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6.1 INTRODUCTION

With the increasing complexity of the decision-making environment, decisions based
on an alternative evaluation (one criterion) may no longer be applicable (Xu, Du, &
Chen, 2015). In addition, due to the limited individuals’ cognition and knowledge,
many practical decision problems are often solved in a group setting, in which mul-
tiple independent experts in related fields take part (Garcfa-Zamora et al., 2022b).
Therefore, multi-criteria group decision-making (MCGDM) problems have attracted
a lot of attention from researchers (Ben-Arieh & Easton, 2007; Xu et al., 2015). They
can be described as a process in which multiple experts evaluate feasible alternatives
according to multiple criteria and then select the optimal alternative (Zhong, Xu,
& Pan, 2022). Recently, MCGDM has been successfully applied to many practi-
cal decision problems in different fields, such as green supplier selection, product
development, engineering project management, emergencies, etc. (Biiyiikozkan &
Giileryiiz, 2016; Fu, Chang, & Yang, 2020; Qin, Liu, & Pedrycz, 2017; Xu, Yin, &
Chen, 2019).

In general, experts involved in decision making usually come from different
groups of interest and differ in terms of educational background, knowledge

88 DOI: 10.1201/9781003340621-6
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structure, professional references, understanding and concerns. In such a context, the
emergence of disagreements among experts is inevitable. Therefore, applying a con-
sensus reaching process (CRP) before ranking the alternatives is indispensable (Nie
et al., 2020). In a CRP, experts discuss and modify their preferences with the aim of
increasing the agreement level among themselves (Palomares, Martinez, & Herrera,
2013; Xu et al., 2015). Consensus has different interpretations, ranging from the
unanimous agreement within groups to a more flexible soft consensus (Fedrizzi,
Fedrizzi, & Pereira, 1999; Kacprzyk, 1986; Zhang, Kou, & Peng, 2019), which is
usually calculated based on two consensus measures (Tian et al., 2020; Zhong et al.,
2022): (1) The distance between an individual’s opinions and the collective (Nie
et al., 2020) and (2) the distance between individuals’ opinions (Wu & Xu, 2016).

Developing a CRP involves the adjustment of the experts’ initial opinions.
However, each expert wants his/her opinion to be seriously taken into account, and
sometimes they may be reluctant to adjust their preferences (Rodriguez et al., 2021).
Several researchers have pointed out the importance of considering the cost of modi-
fying experts’ opinions to reach consensus, which has become an attractive chal-
lenge in the CRP literature (Ben-Arieh & Easton, 2007; Labella et al., 2020; Zhang,
Dong, & Xu, 2013).

Ben-Arich and Easton (2007) first defined the concept of minimum cost consen-
sus (6.1) models as automatic CRPs in which the cost of modifying experts’ prefer-
ences is minimized subject to a consensus constraint. Dong et al. (2010) used this
idea to develop a minimum adjustment model in a linguistic setting, and Zhang et al.
(2011) introduced aggregation operators and built an MCC model based on a linear
cost function. Subsequently, a large number of new MCC models were proposed
(Gong et al., 2015; Zhang et al., 2018; Zhang, Gong & Chiclana, 2017). Labella
et al. (2020) pointed out that these MCC models only considered a maximum dis-
tance between each expert’s preference and the collective opinion, and neglected the
classical consensus measures (Rodriguez et al., 2018). To overcome this limitation,
Labella et al. (2020) introduced the comprehensive minimum cost (6.2) models.
However, these models only consider cases where the preference structure is either
a numerical utility value or a fuzzy preference relation, and they are not applicable
to MCGDM problems with multiple evaluation criteria.

Furthermore, all the above MCC models assume that the cost of modifying
experts’ opinions is precisely determined. However, in real decision problems,
obtaining the exact adjustment cost of each expert may be very difficult due to their
uncertain nature (Han et al., 2019; Li, Zhang & Dong, 2017). In this sense, robust
optimization (RO) is an emerging method for dealing with uncertain optimization
problems, and it has been widely used in various fields for its ability to generate
uncertainty-immune solutions (Chakrabarti, 2021; Kuhn et al., 2019; Qu et al.,
2021). Compared to traditional uncertainty optimization methods, RO has the fol-
lowing advantages:

* RO methods take uncertainty into account in the modeling process, describe
uncertain parameters in the form of an uncertainty set and limit their pertur-
bation range (Han et al., 2019).
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¢ RO does not require obtaining the exact distribution information or fuzzy
affiliation functions of uncertain parameters in advance, which is not pos-
sible for stochastic or fuzzy programming (Kuhn et al., 2019).

¢ The RO model is worst-oriented, and its solution satisfies all constraints
while making the value of the objective function optimal under the worst-
case scenario. Therefore, the RO model has strong robustness and the opti-
mal solution is less sensitive to parameter changes (Qu et al., 2021).

In this proposal, we build a robust CMCC model for MCGDM problems. The CMCC
model is first extended to the MCGDM problem. The RO method is then introduced
to place the expert’s unit adjustment cost in a budget uncertainty set with the aim of
obtaining the optimal solution satisfying all constraints in the worst-case scenario.
Finally, we show the implementation of the proposed framework in an illustrative
example related to an (Internet of Things) IoT platform selection.

The remainder of this chapter is organized as follows. Section 6.2 introduces
some basics about MCGDM, CRPs and MCC models. Section 6.3 develops a CMCC
model for MCGDM and a robust MCGDM model considering uncertain unit adjust-
ment costs. An illustrative example is shown in Section 6.4. Finally, Section 6.5
gives some conclusions.

6.2 PRELIMINARIES

This section introduces some basic concepts related to MCGDM, consensus models
and MCC.

6.2.1 MuLTI-CRITERIA GROUP DECISION MAKING

GDM aims for multiple decision-makers to reach a common solution for a decision
problem consisting of several alternatives according to their own preferences. In
MCGDM problems, this collective decision must be made according to different
criteria. Formally, a classical MCGDM problem consists of:

e A set of alternatives, A = {a,, a,, ..., a,,}(m > 2), from which a possible
solution to the problem can be selected.

e A group of experts, E = {e,, e, ..., ex}(K > 2), who express their preference
on the set of alternatives A.

* A setof evaluation criteria Q = {q, ¢, ..., q,} for assessing the alternatives
A in different dimensions.

Each expert expresses their assessment of the alternatives based on their own experi-
ence and knowledge. A common preference structure is the preference assessment
matrix, P = (p;) € M([0, 1]),,,,, where p; € [0, 1] represents the evaluation value
of the alternatives a; on the criterion g;. In order to reflect the relevance of each
criterion, it is usual to consider a weighting vector o = (@, ®,, ..., ®,), satisfying

n
w; 20, Za)j =1, where each w, represents the relative importance of the criterion g;.

J=1
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The solution to an MCGDM problem consists of two phases (Roubens, 1997):

* Aggregation: The collective opinion is obtained by fusing the experts’
preference assessment matrices using an aggregation operator. The weight
W = (wy, w,, ..., wy) of the experts is required for this process.

» Exploitation: The best alternative is selected as the solution to the decision
problem based on collective preference.

However, this two-phase solution process does not guarantee that conflicts will not
arise among the experts involved in the decision-making problem. To ensure a col-
lective agreement, a CRP must be included in the resolution scheme before the final
decision is made (Labella et al., 2020).

6.2.2 CoONSENSUS REACHING PROCESS

A CRP is an iterative process in which experts attempt to make their preferences
close to others through discussion and modification. This process usually requires a
moderator, who represents the group’s interest and provides guidance for the experts
to properly modify their opinions. Group consensus can be achieved by schedul-
ing various possible resources, such as manpower, material and financial resources,
and persuading experts to change their preferences within a certain period through
rational debate and negotiation. A classical CRP scheme usually contains four key
aspects (see Figure 6.1) (Palomares et al., 2014):

Moderator

Alternatives

Gathering
preferences
)

Determining
consensus level

Consensus Exploitation
control

Feedback
generation

FIGURE 6.1 Scheme of a CRP.
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¢ Gathering preferences: Experts’ preferences are provided based on the
corresponding form of preference expressions.

¢ Determining consensus level: The agreement level among experts is cal-
culated by applying different distance measures and aggregation operators.

* Consensus control: The obtained agreement level is compared with a
predefined consensus threshold. If the consensus level reaches the given
threshold, the desired consensus has been reached and the CRP finishes;
otherwise, another round of discussion process needs to be carried out.

¢ Feedback generation: A procedure to improve the consensus level through
multiple rounds of discussion, in which the moderator identifies the experts
causing disagreement and suggests adjustments for them. This procedure
can also be performed based on automatic updates from experts.

6.2.3 MINIMUM Cost CONSENSUS MODELS

In a CRP, certain costs, such as manpower, time, or money, inevitably occur. To
reduce such costs, Ben-Arieh and Easton suggested that “a consensus is reached
when the distance between experts and collective opinion is minimal” (2007).
Formally, for the set of experts E, let O = (04, 0,, ..., 0) represent their initial opin-
ions, O = (51, 02,y.ns 51<) refer to the experts’ adjusted opinions and o be the collec-
tive opinion. Let C = (cy, ¢5, ..., cx) be the unit adjustment cost of modifying experts’

preferences. Then, the MCC model based on the linear cost function is as follows:

K

min Z(,'k Ek — Oy

OcRK ‘ ‘ 6.1
k=1

stlog—o|<e k=12, K

where ¢ is the maximum acceptable distance between each expert’s adjusted opinion
and the collective opinion. If the expert’s opinion is in the interval [5 —-£,0+ 8], then
the expert does not need to change his/her opinion, otherwise, the expert needs to
make adjustments until the distance between current opinion and o is exactly €.

Dong et al.’s minimum adjustment consensus model provided a new perspective
for the study of consensus in group decision making, which combines linguistic
methods and benefits from the weighted average operator (Dong et al., 2010). Based
on these investigations, Zhang et al. (2011) investigated how the aggregation opera-
tor used to fuse experts’ opinions and get collective opinion that atfects the calcula-
tion of the consensus level.

These models calculate the consensus degree, considering the distance between
each expert and the collective opinion. However, the use of classical consensus mea-
sures to determine the consensus degree among experts was ignored. In order to
ensure an acceptable consensus degree among all experts while taking into account
the distance of each expert from the collective opinion, Labella et al. (2020) devel-
oped CMCC models. Such models include an additional constraint determined by a
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predefined consensus threshold a € [0, 1] and a consensus measure C : [a, b]X —
[0, 1]. Therefore, the mathematical description of the CMCC model is as follows:

K

min_ E Cr
Oefa,b]®

k=1
o —o|< ek =12,...K (62)

s.t.40 =F(51’529""5K)

6/(_01(‘

C(01,02.....0x ) 2

where F(-) is an aggregation function.

For instance, if the consensus measure is defined as ((3(51,52,...,5,()
K K

=1=Y w; ‘@. — 0|, where wi, wy, ..., wg > 0, wy =1, stand for the experts’ rela-

k=1 k=1
tive importance, the aforementioned model is as follows:

K

min E Cr
ae[a,b]K

k=1

ak_()k‘
o —0|<e,k=12,...K

0= wkak

M~

s.t.

>

=1

>

1- Wi 5/(—0]{‘2(1

k=1

6.2.4 RoBUST OPTIMIZATION

RO method is an effective and popular tool for dealing with data uncertainty in math-
ematical programming models. They have received a great deal of attention because
of their ability to generate uncertainty-immune solutions. The basic idea of RO is
to establish a suitable uncertainty set to limit the perturbation range of uncertain
parameters and generate solutions that satisfy all the constraints.

Consider the general linear programming problem:

T
xeR™! (63)

where x € R"*1 is the vector of the decision variable and A € R"*" b € R"*! are
the coefficient matrix and vector, respectively. In RO, the aim is to minimize an
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objective function subject to some constraints defined via uncertain parameters. For
instance,

min ¢ x

xeR"™!

stAx>b, ¥ A,beld (LPM)

where A, b are uncertain and belong to the uncertainty set ¢/, which is supposed to
be parameterized by a perturbation vector £ varying in a certain perturbation set Z.

If x is a feasible robust solution to the robust problem (L Py), it satisfies all realiza-
tions of the constraint of the uncertainty set /. Note that the robust problem is worst-
oriented, that is, the solution to L P, is given as:

min{ sup ch:AbeVA,beZ/l}

xeR™ | (4p)eld
which is the best robust goal value for all feasible solutions.

6.3 ROBUST COMPREHENSIVE MINIMUM COST CONSENSUS
FOR MULTI-CRITERIA DECISION MAKING

This section establishes a deterministic CMCC model for the MCGDM problem.
Then, a robust CMCC model for MCGDM is developed, considering the uncertainty
regarding experts’ unit adjustment costs.

The decision matrix is one of the most widely used preference structures in
MCGDM (Garcia-Zamora et al., 2022b). Therefore, we first need to extend the (6.2)
model to manage decision matrices.

Given the decision matrices P, = (pl, ) c M([O 1]) Jk=1...,K, where
p,] € [O 1] represents expert e,’s evaluation for the alternative. a; with respect to the
criteria g, let P, = ( Dij ) € M([O 1])mxn =1,2,..., K denote the experts’ adjusted
preference decision matrices. The collective opinion P € M ([0 l]) 1, RY be com-
puted using the weighted average (WA) operator as follows:

K

— 7k . .
Dij = E wiDj,i=1...,m,j=1...,n,

k=1

where w,, ..., wy stand for experts’ weights. On the basis of this collective decision
matrix, the consensus measure C : M ([0 1]) — [(), 1] can be defined as follows:

C(P PP -1_%zzzm

=1 i=l j=I

Pu i
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Since we also aim to control the degree of consensus of the selected alternative

after taking into account the weights of the criteria w,, ..., @, > 0, Zw/ —1, we need

to introduce the following additional constraints: J=1

=D opli=lmk =1, K
j=1

K
- —k -
D= Wi Di 5l=19-”5m
B2pk-pli=1...mk=1,...K

where pk represents the score provided by the expert ¢, about alternative a; after con-
sidering all criteria, 3. is the collective score for alternative ¢; and f is a threshold to
control the distance between them. Therefore, the deterministic CMCC model (6.4)
for MCGDM can be formulated as follows:

e, HRY

mxn k=1 =1 j=1

—k k
Pij — Py

K

— 7k . .
Dij = E WiDi-i=1...mj=1...n

k=1

Ph-pil<e k=1 Ki=1...mj=1..,n
]—72221/”6 pz/ Px/ (64)
k=1 i=l j=I
S.t. )
=Zw(,ﬁ§-‘,i=l,...,m,k=1,...,K
j=1
K

_ —k .
Di = E wipi,i=1,....m

k=1

ﬁik _ﬁi

<Bi=l...mk=1,..K

The existence of absolute value operation increases the difficulty of solving the
nonlinear model (6.4). Therefore, we transform it into an equivalent linear program-
ming model to improve the efficiency of obtaining optimal solutions in decision-
making scenarios.

Theorem 1

Model (6.4) is equivalent to the linear programming model (6.5).
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(pF)ema(lo.)
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min B

mxn

K m n
E E ECkZ,I;SB

k=1 i=1 j=1
K
Py = ZWkﬁ,f,l =1...m,j=1...,n
k=1
1 K m n
L o) o ST
mn k=1 i=1 j=1

th<ek=1..Ki=1..,mj=1..n
(6.5)

Pl =D opli=..,mk=1,.,K
j=1

K

- —k =1

pi = Wipi, 1 =1,...,Mm
k=1

— &
Pij = Pj

yi<zk k=1..,Ki=1...mj=1..,n

=yhk=1..,Ki=1..mj=1..n

—yi <zb, k=1, ,Ki=1..m,j=1..n
Py —py=s;,k=1...,Ki=1..,mj=1..n
sk <th k=1,...,Ki=1..mj=1..n

—s,/k Stﬁ,k =1...Ki=1....mj=1..n
pf-pi<Bi=1..,mk=1..K

—pF+p <Bi=1...,mk=1..K

Proof: Consider the transformation =z}, Based on the

—k kK _ ok |=k Kk
Pi =P =VYi/|\Pij —Pj

btain v& kK ok k
max {a, — a}, we obtain Vi £zj,~yy < zj.

=t yields s; <tf,—s} <t;.

property of the absolute value |a| =

P
Pii = Pij
Using the above transformations, the last six constraints of the model (6.5) can

Similarly, the transformation pf —p; = s},

be linearized. Subsequently, we replace the absolute value constraints as per
above transformations to convert the nonlinear programming model (6.4) into an
equivalent linear programming model (6.5). Furthermore, by solving the linear

model (6.5), we can obtain optimal solution for the CMCC model (6.4).

For most existing MCC models, the unit adjustment cost of each expert is usually
assumed to be precisely known. However, in practical decision-making problems, it
is very difficult for the moderator to determine the exact values for such costs.
Furthermore, since experts involved in GDM usually come from various social
groups, they have different social experiences and represent distinct interests, which
implies that the corresponding unit adjustment cost may be uncertain. Therefore,
below we developed a robust CMCC model for MCGDM with uncertain costs,
which allows for minimizing the worst-case total compensation cost and enhancing
the stability of the model solution.
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Classical MCC models assume that the costs of modifying experts’ opinions are
fixed crisp values. However, in the robust consensus problem, the only information
available regarding the uncertain unit adjustment costs ¢, is that they belong to an
uncertainty set . So, the cost function in the robust form of the model (6.4) is given
as:

5 Cr el

K m n

—k k
E E E Ci |Pij — Djj
k=1 i=1 j=1

Without any loss of generality, we can assume that each ¢, € U may be expressed
as

Cr = C]? +§kék!k =1,2,...,K
where cf! is the nominal unit adjustment cost and ¢, is the corresponding perturbation
value. The uncertain parameter £ = (£, ..., &) belongs to a perturbation set Z, which
must be convex and closed, and controls the perturbation range of the uncertainty.
Here, we will assume that the perturbation set is a budget uncertainty set, which

is defined based on the maximum norm and the 1-norm. It can be mathematically
expressed as:

Zr={EeR €L s T}

where I € [1, K] is known as the “uncertainty budget”. The budget uncertainty set is
essentially the intersection of two polytopes, and each point in the intersection may
be related to a possible value of the uncertain unit cost. The next result determines
the robust counterpart of the MC-CMCC models under the budget uncertainty set Z-.
In other words, a robust version of model MC-CMCC can be defined as:

e Syl - ZZZ&m 5t

H1><Vlk|11/1 k=1 i=1 j=I

Sk eZr

K

— —k .

Di = E wipi,i=L...,.mj=1...n
k=1

i -pjl<ek=1..,Ki=l...,mj=1..n

LSS

s.t. k=1 i=1 j=1

plk :Za)/ﬁ!;(?i :lv"’mak :1’--->K

K

_ —k -
pi= E Wipi s =1,...,m

k=1
—pl<pi=1...mk=1..K

(6.6)

plj Pij
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The next result provides an equivalent version of the previous model that facili-
tates its resolution:

Theorem 2

Model (6.7) is a robust counterpart of model (6.4).

Je T;I[n ) zzzck 21

man k=1 i=1 j=1
——Uk—Vk,k=1,...,K

ZZ@

i=1 j=1

K

— —k - .

pj = E wipj, i=1...,mj=1..n
k=1

<ek=1...,Ki=1...,mj=1,..n

+A- max |v|

Ug
ke[I,K]mN

Pu u

’I ’/

(6.7)

Pi =Py

stql—-— zzzwk

k=1 i=1 j=1

pj —pj| 2
= Za),ﬁ,,k,i=1,...,m,k =1,...,K

K
—k .
= Ewkp,,/=1,...,m
k=1

—Bl<Bi=1...,mk=1.._K

Proof: Note that the perturbation set may be expressed as the intersection of two
cones:

={£eR :GE+gieK,GE+g ek,

where

Gé& =(&,0),81 =0k, 1) € R"",Go€ = (£,0), 8 =0k, ") e R,
={(h 1) e R xR : || by < Iy}, K = {(By, ) € R xR : || Iy 1< ).

Let us define r = (u,71) e K7,r, = (v, rz) e K, where 7,, 7, are non-negative num-
bers and u, v € RX. Since K! and K? are dual cones, that is, K = K%, K =
according to the cone duality theory by Ben-Tal et al. (2009), the model R- MC-
CMCC:1 is equivalent to:
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min B

(B Jerm([o1),,,

s.t.

=k k
p’/ —p,} +T1+F"L'2 <B

K m n
2224

1=l j=1

k
m n

226

i=1 j=1

p,’f —p,/; = —Uy —Vk,k =1,.../K

lulh=m
v lle<7,

K

D, = oK i=1..,mj=1..,

Pi ;Wkp/’ beomj=1...n

Py = Pi
1

1 %;;;Wk

n
Pl = opli=.,mk=1,..,K
j=1

>a

Py =Py

K

_ e

pi = Ewkp,,l=1,...,m
k=1

pf=pi|<B,i=1...,mk=1.._K

which is equivalent to (6.7).

Compared to model (6.4), the robust model (6.7) considers all possible values
of unit adjustment cost in the uncertainty set and minimizes the minimum cost
under worst-case scenarios, ensuring that the solution of the model is feasible for
all uncertain scenarios. In contrast, model (6.4) only considers the compensation
costs of the nominal scenario. Although it requires fewer compensation costs,
it cannot handle data perturbations caused by external factors. This can lead to
catastrophic losses in some practical decisions. For example, in some emergency
decision-making problems, over-optimistic decisions that do not consider uncer-

tainty may even threaten people’s lives (Chakrabarti, 2021).

Theorem 3

Model (6.7) is equivalent to the linear robust model (6.8).

<e k=1, Ki=1...,mj=1..

929
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n

iy DY Y
=1

mxn k=1 i=1 k=1

Zmlzn:ész =—u—vi,k=1.. K

=1 j=1
U <, k=1,...,K
—u <, k=1,...,K
v <V k=1,...,K
Vv <V, k=1..,K
v <V, k=1...K
V=0

Pi =iwkﬁ,f,i=1,...,m,j=1,...,n
=L S 2

k=1 i=1 j=1

Staty <gk=1...,Ki=1..,mj=1..,n

p. =Zw,ﬁ,,k,i=1,...,m,k =1...,K

K
ﬁ,:ZW@f,i:],...,m

p,/ p,/—y,,,k=1,...,K,i=1,...,m,j=1,...,n
yi<zk k=1..Ki=1...,mj=1..,n
—yk<zb k=1 ,Ki=1,..,mj=1..n

(6.8)

Py —pi=s;,k=1..,Ki=1..,mj=1..n
sf<t,§,l<=1 Ki=1,...,m,j=1..,n
—s,, <t,,,l<—1 LKi=1...,m,j=1..n

p,- -pi<pi=1..mk=1..K

—pr+p <pi=1,...,mk=1..K

The proof process is similar to Theorem 1, and we will not describe it in detail for
the sake of the brev1ty of this chapter. By solving the model (6.7), the optimal con-
sensus preference P',..., PX and the total compensation cost can be obtained.

6.4 CASE STUDY

This section provides an illustrative example of IoT platform selection to demon-
strate the implementation process of the proposed approach. Then, a sensitivity anal-
ysis considering different parameters of the model (6.7) and consensus thresholds is
performed.



Robust Comprehensive Minimum Cost Consensus Model 101

6.4.1 NUMERICAL EXPERIMENT

The cognitive Internet enables the intelligence of home appliances (Pramanik, Pal,
& Choudhury, 2018). In this direction, commercial companies are working to update
their devices and make them smarter to enhance market competitiveness. For exam-
ple, Whirlpool is manufacturing smart washing machines that can be controlled by
mobile devices (Kim & Moon, 2022). Xiaomi has launched an air purifier that can
be operated remotely from a mobile phone and developed a smart module that can be
integrated into all home appliances (Abdullah, Roobashini, & Alkawaz, 2021). With
the development of IoT, smart home appliances will have greater cognition to assist
users by detecting their intentions and usage patterns.

To improve market competitiveness, the company EasyTV wants to develop a
new smart appliance that could perfectly cater to market demand. Therefore,
EasyTV’s CEOs need to choose which one of the most widely used IoT Platforms
(Chakraborty et al., 2021; Kondratenko, Kondratenko, & Sidenko, 2018), namely
Amazon Web Services (AWS), Google Cloud Platform, Microsoft Azure, Digital
Ocean and IBM Watson IoT Platform, is the most suitable for the company. The
evaluation criteria include device management, integration level, security and reli-
ability levels, data collection protocols, variety of data analytics and database func-
tionality (Kondratenko et al., 2018). To select the best IoT platform, EasyTV’s CEOs
will apply the proposed framework to make the final decision by asking the seven
members of the advisory council. Table 6.1 shows the preference matrices provided
by the seven experts, and the relevant parameter settings are shown in Table 6.2.

If no CRP is developed and the WA operator is directly used to fuse experts’ pref-
erences, the collective opinion is as follows:

[0.62 041 0.52 034 052 0.58]
042 055 071 064 041 04
P=[04 021 05 037 016 04
048 053 058 0.5 05 044
1035 053 04 059 052 0.52]

For this collective opinion, the consensus degree is (C(Pl,Pz,...,PK )

K
=1- Zwk

preferke:rllces and collective opinion for each alternative is ‘pg —p3‘ =(.355. Since the
experts are required to reach an agreed decision for a consensus degree greater than
a = 0.8 and the distance of the alternative’s score need to be lower than = 0.1, itis
necessary to apply a robust CMCC model to adjust the experts’ preferences, so as to
improve the consensus degree. Taking the preferences in Table 6.1 and the parame-
ters in Table 6.2 as input to the model (6.7), the optimal adjusted collective prefer-
ence is

P - P‘ =0.765 < a =0.8. And the maximum distance between experts’
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TABLE 6.1
Experts’ Initial Preference Matrix
[0.63 055 0.16 001 033 09] (045 077 005 057 094 0.1
071 077 095 085 071 052 076 053 077 091 054 0.55
P'=1042 0.8 087 016 019 094|P*={091 06 095 0.69 019 0.65
036 013 016 018 05 0.16 03 058 04 006 069 095
1049 0.69 049 046 0.78 0.87] 004 004 072 082 021 045
[028 023 018 004 046 0.62] [0.76 005 076 028 082 0.81]
079 093 086 003 04 0.17 022 099 0.14 044 029 0.62
PP=|027 043 065 027 031 046|P*=[0.54 006 042 025 001 0.14
0.67 056 091 096 045 026 0.19 076 088 0.6 024 081
1023 054 001 076 068 041] 10.73 005 006 067 005 0.34]
[0.64 043 09 094 059 0.59] [0.88 021 054 00 039 0.64]
0.06 0.09 089 097 022 006 021 03 048 006 06 0.71
P°=[0.16 007 039 057 006 0.15(P°=|023 027 025 045 012 0.62
087 091 054 04 083 0.5 084 019 08 094 033 007
1023 076 083 0.63 099 0.65] 1056 097 048 081 085 0.18]
[0.74 086 0.65 0.19 003 0.03]
045 001 092 099 043 0.55
P'=|047 019 003 032 036 026
0.09 011 026 034 038 0.74
004 076 032 006 001 048]

TABLE 6.2

Parameter Settings

c® c Experts’ Weights  Criteria’ Weights ¢ a f T
(dondt)  (fd)=rs,  Oeaw)=  @ewp= 03 08 01 3

(2213231 017,028,084,  (OI5008016 (02401017
052044 0.16)  020. 8??) 0.06.  0.28,0.12,0.09)

[0.64 035 042 044 035 0.43]
0.53 0.18 0.56 0.53 0.55 0.73
047 0.54 047 028 06 0.37
044 0.63 053 041 013 05

1055 0.6 045 037 045 0.52]

~l
Il
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which implies a minimum total cost (TC) for reaching the consensus equal to
TC = 31.53. Then the optimal overall evaluation value of each IoT platform is:
1 =0.46,p, =0.52, p; =0.43, py = 0.43, ps =0.47.

Thus the ranking of the five IoT platforms can be obtained: a, > a5 > a, > a, = a,.
Therefore, the Google Cloud Platform is the best choice.

6.4.2  SENSITIVITY ANALYSIS

This section analyzes the impact of changes in different parameters on the consensus
cost in the model (6.7).

Figure 6.2 shows the variation of the TC with respect to the uncertainty level
parameter I'. Since the number of experts is 7, according to the definition of the
budget uncertainty set, we vary I" from O to 7 with a stepsize of 0.5 assuming that the
unit adjustment costs of all experts are uncertain. As shown in Figure 6.2, the TC
increases as I" increases. This is because the uncertainty level parameter I" controls
the size of the uncertainty set. When I" increases, the perturbation range of uncertain
parameters expands. Therefore, to ensure that all possible scenarios are considered,
the TC of the worst-oriented R-MC-CMCC model also increases with the expansion
of the uncertainty set. Furthermore, I = 0, dictates that the model does not take into
account uncertainty, and in this scenario the result is more optimistic than the robust
cost.

Next, we analyze the impact of the consensus thresholds at the criteria level (¢),
alternatives level (f) and group level (a) on the TC. For different configurations of
these parameters, we solve the model (6.7) to compute the TC, and the results are
reported. Figure 6.3 shows the impact of the three thresholds on the TC. Figure 6.3
(a) illustrates the variation of the TC with thresholds ¢ and f for a fixed group con-
sensus level @ = 0.8. We observe that when ¢ or ff decreases, more experts are needed

34 @

33F N

23k /

of

29 s
o
28t |

1 1 1 1 L A L i | L 'l L
0.0 0510 15 2.0 25 3.0 35 4.0 45 5.0 55 6.0 65 7.0
I

FIGURE 6.2 Variation of the total cost with respect to I'.
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FIGURE 6.3 Total cost under different pairs of threshold. (a) Fixed a=0.8; (b) Fixed $=0.2;
(c) Fixed £=0.3.
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to make changes, and the 7C increases accordingly. When & < f, alternative consen-
sus level g does not have any effect on the model. Figure 6.3 (b) shows the variation
of TC with criteria thresholds & and consensus threshold « for f = 0.2. In this case,
the TC decreases with an increasing € and increases with an increasing a. This means
that a higher consensus threshold drives more experts to make adjustments, resulting
in higher consensus costs. And for larger &, the consensus threshold a will have a
stronger binding force on the consensus, thus increasing the consensus cost. Figure
6.3 (¢) shows the variation of TC with the alternative level threshold £ and consensus
level a for a fixed e = 0.3. A similar result to Figure 6.3 (b) can be obtained, where
TC decreases with increasing alternative level threshold and increases with increas-
ing consensus threshold. When g > ¢ = 0.3, the change of § will no longer affect the
consensus cost, which further confirms the result of Figure 6.3 (a).

6.5 CONCLUSIONS

Nowadays, consensus decisions are increasingly important in MCGDM problems.
To obtain a consensus solution agreed by the majority of experts, CRP is used to
soften the disagreements among experts. Considering the calculation of consensus
through different consensus measures, the CMCC model preserves as much as pos-
sible the experts’ initial opinions while ensuring a desired group consensus degree.
However, these CMCC models focus on single-criteria decision-making problems,
and they may not be efficient for dealing with MCGDM problems. Furthermore, they
do not take into account the uncertainty of the expert’s unit adjustment cost, which is
very common in real-world decision-making problems.

This chapter develops a new CMCC model for the MCGDM problem, which
allows experts to express their preferences for alternatives based on multiple evalua-
tion criteria, expressed in the form of a decision matrix. In addition to the classic
constraints considered in CMCC models, the linear model (6.5) includes an addi-
tional restriction to guarantee consensus on the final decision that is made according
to the weights of the criteria. Furthermore, in the model (6.4), in order to solve the
uncertainty of the unit adjustment cost of experts, this chapter establishes the model
(6.4) based on robust optimization, which increases the stability of the model. Finally,
to demonstrate the usability and advantages of the proposed model (6.7), an illustra-
tive example of the selection of an IoT platform and the corresponding sensitivity
analysis was performed.

In future research, we will investigate the applicability and performance of different
uncertainty sets (Han, Ji & Qu, 2021), extend the proposed multi-criteria CMCC mod-
els to large-scale MCGDM problems (Garcia-Zamora, Labella, Ding, Rodriguez &
Martinez, 2022b) and deeper analyze the relation between the parameters involved in
the model (Garcia-Zamora, Dutta, Massanet, Riera & Martinez, 2022a).
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