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A B S T R A C T   

Basic Uncertain Information (BUI) was proposed as an information granule that simultaneously 
accounts for both the value of the input and the certainty about that value. To aggregate BUI 
granules using Ordered Weighted Averaging (OWA) operators with bi-polar optimism–pessimism 
preferences, the ordered weighted averaging (BUIOWA) operators have been proposed recently. 
As weighted geometric mean is an alternative aggregation operator to weighted mean, the or-
dered weighted geometric averaging operator (OWGA) is the alternative to the OWA operator. 
Therefore, this study proposes basic uncertain information ordered weighted geometric averaging 
(BUIOWGA) operators to serve as the alternative aggregation choice to BUIOWA operators. Un-
like BUIOWA operators, BUIOWGA operators have three different types, BUIOWGA type I, 
BUIOWGA type II, and BUIOWGA type III, with an increasing order relation. Several mono-
tonicities, properties, and relations are proposed for the three different BUIOWGA operators and 
the BUIOWA operator. Finally, we present comparative analysis, numerical examples, and 
applications.   

1. Introduction 

Aggregation operators (also known as aggregation functions) [1] have been widely applied in numerous applications such as in-
formation fusion-based decision-making problems [2–5,38]. Some well-known aggregation operators include mean, geometric mean, 
weighted mean, weighted geometric mean, ordered weighted averaging (OWA) operator [6], and ordered weighted geometric 
averaging (OWGA) operator [7], to name just a few. 

Aggregation operators were studied majorly for real number inputs and fuzzy granules during the past several decades [1,7–12]. As 
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uncertainty is pervasive in practice and society, aggregation operators and related aggregation methods for uncertain information have 
also become a hot area of research [13–17]. There are various different types and forms of uncertain information. For example, interval 
information, intuitionistic fuzzy information [18,42,43], vague information [19], and probability information are some well-known 
types. An increasing number of literature has explored various types of uncertainty in decision-making [44,46–50]. Recently, re-
searchers proposed a new type of uncertain information called basic uncertain information (BUI) [16,17] to serve as an uncertain 
information paradigm. Since its inception, this new type of uncertain information has soon been applied in several areas [20–23] and 
some of its further extensions and variants have also been gradually developed and studied [24–27]. 

The ordered weighted averaging (OWA) operators, which were introduced by Yager [6], can effectively model subjective opti-
mism–pessimism preferences. With a given input vector of real numbers, an OWA operator with a larger optimism preference, in 
general, will return a greater output result, and vice versa. The OWA operators have been applied in numerous applications [11,45], 
and some extended forms are also gradually developed [28,29]. The OWA operators can be successfully adapted for interval infor-
mation, intuitionistic fuzzy information and vague information when viewed as lattice or poset structures [29]. When the inputs are 
BUI granules, a recent study [30] proposed a factorization-integration method to define the BUIOWA operators which can effectively 
and reasonably adapt OWA operators to aggregate BUI granules. 

Both mean and geometric mean are important average-type aggregation operators; that is, they both return some outputs that are 
between the maximum and minimum of the inputs. Nevertheless, geometric mean has some special property that does not hold for 
(arithmetic) mean. For example, if some inputs are zero, then the geometric mean necessarily yields zero output irrespective of other 
inputs; that is, zero is the annihilator of the geometric mean. This property can be used in some decision-making scenarios such as the 
situation of “one-vote veto” where one individual disagreement will lead to the overall and final disagreement. 

The OWA and OWGA operators, both being significant ordered aggregation operators, can complement each other effectively in 
various scenarios and practical applications. Previous research [30] has successfully introduced and analyzed the OWA operators in 
BUI environment, proposing and analyzing BUIOWA as a result. However, considering OWGA’s equivalent importance as a coun-
terpart to OWA, it is essential for OWGA to also be applicable in BUI environment for both theoretical advancements and practical 
implementations. 

Therefore, the introduction and development of OWGA operator for BUI inputs are meaningful and important because it can 
simultaneously model, embody, and handle both the bipolar optimism–pessimism preferences and BUI granules; besides, the intro-
duced operators have the corresponding annihilator-like elements (which plays the similar role of annihilator when with full certainty) 
in the form of the BUI granule (0,1). Moreover, unlike BUIOWA which only has a single form, the developed operator exhibits three 
distinct forms. Furthermore, unexpected relationships between these forms and BUIOWA have emerged, offering significant theo-
retical implications in aggregation theory. Hence, this study primarily focuses on theoretical research. Additionally, the proposed 
operators not only find application in decision-making contexts but also possess unique characteristics and application scenarios. 

The remainder of this work is organized as follows. Section 2 paraphrases some mean type aggregation operators for finite sets. 
Section 3 defines and constructs the three types of BUIOWGA operators. In Section 4, several related properties and relations are 
investigated and proved. Section 5 provides an application of the new proposal to show the usefulness and application potential. 
Section 6 concludes and remarks on this study. 

2. Weighted mean, OWA, and OWGA for finite sets 

Some notations are fixed below: [n] = {1,...,n}; N is the set of natural numbers. A bounded real-valued function defined on a finite 
set E is denoted by x : E→[0,1], which is also known as a fuzzy set on E in some different scenario; by convention, the space of all such 
functions defined on E is denoted by [0, 1]E; and for convenience such functions are sometimes written in vector or sequence form. For 
any non-empty subset E of [n] and x : [n]→[0, 1], x|E : E→[0,1] is the restriction of x : [n]→[0,1] to [0,1]E, which is defined such that 
x|E(i) = x(i) for any i ∈ E. Throughout this work, we will frequently consider the aggregation operators for finite sets E. 

Definition 1. ([1]) An aggregation operator F for a finite set E is a mapping F : [0,1]E→ ⊖ [0,1] such that  

(i) F(0, ...,0) = 0 and F(1, ...,1) = 1;  
(ii) F(x)⩽F(y) whenever x⩽y (i.e., x(i)⩽y(i) for all i ∈ E). 

For an aggregation operator F : [0,1]E→[0, 1] and any x ∈ [0,1]E, if inf(x)⩽F(x)⩽sup(x), then it is called a mean-type operator; if 
sup(x)⩽F(x), then it is called a disjunctive type operator; if F(x)⩽inf(x), then it is called a conjunctive type operator; otherwise, it is 
called a mixed type operator [1]. The weighted mean, weighted geometric mean, and ordered weighted averaging operator are three 
well-known mean type operators which are rephrased for a finite set E as follows. Note that the above rephrased definition of ag-
gregation operator can be viewed as a special case of the recently proposed new concept of conditional aggregation operator [41]. 

Definition 2. A weighted mean (WM) operator for a finite set E with a normalized weight function/vector wE = (wE
i )i∈E (i.e., 

∑
i∈EwE

i = 1 and wE
i ⩾0 for all i ∈ E), WMwE : [0, 1]E→[0,1], is defined such that 

WMwE (x) =
∑

i∈EwE
i x(i) (when E ∕= ∅) 

WMw∅ (x) ≜ 0 (1) 

|E| denotes the cardinality of finite set E. When wE = (wE
i )i∈E is given such that for each i ∈ E, wE

i = 1/|E| (|E| > 0), then WM becomes 
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the arithmetic mean operator. 

Definition 3. The arithmetic mean (AM) operator for a finite set E, AME : [0, 1]E→[0,1], is defined such that 
AME(x) = 1

|E|
∑

i∈Ex(i) (when |E| > 0) 

AM∅(x) ≜ 0 (by convention) (2)   

Definition 4. A weighted geometric mean (WGM) operator for a finite set E with a normalized weight function/vector wE = (wE
i )i∈E 

(
∑

i∈EwE
i = 1 and wE

i ⩾0 for all i ∈ E), WGMwE : [0,1]E→[0,1], is defined such that 
WGMwE (x) =

∏
i∈E(x(i))

wE
i (when E ∕= ∅) 

WGMw∅ (x) ≜ 1 (3)  

with convention 00 ≜ 1. 
When wE = (wE

i )i∈E is given such that wE
i = 1/|E| (|E| > 0), then WGAwE (x) =

∏
i∈E(x(i))

1
|E|; in this situation, the WGM operator 

becomes the geometric mean operator. 

Definition 5. The geometric mean (GM) operator for a finite set E, GME : [0,1]E→[0,1], is defined such that 
GMwE (x) =

∏
i∈E(x(i))

1
|E| (when |E| > 0) 

GM∅(x) ≜ 1 (by convention) (4) 

Yager’s OWA operators, which are defined below, can properly model bi-polar optimism–pessimism preference in information 
fusion processes. 

Definition 6. The ordered weighted averaging (OWA) operator for a finite set E (having cardinality |E| = k) with a normalized 

weight vector (of dimension k = |E|) w(|E|) = w(k) = (w(k)
i )

k
i=1 (i.e., 

∑k
i=1w(k)

i = 1 and w(k)
i ⩾0 for all i ∈ [n]), OWAw(k) : [0, 1]E→[0,1], is 

defined such that 
OWAw(|E|) (x) = OWAw(k) (x) =

∑k
i=1w(k)

i x(σE(i)) (when |E| > 0) 

OWAw∅ (x) ≜ 0 (by convention) (5)  

where σE : [k]→E is any appropriate bijection such that x(σE(i))⩾x(σE(j)) whenever 1⩽i < j⩽k. The attached normalized weight vector 
w(k) is called an OWA weight vector (of dimension k). Remark When wE = (wE

i )i∈E is given such that for each i ∈ E, wE
i = 1/|E|

(|E| > 0), then OWA operator becomes the arithmetic mean. 

Remark In Definition 2 (and Definition 4), we used a normalized vector on a general set E, wE = (wE
i )i∈E, but in Definition 6, we 

considered a normalized weight vector w(|E|) = w(k) = (w(k)
i )

k
i=1 which is actually described using the linear ordered set ({1, ...,k},⩽). 

This is because Yager’s OWA operators are defined based on linear structures, which guarantees that the involved bi-polarity can be 
well-based. 

Remark In Definition 6, with the corresponding bijection σE, when |E| > 0 Eq. (5) has an equivalent form 

OWAw(|E|) (x) =
∑

i∈E
w(|E|)

σ− 1
E (i)x(i) (6)  

This form is called the WM expression of the OWA operator [28] since it is re-expressed as a WM operator WMv(x) =
∑

i∈Evix(i) with 
the normalized weight function v = (vi)i∈E such that vi = w(|E|)

σ− 1
E (i). 

The extent of bi-polar optimism–pessimism preference embodied in an OWA weight vector can be measured by orness/andness. 

Definition 7. ([6]) For an OWA weight vector w(n) = (w(n)
i )

n
i=1 of dimension n (n⩾2), its orness and andness are defined respectively 

by 
orness(w(n)) =

∑n
i=1w(n)

i ⋅ n− i
n− 1 

andness
(
w(n)) = 1 − orness

(
w(n)). (7)  

If an OWA operator has a larger orness (smaller andness), in general it will have a larger output, and vice versa. For more strict 
statements and properties about the relationships between OWA weight vectors and their orness/andness, one can refer to Ref. [31]. In 
this work, when we consider some OWA weight vectors that have orness greater than 0.5, they embody some optimism attitudes (e.g., 
of decision makers), and when their orness degrees are lesser than 0.5, they embody some pessimism attitudes. The OWA weight 
vectors with orness 0.5 embody neutral attitudes, and in this work when we consider some OWA weight vectors that have orness 0.5, 
we only adopt the evenly allocated one with w(n) = (1/n, ...,1/n). 
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Parameterized families of OWA weight vectors will play an important role in the later discussion since we need to discuss ag-
gregations and weight vectors with different dimensions. We only adopt some simplified version that is enough for use, whereas for 
more details one may refer to Ref. [31]. 

Definition 8. We will say that a (parameterized) family of OWA weight vectors W ⊖(α) = {w(n;α)}
∞
n=1 (w(n;α) = (w(n;α)

i )
n
i=1 has orness α, 

(w(n;α) = (w(n;α)
i )

n
i=1), is defined such that for all n⩾2, orness(w(n;α)) = α. 

Remark In later discussion, when the orness α is known without ambiguity, we will refrain from using it and write concisely with 
W ⊖ = {w(n)}

∞
n=1 (w(n) = (w(n)

i )
n
i=1) to avoid clutter. 

Remark In the case of n = 1, note that w(1) = (1) whose orness/andness has not been defined. However, for the convenience in the 
later discussion and formulating, we still include it in any family of OWA weight vectors. There are many known families of OWA 
weight vectors having orness α such as the recursive OWA family [32], the Binomial family and the Stancu family [33]. 

Naturally, the ordered weighted geometric averaging (OWGA) operator [7] can be rephrased as follows. 

Definition 9. The ordered weighted geometric averaging (OWGA) for a finite set E (having cardinality |E| = k) with an OWA weight 

vector (of dimension k = |E|) w(|E|) = w(k) = (w(k)
i )

k
i=1, OWGAw(k) : [0, 1]E→[0,1], is defined such that 

OWGAw(|E|) (x) = OWGAw(k) (x) =
∏k

i=1x(σE(i))w(k)
i (when |E| > 0). 

OWGAw∅ (x) ≜ 1 (by convention) (8)  

where σE : [k]→E is any appropriate bijection such that x(σE(i))⩾x(σE(j)) whenever 1⩽i < j⩽k. By convention, 00 ≜ 1. Remark When 
wE = (wE

i )i∈E is given such that for each i ∈ E, wE
i = 1/|E| (|E| > 0), then OWGA operator becomes the geometric mean. 

Remark WM expression can be easily modified into weighted geometric mean (WGM) expression. In Definition 9, with the 
determined bijection σE, when |E| > 0 Eq. (8) has an equivalent form 

OWGAw(|E|) (x) =
∏

i∈E
x(i)

w(|E|)
σ− 1

E (i) (9) 

This form can be called the WGM expression of OWGA operator since it is re-expressed as a WGM operator WGMv(x) =
∏

i∈E(x(i))
vi 

with the normalized weight function v = (vi)i∈E such that vi = w(|E|)
σ− 1

E (i). 

3. BUI ordered weighted geometric averaging operator 

3.1. Uncertain and BUI ordered weighted averaging operators 

Recently, BUIOWA operators were introduced and defined step by step [30]. We next briefly review the defining process. 
In practice, usually some input values (in an input vector) are obtained with full uncertainty and the remainder input values (in that 

input vector) are obtained with full certainty. That is, for an input function x : [n]→[0, 1] and a crisp non-empty subset E ⊆ [n], the input 
values in {x(i)}i∈E are all with full certainty and the input values in {x(i)}i∈[n]\E are all with full uncertainty. 

The OWA operators are originally defined in a deterministic setting, where all input values are precisely known and certain. 
However, when dealing with uncertain environments, the discourse [n] can be divided into two distinct subsets: one for which OWA 
operators should still be naturally defined (denoted as subset E), and another for which OWA and preference-based aggregation should 
be ignored, instead employing mean operators (denoted as subset [n]\E). To combine these two parts effectively, weights should be 
assigned proportionally based on the cardinalities of each subset (i.e., |E|/n and 1 − (|E|/n ) respectively). Consequently, we present the 
following definition of uncertain OWA aggregation. 

Definition 10. ([30]) For any input function x : [n]→[0,1] and a subset E ⊆ [n] on which the input function values are certain (with 
its complement [n]\E on which the input function values are uncertain), an uncertain ordered weighted averaging (UOWA) operator for 
[n] with a family of OWA weight vectors having orness α, W ⊖ = {w(n)}

∞
n=1, is a mapping UOWAW : [0, 1][n] × 2[n]→[0,1] such that 

UOWAW ⊖(x,E) =
|E|
n

⋅ OWAw(|E|)

(
x|E
)
+

(

1 −
|E|
n

)

⋅ AM[n]\E

(
x|[n]\E

)
(10)  

with conventions OWAw(∅) (x|∅) ≜ 0 and AM∅(x|∅) ≜ 0. The attached aggregation certainty AC : 2[n]→[0,1] (aggregation uncertainty 
AU : 2[n]→[0,1]) is defined by 

AC(E) = |E|/nAU(E) = 1 − (|E|/n ) (11)  

Basic uncertain information is a recently proposed uncertainty paradigm. 
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Definition 11. ([16,17])  (i) A basic uncertain information (BUI) granule is a pair (x, c) in which x ∈ [0, 1] is an input value 
(which is often an evaluation value) and c ∈ [0, 1] is the certainty degree of x; and 1 − c ∈ [0, 1] is the 
uncertainty degree of x.  

(ii) The set of all BUI granules is denoted by B . A BUI function/vector of dimension n, (x,c) : [n]→B , is formally defined and written 
by (x, c) = ((x, c)(i))i∈[n] = ((x(i), c(i)))i∈[n] ∈ B [n] where x : [n]→[0,1] is called an input value function/vector while c : [n]→[0,1]
is called the certain function/vector (associated to x). (Whether (x, c) represents a BUI granule or a vector of BUI granules can be 
easily distinguished and identified according to context.).  

(iii) There are two projection mappings in relation to BUI granules Px : B →[0,1], called value projection, and Pc : B →[0,1], called 
certainty projection, which are defined such that Px((x, c)) = x and Pc((x, c)) = c for all (x, c) ∈ B . 

In practice, certainty degrees may measure the degrees/extents to which decision makers are confident, sure, certain or definite of 
the concerned evaluation values; conversely, uncertainty degrees can measure the degrees/extents to which they are unconfident, 
unsure, uncertain or indefinite of the concerned evaluation values. The BUI granule (x,1) indicates that the evaluation value x is with 
full/maximum certainty and in practice it can be regarded as equivalent to the real number x. Similarly, the BUI granule (x,0) indicates 
that the evaluation value x is with full/maximum uncertainty (or zero/minimum certainty). For any BUI granule (x,0), it is reasonable 
that any value between [0,1] can be considered as a true value, and hence no substantial and effective information can be obtained 
from (x,0). 

By the thought of factorization-integration of complex problems, an integral method has been devised to define BUI ordered 
weighted averaging operators. 

Definition 12. ([30]) A basic uncertain information ordered weighted averaging (BUIOWA) operator for [n] with a family of OWA 
weight vectors having orness α, W ⊖ = {w(n)}

∞
n=1, is a mapping BUIOWAW ⊖ : B [n]→B , such that 

BUIOWAW ⊖((x, c)) =
(∫ 1

0
UOWAW (x,Et)dt,

∫ 1

0
AC(Et)dt

)

(12)  

where Et = {k ∈ [n] : c(k)⩾t}. Remark [30] In a similar manner to the integrand of a Choquet integral, i.e., μ({k ∈ [n] : x(k)⩾t}), 
both UOWAW ⊖(x, Et) and AC(Et) are composite functions of t with both domains and codomains being [0,1]; and from Eq. (10), observe 
that once t is fixed, UOWAW ⊖(x, Et) is also determined. Similar to the Choquet integral, to avoid clutter we refrain from stressing that 
UOWAW (x,Et) = f(t) and AC(Et) = g(t) are two functions of t. Moreover, note that UOWAW (x, Et) and AC(Et) are also determined 
partly by certainty function c; when (x, c) is given fixed, UOWAW (x, Et) and AC(Et) are only affected by t and therefore the two in-
tegrals in Eq. (12) are well defined. 

Remark [30] (i) By Eq. (12), we have 

Px(BUIOWAW ((x, c)) ) =
∫ 1

0
UOWAW (x,Et)dt  

=

∫ 1

0

[
|Et|

n
⋅ OWAw(|Et |)

(
x|Et

)
+

(

1 −
|Et|

n

)

⋅ AM[n]\Et

(
x|[n]\Et

)]

dt  

=

∫ 1

0

|Et|

n
⋅ OWAw(|Et |)

(
x|Et

)
dt+

∫ 1

0

(

1 −
|Et|

n

)

⋅ AM[n]\Et

(
x|[n]\Et

)
dt (13) 

(ii) It can be easily checked that for all (x, c) ∈ B
[n], 

Pc(BUIOWAW ((x, c)) ) =
∫ 1

0
AC(Et)dt =

∫ 1

0
(|Et|/n )dt = (1/n)

∑

i∈[n]

c(i) (14) 

We next review the explicit weight vector for the WM expression of BUIOWA [30]. Let (x,c) ∈ B
[n], recall Et = {i ∈ [n] : c(i)⩾t} (for 

each t ∈ [0,1]) and |Et | = kt. Then, the value projection can be rewritten as a weighted mean 

Px(BUIOWAW ((x, c)) ) =
∫ 1

0
UOWAW (x,Et)dt = WAu[n] (x) =

∑

i∈[n]

u[n]
i x(i) (15) 

The explicit weight vector u[n] = (u[n]
i )i∈[n] is normalized and can be derived by the following procedure and deduction [30]. 

For each t ∈ [0, 1], recall that when Et ∕= ∅, σEt : [kt ]→Et is any appropriate bijection such that x(σEt (i))⩾x(σEt (j)) whenever 
1⩽i < j⩽kt . Then, we consider the following three situations:  

(i) if both Et ∕= ∅ and [n]\Et ∕= ∅ hold, we have 

UOWAW (x,Et) =
kt

n
⋅ OWAw(|Et |)

(
x|Et

)
+

(

1 −
kt

n

)

⋅ AM[n]\Et

(
x|[n]\Et

)
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=
kt

n
⋅
∑

i∈Et

w(|Et |)

σ− 1
Et

(i)⋅x|Et
(i)+

(

1 −
kt

n

)

⋅
∑

i∈[n]\Et

1
n − kt

x|[n]\Et
(i)

=
∑

i∈Et

kt

n
w(|Et |)

σ− 1
Et

(i)⋅x|Et
(i)+

∑

i∈[n]\Et

1
n
⋅x|[n]\Et

(i)

=
∑

i∈Et∪([n]\Et)

ut(i) ⋅ x(i) =
∑

i∈[n]

ut(i) ⋅ x(i) (16)  

where ut : [n]→[0,1] (
∑

i∈[n]ut(i) = 1) is a normalized weight vector satisfying 
ut(i) = kt

n ⋅ w(|Et |)

σ− 1
Et

(i) (when i ∈ Et) 

ut(i) =
1
n

(when i ∈ [n]\Et) (17)    

(ii) if Et = ∅, then 

UOWAW (x,Et) = WM[n]

(
x|[n]
)
=
∑

i∈[n]

1
n
⋅x|[n](i) =

∑

i∈[n]

ut(i) ⋅ x(i)

where ut : [n]→[0,1] satisfies 

ut(i) =
1
n

(for all i ∈ [n]) (18)    

(iii) if [n]\Et = ∅ (i.e., Et = [n]), then 

UOWAW (x,Et) = OWAw(n)

(
x|Et

)
=
∑

i∈[n]

w(|Et |)

σ− 1
[n] (i)

⋅x|[n](i) =
∑

i∈[n]

ut(i) ⋅ x(i)

where ut satisfies 

ut(i) = w(n)
σ− 1
[n] (i)

(for all i ∈ [n]) (19) 

Since 

Px(BUIOWAW ((x, c)) ) =
∫ 1

0
UOWAW (x,Et)dt =

∫ 1

0

[
∑

i∈[n]

ut(i) ⋅ x(i)

]

dt =
∑

i∈[n]

(∫ 1

0
ut(i)dt

)

⋅ x(i) =
∑

i∈[n]

u[n]
i x(i)

Then, u[n] = (u[n]
i )i∈[n] is defined by 

u[n]
i =

∫ 1

0
ut(i)dt (20)  

where ut(i) is described in Eqs. (17)–(19). 

Example 1. ([30]) Given n = 5, and (x,c) = ((x(i), c(i)))i∈[5] = ((0.7,0.5), (0.3,0.8), (0.8,0), (0.3,0.2), (0.5,0.5)); that is, x = (0.7,
0.3, 0.8,0.3, 0.5) and c = (0.5,0.8,0,0.2,0.5). 

Suppose we adopt a family of OWA weight vectors having orness α = 0.25, W ⊖ = {w(s)}
∞
s=1, which includes (only for 1⩽s⩽5): 

w(1) = (1), w(2) = (0.25,0.75), w(3) = (0.1,0.3,0.6), w(4) = (0.05,0.15,0.3,0.5), w(5) = (0.025,0.075,0.15,0.375,0.375). 
The computation can use the following factorization of [0,1]. 
Et = [5](t ∈ {0}); Et = {1,2, 4,5} (t ∈ (0,0.2]); Et = {1,2, 5} (t ∈ (0.2,0.5]) 
Et = {2}(t ∈ (0.5,0.8]); Et = ∅ (t ∈ (0.8,1]) 
Then, when t ∈ {0}, 

UOWAW (x,Et) =
5
5

⋅ OWAw(5)

(
x|[5]
)
+

(

1 −
5
5

)

⋅ AM∅
(
x|∅
)

L. Jin et al.                                                                                                                                                                                                              



Information Sciences 663 (2024) 120275

7

= OWAw(5)

(
x|[5]
)
= 0.3725  

when t ∈ (0,0.2], 

UOWAW (x,Et) =
4
5

⋅ OWAw(4)

(
x|{1,2,4,5}

)
+

(

1 −
4
5

)

⋅ AM{3}

(
x|{3}

)

= 0.8 ⋅ OWAw(4) (0.7, 0.3, 0.3, 0.5)+ 0.2 ⋅ AM{3}(0.8)

= (0.8)(0.35)+ (0.2)(0.8) = 0.44  

when t ∈ (0.2,0.5], 

UOWAW (x,Et) =
3
5

⋅ OWAw(3)

(
x|{1,2,5}

)
+

(

1 −
3
5

)

⋅ AM{3,4}

(
x|{3,4}

)

= (0.6) ⋅ OWAw(3) (0.7, 0.3, 0.5)+ (0.4) ⋅ AM{3,4}(0.8, 0.3)

= (0.6)(0.4)+ (0.4)(0.55) = 0.46  

when t ∈ (0.5,0.8], 

UOWAW (x,Et) =
1
5

⋅ OWAw(1)

(
x|{2}

)
+

(

1 −
1
5

)

⋅ AM{1,3,4,5}

(
x|{1,3,4,5}

)

= (0.2) ⋅ OWAw(1) (0.3)+ (0.8) ⋅ AM{1,3,4,5}(0.7, 0.8, 0.3, 0.5)

= (0.2) ⋅ (0.3)+ (0.8) ⋅ (0.575) = 0.52  

when t ∈ (0.8,1], 

UOWAW (x,Et) =
0
5

⋅ OWAw(0)

(
x|∅
)
+

(

1 −
0
5

)

⋅ mean[5]

(
x|[5]
)
= mean[5]

(
x|[5]
)
= 0.52 

Then, 

Px(BUIOWAW ((x, c)) ) =
∫ 1

0
UOWAW (x,Et)dt  

=

∫

{0}
UOWAW (x,Et)dt +

∫

(0,0.2]
UOWAW (x,Et)dt +

∫

(0.2,0.5]
UOWAW (x,Et)dt

+

∫

(0.5,0.8]
UOWAW (x,Et)dt +

∫

(0.8,1]
UOWAW (x,Et)dt  

= (0)(0.3725)+ (0.2 − 0)(0.44)+ (0.5 − 0.2)(0.46)+ (0.8 − 0.5)(0.52)+ (1 − 0.8)(0.52) = 0.486 

Moreover, 

Pc(BUIOWAW ((x, c)) ) = (1/5)
∑5

i=1
c(i) = 0.4 

As a result, 

BUIOWAW ((x, c)) = (0.486, 0.4)

The explicit weight vector u[5] = (u[5]
i )i∈[5] used for WM expression of BUIOWA can be obtained by the following process. 

When t ∈ {0}, we can omit the computation because integration on a point will not affect the results. 
When t ∈ (0,0.2], Et = {1,2, 4,5} and [5]\Et = {3}, 
σEt (1) = 1, σEt (2) = 5, σEt (3) = 2, σEt (4) = 4 and σ− 1

Et (1) = 1, σ− 1
Et (2) = 3, σ− 1

Et (4) = 4, σ− 1
Et (5) = 2. 

Therefore, 

ut(1) =
kt

n
⋅ w(4)

σ− 1
Et

(1) =
4
5

⋅ w(4)
1 = 0.04,

ut(2) =
4
5

⋅ w(4)
3 = 0.24,
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ut(4) =
4
5

⋅ w(4)
4 = 0.4,

ut(5) =
4
5

⋅ w(4)
2 = 0.12.

Besides, ut(3) = 1
5 = 0.2. 

Similarly, when t ∈ (0.2,0.5], Et = {1,2, 5} and [5]\Et = {3,4}. 
σEt (1) = 1, σEt (2) = 5, σEt (3) = 2 and σ− 1

Et (1) = 1, σ− 1
Et (2) = 3, σ− 1

Et (5) = 2. 
Therefore, according to Eq. (19), 

ut(1) =
kt

n
⋅ w(3)

σ− 1
Et

(1) =
3
5

⋅ w(3)
1 = 0.06,

ut(2) =
3
5

⋅ w(3)
3 = 0.36,

ut(5) =
3
5

⋅ w(3)
2 = 0.18.

Besides, ut(3) = ut(4) = 1
5 = 0.2. 

When t ∈ (0.5,0.8], Et = {2} and [5]\Et = {1,3,4,5}, and in this situation we easily see 
ut(i) = 0.2 for all i ∈ [5]. 
When t ∈ (0.8,1], Et = ∅ and [5]\Et = [5], and in this situation we also see 
ut(i) = 0.2 for all i ∈ [5]. 
Consequently, we have 

u[5]
1 =

∫ 1

0
ut(1)dt = (0.2)(0.04)+ (0.3)(0.06)+ (0.5)(0.2) = 0.126,

u[5]
2 =

∫ 1

0
ut(2)dt = (0.2)(0.24)+ (0.3)(0.36)+ (0.5)(0.2) = 0.256,

u[5]
3 =

∫ 1

0
ut(3)dt = (0.2)(0.2)+ (0.3)(0.2)+ (0.5)(0.2) = 0.2,

u[5]
4 =

∫ 1

0
ut(4)dt = (0.2)(0.4)+ (0.3)(0.2)+ (0.5)(0.2) = 0.24,

u[5]
5 =

∫ 1

0
ut(5)dt = (0.2)(0.12)+ (0.3)(0.18)+ (0.5)(0.2) = 0.178.

Then, u[5] = (u[5]
i )i∈[5] = (0.126,0.256,0.2,0.24,0.178). 

3.2. BUI ordered weighted geometric averaging operators 

With the preceding discussions and definitions in Section 2, we can define BUI ordered weighted geometric averaging (BUIOWGA) 
operators in some similar manner. However, unlike BUIOWA, BUIOWGA will have three different types. 

We firstly define the aggregation certainty which will be the same for all the three types. 

Definition 13. ([30]) For a subset E ⊆ [n] on which the input function values are certain (with its complement [n]\E on which the 
input function values are uncertain). The attached aggregation certainty AC : 2[n]→[0,1] (aggregation uncertainty AU : 2[n]→[0,1]) is 
defined by 

AC(E) = |E|/nAU(E) = 1 − (|E|/n ) (21)   

Definition 14. For any input function x : [n]→[0,1] and a subset E ⊆ [n] on which the input function values are certain (with its 
complement [n]\E on which the input function values are uncertain), an uncertain ordered weighted geometric averaging type I 
(UOWGA-I) operator for [n] with a family of OWA weight vectors W ⊖ = {w(n)}

∞
n=1, having orness α is a mapping 

UOWGA − IW : [0, 1][n] × 2[n]→[0,1] such that 

UOWGA − IW (x,E) =
|E|
n

⋅ OWGAw(|E|)

(
x|E
)
+

(

1 −
|E|
n

)

⋅ GM[n]\E

(
x|[n]\E

)
(22) 
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with conventions OWGAw(∅) (x|∅) ≜ 1 and GM∅(x|∅) ≜ 1. 

Definition 15. A basic uncertain information ordered weighted geometric averaging type I (BUIOWGA-I) operator for [n] with a 
family of OWA weight vectors having orness α, W ⊖ = {w(n)}

∞
n=1, is a mapping BUIOWGA − IW : B [n]→B , such that 

BUIOWGA − IW ((x, c)) =
(∫ 1

0
UOWGA − IW (x,Et)dt,

∫ 1

0
AC(Et)dt

)

(23)  

where Et = {k ∈ [n] : c(k)⩾t}. 

Definition 16. For any input function x : [n]→[0,1] and a subset E ⊆ [n] on which the input function values are certain (with its 
complement 1 − (|E|/n ) on which the input function values are uncertain), an uncertain ordered weighted geometric averaging type II 
(UOWGA-II) operator for [n] with a family of OWA weight vectors having orness α, W ⊖ = {w(n)}

∞
n=1, is a mapping 

UOWGA − IIW : [0, 1][n] × 2[n]→[0,1] such that 

UOWGA − IIW (x,E) =
(
OWGAw(|E|)

(
x|E
) )|E|

n ⋅
(

GM[n]\E

(
x|[n]\E

))1− |E|
n (24)  

with conventions 
(
OWGAw(|∅|) (x|∅)

)0 ≜ 1 and 
(
GM∅(x|∅)

)1 ≜ 1. 

Definition 17. A basic uncertain information ordered weighted geometric averaging type II (BUIOWGA-II) operator for [n] with a 
family of OWA weight vectors having orness α, W ⊖ = {w(n)}

∞
n=1, is a mapping BUIOWGA − IIW : B [n]→B , such that 

BUIOWGA − IIW ((x, c)) =
(∫ 1

0
UOWGA − IIW (x,Et)dt,

∫ 1

0
AC(Et)dt

)

(25)  

where Et = {k ∈ [n] : c(k)⩾t}. The third type as follows will directly use the weight vector u[n] = (u[n]
i )i∈[n], which is specified by Eq. 

(20), as the weights for the WGM expression of BUIOWGA. 

Definition 18. A basic uncertain information ordered weighted geometric averaging type III (BUIOWGA-III) operator for [n] with a 
family of OWA weight vectors having orness α, W ⊖ = {w(n)}

∞
n=1, is a mapping BUIOWGA − IIIW : B [n]→B , such that 

BUIOWGA − IIIW ((x, c)) =
(

WGMu[n] (x),
∫ 1

0
AC(Et)dt

)

(26)  

where u[n] = (u[n]
i )i∈[n] is defined by Eq. (20). Remark Note that u[n] = (u[n]

i )i∈[n] is dependent on inputs (x, c) and W ⊖ = {w(n)}
∞
n=1. 

The computation complexity involved in Eqs. (23), (25) or (26) includes at most n times permutations, 2n times additions and n2 

times multiplications and power calculations. 

Example 2. With the same inputs as in Example 1, partly for the purpose of comparison, in what follows we compute BUIOWGA-I, 
BUIOWGA-II, and BUIOWGA-III, respectively. 

(x,c) = ((x(i), c(i)))i∈[5] = ((0.7,0.5), (0.3,0.8), (0.8,0), (0.3,0.2), (0.5,0.5)); that is, x = (0.7,0.3, 0.8, 0.3,0.5) and c = (0.5,0.8,0,
0.2,0.5). 

Suppose we adopt a family of OWA weight vectors having orness α = 0.25, W ⊖ = {w(s)}
∞
s=1, which includes (only for 1⩽s⩽5): 

w(1) = (1), w(2) = (0.25, 0.75), w(3) = (0.1, 0.3, 0.6), w(4) = (0.05, 0.15, 0.3, 0.5), w(5) = (0.025, 0.075, 0.15, 0.375, 0.375).The 
computation can use the following factorization of [0,1]. 

Et = [5](t ∈ {0}); Et = {1,2, 4,5} (t ∈ (0,0.2]); Et = {1,2, 5} (t ∈ (0.2,0.5]) 
Et = {2}(t ∈ (0.5,0.8]); Et = ∅ (t ∈ (0.8,1]) 
We firstly obtain Pc(BUIOWAW ((x, c)) ) = (1/5)

∑5
i=1c(i) = 0.4, and next we compute for the three types of BUIOWGA.  

(I) The computation for UOWGA − IW (x,Et) and BUIOWGA − IW ((x, c)): 

when t ∈ {0}, 

UOWGA − IW (x,Et) =
5
5

⋅ OWGAw(5)

(
x|[5]
)
+

(

1 −
5
5

)

⋅ GM∅
(
x|∅
)

= OWGAw(5)

(
x|[5]
)

when t ∈ (0,0.2], 
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UOWGA − IW (x,Et) =
4
5

⋅ OWGAw(4)

(
x|{1,2,4,5}

)
+

(

1 −
4
5

)

⋅ GM{3}

(
x|{3}

)

= 0.8 ⋅ OWGAw(4) (0.7, 0.3, 0.3, 0.5) + 0.2 ⋅ GM{3}(0.8)
= (0.8)

(
0.70.05 ⋅ 0.50.15 ⋅ 0.30.3 ⋅ 0.30.5)+ (0.2)(0.8)

≐ (0.8)(0.338) + (0.2)(0.8) = 0.4304 

when t ∈ (0.2,0.5], 

UOWGA − IW (x,Et) =
3
5

⋅ OWGAw(3)

(
x|{1,2,5}

)
+

(

1 −
3
5

)

⋅ GM{3,4}

(
x|{3,4}

)

= (0.6) ⋅ OWGAw(3) (0.7, 0.3, 0.5) + (0.4) ⋅ GM{3,4}(0.8, 0.3)
= (0.6)

(
0.70.1 ⋅ 0.50.3 ⋅ 0.30.6)+ (0.4)

(
0.80.50.30.5)

≐ (0.6)(0.381) + (0.4)(0.49) = 0.4246  

when t ∈ (0.5,0.8], 

UOWGA − IW (x,Et) =
1
5

⋅ OWGAw(1)

(
x|{2}

)
+

(

1 −
1
5

)

⋅ GM{1,3,4,5}

(
x|{1,3,4,5}

)

= (0.2) ⋅ OWGAw(1) (0.3) + (0.8) ⋅ GM{1,3,4,5}(0.7, 0.8, 0.3, 0.5)
= (0.2)(0.3) + (0.8)(0.7 ⋅ 0.8 ⋅ 0.3 ⋅ 0.5)0.25

≐ (0.2)(0.3) + (0.8)(0.538) = 0.4904  

when t ∈ (0.8,1], 

UOWGA − IW (x,Et) =
0
5

⋅ OWGAw(0)

(
x|∅
)
+

(

1 −
0
5

)

⋅ GM[5]

(
x|[5]
)

= GM[5]

(
x|[5]
)
= (0.7 ⋅ 0.3 ⋅ 0.8 ⋅ 0.3 ⋅ 0.5)0.2 ≐ 0.479 

Then, 

Px(BUIOWGA − IW ((x, c)) ) =
∫ 1

0
UOWGAW (x,Et)dt  

=

∫

{0}
UOWGAW (x,Et)dt +

∫

(0,0.2]
UOWGAW (x,Et)dt +

∫

(0.2,0.5]
UOWGAW (x,Et)dt

+

∫

(0.5,0.8]
UOWGAW (x,Et)dt +

∫

(0.8,1]
UOWGAW (x,Et)dt  

= 0 ⋅ OWGAw(5)

(
x|[5]
)
+(0.2 − 0)(0.4304)+ (0.5 − 0.2)(0.4246)+ (0.8 − 0.5)(0.4904)+ (1 − 0.8)(0.479) = 0.45638 

Finally, BUIOWGA − IW ((x, c)) = (0.45638,0.4).  

(II) The computation for UOWGA − IIW (x,Et) and BUIOWGA − IIW ((x, c)): 

when t ∈ {0}, 

UOWGA − IIW (x,Et) =
(

OWGAw(5)

(
x|[5]
))5

5 ⋅
(
GM∅

(
x|∅
))

(

1− 5
5

)

= OWGAw(5)

(
x|[5]
)

when t ∈ (0,0.2], 

UOWGA − IIW (x,Et) =
(

OWGAw(4)

(
x|{1,2,4,5}

))4
5 ⋅
(

GM{3}

(
x|{3}

))

(

1− 4
5

)

= (OWGAw(4) (0.7, 0.3, 0.3, 0.5))0.8 ⋅
(
GM{3}(0.8)

)0.2

=
(
0.70.05 ⋅ 0.50.15 ⋅ 0.30.3 ⋅ 0.30.5)(0.8) ⋅ (0.8)(0.2)

≐ (0.338)(0.8) ⋅ (0.8)(0.2) ≐ 0.402 
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when t ∈ (0.2,0.5], 

UOWGA − IIW (x,Et) =
(

OWGAw(3)

(
x|{1,2,5}

))3
5 ⋅
(

GM{3,4}

(
x|{3,4}

))

(

1− 3
5

)

= (OWGAw(3) (0.7, 0.3, 0.5))(0.6) ⋅
(
GM{3,4}(0.8, 0.3)

)(0.4)

=
(
0.70.1 ⋅ 0.50.3 ⋅ 0.30.6)(0.6) ⋅

(
0.80.50.30.5)(0.4)

≐
(

0.381)(0.6) ⋅ (0.49)(0.4) ≐ 0.421  

when t ∈ (0.5,0.8], 

UOWGA − IIW (x,Et) =
(

OWGAw(1)

(
x|{2}

))1
5 ⋅
(

GM{1,3,4,5}

(
x|{1,3,4,5}

))

(

1− 1
5

)

= (OWGAw(1) (0.3))(0.2) ⋅
(
GM{1,3,4,5}(0.7, 0.8, 0.3, 0.5)

)(0.8)

= (0.3)(0.2) ⋅
(
(0.7 ⋅ 0.8 ⋅ 0.3 ⋅ 0.5)0.25

)(0.8)

≐ (0.3)(0.2) ⋅ (0.538)(0.8) ≐ 0.479  

when t ∈ (0.8,1], 

UOWGA − IIW (x,Et) =
(
OWGAw(0)

(
x|∅
))0

5 ⋅
(

GM[5]

(
x|[5]
))

(

1− 0
5

)

= GM[5]

(
x|[5]
)
= (0.7 ⋅ 0.3 ⋅ 0.8 ⋅ 0.3 ⋅ 0.5)0.2 ≐ 0.479 

Then, 

Px(BUIOWGA − IIW ((x, c)) ) =
∫ 1

0
UOWGA − IIW (x,Et)dt  

=

∫

{0}
UOWGA − IIW (x,Et)dt +

∫

(0,0.2]
UOWGA − IIW (x,Et)dt +

∫

(0.2,0.5]
UOWGA − IIW (x,Et)dt

+

∫

(0.5,0.8]
UOWGA − IIW (x,Et)dt +

∫

(0.8,1]
UOWGA − IIW (x,Et)dt  

= 0 ⋅ OWGAw(5)

(
x|[5]
)
+(0.2 − 0)(0.402)+ (0.5 − 0.2)(0.421)+ (0.8 − 0.5)(0.479)+ (1 − 0.8)(0.479) = 0.4462 

Finally, BUIOWGA − IIW ((x, c)) = (0.4462,0.4).  

(III) The computation for BUIOWGA − IIIW ((x, c)): 

From Example 1, we know that u[5] = (u[5]
i )i∈[5] = (0.126,0.256,0.2,0.24,0.178). Then, 

WGMu[n] (x) = (0.7)0.126
(0.3)0.256

(0.8)0.2
(0.3)0.24

(0.5)0.178 ≐ 0.445 

Finally, BUIOWGA − IIIW ((x, c)) =
(

WGMu[n] (x),
∫ 1

0 AC(Et)dt
)

= (0.445,0.4). 

4. Some propositions and relations about BUI OWGA operators 

Some prepositions, majorly including various monotonicities, will firstly be discussed, and then some relations between BUI OWGA 
operators and BUI OWA operators, including some inequalities, are analyzed. 

Proposition 1. (Monotonicities for the value projection) For any family of OWA weight vectors having orness α, W ⊖ = {w(n)}
∞
n=1, let (x1,

c), (x2, c) ∈ B [n] be any two BUI functions such that the associated value functions x1, x2 : [n]→[0,1] satisfy x1⩽x2 (x1(i)⩽x2(i) for all i ∈ [n]) 
and they have the same associated certainty function c : [n]→[0,1], then 

Px(BUIOWGA − IW ((x1, c)) )⩽Px(BUIOWGA − IW ((x2, c)) )

Px(BUIOWGA − IIW ((x1, c)) )⩽Px(BUIOWGA − IIW ((x2, c)) ),
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Px(BUIOWGA − IIIW ((x1, c)) )⩽Px(BUIOWGA − IIIW ((x2, c)) ).

Proof (i) For each t ∈ [0,1], 

UOWGA − IW (x1,Et) =
|Et|

n
⋅ OWGAw(|Et |)

(
x1|Et

)
+

(

1 −
|Et|

n

)

⋅ GM[n]\Et

(
x1|[n]\Et

)

⩽
|Et|

n
⋅ OWGAw(|Et |)

(
x2|Et

)
+

(

1 −
|Et|

n

)

⋅ GM[n]\Et

(
x2|[n]\Et

)
= UOWGA − IW (x2,Et)

Then, 

Px(BUIOWGA − IW ((x1, c)) ) =
∫ 1

0
UOWGA − IW (x1,Et)dt  

⩽
∫ 1

0
UOWGA − IW (x2,Et)dt = Px(BUIOWGA − IW ((x2, c)) )

(ii) For each t ∈ [0,1], 

UOWGA − IIW (x1,Et) =
(
OWGAw(|Et |)

(
x1|Et

) )|Et |
n ⋅
(

GM[n]\Et

(
x1|[n]\Et

))1− |Et |
n  

⩽
(
OWGAw(|Et |)

(
x2|Et

) )|Et |
n ⋅
(

GM[n]\Et

(
x2|[n]\Et

))1− |Et |
n 

Then, 

Px(BUIOWGA − IIW ((x1, c)) ) =
∫ 1

0
UOWGA − IIW (x1,Et)dt  

⩽
∫ 1

0
UOWGA − IIW (x2,Et)dt = Px(BUIOWGA − IIW ((x2, c)) )

(iii)Px(BUIOWGA − IIIW ((x1, c)) ) = WGAu[n] (x1)⩽WGAu[n] (x2) = Px(BUIOWGA − IIIW ((x2, c)) ). □ 

Proposition 2. If the family of OWA weight vectors W ⊖ = {w(n)}
∞
n=1 satisfies w(n) = (1/n, ...,1/n) for all n ∈ N, then for any (x,c) ∈ B [n], 

Px(BUIOWGA − IIW ((x, c)) ) = Px(BUIOWGA − IIIW ((x, c)) ) = GM[n](x)

Proof (i)Px(BUIOWGA − IIW ((x, c)) ) = GM[n](x)

For each t ∈ [0,1], if Et ∕= ∅ and [n]\Et ∕= ∅, then 

UOWGA − IIW (x,Et) =
(
OWGAw(|Et |)

(
x|Et

) )|Et |
n ⋅
(

GM[n]\Et

(
x|[n]\Et

))1− |Et |
n  

=

(
∏

i∈Et

(
x|Et

(i)
) 1
|Et |

)|Et |
n

⋅

(
∏

i∈[n]\Et

(
x|[n]\Et

(i)
) 1

|[n]\Et |

)1− |Et |
n  

=
∏

i∈Et

(
x|Et

(i)
)1

n ⋅
∏

i∈[n]\Et

(
x|[n]\Et

(i)
)1

n
=
∏

i∈[n]

(x(i))
1
n = GM[n](x)

if Et = ∅, then 

UOWGA − IIW (x,Et) =
(
OWGAw(|∅|)

(
x|∅
) )|∅|

n ⋅
(

GM[n]\∅

(
x|[n]\∅

))1− |∅|

n
= 1 ⋅

(
GM[n](x)

)1
= GM[n](x)

if [n]\Et = ∅, then 

UOWGA − IIW (x,Et) =
(
OWGAw(|Et |)

(
x|Et

) )|Et |
n ⋅
(

GM[n]\Et

(
x|[n]\Et

))1− |Et |
n  

=
(

OWGAw(|[n]|)

(
x|[n]
))|[n]|

n ⋅
(
GM∅

(
x|∅
))1− |[n]|

n = OWGAw(n) (x) = GM[n](x)

(ii)Px(BUIOWGA − IIIW ((x, c)) ) = GM[n](x)
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For each t ∈ [0,1], if Et ∕= ∅ and [n]\Et ∕= ∅, the weighted vector ut : [n]→[0,1] defined in Eq. (17) becomes such that 
ut(i) = kt

n ⋅ w(|Et |)

σ− 1
Et

(i) =
kt
n ⋅ 1

|Et |
= 1

n (when i ∈ Et) 

ut(i) = 1
n (when i ∈ [n]\Et) 

Therefore, ut : [n]→[0,1] satisfies ut(i) = 1
n for all i ∈ [n]. 

If Et = ∅, then weighted vector ut : [n]→[0,1] defined in Eq. (18) satisfies ut(i) = 1
n for all i ∈ [n]. 

If [n]\Et = ∅, then weighted vector ut : [n]→[0,1] defined in Eq. (19) also satisfies ut(i) = 1
n for all i ∈ [n]. 

Hence, the weight vector u[n] = (u[n]
i )i∈[n] defined in Eq. (20) satisfies u[n]

i =
∫ 1

0 ut(i)dt =
∫ 1

0
1
n dt = 1

n. Therefore, Px(BUIOWGA −

IIIW ((x, c)) ) = WGMu[n] (x) = GM[n](x). □ 

Proposition 3. For any family of OWA weight vectors, W ⊖ = {w(n)}
∞
n=1,  

(a) if a BUI function (x, c) ∈ B [n] satisfies c(i) = 1 for all i ∈ [n], then 

BUIOWGA − IW ((x, c)) = BUIOWGA − IIW ((x, c)) = BUIOWGA − IIIW ((x, c)) = (OWGAw(n) (x), 1)

where w(n) is the n-th weight vector defined in the family W ⊖ = {w(n)}
∞
n=1.  

(b) if a BUI function (x, c) ∈ B n satisfies c(i) = 0 for all i ∈ [n], then BUIOWGA − IW ((x, c)) = BUIOWGA − IIW ((x, c)) =

BUIOWGA − IIIW ((x, c)) =
(
GM[n](x),0

)
.  

(c) (idempotency for the value projection) If a BUI function (x, c) ∈ B [n] satisfies x(i) = a for all i ∈ [n], then 

Px(BUIOWGA − IW ((x, c)) ) = Px(BUIOWGA − IIW ((x, c)) ) = Px(BUIOWGA − IIIW ((x, c)) ) = a  

Proof (a) On the one hand, for each t ∈ [0, 1] we have Et = [n] and therefore 

UOWGA − IW (x,Et) =
|Et|

n
⋅ OWGAw(|Et |)

(
x|Et

)
+

(

1 −
|Et|

n

)

⋅ GM[n]\Et

(
x|[n]\Et

)

=
n
n

⋅ OWGAw(n)

(
x|[n]
)
+
(

1 −
n
n

)
⋅ GM∅

(
x|∅
)
= OWGAw(n) (x)

UOWGA − IIW (x,Et) =
(
OWGAw(|Et |)

(
x|Et

) )|Et |
n ⋅
(

GM[n]\Et

(
x|[n]\Et

))1− |Et |
n  

=
(

OWGAw(n)

(
x|[n]
))n

n
⋅
(
GM∅

(
x|∅
))0

= OWGAw(n) (x)

Therefore, Px(BUIOWGA − IW ((x, c)) ) = Px(BUIOWGA − IIW ((x, c)) ) = OWGAw(n) (x). 
Since ut(i) = w(n)

σ− 1
[n] (i)

(i ∈ [n]) then u[n]
i =

∫ 1
0 ut(i)dt = w(n)

σ− 1
[n] (i)

(i ∈ [n]). Therefore, 

Px(BUIOWGA − IIIW ((x, c)) ) = WGMu[n] (x) = OWGAw(n) (x)

On the other hand, 

Pc(BUIOWGA − IW ((x, c)) ) = Pc(BUIOWGA − IIW ((x, c)) )

= Pc(BUIOWGA − IIIW ((x, c)) ) =
∫ 1

0
AC(Et)dt =

∫ 1

0

|Et|

n
dt =

∫ 1

0

n
n

dt = 1 

(b) can be easily checked in some similar analyses as those used in (a). 
(c) is apparent because OWGA, GM and WGM are all idempotent. □ 

Proposition 4. Let W ⊖ = {w(n)}
∞
n=1 (w(n) = (w(n)

i )
n
i=1) be a (parameterized) family of OWA weight vectors having orness α and satisfying 

w(n) = (w(n)
i )

n
i=1 ∈ (0,1]n for all n ∈ N. For a BUI function (x, c) ∈ B [n], if there is some i ∈ [n] such that (x(i),c(i)) = (0,1), then 

Px(BUIOWGA − IIW ((x, c)) ) = Px(BUIOWGA − IIIW ((x, c)) ) = 0  

Proof For each t ∈ [0,1], 

UOWGA − IIW (x,Et) =
(
OWGAw(|Et |)

(
x|Et

) )|Et |
n ⋅
(

GM[n]\Et

(
x|[n]\Et

))1− |Et |
n 

Note that 0 is the annihilator of both GM and OWGA (when the associated OWA weighted vector is positive), then it is easy to check 
that UOWGA − IIW (x,Et) = 0 irrespective of the cardinality of Et. Therefore, Px(BUIOWGA − IIW ((x, c)) ) = 0. 
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Since w(n) = (w(n)
i )

n
i=1 ∈ (0, 1]n, then clearly u[n] ∈ (0,1][n]. Note that 0 is also the annihilator of WGM (when the associated weight 

vector is positive), then. 
Px(BUIOWGA − IIIW ((x, c)) ) = WGMu[n] (x) = 0. □ 
Remark Proposition 4 shows a useful property that holds for BUI OWGA type II and III operators but not for BUI OWGA type I and 

BUI OWA operators. In some strict and conservative decision environments, if there are some individual inputs that take 0 value, then 
the overall aggregation result will be 0; this can both embody “average type” aggregation and model “one-vote veto”. 

We next show three inequalities concerning BUI OWGA operators and BUI OWA operators. First, we recall that a real-valued 
function φ : (a, b)→( − ∞,+∞) is said to be convex (concave) if and only if for any finite number of values x1, x2, ..., xn ∈ (a, b) and 
any finite number of values λ1, λ2, ..., λn ∈ [0, 1] satisfying 

∑n
i=1λi = 1, 

φ

(
∑n

i=1
λixi

)

⩽
∑n

i=1
λiφ(xi)φ

(
∑n

i=1
λixi

)

⩾
∑n

i=1
λiφ(xi) (27)  

Lemma 1. For any finite set E (E ∕= ∅) and any normalized weight function/vector wE = (wE
i )i∈E, let WMwE : [0, 1]E→[0,1] be the weighted 

mean with wE and WGMwE : [0, 1]E→[0,1] be the weighted geometric mean with wE. Then for any x ∈ [0, 1][n], 

WGMwE (x)⩽WMwE (x)

Proof For x ∈ [0, 1][n] and wE = (wE
i )i∈E, define three disjoint subsets of [n]: S+ = {k ∈ [n] : x(k) > 0}, S00 = {k ∈ [n] : x(k) = wE

k =

0}, and S0+ = {k ∈ [n] : x(k) = 0,wE
k > 0}. Note that E = S+ ∪ S00 ∪ S0+, S00 ∕= [n], and each one of these three sets can possibly be 

empty set. 

If S0+ ∕= ∅, then there exist k ∈ S0+ for which (x(k))wE
k = 0wE

k = 0, and therefore WGMwE (x) = 0⩽WMwE (x). 
If S0+ = ∅, with the conventions 00 ≜ 1 and 

∑
i∈∅wE

i x(i) ≜ 0, we have 

WGMwE (x) =
∏

i∈E
(x(i))wE

i =
∏

i∈S00

(x(i))wE
i
∏

i∈E\S00

(x(i))wE
i =

∏

i∈E\S00

(x(i))wE
i =

∏

i∈S+

(x(i))wE
i  

and 

WMwE (x) =
∑

i∈E
wE

i x(i) =
∑

i∈S00

wE
i x(i)+

∑

i∈E\S00

wE
i x(i) =

∑

i∈E\S00

wE
i x(i) =

∑

i∈S+

wE
i x(i).

Since ln : (0,∞)→( − ∞,∞) is concave and f(x) = ex is monotonic increasing on ( − ∞,∞), then 

WGMwE (x) =
∏

i∈S+

(x(i))wE
i = exp

(

ln
∏

i∈S+

(x(i))wE
i

)

= exp

(
∑

i∈S+

wE
i ln(x(i))

)

⩽exp
(

ln
(∑

i∈S+wE
i x(i)

))
=
∑

i∈S+
wE

i x(i) = WMwE (x). □ 

Corollary 1. For any finite set E (E ∕= ∅), let AME : [0, 1]E→[0,1] be the arithmetic mean and GME : [0,1]E→[0,1] be the geometric mean. 
Then for any x ∈ [0,1][n], 

GME(x)⩽AME(x)

Corollary 2. For any finite set E (E ∕= ∅) and any OWA weight vector w(|E|) = w(k) = (w(k)
i )

k
i=1, let OWAw(k) : [0,1]E→[0,1] be the OWA 

operator with w(k) and OWGAw(k) : [0, 1]E→[0,1] be the OWGA operator with wE. Then for any x ∈ [0,1][n], 

OWGAw(k) (x)⩽OWAw(k) (x)

Proof Let σE : [k]→E be an appropriate bijection such that x(σE(i))⩾x(σE(j)) whenever 1⩽i < j⩽k. Then, with the same σE and v =

(vi)i∈E satisfying vi = w(|E|)
σ− 1

E (i), the WE expression of OWAw(k) is OWAw(|E|) (x) =
∑

i∈Ew(|E|)
σ− 1

E (i)x(i) =
∑

i∈Evix(i) = WMv(x), and the WGM 

expression of OWGAwE is OWGAw(|E|) (x) =
∏

i∈Ex(i)
w(|E|)

σ− 1
E (i) =

∏
i∈E(x(i))

vi = WGMv(x). By Lemma 1, we know WGMv(x)⩽WMv(x) and 
therefore OWGAwE (x)⩽OWAwE (x). □ 

Proposition 5. For any family of OWA weight vectors having orness α, W ⊖ = {w(n)}
∞
n=1, and any (x, c) ∈ B [n], 

Px(BUIOWGA − IW ((x, c)) )⩽Px(BUIOWAW ((x, c)) ). 

Proof For any (x, c) ∈ B [n] and any t ∈ [0,1], recall Et = {k ∈ [n] : c(k)⩾t}. If both Et ∕= ∅ and Et ∕= [n] hold, then by Corollary 2 and 
Corollary 1, 
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UOWGA − IW (x,Et) =
|Et|

n
⋅ OWGAw(|Et |)

(
x|Et

)
+

(

1 −
|Et|

n

)

⋅ GM[n]\Et

(
x|[n]\Et

)

⩽
|Et|

n
⋅ OWAw(|Et |)

(
x|Et

)
+

(

1 −
|Et|

n

)

⋅ AM[n]\Et

(
x|[n]\Et

)
= UOWAW ⊖(x,Et)

If Et = ∅, then by Corollary 1, 

UOWGA − IW (x,Et) = GM[n](x)⩽AM[n](x) = UOWAW ⊖(x,Et)

If Et = [n], then by Corollary 2, 

UOWGA − IW (x,Et) = OWGAw(n) (x)⩽OWAw(n) (x) = UOWAW ⊖(x,Et)

Therefore, 

Px(BUIOWGA − IW ((x, c)) ) =
∫ 1

0
UOWGA − IW (x,Et)dt  

⩽
∫ 1

0 UOWAW (x,Et)dt = Px(BUIOWAW ((x, c)) ). □ 

Proposition 6. For any family of OWA weight vectors having orness α, W ⊖ = {w(n)}
∞
n=1, and any (x, c) ∈ B [n], 

Px(BUIOWGA − IIW ((x, c)) )⩽Px(BUIOWGA − IW ((x, c)) ). 

Proof For any (x, c) ∈ B [n] and any t ∈ [0,1], recall Et = {k ∈ [n] : c(k)⩾t}. If both Et ∕= ∅ and Et ∕= [n] hold, then by Corollary 1, 

UOWGA − IIW (x,Et) =
(
OWGAw(|Et |)

(
x|Et

) )|Et |
n ⋅
(

GM[n]\Et

(
x|[n]\Et

))1− |Et |
n  

⩽
|Et|

n
⋅ OWGAw(|Et |)

(
x|Et

)
+

(

1 −
|Et|

n

)

⋅ GM[n]\Et

(
x|[n]\Et

)
= UOWGA − IW (x,Et).

If Et = ∅, then, 

UOWGA − IIW (x,Et) = GM[n](x) = UOWGA − IW (x,Et)

If Et = [n], then, 

UOWGA − IIW (x,Et) = OWGAw(n) (x) = UOWGA − IW (x,Et)

Therefore, 

Px(BUIOWGA − IIW ((x, c)) ) =
∫ 1

0
UOWGA − IIW (x,Et)dt  

⩽
∫ 1

0 UOWGA − IW (x,Et)dt = Px(BUIOWGA − IW ((x, c)) ). □ 

Lemma 2. ((Jensen’s Inequality) [34]) Let φ be a convex function on ( − ∞,∞), f an integrable function over [0, 1], and φ◦f also integrable 
over [0,1]. Then 

φ
(∫ 1

0
f (t)dt

)

⩽
∫ 1

0
(φ◦f )(t)dt   

Proposition 7. For any family of OWA weight vectors having orness α, W ⊖ = {w(n)}
∞
n=1, and any (x, c) ∈ B [n], 

Px(BUIOWGA − IIIW ((x, c)) )⩽Px(BUIOWGA − IIW ((x, c)) ). 

Proof For each t ∈ [0, 1], let |Et | = kt. When Et ∕= ∅, let σEt : [kt ]→Et be an appropriate bijection such that x(σEt (i))⩾x(σEt (j))
whenever 1⩽i < j⩽kt. 

We consider the following three situations:  

(i) if both Et ∕= ∅ and [n]\Et ∕= ∅ hold, then we have 

UOWGA − IIW (x,Et) =
(
OWGAw(|Et |)

(
x|Et

) )|Et |
n ⋅
(

GM[n]\Et

(
x|[n]\Et

))1− |Et |
n  
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=

(
∏

i∈Et

(
x|Et

(i)
)w(kt )

σ− 1
Et

(i)

)kt
n

⋅

(
∏

i∈[n]\Et

(
x|[n]\Et

(i)
) 1

n− kt

)

(

1− kt
n

)

=
∏

i∈Et

(
x|Et

(i)
)

kt
n ⋅w(kt )

σ− 1
Et

(i) ⋅
∏

i∈[n]\Et

(
x|[n]\Et

(i)
)1

n  

=
∏

i∈Et∪([n]\Et)

(x(i))ut(i) =
∏

i∈[n]

(x(i))ut(i)

where ut : [n]→[0,1] is the normalized weight vector defined in Eq. (17).  

(ii) if Et = ∅, then 

UOWGA − IIW (x,Et) = GM[n]

(
x|[n]
)
=
∏

i∈[n]

(
x|[n](i)

)1
n
=
∏

i∈[n]

(x(i))ut(i)

where ut : [n]→[0,1] is the normalized weight vector defined in Eq. (18).  

(iii) if [n]\Et = ∅ (i.e., Et = [n]), then 

UOWGAW − II(x,Et) = OWGAw(n)

(
x|Et

)
=
∏

i∈[n]

(
x|[n](i)

)w(n)
σ− 1
[n]

(i)
=
∏

i∈[n]

(x(i))ut(i)

where ut is the normalized weight vector defined in Eq. (19). 
That is, u[n] = (u[n]

i )i∈[n] such that u[n]
i =

∫ 1
0 ut(i)dt is the one defined by Eq. (20). 

Then, for (x, c) ∈ B [n] (x ∈ [0, 1][n]) and u[n] = (u[n]
i )i∈[n], define three disjoint subsets of [n]: S+ = {k ∈ [n] : x(k) > 0}, S00 = {k ∈ [n] :

x(k) = u[n]
k = 0}, and S0+ = {k ∈ [n] : xk = 0,u[n]

k > 0}. Note that E = S+ ∪ S00 ∪ S0+, S00 ∕= [n], and each of the three defined sets can 
possibly be empty set. 

If S0+ ∕= ∅, then there exists k ∈ S0+ for which (x(k))u[n]
k = 0u[n]

k = 0, and therefore Px(BUIOWGA − IIIW ((x, c)) ) = WGAu[n] (x) =

0⩽Px(BUIOWGA − IIW ((x, c)) ). 
If S0+ = ∅, then, on one hand, we have 

Px(BUIOWGA − IIIW ((x, c)) ) = WGAu[n] (x) =
∏

i∈[n]

(x(i))u[n]i  

=
∏

i∈S00

(x(i))u[n]i ⋅
∏

i∈[n]\S00

(x(i))u[n]i =
∏

i∈[n]\S00

(x(i))u[n]i  

on the other hand, note that for each possible j ∈ S00, we must have u[n]
j =

∫ 1
0 ut(j)dt = 0 which immediately implies ut(j) (a function of 

t) vanishes on a subset K ⊆ [0, 1] such that its Lebesgue measure m(K) = 1. Therefore, 

Px(BUIOWGA − IIW ((x, c)) ) =
∫ 1

0
UOWGA − IIW (x,Et)dt =

∫ 1

0

∏

i∈[n]

(x(i))ut(i)dt  

=

∫

K

∏

i∈[n]

(x(i))ut(i)dt =
∫

K

∏

i∈[n]\S00

(x(i))ut(i)dt =
∫ 1

0

∏

i∈[n]\S00

(x(i))ut(i)dt 

Note that et is convex on ( − ∞,∞) and ln
(∏

i∈[n]\S00
(x(i))ut (i)

)
(a function of t) is bounded. Then, by Lemma 2 we have 

Px(BUIOWGA − IIW ((x, c)) ) =
∫ 1

0

∏

i∈[n]\S00

(x(i))ut(i)dt  

=

∫ 1

0
exp

(

ln

(
∏

i∈[n]\S00

(x(i))ut(i)

))

dt =
∫ 1

0
exp

(
∑

i∈[n]\S00

ut(i) ⋅ ln(x(i))

)

dt  

L. Jin et al.                                                                                                                                                                                                              



Information Sciences 663 (2024) 120275

17

⩾exp

(∫ 1

0

(
∑

i∈[n]\S00

ut(i) ⋅ ln(x(i))

)

dt

)

= exp

(
∑

i∈[n]\S00

((∫ 1

0
ut(i)dt

)

⋅ ln(x(i))
))

= exp

(
∑

i∈[n]\S00

(
u[n]

i ⋅ ln(x(i))
)
)

= exp

(

ln

(
∏

i∈[n]\S00

(x(i))u[n]i

))

=
∏

i∈[n]\S00

(x(i))u[n]i  

= Px(BUIOWGA − IIIW ((x, c)) ). □ 

5. BUI OWGA operators in uncertain decision-making problem 

This section presents a decision-making process with BUI inputs and bipolar optimism–pessimism preferences to show the use-
fulness of BUI OWGA operators. 

Suppose that a company needs to make a decision about whether or not to advertise for one product, which depends on the 
predicted repurchase rate of this product in the next season. The predictions are given by n = 5 internal experts of this company, 
denoted by {epti}i∈[5], and the predictions can be with uncertainty. Assume a BUI granule (x(i), c(i)) is given by each expert epti in which 
100x(i)% represents the repurchase rate that epti predicts and c(i) is his/her certainty about the prediction. Then, a BUI input function 
is obtained with (x, c) = ((x(i), c(i)))i∈[5] ∈ B [5] as presented in Example 1 and Example 2. 

Assume the management team is with a moderate pessimistic attitude which can be modeled with the family of OWA weight 
vectors having orness α = 0.25, W ⊖ = {w(s)}

∞
s=1, as given in Example 1 and Example 2. And suppose they believe that if there is a 

r ∈ [5] such that the individual uncertain prediction (x(r), c(r)) = (0, 1), which means eptr fully believes (i.e., with the maximum 
certainty) that the repurchase rate will drop to zero, then the overall prediction should be expressed by a BUI granule (0, q) where q ∈

[0,1], indicating the overall prediction for the repurchase rate is zero with more or less uncertainty. In this decision style, it is clearly 
more suitable to use BUI OWGA operators than BUI OWA operators as analyzed earlier. Then, by applying BUI OWGA operators to (x,
c), an aggregation result (x*, c*) (which is also a BUI granule) can be suggested to the management team as an overall evaluation which 
embodies both its optimism–pessimism preference and decision style in BUI environment. 

With this result, using rule-based decision-making [35–37], some evaluation thresholds can be preset. Afterwards, the aggregation 
result (x*, c*) can be compared with these thresholds, and the company will advertise the product to some different extents according to 
which one of the following rules the result (x*, c*) (the overall prediction of repurchase rate of the product and its certainty) satisfies. 

In practice, decision-makers can preset various types of decision rules and thresholds according to the detailed problems. For 
instance, we choose the thresholds and decision rules presented below. (Rule 1) Let xH > 0 represents a high repurchase rate and cS > 0 
is the acceptable level for the certainty degree. If both the predicted repurchase rate (x*) and its associated certainty degree (c*) are 
high enough to meet the preset levels (that is, if x*⩾xH > 0 and c*⩾cS > 0 are both true), then the decision should be not to advertise 
the product because they have enough confidence that the repurchase is high. 

(Rule 2) Let xL (0 < xL⩽xH) represent a low repurchase rate. If the predicted repurchase rate (x*) is smaller than the low level and its 
associated certainty degree (c*) is high enough to meet that satisfactory levels (that is, if both x* < xL⩽xH and c*⩾cS hold), then the 
decision should be to spend heavily to advertise the product because the management team has enough confidence that the repurchase 
will be low. 

(Rule 3) If all the conditions in the above two rules are not fulfilled, then the decision is to spend moderately to advertise the 
product because there is a lack of certainty for both a high repurchase rate prediction and a low repurchase rate prediction, and 
therefore a safe decision is to moderately advertise. 

Suppose we preset xH = 0.4, xL = 0.2 and cH = 0.5, and employ BUI OWGA type II operator. Then we obtain 
BUIOWGA − IIW ((x, c)) = (x*, c*) = (0.4462, 0.4). By simple comparison, according to Rule 3, the decision is suggested to spend 
moderately to advertise the product. 

6. Conclusions 

The BUIOWA operators have proven to be a successful implementation of OWA operators in the BUI environment. In addition, the 
OWGA operators play a crucial role as counterparts to OWA operators, and our proposed BUIOWGA serves as an ideal form of OWGA 
operators specifically designed for the BUI environment. 

We have defined and constructed three types BUIOWGA operators, namely BUIOWGA type I, BUIOWGA type II and BUIOWGA type 
III. The three defined operators are based on three well-defined uncertain ordered weighted geometric averaging operators, UOWGA-I, 
UOWGA-II and UOWGA-III, respectively. The construction method employs the methodology of factorization-integration. Hence, 
every type of UOWGA is based on a finite set E and then every type of BUIOWGA is therefore constructed via integral method. The 
results of the three types of BUIOWGA operators are all BUI values in which the certainty degrees are the same while the value parts are 
different from each other. We also elaborate the computation methods for the all three types of BUIOWGA operators in comparison to 
the computation procedure of BUIOWA operator. 

Some monotonicities about the proposed operators were given and proved. We showed that there are some interrelations between 
the three types of BUIOWGA operators and BUIOWA operator. Concretely, for any BUI inputs (x, c), we have 
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Px(BUIOWGA − IIIW ((x, c)) )⩽Px(BUIOWGA − IIW ((x, c)) )

⩽Px(BUIOWGA − IW ((x, c)) )⩽Px(BUIOWA((x, c)) ).

It is also shown that if the BUI granule (0,1) is in the BUI inputs and the given family of OWA weight vectors contains only positive 
weight vectors, then the value projection of the resulting BUI granule is zero, which shows some similar elements to the annihilator of 
geometric mean (with positive weights). Therefore, the proposed BUIOWGA operators effectively capture the bipolar opti-
mism–pessimism preference in BUI environment and possess unique properties that can be advantageous in specific decision scenarios. 
Consequently, both BUIOWA and BUIOWGA exhibit their own merits and limitations depending on practical application contexts, thus 
enabling them to complement each other when implemented. To demonstrate the computational feasibility and applicability of our 
proposals, we provide numerical examples as well as an application involving the prediction of product repurchase rates. 

Further research directions could involve exploring the application of diverse forms of BUIOWGA in various scenarios, such as 
taking into account decision makers’ level of tolerance. Additionally, further theoretical investigation may concentrate on the OWA 
and OWGA operators in generalized versions of BUI, for instance, basic uncertain linguistic information (BULI) [39,40]. 
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