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Abstract: In many real-world scenarios, the importance of different factors may vary, making
commutativity an unreasonable assumption for aggregation functions, such as overlaps or groupings.
To address this issue, researchers have introduced pseudo-overlaps and pseudo-groupings as their
corresponding non-commutative generalizations. In this paper, we explore various construction
methods for obtaining pseudo-overlaps and pseudo-groupings using overlaps, groupings, fuzzy
negations, convex sums, and Riemannian integration. We then show the applicability of these
construction methods in a multi-criteria group decision-making problem, where the importance of
both the considered criteria and the experts vary. Our results highlight the usefulness of pseudo-
overlaps and pseudo-groupings as a non-commutative alternative to overlaps and groupings.
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MSC: 90B50; 68U35

1. Introduction

Aggregation operators play a crucial role in various fields, including decision the-
ory [1], information fusion [2], and fuzzy inference systems [3]. These operators aim to
combine multiple numerical values into a single representative value [4]. To achieve this
objective, aggregation operators are typically defined as increasing functions that satisfy
certain boundary conditions. Monotonicity is an essential property in decision-making
problems, ensuring that an increase in one criterion does not result in a decrease in the
overall score. The boundary conditions of these functions reflect the idea that minimal (or
maximal) inputs are aggregated into the minimal (or maximal) output of the scale we are
working with.

The concept of overlap functions and their associated grouping functions was intro-
duced by Bustince et al. [5,6]. Overlap functions measure the degree of certainty to which
an object belongs simultaneously to two classes while grouping functions quantify the
degree to which the same object belongs to any of the considered classes. These functions
have found applications in tasks involving a maximal lack of information and fuzzy prefer-
ence modeling and have been extensively studied in multi-attribute decision-making [7],
rule-based classification [8], and image processing [9].

However, a key assumption in the existing definitions of overlap and grouping func-
tions is commutativity [10]. In real-world applications, such as decision-making, criteria
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or experts often possess varying importance, rendering the assumption of commutativity
unreasonable [11–13]. To address this limitation, researchers have introduced pseudo-
overlaps [14] and pseudo-groupings [10] as non-commutative generalizations of overlaps
and groupings, respectively.

This paper focuses on the development of new construction methods for pseudo-
overlaps and pseudo-groupings. First, we present a recursive approach to obtaining proper
pseudo-overlaps and pseudo-groupings from overlaps and groupings, which is especially
convenient for improving computational efficiency [15,16]. Furthermore, we introduce a
construction method that relates pseudo-overlaps and pseudo-groupings via fuzzy nega-
tions, broadening their applicability to n-dimensional operators [8]. Additionally, we
demonstrate that convex sums of pseudo-overlaps or pseudo-groupings yield, respectively,
pseudo-overlaps and pseudo-groupings. This result showcases the closure property of
pseudo-overlaps and pseudo-groupings under convex sums. Afterward, we propose meth-
ods for generating pseudo-overlaps and pseudo-groupings using integration, which is
particularly applicable to problem domains in physics, engineering, and computing and
can be modeled using these operators, especially those involving the solution of differential
equations [17]. Finally, we present a case study on a multi-criteria group decision-making
problem that benefits from non-commutative aggregation. We solve the problem using
examples of proper pseudo-overlaps and pseudo-groupings obtained through the con-
struction methods outlined in this paper, allowing for a comparative analysis of their
behavior. Consequently, the methods introduced in this paper aim at addressing the
following challenges:

• Non-commutative generalizations: In real-world scenarios, it is common to address
problems in which the involved factors have different levels of importance, rendering
the assumption of commutativity invalid. Traditional overlap and grouping func-
tions, which rely on commutativity, may not accurately capture the dynamics and
complexities of such situations. The construction methods for pseudo-overlaps and
pseudo-groupings provide non-commutative generalizations that can better represent
and handle cases where factors have varying levels of importance.

• Comprehensive construction approaches: The construction methods outlined in the
paper offer comprehensive approaches to obtaining pseudo-overlaps and pseudo-
groupings. They provide systematic guidelines and algorithms for deriving these
operators from existing overlaps, groupings, fuzzy negations, convex sums, and even
integration. By offering diverse construction methods, the paper ensures that re-
searchers and practitioners have a range of tools at their disposal to generate appro-
priate pseudo-overlaps and pseudo-groupings based on their specific requirements
and problem domains.

The remainder of this paper is structured as follows. Section 2 establishes the necessary
background on pseudo-overlaps and pseudo-grouping theory. In Section 3, we introduce
several methods for generating pseudo-groupings and pseudo-overlap functions. Section 4
presents a case study in non-associative decision-making, Section 5 develops a comparative
analysis, and Section 6 concludes the manuscript.

2. Literature Review
2.1. Pseudo Overlaps and Pseudo Groupings on [0, 1]n

This section develops some basic notions necessary to understand the proposal. First,
we provide the general definition of an n-ary aggregation function. Then, we introduce
overlaps and groupings as particular cases of aggregations and pseudo-overlaps and
pseudo-groupings as their non-commutative generalizations. We also include some con-
crete examples to illustrate the theoretical definitions.

Aggregation functions allow combining multiple values into a single result [4]. The for-
mal definition is as follows.
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Definition 1 ([4]). A function A : [0, 1]n −→ [0, 1] is called an n-ary aggregation function if it
satisfies the following:

(A1) A is increasing in each coordinate: For each i ∈ {1, . . . , n}, if xi ≤ y then A(x1, . . . , xn) ≤
A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the following boundary conditions: A(0, . . . , 0) = 0 and A(1, . . . 1) = 1.

Overlap functions are commutative aggregation functions. They were originally in-
troduced by Bustince et al. [5] to measure the degree of overlap between two objects.
The study of overlap functions remains relevant and has been extended by several re-
searchers [8,18,19]. For instance, Paiva et al. [20] generalized the concept and analyzed it on
a specific algebraic structure. Wang et al. [21] introduced a new construction method that
reduces the number of arguments of generalizations of overlap and grouping functions.

Definition 2 ([5]). A mapping O : [0, 1]n −→ [0, 1] is called an overlap function if it satisfies:

(O1) O(x1, . . . , xn) = O(xσ(1), . . . , xσ(n)) for all permutations σ : {1, . . . , n} −→ {1, . . . , n}
and for all tuples (x1, . . . , xn) ∈ [0, 1]n;

(O2) O(x1, . . . , xn) = 0 if x1 · . . . · xn = 0;
(O3) O(x1, . . . , xn) = 1 if x1 · . . . · xn = 1;
(O4) O is increasing in each variable;
(O5) O is continuous.

Bustince et al. [6] introduced grouping functions as a dual notion to overlap functions,
and these have been applied in decision-making problems to assess the evidence supporting
any of the comparable alternatives.

Definition 3 ([6]). A mapping G : [0, 1]n −→ [0, 1] is called a grouping function if it satisfies:

(G1) G(x1, . . . , xn) = G(xσ(1), . . . , xσ(n)) for all permutations σ : {1, . . . , n} −→ {1, . . . , n}
and for all tuples (x1, . . . , xn) ∈ [0, 1]n;

(G2) G(x1, . . . , xn) = 0 if x1 = . . . = xn = 0;
(G3) G(x1, . . . , xn) = 1 if there exists xi ∈ [0, 1] such that xi = 1 and 1 ≤ i ≤ n;
(G4) G is increasing in each variable;
(G5) G is continuous.

In recent independent works, Batista [14] and Zhang and Liang [10] have removed
the commutativity requirement from the properties of overlap and grouping functions,
leading to pseudo-overlap and pseudo-grouping functions. These functions have been
studied in terms of their related properties and applications. Furthermore, Liang and
Zhang [10,22] have generalized the notion of interval-valued and n-dimensional pseudo-
overlap functions.

Definition 4 ( [10]). A function PO : [0, 1]n −→ [0, 1] is said to be an n-ary pseudo-overlap
function if, for each x1, . . . , xn ∈ [0, 1], it satisfies:

(PO1) PO(x1, . . . , xn) = 0 if and only if ∏n
i=1 xi = 0;

(PO2) PO(x1, . . . , xn) = 1 if and only if ∏n
i=1 xi = 1;

(PO3) PO is increasing in each variable. For each i ∈ {1, . . . , n} and y, x1, . . . , xn, if xi ≤ y,
then

PO(x1, . . . , xn) ≤ PO(x1, . . . , xi−1, y, xi+1, . . . , xn);

(PO4) PO is continuous.

Example 1. The functions POr1,...,rn
prod , POr1,...,rn

mM , POr1,...,rn
Mm : [0, 1]n −→ [0, 1] such that for all

~x ∈ [0, 1]n are given by:

1. POr1,...,rn
prod (~x) =

n
∏
i=1

(xi)
ri , with ri > 0 for each i ∈ {1, . . . , n};
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2. POr1,...,rn
mM (~x) = min

i∈{1,...,n}
{xi} · max

i∈{1,...,n}
{xri

i }, with integers ri ≥ 0 for each i ∈ {1, . . . , n};

3. POr1,...,rn
Mm (~x) = max

i∈{1,...,n}
{xi} · min

i∈{1,...,n}
{xri

i }, with integers ri > 0 for each i ∈ {1, . . . , n}.

Definition 5 ( [10]). A function PG : [0, 1]n −→ [0, 1] is said to be an n-ary pseudo-grouping
function if, for each x1, . . . , xn ∈ [0, 1], it satisfies:

1. PG(x1, . . . , xn) = 0 if only if xi = 0 for all i ∈ {1, . . . , n};
2. PG(x1, . . . , xn) = 1 if only if xi = 1 for some i ∈ {1, . . . , n};
3. PG is increasing in each variable. For each i ∈ {1, . . . , n} and y, x1, . . . , xn, if xi ≤ y,

then
PG(x1, . . . , xn) ≤ PG(x1, . . . , xi−1, y, xi+1, . . . , xn);

(PG1) PG is continuous.

Example 2. The functions PGr1,...,rn
prod , PGr1,...,rn

mM , PGr1,...,rn
Mm : [0, 1]n −→ [0, 1] such that for all

~x ∈ [0, 1]n are given by:

1. PGr1,...,rn(~x) = 1−
n
∏
i=1

(1− xi)
ri , with ri > 0 for each i ∈ {1, . . . , n};

2. PGr1,...,rn
mM (~x) = 1− min

i∈{1,...,n}
{1− xi} · max

i∈{1,...,n}
{1− xri

i }, with integers ri > 0 for each

i ∈ {1, . . . , n};
3. PGr1,...,rn

Mn (~x) = 1− max
i∈{1,...,n}

{1− xi} · min
i∈{1,...,n}

{1− xri
i }, with integers ri > 0 for each

i ∈ {1, . . . , n}.

Clearly, every overlap (grouping) function is a pseudo-overlap (-grouping). A pseudo-
overlap (-grouping) is said to be proper if it is not commutative. Since in many practical
situations, commutativity is an undesired property, researchers have investigated non-
commutative fuzzy operators and discussed their applications [23–26]. In this regard,
pseudo-overlap and pseudo-grouping functions have proven useful in multi-attribute
decision-making, fuzzy mathematical morphology, and image processing [10].

It should be highlighted that overlaps, groupings, pseudo-overlaps, and pseudo-
groupings are aggregation functions in the sense of Definition 1. In other words, all of them
are bounded (their codomain is the interval [0, 1]), monotonous (see, for instance, (PO3)
and 5), and satisfy the corresponding boundary condition (see, for example, (O2), (O3),
(G2), and (G3)).

2.2. Multi-Criteria Group Decision Making

Decision making is a ubiquitous process that permeates every aspect of human life [27].
From simple everyday choices to complex organizational strategies, decision making shapes
our actions, determines outcomes, and plays a pivotal role in personal and professional
success [28]. The ability to make sound decisions is essential for individuals, groups, and so-
cieties as a whole. Decision making involves the selection of one course of action among
several alternatives, driven by a desired goal or outcome. Understanding the intricacies of
decision making and developing effective strategies to navigate its complexities is a subject
of great interest to researchers, practitioners, and policymakers across diverse fields.

When evaluating various alternatives A = {A1, A2, . . . Ar} based on different criteria
C = {C1, C2, . . . , Cn}, a decision problem can be classified as a multi-criteria decision-
making problem [29]. Furthermore, when a group of experts E = {E1, E2, . . . , Em} is asked
to evaluate the possible alternatives A = {A1, A2, . . . Ar} according to different criteria,
the decision problem is known as an MCGDM problem [30]. MCGDM is a fundamental
process that underpins various aspects of human interactions and organizational function-
ing [31]. Whether it involves a team of professionals making critical business decisions or a
group of policymakers deliberating on public matters, the ability to effectively harness the
collective intelligence of individuals is essential [32].
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In recent years, researchers and practitioners have recognized the importance of inte-
grating aggregation operators to enhance the accuracy and effectiveness of group decision-
making processes [33]. Aggregation operators, such as weighted averages (WAs) [34] or
ordered WAs (OWAs) [35], play a vital role in combining individual preferences, judgments,
and evaluations to arrive at a collective decision [36].

Note that using different aggregation operators provide different approaches for
modeling an MCGDM problem, each one of them with its own advantages and short-
comings [37]. For instance, whereas the arithmetic mean is simple, it neglects the weights
of each expert or criterion in the aggregation. On the contrary, the weighted average
takes such weights into account, but then it is necessary to use a proper weight allocation
mechanism. Consequently, research on aggregation operators is essential for MCGDM,
because aggregation operators may offer new perspectives for facilitating consensus build-
ing, addressing uncertainty and vagueness, considering group dynamics and relationships,
or even developing decision support systems [38].

It should be remarked that, generally speaking, MCGDM processes are non-commutative
from the point of view of the aggregation operators because the order in which the inputs
are considered in the decisions is important and changing the order can result in different
outcomes [39]. This phenomenon is common in situations where the decision needs to be
made by a group of experts who have different levels of knowledge or expertise in the
decision-making domain or when the attributes to be evaluated have different levels of
importance [40]. In this sense, non-commutative aggregation operators such as pseudo-
overlaps and pseudo-groupings are crucial to achieve optimal outcomes in complex and
uncertain situations.

3. Construction Methods for Pseudo-Overlap and Pseudo-Grouping Functions

This section studies several construction methods related to pseudo-overlaps
and pseudo-groupings.

3.1. Obtaining Proper Pseudo-Overlaps and Pseudo-Groupings from Overlaps and Groupings

As established in [41,42], construction methods for bivariate aggregations by means of
unary functions, such as additive or multiplicative generators, reduce the computational
complexity. Therefore, here, we show how to obtain proper pseudo-overlaps (pseudo-
groupings) from overlaps (groupings).

Theorem 1. Consider m ∈ N and let the map O : [0, 1]2 −→ [0, 1] be an overlap function. Then,
the maps O[m]

L , O[m]
R : [0, 1]n −→ [0, 1], recursively defined as

O[m]
L (x1, . . . , xn) =


O(x1, x2), if m = 1
O(O(x1, x2), x3), if m = 2

O(O[m−1]
L (x1, . . . , xn−1), xn), if m ≥ 3

and

O[m]
R (x1, . . . , xn) =


O(x1, x2), if m = 1
O(x1, O(x2, x3)), if m = 2

O(x1, O[m−1]
R (x2, . . . , xn)), if m ≥ 3.

are two pseudo-overlap functions. Moreover, for any m ≥ 2, O[m]
L and O[m]

R , they are proper
pseudo-overlaps if and only if O is non-associative.

Proof. Obviously, if m = 1, then O[1]
L = O[1]

R = O(x1, x2). For m ≥ 2, the proof fol-

lows by induction on m. Indeed, if m = 2, then O[2]
L (x1, x2, x3) = O(O(x1, x2), x3) and

O[2]
R (x1, x2, x3) = O(x1, O(x2, x3)). Therefore, we have:

(PO1): If xi = 0 for some i ∈ {1, 2, 3}, then because O satisfies (O2), one has O[2]
L (x1, x2, x3) =
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O(O(x1, x2), x3) = 0 and O[2]
R (x1, x2, x3) = O(x1, O(x2, x3)) = 0. Reciprocally, if

O[2]
L (x1, x2, x3) = 0 and O[2]

R (x1, x2, x3) = 0, then O(O(x1, x2), x3) = 0 and O(x1, O(x2, x3)) =
0, from which we conclude that xi = 0 for some i ∈ {1, 2, 3}.
(PO2): Similar to the previous item.
(PO3): Suppose, without loss of generality, that x2 ≤ z for some z ∈ [0, 1]. Then, by (O4),
it follows that O[2]

L (x1, x2, x3) = O(O(x1, x2), x3) ≤ O(O(x1, z), x3) = O[2]
L (x1, z, x3) and

O[2]
R (x1, x2, x3) = O(x1, O(x2, x3)) ≤ O(x1, O(z, x3)) = O[2]

R (x1, z, x3).
(PO4): Since O is continuous, for any increasing sequence (~xk)k∈N ∈ [0, 1]3 in which
~xk = (x1k, x2k, x3k), we have

O[2]
L

(
lim
k→∞

x1k, lim
k→∞

x2k, lim
k→∞

x3k

)
= O

(
O
(

lim
k→∞

x1k, lim
k→∞

x2k

)
, lim

k→∞
x3k

)
= O

(
lim
k→∞

O(x1k, x2k), lim
k→∞

x3k

)
= lim

k→∞
O(O(x1k, x2k), x3k)

= lim
k→∞

O[2]
L (x1k, x2k, x3k)

and

O[2]
R

(
lim
k→∞

x1k, lim
k→∞

x2k, lim
k→∞

x3k

)
= O

(
lim
k→∞

x1k, O
(

lim
k→∞

x2k, lim
k→∞

x3k

))
= O

(
lim
k→∞

x1k, lim
k→∞

O(x2k, x3k)

)
= lim

k→∞
O(x1k, O(x2k, x3k))

= lim
k→∞

O[2]
R (x1k, x2k, x3k).

Thus, O[2]
L and O[2]

R are two pseudo-overlap functions. Now, as an induction hypothesis,

suppose that O[m]
L and O[m]

R are pseudo-overlaps for all m ∈ N such that 2 ≤ m ≤ p. Let

us show that O[p+1]
L and O[p+1]

R are also pseudo-overlaps. In fact, O[p+1]
L (x1, . . . , xp+2) = 0

and O[p+1]
R (x1, . . . , xp+2) = 0 if and only if O(O[p]

L (x1, . . . , xp+1), xp+2) = 0, and O(x1, O[p]
R

(x2, . . . , xp+2)) = 0 if and only if xi = 0 for some i ∈ {1, . . . , p + 2}. Thus, Property (PO1)
is satisfied. Similarly, we prove Property (PO2). As for Property (PO3), suppose without
loss of generality that x2 ≤ z for some z ∈ [0, 1]. Then, by (O4), it follows that

O[p+1]
L (x1, x2, . . . , xp+2) = O(O[p]

L (x1, x2, . . . , xp+1), xp+2)

≤ O(O[p]
L (x1, z, . . . , xp+1), xp+2)

= O[p+1]
L (x1, z, . . . , xp+2)

and, with the same reasoning,

O[p+1]
R (x1, x2, . . . , xp+2) = O(x1, O[p]

R (x2, . . . , xp+2))

≤ O(x1, O[p]
R (z, . . . , xp+2))

= O[p+1]
R (x1, z, . . . , xp+2).

For Property (PO4), since O is continuous, for any increasing sequence (~xk)k∈N ∈

[0, 1]p+2 in which ~xk = (x1k, . . . , x(p+2)k), we have O[p+1]
L

(
lim
k→∞

x1k, . . . , lim
k→∞

x(p+2)k

)
=

lim
k→∞

O[p+1]
L

(
x1k, . . . , x(p+2)k

)
and O[p+1]

R

(
lim

k→∞
x1k, . . . , lim

k→∞
x(p+2)k

)
= lim

k→∞
O[p+1]

R

(
x1k, . . . , x(p+2)k

)
.
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Therefore, O[m]
L and O[m]

R are two pseudo-overlap functions. Moreover, if O[m]
L is proper for

any m ≥ 2, in particular, for some u, v, w ∈ [0, 1], we have that

O(O(u, v), w) = O[2]
L (u, v, w)

6= O[2]
L (w, v, u)

= O(O(w, v), u)
= O(u, O(v, w)).

If O[m]
R is proper, the result is similar. Therefore, in any case, it follows that O is

non-associative. Conversely, if O is non-associative, then, with inductive reasoning for
any m ≥ 2, we conclude that O[m]

L (r1, r2, . . . , rn) = O(O[m−1]
L (r1, r2, . . . , rn−1), rn) 6= O(O[m−1]

L

(r2, . . . , rn−1, rn), r1) = O[m]
L (r2, . . . , rn, r1) and O[m]

R (t1, t2, . . . , tn) = O(t1, O[m−1]
R (t2, . . . , tn)) 6=

O(t2, O[m−1]
R (t1, t3 . . . , tn)) = O[m]

L (t2, t1, . . . , tn) for some ri, ti ∈ [0, 1], where i = {1, . . . , n}.
Therefore, O[m]

L and O[m]
R are proper.

Theorem 2. Consider m ∈ N, and let the map G : [0, 1]2 −→ [0, 1] be a grouping function. Then,
the maps G[m]

L , G[m]
R : [0, 1]n −→ [0, 1], recursively defined as

G[m]
L (x1, . . . , xn) =


G(x1, x2), if m = 1
G(G(x1, x2), x3), if m = 2

G(G[m−1]
L (x1, . . . , xn−1), xn), if m ≥ 3

and

G[m]
R (x1, . . . , xn) =


G(x1, x2), if m = 1
G(x1, G(x2, x3)), if m = 2

G(x1, G[m−1]
R (x2, . . . , xn)), if m ≥ 3.

, are two pseudo-grouping functions. Moreover, for any m ≥ 2, G[m]
L and G[m]

R are proper pseudo-
groupings if and only if G is non-associative.

Proof. Similar to Theorem 1.

Example 3. The following examples are considered:

1. Consider the bivariate overlap function O(x, y) = x2y2. Then, since O is non-associative,

O[m]
L (x1, . . . , , xn) = x2m

1 ·
n
∏
i=2

x2m−i+2

i and O[m]
R (x1, . . . , , xn) = x2

1 ·
n
∏
i=2

x2i−1

i are two proper

pseudo-overlap functions.
2. Consider the bivariate overlap function Omp(x, y) = min(xp, yp), where p > 0 e p 6= 1.

Then, since O is non-associative, O[m]
L (x1, . . . , , xn) = min

i∈{3,...,n}

(
min(xpm

1 , xpm

2 ), xpm−i+2

i

)
and O[m]

R (x1, . . . , , xn) = min
i∈{1,...,m−1}

(
xpi

i , min(xpm

n−1, xpm

n )

)
are two proper pseudo-overlap

functions.
3. Consider the bivariate grouping function G(x, y) = 1− (1− x)2(1− y)2. Then, since G is non-

associative, G[m]
L (x1, . . . , , xn) = 1− (1− x1)

2m ·
n
∏
i=2

(1− xi)
2m−i+2

and G[m]
R (x1, . . . , , xn)

= 1− (1− x1)
2 ·

n
∏
i=2

(1− xi)
2i−1

are two proper pseudo-grouping functions.

4. Consider the bivariate grouping function GMp(x, y) = max(xp, yp), where p > 0 e p 6= 1.

Then, since G is non-associative, G[m]
L (x1, . . . , , xn) = max

i∈{3,...,n}

(
max(xpm

1 , xpm

2 ), xpm−i+2

i

)
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and G[m]
R (x1, . . . , , xn) = max

i∈{1,...,m−1}

(
xpi

i , max(xpm

n−1, xpm

n )

)
are two proper pseudo-grouping

functions.

3.2. Relationship between Pseudo-Overlap and Pseudo-Grouping Functions

Let us recall that a univariate function N : [0, 1] −→ [0, 1] is called a fuzzy negation if it
is non-increasing and such that N(1) = 0 and N(0) = 1. Further, it is said to be strict if it is
strictly decreasing and continuous. Addditionally, N is called strong if N ◦ N = id[0,1] [43].

The following results reveal that pseudo-overlap and pseudo-grouping functions are
dual with respect to a strict fuzzy negation.

Theorem 3. Consider N : [0, 1] −→ [0, 1] a strict fuzzy negation and a mapping PO : [0, 1]n −→
[0, 1]. The following statements are equivalent:

(i) The mapping PO is a pseudo-overlap function.
(ii) There exists a pseudo-grouping function PG such that for each x1, . . . , xn ∈ [0, 1],

PO(x1, . . . , xn) = N−1(PG(N(x1), . . . , N(xn))). (1)

The pair of functions (PO, PG) will be shortly called N-dual functions.

Proof. (i) =⇒ (ii). Let us show that PG is a pseudo-grouping function. In fact, if x1 = . . . =
xn = 0, then N(x1) = . . . = N(xn) = 1, and so PO(N(x1), . . . , N(xn)) = PO(1, . . . , 1) = 1.
Therefore, PG(0, . . . , 0) = N−1(PO(N(0), . . . , N(0))) = N−1(PO(1, . . . , 1)) = N−1(1) = 0.
On the other hand, if PG(x1, . . . , xn) = 0, then N(PO(N(x1), . . . , N(xn))) = 0 if PO(N(x1),
. . . , N(xn)) = 1 if N(x1) = . . . = N(xn) = 1 iff x1 = . . . = xn = 0. Hence, PG satisfies 5.
Similarly, it is shown that PG satisfies 5. Now consider xi, yi ∈ [0, 1] such that xi ≤ yi for each
i ∈ {1, . . . , n}. Then, N(yi) ≤ N(xi) and PO(N(y1), . . . , N(yn)) ≤ PO(N(x1), . . . , N(xn)).
Hence, N(PO(N(x1), . . . , N(xn))) ≤ N(PO(N(y1), . . . , N(yn))). Then, PG(x1, . . . , xn) ≤
PG(y1, . . . , yn). Thus, PG is increasing in each variable. Therefore, 5 is satisfied. Prop-
erty (PG1) follows from the composition of continuous functions. Hence, PG is a pseudo-
grouping function. Now, because N is strict, PG(1, . . . , xn) = N−1(PO(0, . . . , N(xn)) =
N−1(0) = 1. Similarly, we have PO(0, . . . , xn) = N−1(PG(1, . . ., N(xn)) = N−1(1) =
0. Therefore, PG(N(x1), . . . , N(xn)) = N−1(PO(N(x1), . . . , N(xn))) if PO(x1, . . . , xn) =
N−1(PG(N(x1), . . . , N(xn))). Hence, there exists a pseudo-grouping function that satisfies
Equation (1).

(ii) =⇒ (i). Conversely, assume that there is a pseudo-grouping function PG that
satisfies, for all x, y ∈ [0, 1], Equation (1). It should be shown that PO is a pseudo-
overlap function. Indeed, PO satisfies (PO1) because for each x1, . . . , xn ∈ [0, 1], x1 ·
. . . · xn = 0 if there exists xi = 0, where 1 ≤ i ≤ n, if there exists N(xi) = N(0) = 1 if
PG(N(x1), . . . , N(xn)) = 1 if N(PG(N(x1), . . . , N(xn))) = N(1) = 0 if PO(x1, . . . , xn) = 0.
Similarly, it is shown that PO satisfies (PO2). Moreover, for any i ∈ {1, . . . , n}, xi, yi ∈
[0, 1] and xi ≤ yi, if N(yi) ≤ N(xi) if PG(N(y1), . . . , N(yn)) ≤ PG(N(x1), . . . , N(xn)) if
N(PG(N(x), N(y))) ≤ N(PG(N(x), N(z))) if PO(x1, . . . , xn) ≤ PO(x, z). Thus, we con-
clude that PO is increasing in each variable. Similarly, it is concluded that PO is increasing
in the first place. Therefore, (PO3) is satisfied. Property (PO4) is obviously satisfied.

Corollary 1. Consider N : [0, 1] −→ [0, 1] a strict fuzzy negation and a mapping PG : [0, 1]2 −→
[0, 1]. The following statements are equivalent:

(i) The mapping PG is a pseudo-grouping function;
(ii) There exists a pseudo-overlap function PO such that for each x, y ∈ [0, 1],

PG(x1, . . . , xn) = N−1(PO(N(x1), . . . , N(xn))).
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Remark 1. Notice that we can conclude the same results of Theorem 3 and Corollary 1 for N being
a strong negation since every strong negation is a strict negation [43].

Another general result can be seen in the following theorems.

Theorem 4. Let PO : [0, 1]n −→ [0, 1] be a pseudo-overlap and let N be a strict negation. Then,
the map P̃O : [0, 1]n −→ [0, 1], given by

P̃O(x1, . . . , xn) =
PO(x1, . . . , xn)

PO(x1, . . . , xn) + N(PO(x1, . . . , xn))
,

is also a pseudo-overlap.

Proof. (PO1): If xi = 0 for some i ∈ {1, . . . , n}, then, by Property (PO1), PO(x1, . . . , xn) =

0, and so N(PO(x1, . . . , xn)) = N(0) = 1. Therefore, we have P̃O(x1, . . . , xn) =
0

0+1 = 0.
If P̃O(x1, . . . , xn) = 0 then PO(x1, . . . , xn) = 0 and so xi = 0 for some i ∈ {1, . . . , n}.
(PO2): Analogous to the previous item.
(PO3): Let xi, y ∈ [0, 1] for all i ∈ {1, . . . , n}. Suppose, without loss of generality, that
x1 ≤ y. Then, the following sequence of inequalities is true:

1. PO(x1, . . . , xn) ≤ PO(y, . . . , xn);
2. N(PO(y, . . . , xn)) ≤ N(PO(x1, . . . , xn));
3. PO(x1, . . . , xn) · N(PO(y, . . . , xn)) ≤ PO(y, . . . , xn) · N(PO(x1, . . . , xn)).

Thus, from the sequence of previous items we have
PO(x1, . . . , xn) · PO(y, . . . , xn) + PO(x1, . . . , xn) · N(PO(y, . . . , xn)) ≤ PO(x1, . . . , xn) · PO(y, . . . , xn) + PO(y, . . . , xn) · N(PO(x1, . . . , xn))

which we can simplify to

PO(x1, . . . , xn) · (PO(y, . . . , xn) + N(PO(y, . . . , xn))) ≤ PO(y, . . . , xn) · (PO(x1, . . . , xn) + N(PO(x1, . . . , xn)))

and so

PO(x1, . . . , xn)

PO(x1, . . . , xn) + N(PO(x1, . . . , xn))
≤ PO(y, . . . , xn)

PO(y, . . . , xn) + N(PO(y, . . . , xn))
.

Therefore, P̃O is increasing in each variable.
(PO4): Since PO(x1, . . . , xn) + N(PO(x1, . . . , xn)) 6= 0 for all ~x ∈ [0, 1]n and, moreover, N
and PO are continuous, the continuity of P̃O follows from the fact that the quotient and
sum of continuous functions result in a continuous function.

Theorem 5. Let PG : [0, 1]n −→ [0, 1] be a pseudo-grouping and let N be a strict negation. Then,
the map P̃G : [0, 1]n −→ [0, 1], given by

P̃G(x1, . . . , xn) =
PG(x1, . . . , xn)

PG(x1, . . . , xn) + N(PG(x1, . . . , xn))

is also a pseudo-grouping.

Proof. This follows directly from Corollary 1 and Theorem 4.

In the sequence, we show more construction methods for pseudo-overlap (pseudo-
grouping) functions where some useful properties must be satisfied.

Example 4. The following examples are considered:
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1. The sinus induced pseudo-overlap S(x1, . . . , xn) = sin
(

π
2 ∏n

i=1 xpi
i

)
where pi > 0 for each

i ∈ {1, . . . , n} and the strong negation Ncos : [0, 1] −→ [0, 1] given by Ncos(x) = 1
2 (1 +

cos(πx)) together determine the pseudo-overlap function

P̃O(x1, . . . , xn) =

sin
(

π
2

n
∏
i=1

xpi
i

)
sin
(

π
2

n
∏
i=1

xpi
i

)
+ 1

2

(
1 + cos

(
π sin

(
π
2

n
∏
i=1

xpi
i

))) .

2. Since the map M(x1, . . . , xn) = n
√

∏n
i=1 xwi

i is an n-ary pseudo-overlap function and N :

[0, 1] −→ [0, 1] given by N(x) = 1− x2 is a strict negation, they together determine the
pseudo-overlap function

P̃O(x1, . . . , xn) =

n

√
n
∏
i=1

xwi
i

n

√
n
∏
i=1

xwi
i + 1− n

√
n
∏
i=1

x2wi
i

.

3. The pseudo-grouping PGr1,...,rn(~x) = 1−
n
∏
i=1

(1− xi)
ri with ri > 0 for each i ∈ {1, . . . , n}

and the strong negation N : [0, 1] −→ [0, 1] given by N(x) =
√

3x2 + 1− 2x together
determine the pseudo-grouping function

P̃G(x1, . . . , xn) =

1−
n
∏
i=1

(1− xi)
ri

1−
n
∏
i=1

(1− xi)ri +

√
3
(

1−
n
∏
i=1

(1− xi)ri

)2
+ 1− 2

(
1−

n
∏
i=1

(1− xi)ri

) .

4. The pseudo-grouping PG(~x) = max
i∈{1,...,n}

{xri
i }, with integers ri > 0 for each i ∈ {1, . . . , n}

and the strong negation N : [0, 1] −→ [0, 1] given by N(x) =
√
− 3

4 x2 + 1− 1
2 x together

determine the pseudo-grouping function

P̃G(x1, . . . , xn) =

max
i∈{1,...,n}

{xri
i }

max
i∈{1,...,n}

{xri
i }+

√
− 3

4

(
max

i∈{1,...,n}
{xri

i }
)2

+ 1− 1
2

(
max

i∈{1,...,n}
{xri

i }
)

3.3. Convex Sum of Pseudo-Overlaps and Pseudo-Groupings

The next result provides n! distinct ways to obtain proper pseudo-overlaps (pseudo-
groupings).

Theorem 6 (Convex sum of PO’s). Let σ : {1, . . . , n} −→ {1, . . . , n} be a permutation, let
the mappings PO1, . . . , POn : [0, 1]n −→ [0, 1] be pseudo-overlap functions, and let w1, . . . , wn be

nonnegative weights with
n
∑

i=1
wi = 1. Then, the convex sum

PO(xσ(1), . . . , xσ(n)) =
n

∑
i=1

wi · POi(xσ(1), . . . , xσ(n))

is also a pseudo-overlap function.

Proof. This proof is straightforward.
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Theorem 7 (Convex sum of PG’s). Let σ : {1, . . . , n} −→ {1, . . . , n} be a permutation, let
the mappings PG1, . . . , PGn : [0, 1]n −→ [0, 1] be pseudo-grouping functions, and let w1, . . . , wn

be nonnegative weights with
n
∑

i=1
wi = 1. Then, the convex sum

PG(xσ(1), . . . , xσ(n)) =
n

∑
i=1

wi · PGi(xσ(1), . . . , xσ(n))

is also a pseudo-grouping function.

Proof. Straightforward.

3.4. Obtaining Pseudo-Overlaps and Pseudo-Groupings via Riemann Integration

The Riemann integration process provides also n! different ways to obtain pseudo-
overlaps and pseudo-groupings, as we will see below.

Theorem 8. Let σ : {1, . . . , n} −→ {1, . . . , n} be a permutation and let PO : [0, 1]n −→ [0, 1]
be a pseudo-overlap function. If

h =
∫
[0,1]n

PO(u1, . . . , un)du1 . . . dun

, then the map PO : [0, 1]n −→ [0, 1] given by

PO(xσ(1), . . . , xσ(n)) =
1
h

∫ xσ(n)

0
· · ·

∫ xσ(1)

0
PO(u1, . . . , un)du1 . . . dun

is also a pseudo-overlap function.

Proof. Let PO : [0, 1]n −→ [0, 1] be a pseudo-overlap. Since PO is continuous and defined
over the compact [0, 1]2, and h 6= 0, it follows that PO is well-defined and uniformly
continuous. Therefore, (PO4) is satisfied. Moreover, since increasing monotonicity is a
basic property of the Riemann integral, it follows that (PO3) is also satisfied. It also follows
from the strict monotonicity of Riemann integrals that if xσ(i) > 0 for all i ∈ {1, . . . , n}, then

PO(xσ(1), . . . , xσ(n)) =
1
h

∫ xσ(n)

0
· · ·

∫ xσ(1)

0
PO(u1, . . . , un)du1 . . . dun > 0

, and so, Property (PO1) is satisfied by the contrapositive. Finally, if xσ(i) = 1 for all
i ∈ {1, . . . , n} then

PO(1, . . . , 1) =
1
h

∫ 1

0
· · ·

∫ 1

0
PO(u1, . . . , un)du1 . . . dun

=
1
h
· h

= 1.

Therefore, Property (PO2) is satisfied.

Theorem 9. Let σ : {1, . . . , n} −→ {1, . . . , n} be a permutation and let PG : [0, 1]n −→ [0, 1]
be a pseudo-grouping function. If

h =
∫
· · ·

∫
[0,1]n

(1− PG(1− u1, . . . , 1− un))du1 . . . dun
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, then the map PG : [0, 1]n −→ [0, 1] given by

PG(xσ(1), . . . , xσ(n)) = 1− 1
h

∫ 1−xσ(n)

0
· · ·

∫ 1−xσ(1)

0
(1− PG(1− u1, . . . , 1− un))du1 . . . dun

is also a pseudo-grouping function.

Proof. As a special case of the 1 corollary, the proof it follows is based on considerations
similar to Theorem 8.

Example 5. The following examples are considered:

1. Let PO : [0, 1]4 −→ [0, 1] be such that PO(u1, u2, u3, u4) = u2
1u3

2u4
3u5

4. Then, h = 1
360 and

PO(x, y, z, w) =
1
h

∫ w

0

∫ z

0

∫ y

0

∫ x

0
PO(u1, u2, u3, u4)du1du2du3 du4

= 360 ·
∫ w

0

∫ z

0

∫ y

0

∫ x

0
u2

1u3
2u4

3u5
4du1du2du3 du4

= x3y4z5w6.

On the other hand,

PO(w, z, x, y) =
1
h

∫ y

0

∫ x

0

∫ z

0

∫ w

0
PO(u1, u2, u3, u4)du1du2du3 du4

= 360 ·
∫ y

0

∫ x

0

∫ z

0

∫ w

0
u2

1u3
2u4

3u5
4du1du2du3 du4

= x6y5z4w3.

More generally, if PO : [0, 1]n −→ [0, 1] is such that PO(xσ(1), . . . , xσ(n)) =
n
∏
i=1

xri
σ(i),

where ri is a positive integer, then

PO(xσ(1), . . . , xσ(n)) =
1
h

∫ xσ(n)

0
· · ·

∫ xσ(1)

0
PO(u1, . . . , un)du1 . . . dun =

n

∏
i=1

xri+1
σ(i) .

2. Let PG : [0, 1]4 −→ [0, 1] be such that PG(u1, u2, u3, u4) = 1− (1− u1)
2(1− u2)

3(1−
u3)

4(1− u4)
5. Then, h = 1

360 and

PG(x, y, z, w) =

= 1− 1
h

∫ 1−w

0

∫ 1−z

0

∫ 1−y

0

∫ 1−x

0
1− PG(1− u1, 1− u2, 1− u3, 1− u4)du1du2du3 du4

= 1− 360 ·
∫ 1−w

0

∫ 1−z

0

∫ 1−y

0

∫ 1−x

0
u2

1u3
2u4

3u5
4du1du2du3 du4

= 1− (1− x)3(1− y)4(1− z)5(1− w)6.

On the other hand,

PG(w, z, x, y) =

= 1− 1
h

∫ 1−y

0

∫ 1−x

0

∫ 1−z

0

∫ 1−w

0
1− PG(1− u1, 1− u2, 1− u3, 1− u4)du1du2du3 du4

= 1− 360 ·
∫ 1−y

0

∫ 1−x

0

∫ 1−z

0

∫ 1−w

0
u2

1u3
2u4

3u5
4du1du2du3 du4

= 1− (1− x)6(1− y)5(1− z)4(1− w)3.
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More generally, if PG : [0, 1]n −→ [0, 1] is such that PG(xσ(1), . . . , xσ(n)) = 1−
n
∏
i=1

(1−

xσ(i))
ri , where ri is a positive integer, then

PG(xσ(1), . . . , xσ(n)) = 1− 1
h

∫ 1−xσ(n)

0
· · ·

∫ 1−xσ(1)

0
PG(1− u1, . . . , 1− un)du1 . . . dun

= 1−
n

∏
i=1

(1− xσ(i))
ri+1.

4. Illustrative Example

In various real-world scenarios, such as personal, social, work, or business contexts, it
is necessary to take into account different aspects to select among different alternatives [39].
However, decision-making can become more intricate when the available information is
uncertain or ambiguous, making it essential to incorporate the perspectives of a group
of experts to consider multiple viewpoints [44]. When addressing a multi-criteria group
decision-making problem, it must be noticed that the commutative of the aggregations
must be dropped if either the considered criteria have different levels of importance or the
experts belong to different levels of expertise. This section presents a case study that aims to
illustrate the implications of pseudo-overlaps and pseudo-groupings in a decision-making
real-world scenario: the winner selection process for a TV music contest.

The TV music contest in question involves three types of decision-makers: a pro-
fessional jury, a popular jury, and the public vote. The professional jury is comprised of
five experts in the music industry who have a wealth of experience and knowledge in
evaluating performances. The popular jury consists of 50 people who attended the show
on-site, while the public vote is open to anyone who wishes to participate via an online
voting platform. Since each group is assumed to have different levels of commitment to the
success of the show, the professional jury is given a weight of 45%, whereas the popular jury
and the public vote are weighted as 35% and 20%, respectively, i.e., u = (0.45, 0.35, 0.20).

In addition, all three decision-making groups evaluate the contestants based on four
criteria: voice, tune, lyrics, and staging, whose respective weight vectors in the decision
process are v = (0.30, 0.40, 0.15, 0.35). After a counting round, the obtained ratings for the
last three finalists are shown in Table 1.

To decide the winner of the contest, here, we define a decision method based on
proper pseudo-overlaps and pseudo-groupings. On the one hand, in this kind of situation,
where multiple groups of experts (with different weights) provide judgments, the use
of a pseudo-overlap can be highly effective for aggregating their opinions. In this sense,
a pseudo-overlap can quantify how well a contestant meets the requirements of all three
groups of experts simultaneously. Therefore, let us consider the weight vector u for the
groups of experts and the pseudo-overlap defined as Item 4 of Example 4 to aggregate the
different judgments for each alternative:

P̃O(x1, x2, x3) =

3

√
3

∏
i=1

xui
i

3

√
3

∏
i=1

xui
i + 1− 3

√
3

∏
i=1

x2ui
i



Axioms 2023, 12, 589 14 of 18

Table 1. Average opinions for the finalists on a 1–10 scale.

Finalist 1

Voice Tune Lyrics Staging

Prof. Jury 6/10 7/10 9/10 7/10

Pop. Jury 2/10 7/10 5/10 9/10

Public 2/10 9/10 6/10 2/10

Finalist 2

Voice Tune Lyrics Staging

Prof. Jury 1/10 9/10 9/10 9/10

Pop. Jury 3/10 7/10 9/10 2/10

Public 9/10 4/10 6/10 4/10

Finalist 3

Voice Tune Lyrics Staging

Prof. Jury 7/10 8/10 1/10 9/10

Pop. Jury 2/10 9/10 2/10 7/10

Public 7/10 3/10 9/10 5/10

The normalized global scores for the finalists resulting from performing the corre-
sponding computational processes are shown in Table 2.

Table 2. Aggregated performance for each finalist.

Voice Tune Lyrics Staging

Finalist 1 0.568 0.83 0.792 0.742

Finalist 2 0.494 0.808 0.889 0.651

Finalist 3 0.651 0.798 0.469 0.828

Similarly, to evaluate each finalist’s performance based on multiple criteria, a pseudo-
grouping that measures the degree of certainty that the alternative meets at least one of the
criteria would be beneficial. Then, if we consider the weighting vector for criteria v and the
pseudo-grouping defined in Example 4,

P̃G(x1, x2, x3, x4, x5) =

max
i∈{1,...,5}

{xvi
i }

max
i∈{1,...,5}

{xvi
i }+

√
1− 3

4

(
max

i∈{1,...,5}
{xvi

i }
)2
− 1

2

(
max

i∈{1,...,5}
{xvi

i }
) ,

we obtain the global final scores for each finalist, which are shown in Table 3.

Table 3. Final score for each finalist.

Finalist 1 0.713
Finalist 2 0.715
Finalist 3 0.705

Consequently, the winner of the music contest should be Finalist 2.
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5. Comparative Analysis

Here, we develop a comparative analysis to assess how the results obtained using the
proposed aggregation operators compare to those obtained with alternative approaches.
By considering multiple aggregation operators, we provide a comprehensive evaluation
that captures a broader perspective and enables us to make informed recommendations for
practical applications.

First, we compare our method to the case where commutative aggregation operators
are used. Specifically, instead of employing a proper pseudo-overlap, we consider the
minimum operator to obtain the aggregated performance of each finalist. The minimum
also represents an "and"-like aggregation, and the resulting value aims at measuring the
degree to which all the groups are satisfied simultaneously. The aggregated performance
for each finalist, in this case, is presented in Table 4.

Table 4. Aggregated performance for each finalist when using the minimum operator.

Voice Tune Lyrics Staging

Finalist 1 0.2 0.7 0.5 0.2

Finalist 2 0.1 0.4 0.6 0.2

Finalist 3 0.2 0.3 0.1 0.5

Note that in this case, the assumption of commutativity implies that the weights of the
groups are not considered in the aggregation, thus neglecting their importance.

To compute the overall score of each finalist, instead of using a pseudo-grouping, we
use the commutative or-like aggregation operator defined by the maximum. This operator
allows modeling the degree to which one finalist highlights at one of the skills. The results
are shown in Table 5.

Table 5. Final score for each finalist when using the maximum operator.

Finalist 1 0.7
Finalist 2 0.6
Finalist 3 0.5

Again, the assumption of a commutative aggregation operator does not allow consid-
ering the weight of each criterion in the aggregation. As a consequence, the final ranking,
in which the winner would be Finalist 1, differs from the one obtained when considering
pseudo-overlaps and pseudo-groupings, but it is not very reliable because the importance
of the group of experts and the criteria are not considered in the aggregation, despite the
fact that they are essential in the decision-making problem.

Additionally, we study the resolution of the same problem when instead of pseudo-
overlaps and pseudo-groupings, we use the WA operator to compute the aggregated
performance of each finalist. For the weighting vector u, we obtain the results displayed in
Table 6.

Table 6. Aggregated performance for each finalist using the weighted average.

Voice Tune Lyrics Staging

Finalist 1 0.38 0.74 0.7 0.67

Finalist 2 0.33 0.73 0.84 0.555

Finalist 3 0.525 0.735 0.295 0.75

Subsequently, we apply the WA operator to compute the final score for each finalist by
considering the weighting vector for the criteria v (see Table 7).
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Table 7. Final score for each finalist when using the weighted average.

Finalist 1 0.75
Finalist 2 0.711
Finalist 3 0.758

In this case, the winner of the contest would be Finalist 3. Even though the WA
operator succeeds at accounting for the importance of the considered groups and criteria, it
cannot model the and-like and or-like behaviors of pseudo-overlaps and pseudo-groupings,
respectively, which are key to accounting for the degree to which all the groups are satisfied
or a participant is particularly good at one skill.

6. Conclusions

In this paper, we have introduced and developed various construction methods
for non-commutative aggregation operators, specifically, pseudo-overlaps and pseudo-
groupings. First, we have shown how pseudo-overlaps and pseudo-groupings can be
obtained from the classical overlaps and groupings, respectively. Additionally, we have
analyzed the relation between pseudo-overlaps and pseudo-groupings via fuzzy negations
and shown that convex sums of pseudo-overlaps or pseudo-groupings are, respectively,
pseudo-overlaps and pseudo-groupings. Moreover, we have proposed some results related
to generating pseudo-overlaps and pseudo-groupings using integration.

To illustrate the practical relevance of the proposed methods, we have presented a
case study of a multi-criteria group decision-making problem. The problem was solved
using some of the proper pseudo-overlaps and pseudo-groupings constructed in this paper.
Our results demonstrate that pseudo-overlaps and pseudo-groupings can provide useful
and effective tools for decision-making in real-world applications, where commutativity
may not be a reasonable assumption.

In conclusion, the methods presented in this paper offer new opportunities for decision-
making and information fusion in real-world scenarios, where the commutativity assump-
tion is not satisfied. Future research may explore further properties, such as Lipschitzianity,
homogeneity or idempotency, and applications of pseudo-overlaps and pseudo-groupings
into other real-world problems.
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