In
contrast, when the number of rules decreases, the model fidelity
also decreases. In other direction, it is also relevant that, in a sim-
ilar way to the tendency at the explanation approach presented
at Section 3.1, here the model fidelity decreased for a larger size
of the recommendation list. The results is expected, taking into
account that top items should be the more preferred ones, and
therefore easier to explain.

In this scenario, we use min − conf values in the range
[0.2, 0.7] because for lower values the number of rules increases
considerably. On the other hand, for larger values too few rules
are detected, the method takes too much time to discover it, and
the fidelity values tend to 0.
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Table 8
Model fidelity and number of rules of the Global Explanation Mining scheme in
top n recommendations, considering several minimum confidence levels of the
identified rules.
min − conf 0.2 0.3 0.4 0.5 0.6 0.7

Expl-Min (top 3) 0.917 0.689 0.452 0.297 0.14 0.053
Expl-Min (top 5) 0.902 0.658 0.426 0.268 0.12 0.041
Expl-Min (top 10) 0.879 0.614 0.379 0.219 0.09 0.03

Amount of rules 1871 1577 1032 626 298 115

Table 9
Model fidelity and number of rules of the Local Explanation Mining scheme in
top n recommendations, considering several minimum confidence levels of the
identified rules.
min − conf 0.2 0.3 0.4 0.5 0.6 0.7

Expl-Min (top 3) 0.892 0.671 0.420 0.317 0.186 0.107
Expl-Min (top 5) 0.878 0.647 0.401 0.293 0.167 0.094
Expl-Min (top 10) 0.858 0.610 0.372 0.271 0.151 0.084

Amount of rules 4671 4529 4155 3824 3094 2441

Local explanation mining. Here it is explored the behavior of the
Local Explanation Mining approach, discussed at Section 3.3.

The evaluation of this method uses the same parameters of
the Global Explanation Mining method, presented at the previous
subsection. In this case, themin−support parameter was adjusted,
sing in this case min−support = 0.04. In addition, for each user,

the profiles of the top 100 nearest users are used as input data
for the corresponding local rule mining.

Table 9 presents the fidelity of this approach, as well as the
average number of explanation rules, mined for each user.

Overall, the obtained results are similar to the associated to
the Global Explanation Mining approach. The best fidelity values
were obtained for small recommendation lists and small min −

onf values, being min − conf ∈ [0.2, 0.7] based on the similar
riteria also used in Global Explanation Mining approach. Here it
s also relevant that for the same min − conf values but with a
mall min − support , as could be expected, a larger number of
rules are identified.

LIRE. Furthermore, we evaluate the fidelity of the explanations
generated by the LIRE approach [18] in the cooking recipe rec-
ommendation domain.

In a similar way to the previous scenarios, we use this ap-
proach to explain the top n recommendation list (n = {3, 5, 10})
generated through the matrix factorization method described in
the experimental protocol. As it was explained in the method
description, for each item recommendation LIRE is focused on
determined an ‘‘explanation set’’ of other items, which could be
a valid explanation of the current item recommendation. Such
recommended item is then considered as explainable, if all the
items at such set represent actual preferences of the user (rui >
).
Table 10 presents the fidelity of this approach for the top n

ecommendation list, being n ∈ {3, 5, 10} in a similar way to the
revious approaches. Furthermore, it considers different sizes of
he explanation set, in the range [1, 10]. Here it is relevant that
he approach reaches a similar fidelity for the three mentioned
op n recommendation scenarios. For all cases, LIRE reaches a
idelity close to 0.94 when exp − set − size = 1, which are
cross the best fidelity values analyzed in this research paper.
owever, this very small size of the explanation set can be a
hortcoming considering the goal of providing trustworthy and
onvincing explanations.
In this direction, for exp − set − size = 2 the fidelity of

he proposal lies around 0.880, which is also a relevant result

egarding the values associated to the other proposals. As could o

13
be expected, for larger sizes of such sets, the fidelity of the
generated explanations quickly decreases, taking into account
that the explanation sets can be then composed by some items
that are not actual preferences of the current user. As example,
for exp − set − size = 5 the fidelity lies around 0.225, and for
xp − set − size = 7, around 0.07.

.4.2. Exploring the effect of adding the nutritional information into
he explanation performance

This subsection is focused on exploring the effect of the intro-
uction of the nutritional re-ranking criteria in the fidelity of each
ecommendation explanation approaches, discussed at Section 3.
With this goal in mind, the protocol previously presented at
Section 4.3 is used for evaluating these explanation approaches
using the nutritional recommendations re-ranking. Furthermore,
for each case it is developed a comparison against the same
approach using the same size of the top n recommendation list,
but without considering the nutritional criteria, for measuring its
effect in the recommendation performance.

Simple post-hoc explanations. At first, this study is developed
for the simple post-hoc explanations [16]. Here, it is considered
the incorporation of the nutrition-aware re-ranking approach
(I2ICB+nut), considering (n = 10, p = 5) and (n = 5, p = 3) (i.e. top n
recommendations generation, which are reduced to p recommen-
dations after nutrition-aware re-ranking). The achieved results
are respectively compared with their counterparts in the cases
that do not use nutritional information (i.e. I2ICB (top 5) and I2ICB
(top 3)).

Table 11 presents these results. In this case for larger val-
ues of δ, specifically for δ ≥ 0.2, both approaches outperform
their respective counterparts that do not consider the nutritional
knowledge, being in this case I2ICB (top 3) and I2ICB (top 5).
On the other hand, for δ < 0.2, the incorporation of nutri-
tional knowledge leads to a reaching of lower fidelity values.
Such results suggest that when recommendation explanations
are only generated through items very similar to the currently
recommended, the incorporation of the nutrition-aware criteria
can lead to an improvement in the recommendation generation.
However, where explanations are also driven through less similar
items, such criteria do not introduce an improvement in the
explanation capability.

Table 12 also presents the evaluation of incorporating the
nutrition-aware re-ranking in the top n recommendation process,
in the I2ICB explanation scheme that consider the minimum
exclusive threshold value m. As could be expected, these results
closely match with those associated to the analysis of the param-
eter δ. In this case, for m ≥ 3, the approaches that incorporate
utritional knowledge obtain a better fidelity. On the other hand,
or lower m values the best fidelity was obtained for the methods
hat do not incorporate this kind of knowledge.

Furthermore, Table 13 presents the results for the I2ICF expla-
ation approach. In this experimental scenario it is not reflected a
ell-defined behavior of the methods that incorporate nutritional
nowledge (I2ICF (top 5, p = 3) and I2ICF (top 10, p = 5)),in
elation to their counterparts that do consider such knowledge.
n this case, both approaches reach a similar performance for
= {0.06, 0.09, 0.12}, while for larger values of δ, the approach

hat does not consider nutritional knowledge reaches the best
erformance.
Summarizing, the results suggest that the incorporation of

utritional information into the post-hoc explanation approaches
resented by Shmaryahu et al. [16], leads to an improvement in
he model fidelity for larger values of the parameters δ and m in
2ICB schemes, and keeps a similar performance for lower values

f the parameter δ in the I2ICF scheme.
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Table 10
Model fidelity of the LIRE approach scheme in top n recommendations, considering several sizes of the explanation set.
exp − set − size 1 2 3 4 5 6 7 8 9 10

LIRE (top 3) 0.936 0.880 0.571 0.373 0.225 0.137 0.068 0.040 0.017 0.012
LIRE (top 5) 0.939 0.878 0.570 0.374 0.222 0.133 0.067 0.039 0.020 0.012
LIRE (top 10) 0.938 0.879 0.572 0.376 0.225 0.132 0.071 0.039 0.019 0.013
.

t
r

Table 11
Model fidelity of the I2ICB explanation scheme in top n recommendations,
with and without nutritional information. δ represents the minimum exclusive
hreshold for a Jaccard similarity between a previously preferred item and the
ecommended item, to be considered the former as a valid explanation.
δ 0 0.1 0.2 0.3 0.4

I2ICB (top 3) 0.763 0.56 0.182 0.128 0.078
I2ICB+nut (top 5,p = 3) 0.728 0.473 0.2 0.177 0.126

I2ICB (top 5) 0.764 0.54 0.176 0.133 0.076
I2ICB+nut (top 10,p = 5) 0.716 0.478 0.237 0.198 0.133

Table 12
Model fidelity of the I2ICB explanation scheme in top n recommendations,
with and without nutritional information. m represents the minimum exclusive
hreshold for a number of common features between a previously preferred item
nd the recommended item, to be considered the former as a valid explanation
m 1 2 3 4 5

I2ICB(top 3) 0.763 0.534 0.211 0.128 0.104
I2ICB+nut (top 5,p = 3) 0.728 0.424 0.229 0.177 0.177

I2ICB (top 5) 0.764 0.505 0.202 0.133 0.107
I2ICB+nut (top 10,p = 5) 0.716 0.403 0.255 0.198 0.197

Table 13
Model fidelity of the I2ICF explanation scheme in top n recommendations,
with and without nutritional information. δ represents the minimum exclusive
hreshold for a Jaccard similarity between a previously preferred item and the
ecommended item, to be considered the former as a valid explanation.
δ 0.06 0.09 0.12 0.15 0.18

I2ICF (top 3) 0.977 0.972 0.879 0.717 0.375
I2ICF+nut (top 5,p = 3) 0.977 0.973 0.878 0.651 0.269

I2ICF (top 5) 0.977 0.972 0.869 0.678 0.34
I2ICF+nut (top 10,p = 5) 0.977 0.973 0.881 0.642 0.255

Global explanation mining. This subsection is focused on explor-
ing the effect of the addition of nutritional information in the
Global Explanation Mining approach [15].

In a similar way to the simpler post-hoc approaches [16],
here it is considered the incorporation of the nutrition-aware re-
ranking approach (see Section 3.1), considering (n = 10, p = 5) and
(n = 5, p = 3) (i.e. top n recommendations generation, which are
reduced to p recommendations after nutrition-aware re-ranking).

Table 14 presents the model fidelity of Global Explanation
Mining after the incorporation of nutritional information (Exp-
Min+Nut), as well as compares it with the same approach but
without such information (Expl-Min). As can be expected, for
several scenarios the application of the re-ranking approach for
prioritizing the recommendation of nutritionally-appropriated
recipes, introduces the suggestion of some recipes that are not
possible to explain. Such facts imply the reduction of the fidelity
at the corresponding model, in relation to a similar model that
does not consider such re-ranking (e.g. Expl-Min+Nut (top 5, p
= 3) vs. Expl-Min (top 3); or Expl-Min+Nut (top 10, p = 5) vs.
Expl-Min (top 5), see Table 14). Such decreasing becomes relevant
when only rules with very high confidence values are mined.

In contrast, for low confidence values, specifically, for min −

onf = 0.2, it is worthy to note that Table 14 shows that the
idelities of the nutrition-aware methods reach a value of 0.902
nd 0.896, which are very close to their counterparts that do not
14
consider this criterion (getting fidelities of 0.917 and 0.902). This
fact suggests that when a relevant set of rules are available to
build the explanations, the nutritionally-appropriated items could
be easier to explain, in relation to formerly top preferred items.
Further studies are necessary to validate this hypothesis.

Local explanation mining. This subsection is focused on exploring
the effect of the addition of nutritional information in the Local
Explanation Mining approach [15].

Table 15 presents the results associated to this approach. In
a similar way to the behavior of Global Explanation Mining (
Table 14), here for min − conf = 0.2 and (top10, p = 5),
he nutrition-aware methods reach a similar fidelity value in
elation to its counterpart (Expl − Min(top5)), while for larger
min − conf values, the methods that do not consider nutritional
issues, outperform those that consider it.

Such similar fidelity value also reinforces the previously men-
tioned hypothesis that more rules make nutritionally-
appropriated items easier to explain, taking into account that
Local Explanation Mining generates a larger number of rules
in relation to Global Explanation Mining, as was exposed in
Section 4.4.1.

LIRE. Finally, Table 16 presents the effect of adding the nutri-
tional information in the top n recommendation list generation,
in the LIRE approach.

In this case, Table 16 evidences that the nutritional-aware re-
ranking leads to an increasing in the model fidelity values that
can be reached by the LIRE approach.

For the top 3 recommendation task, LIRE + Nut(top5, p = 3)
outperforms LIRE(top3) for 8 out of 10 experimental scenarios,
achieving very similar results in the two remaining scenarios
(i.e. size 2 and 6, of the explanation set). In a very similar way,
for the top 5 recommendation task, LIRE+Nut(top10, p = 5) out-
performs LIRE(top5) for 8 out of 10 experimental scenarios, with
similar results in the remaining two, in the case for explanation
sets with sizes 6 and 9.

These results evidence a different behavior in relation to the
Explanation Mining approaches. While the incorporation of nu-
tritional information decreases the fidelity of the model in Expla-
nation Mining (Sections 3.2 and 3.3), here at the LIRE approach
(Section 3.4) it leads to a slight improvement in such values.
We think that this improvement is with the cost of providing
less convincing explanations considering they are limited by the
established size of the explanation set (Section 3.4). A detailed
comparison across the discussed approaches, will be presented
in the next subsection.

4.4.3. Comparison across the proposals
Previous subsections have been focused on studying the

performance of previously presented post-hoc explanation ap-
proaches, with and without nutritional information. This subsec-
tion is focused on performing a comparison between them, being
centered in two directions: (1) performing a direct comparison
according to the model fidelity criterion, and (2) studying the
overlapping degree between the set of explanations generated by
each different explanation approach.
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Table 14
Model fidelity and number of rules of the Global Explanation Mining scheme in top n recommendations, considering several minimum
confidence levels of the identified rules, and with and without nutritional information.
min − conf 0.2 0.3 0.4 0.5 0.6 0.7

Expl-Min (top 3) 0.917 0.689 0.452 0.297 0.14 0.053
Expl-Min+Nut (top 5, p = 3) 0.902 0.633 0.390 0.226 0.089 0.020

Expl-Min (top 5) 0.902 0.658 0.426 0.268 0.12 0.041
Expl-Min+Nut (top 10, p = 5) 0.896 0.621 0.365 0.198 0.075 0.020
Table 15
Model fidelity and number of rules of the Local Explanation Mining scheme in top n recommendations, considering several minimum
confidence levels of the identified rules, and with and without nutritional information.
min − conf 0.2 0.3 0.4 0.5 0.6 0.7

Expl-Min (top 3) 0.892 0.671 0.420 0.317 0.186 0.107
Expl-Min+Nut (top 5, p=3) 0.885 0.621 0.375 0.260 0.130 0.077

Expl-Min (top 5) 0.878 0.647 0.401 0.293 0.167 0.094
Expl-Min+Nut (top 10, p=5) 0.877 0.607 0.361 0.260 0.132 0.075
Table 16
Model fidelity of the LIRE approach scheme in top n recommendations, considering several size of the explanation set, and using nutritional information.
exp − set − size 1 2 3 4 5 6 7 8 9 10

LIRE (top 3) 0.936 0.880 0.571 0.373 0.225 0.137 0.068 0.040 0.017 0.012
LIRE+Nut (top 5, p = 3) 0.941 0.879 0.572 0.380 0.227 0.136 0.071 0.043 0.021 0.014

LIRE (top 5) 0.939 0.878 0.570 0.374 0.222 0.133 0.067 0.039 0.020 0.012
LIRE+Nut (top 10,p = 5) 0.941 0.881 0.571 0.375 0.223 0.130 0.069 0.042 0.020 0.014
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Direct comparison between the proposals. Fig. 7 shows the perfor-
ance of the six considered explanation approaches which are

2ICB with Jaccard similarity (a), I2ICB with minimum number
f common features (b), I2ICF (c), Global Explanation Mining (d),
ocal Explanation Mining (e), and LIRE (f). Each approach depends
n different parameters (X-axis), but the results are presented
sing the same scale for the fidelity values (Y-axis). The top 3
ecommendation task was considered for all cases, even though
he obtained results were similar for the top 5 and top 10 task,
lso considered previously in this experimental analysis.
From a general viewpoint, all the analyzed approaches per-

orm similarly in the sense that they are able to reach fidelity
alues in a wide range located from around 0.7, to a value very
lose to zero depending on the corresponding parameter.
However, several difference across the methods can be also

bserved. At first it is relevant that the approaches that depend
n item features (Fig. 7a and b) obtain a lower fidelity values
n relation to other approaches such as Explanation Mining and
IME. It suggests that there are several relationships between
tems, which represent valid explanations for the performed rec-
mmendations, and that go beyond simple relationships between
eatures.

In a different direction, it is necessary to mention the high
idelity values achieved by the I2ICF approach (c at Fig. 7). How-
ver, in contrast to the other approaches and as it was pointed out
reviously, the I2ICF fidelity decreases quickly for small changes
f the parameter δ. It suggests then that this method is not
ble to discriminate between appropriate and not appropriate
xplanations for a current item recommendation.
Finally, Global Explanation Mining (Fig. 7d), Local Explanation

ining (Fig. 7e), and LIRE (Fig. 7f) are able to obtain fidelity values
round 0.9 for several scenarios. In this context Global Explana-
ion Mining obtains better fidelity values than Local Explanation
ining for lowermin−conf values, even though it needs a smaller

number of rules as was pointed out in Section 4.4.1. It is also
nteresting that for high min − conf values (i.e. only rules with a
igh trust level), the local approach outperforms the global one.
Furthermore, the LIRE approach (f) obtains fidelity values over

.87 for exp−set−size = 1 and exp−set−size = 2, which are val-

ues comparable with the best performance of Explanation Mining.

15
In addition, this approach does not depend on the generation
of intermediate knowledge such as the rules in the explanation
mining scenarios, allowing LIRE to generate the explanations in a
more succinct way. However, it also has as shortcoming the fact
that its fidelity decreases substantially for exp − set − size ≥ 3,
nd therefore a high fidelity is only guaranteed with explanation
ets with limited sizes.
In short, this analysis suggests that the selection of an ap-

ropriate explanation approach depends on several facts such
s the desired expressiveness of the generated explanations, or
he available computational capability to generate the rules that
re necessary in some approaches. Furthermore, the number of
vailable features for characterizing items is also necessary to
onsider, even though in this case the methods that directly
epend on features (Fig. 7a and b), have a lower fidelity in relation
o the other approaches.

In a different direction, it is worthy to mention that it was
erformed a direct comparison between the fidelity values ob-
ained by the approaches incorporating nutritional information.
he obtained results were very analogous with these previously
iscussed in this subsection. Therefore, we do not included them
n a explicit way here.

nalysis of the overlapping degree. This subsection is focused on
tudying the overlapping degree between the explanations gen-
rated by each different explanation approach, in order to char-
cterize the difference between them beyond the fidelity values.
To perform such analysis, we analyze the provided recommen-

ations as well as its associated explanation, generated for 20
sers, randomly selected. For each case, such explanations are
enerated through: (1) the I2ICB considering the minimum ex-
lusive threshold with m = 0 (Section 3.1), (2) the Global Expla-
ation Mining approach with min − support = 0.2 (Section 3.2),
nd (3) the LIRE approach with exp−set−size = 2 (Section 3.4); in
he three cases without using nutritional information. These three
ethods have performed with a similar fidelity for the selected
arameter values. For all scenarios, the top 3 recommendation
ask was considered. Afterwards, we analyze the items used for
roviding explanations for the recommendation generated in the
hree scenarios. Here we do not analyze Local Explanation Mining



R. Yera, A.A. Alzahrani and L. Martínez Knowledge-Based Systems 251 (2022) 109216

m
i
f
i
s

Fig. 7. Comparison across the discussed explanation approaches. (a) I2ICB with Jaccard similarity. (b) I2ICB with minimum number of common features. (c) I2ICF.
(d) Global Explanation Mining. (e) Local Explanation Mining. (f) LIRE.
considering it performs similar to Global Explanation Mining, that
was already included in this analysis.

Fig. 8 shows three histograms presenting the frequency of the
ost common items used as explanation in the three correspond-

ng explanation approaches, in the top 3 recommendation task
or the 20 selected users. At first, it is relevant that disregard-
ng the used explanation approach, the explanations tend to be
upported by the same set of items.
However, a detailed analysis of Fig. 8 can identify some dif-

ferences between the explanation methods. Specifically, it is rel-
evant some differences between the I2ICB approach with m =

0 [16] (Fig. 8(a)) and the other two approaches (i.e. Global Expla-
nation Mining at Fig. 8(b), and LIRE at Fig. 8(c)). In the case of
I2ICB, items such as id = 56425 and id = 101819 are frequently
used as explanations, while in the other two approaches, they
are used with a lesser extent. Furthermore, other items such
as id = 99787 with a lower frequency in I2ICB, are usually
used for supporting explanations in the other two approaches.
This behavior can be expected, considering that the explanations
generated by I2ICB are supported by the features associated to
each item (in this case ingredients of the recipes), while Global
Explanation Mining and LIRE are based on the discovery of latent
relationship between the items based on the user preferences.
Based on such fact, it can be expected that they would provide
different explanations for the same set of recommended items.
16
Furthermore, even though the analysis of Figs. 8(b) and 8(c)
suggests a clearer correlation between the frequency of the ex-
planation items linked to the Global Explanation Mining and the
LIRE approaches, some difference can be also appreciated. In the
case of Global Explanation Mining, the item id = 117899 was
the most commonly used in the explanations, while for LIRE the
item id = 99787 was the most used, being id = 117899 also
used with larger extent. Other items such as id = 125637 also
have relevant differences in their frequencies across these two
approach, considering their relative frequencies in relation to the
associated to the other items.

Summarizing, the analysis developed at this section suggests
that even though each analyzed method can perform similarly ac-
cording to their fidelity values, the generated explanation can be
different and closely related to the working foundations of each
approach. Therefore, it is also necessary to consider the nature of
the data such as the amount of common ingredients, the amount
of co-rated recipes, or the possibility of finding/building an ap-
propriate neighborhood for the current user, before selecting the
explanation approach to use.

In a similar way to the previous subsection, the obtained re-
sults with the use of nutritional information were very analogous
to the presented here without such information. Therefore, we do
not included them in a explicit way.
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Fig. 8. Most common items used as explanations. (a) I2ICB with minimum number of common features. (b) Global Explanation Mining. (c) LIRE.

17
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Table 17
Examples of real explanations generated through the I2ICB explanation scheme, considering m = 3.
Recommendation banana cake with cream cheese frosting creamy cajun chicken pasta

Explanation
lighten up whatever floats your boat brownies moist cheddar garlic oven fried chicken breast
banana banana bread
5 min cinnamon flop brunch cake

Recommendation jo mama’s world famous spaghetti italian melt in your mouth meatballs
Explanation sloppy joes pizza joes 5 min cinnamon flop brunch cake
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Table 18
Example of real explanation generated both through Local Explanation Mining
and the I2ICB explanation scheme with m = 1.
Recommendation my family s favorite sloppy joes pizza joes

Explanation creamy cajun chicken pasta
oven fried chicken chimichangas

4.4.4. Case studies
This subsection presents several case studies of recommen-

ation explanations generated by the previously discussed ap-
roaches, as real examples that illustrate the particularities of
ach method.

imple post-hoc explanations. At first, we present some expla-
ations generated by the I2ICB simple post-hoc explanation ap-
roach. In this case we assume m = 3, for guaranteeing a
trong relation between associated foods. Table 17 illustrates
ome recommended recipes and their corresponding justifica-
ions, showing that the I2ICB method is able to provide plausible
xplanations. Here it is observed that a recommendation of a
essert (banana cake), is explained by the previous consumption
f other desserts (e.g. brownies and cinnamon cake), and other
ecipe having banana (i.e. banana bread). Similarly, a recommen-
ation of a chicken with pasta was directly supported by the
revious preference of a dish containing chicken breast; and a
ecommendation of spaghetti was explained by the previous pref-
rence of a pizza. Furthermore, the table also refers to possible
xplanations which nature are not completely clear, such as the
ecommendation of meatballs tailored by the previous preference
f a brunch cake.

xplanation mining. In order to illustrate some explanations pro-
ided by the explanation mining approach and to perform a fur-
her analysis on the relationship between Explanation Mining and
he approach based on simply-to-explain methods (Section 3.1),
ables 18 and 19 show some recommended items, that can be
ither explained or not explained, also by the Shmaryahu et al.
cheme with m = 1. Such explanations are generated in this
ase by the Local Explanation Mining approach, which was able
o generate a larger set of rules in relation to Global Explanation
ining.
Regarding Table 18, it presents an explanation example similar

o the discussed in Table 17, where similar foods are linked as
xplanation mean. On the other hand, Table 19 illustrates some
ecipe explanations only generated through Explanation Mining,
hat even though they relate foods that do not have common
ngredients, can be considered plausible explanations taking into
ccount the common sense. In the first case, the preference over
bread recipe is explained by the preference for two recipe that
ould be associated to breakfasts (i.e. meatballs and a burrito).
n the other case, a meatloaf recipe is explained by a preference
ver pork chops and a common dessert such as banana cake with
ream cheese. These examples prove that it is possible to generate
ppropriate explanations by linking recipes without obviously
ommon features, raising in this way the role of approaches such
s Explanation Mining.
18
IRE. Finally, this subsection presents some explanations gener-
ted through the LIRE approach, illustrated at Table 20.
Here it is presented the explanation generated through LIRE,

f an item recommendation (banana cake with cream cheese
rosting), already explained previously with the I2ICB approach
ut for a different user. Here it is interesting the explanation gen-
rated for this recommendation, that is support by two items that
pparently do not have a direct connection with a cake, which
re a roast (to die for crock pot roast) and a chicken pasta recipe
creamy cajun chicken pasta). However, on the other hand, the
ther recommendation-explanation pair presents more expected
esults, being here a recommendation of a chicken recipe (oven
ried chicken chimichangas) justified with a previous preference
f other chicken recipe (kittencal’s moist cheddar garlic oven
ried chicken breast); and pizza recipe that was also previous
elated with the former chicken recipe recommendation, by both
he Explanation Mining and the I2ICB explanation scheme (see
able 18).
Summarizing, in the case of LIRE the illustrated examples

how that it is able to generate explanations that have been also
enerated by the simple post-hoc explanation approaches, and
y Explanation Mining. However, in some cases it can generate
xplanations which validity is not clear. Additional studies are
hen necessary for finding the role of such explanations and the
auses that lead to their generation.

.4.5. Summary
The developed experiments lead to the following findings:

• Globally, the discussed explanation methods are able to
explain up to around 94% of the cooking recipe recommen-
dations generated by a black-box recommendation method,
in this case the matrix factorization-based collaborative fil-
tering approach.

• The use of item-to-item content-based filtering as a com-
plement for supporting the explanation of the black-box
recommendation method output, is able to explain more
than 75% of the generated recommendations (Tables 5–6).
Herein, the use of parameters such as the number of com-
mon ingredients or the similarity degree, allows to manage
the reaching of more or less trustable explanations. On the
other hand, even though the use of item-to-item collabora-
tive filtering explanations (Table 7) leads to a high model
fidelity in some stages, we have not found an appropriate
parameter to make this approach useful to discriminate
between recipes that can be valuable explanations for a
current recommendation.

• The use of the Global Explanation Mining approach helps
to explain up to 92% of the generated recommendations
(Table 8). Here the explanation capability is closely related
to the number of generated rules for supporting explana-
tions: a higher number of mined rules, a higher fidelity of
the associated methods. On the other hand, the use of the
Local Explanation Mining approach helps to explain up to
around 90% of the generated recommendations (Table 9).
Even thought, it is focused on a more sophisticated working
principle, it usually performs worse than Global Explanation
Mining.
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Table 19
Examples of real explanation generated both through Local Explanation Mining, but not by the I2ICB explanation scheme with m = 1.
Recommendation banana banana bread yes virginia there is a great meatloaf

Explanation creamy burrito casserole pork chops yum yum
kittencal s italian melt in your mouth meatballs best ever banana cake with cream cheese frosting
Table 20
Examples of real explanation generated through the LIRE approach with exp − set − size = 2.
Recommendation banana cake with cream cheese frosting oven fried chicken chimichangas

Explanation to die for crock pot roast kittencal’s moist cheddar garlic oven fried chicken breast
creamy cajun chicken pasta my family’s favorite sloppy joes pizza joes
b
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• The use of the LIRE approach in the context of the cooking
recipe recommendation explanation, helps to effectively ex-
plain up to around 94% of the generated recommendations
(Table 10). However, such fidelity values are only obtained
for very small sizes of the explanation set associated to this
method (see Section 3.4). In this direction, for exp − set −

size > 2, the associated fidelity decreases quickly.
• The incorporation of the nutrition-aware criteria in the rec-

ommendation generation process leads to a decreasing in
the associated fidelity in the simple content-based post-hoc
explanation models (Tables 11 and 12). However, it is rele-
vant that in the case of the Explanation Mining approaches,
it keeps a similar fidelity value in relation to their coun-
terparts without nutritional information (Tables 14 and 15).
This result is important, and suggests that in this scenario
the nutritional information can be added without affect-
ing the explanation fidelity. Furthermore, the incorporation
of nutritional information in the LIRE approach, is able to
introduce an improvement on its associated fidelity.

• A direct comparison between the presented approaches
(Fig. 7), suggests that the explanation methods that depend
on recipe features (i.e. common ingredients), performed
worse than the other approaches. However, at last the most
appropriated method depends on the nature of the data.

• Finally, it was proved that even though there is a impor-
tant overlapping between the explanations generated by
the considered approaches (Fig. 8), each method tends to
prioritized some kind of recipes in their generated expla-
nations, based on their working principle (e.g. rules, similar
features, learned surrogate model, etc.). Furthermore, the
analysis of real explanations generated by each approach
(Tables 17–20) corroborates this issue.

. Conclusions and future works

The current paper has been focused on explaining recipe
ecommendations, as a particular RS domain that requires that
he recommendation provides both enjoyable and nutritionally-
ppropriated items.
Taking as starting point this singularity, the research has dis-

ussed and adapted currently state-of-art recommendation ex-
lanation models, to the recipe recommendation domain. Such
odels were (1) a family of simple-to-explain recommendation
lgorithms for supporting explanations of black-box recommen-
ation models, (2) the global explanation mining algorithm based
n the discovering of global association rules, (3) the local ex-
lanation mining algorithm based on the discovering of local
ssociation rules, and (4) the LIRE approach, focused on model-
gnostic explanations through learned surrogate models. For all
cenarios, the goal was to explain why the recommended recipes
re enjoyable, as well as controlling how the incorporation of the
utrition-aware criteria affects such explanation capability.
The developed experiments suggest that the explanation min-

ng approaches obtain a higher fidelity in relation to the approach
19
ased on simple-to-explain methods. However, it was also shown
hat there is an important overlapping between the results as-
ociated to each method, and in other cases one method can
ct as a complement of the other. Finally, the incorporation of
he nutrition-aware criteria does not notably affect the explana-
ion capability of the proposals for minimum support values of
he Explanation Mining approaches, and in the LIRE approach.
urthermore, in some scenarios it outperforms it.
The future work to the current research, will be the devel-

pment of post-hoc explanation approaches for the group rec-
mmendation scenario [26], also focused on the cooking recipe
omain. Furthermore, we will also explore how the manage-
ent of the natural noise in user preferences in the food recom-
endation dataset [10], can affect the fidelity associated to the
xplanation methods considered in this work.
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