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Abstract: The emergence and popularity of social media have made large-scale group
decision-making (LSGDM) problems increasingly common, resulting in significant re-
search interest in this field. LSGDM involves numerous evaluators, which can lead to
disagreements and hesitancy among them. Hesitant fuzzy sets (HFSs) become crucial in
this context as they capture the uncertainty and hesitancy among evaluators. On the other
hand, research on the Consensus Reaching Process (CRP) becomes particularly important
in dealing with the inevitable differences among the great number of evaluators. Ways to
mitigate these differences to reach an agreement are a crucial area of study. For this reason,
this paper presents a new CRP model to deal with LSGDM problems in hesitant fuzzy
environments. First, HFSs and Normal-type Hesitant Fuzzy Sets (N-HFSs) are introduced
to integrate evaluators’ subgroup and collective opinions, aiming to preserve as much
decision information as possible while reducing computational complexity. Subsequently,
a CRP with a detailed feedback suggestion generation mechanism is developed, which
considers the willingness of evaluators to modify their opinions, thereby improving the
effectiveness of reaching an agreement. Finally, a LSGDM framework that does not require
any normalization process is proposed, and its feasibility and robustness are demonstrated
through a numerical example.

Keywords: hesitant fuzzy set; consensus reaching process; large-scale group decision
making; multiple criteria decision making

MSC: 91B06; 03E72

1. Introduction
Group decision-making (GDM) refers to the process where a group of evaluators works

together to develop a unified solution for problems with multiple alternatives [1]. With the
rapid development of society, management and decision-making demands have become
more complex, requiring the independent evaluation of options by decision makers from
various backgrounds. Meanwhile, technological advancements have also simplified inter-
personal communication, making it practical and effective for large groups to participate in
complex decision-making processes. Against this backdrop, GDM problems have evolved
from involving just a few evaluators to requiring the participation of a large number of
evaluators, giving rise to the concept of large-scale group decision making (LSGDM) [2,3].
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Policy assessment [4], venture capital management [5,6], site selection [7–9], and tourism
management [10] are just a few examples of LSGDM application areas. The in-depth
research into LSGDM has attracted considerable attention from scholars in recent years.

Given the complexity of the decision environment, it is impractical for evaluators to
provide precise numerical evaluations of the alternatives. In such scenarios, fuzzy sets, in-
troduced by Zadeh [11], provide an effective means to express uncertainty and ambiguous
information. This proposal has led to various extensions of fuzzy sets, each designed to
better handle uncertainty in decision-making scenarios. The 2-tuple linguistic model [12]
was introduced to address linguistic uncertainty by combining symbolic terms with nu-
merical values through symbolic translation. Type-2 fuzzy sets (T2FSs) [13] incorporate
a secondary membership function to deal with more complex uncertainty. The q-rung
orthopair fuzzy sets (qROFSs) [14] extend intuitionistic fuzzy sets by relaxing the sum
constraint on membership and non-membership degrees, while Pythagorean fuzzy sets
(PFSs) [15] further generalize this concept by allowing the squared sum of these degrees
to be at most 1. Although these extensions enhance the adaptability of fuzzy set theory in
uncertain environments, they also have inherent limitations. The 2-tuple linguistic model,
while improving linguistic representation, is restricted to a single linguistic term, which
may be insufficient for capturing experts’ hesitation [16]. T2FSs, though effective in manag-
ing high uncertainty, involve significant computational complexity [17], making them less
suitable for LSGDM problems. Both qROFSs and PFSs, despite offering greater flexibility
in uncertainty representation, still rely on a single value pair to express membership and
non-membership degrees.

However, in practice, evaluators may struggle to provide precise assessments due to
hesitation, making it difficult to elicit uncertain information effectively. Motivated by this,
Torra [18] proposed hesitant fuzzy sets (HFSs) to better express situations where there is
indecision between multiple values. The introduction of HFSs also addresses the challenge
in GDM where multiple evaluators hold different opinions, making it difficult to select a
single value. For instance, when two evaluators assess an alternative, one might express
their evaluation as “0.3” while the other might express it as “0.5”. This can be represented
by a HFS as follows: {0.3, 0.5}. As we can see, using an HFS can accommodate the opinions
of multiple decision evaluators and retain as much information as possible. However, it also
presents certain challenges for subsequent computations. For example, when performing
calculations between HFS with different numbers of elements, it is often necessary to adjust
the original information, such as adding values to the shorter one based on the evaluators’
risk preferences until the elements’ numbers are aligned. This adjustment introduces
additional information into the preferences, which might potentially provoke unreasonable
decision outcomes. To solve this limitation, Hao at al. [19] introduced a new information
expression tool based on HFS, namely, normal-type hesitant fuzzy sets (N-HFSs), which
maintain the advantages of HFSs in effectively depicting hesitant information and reducing
the complexity of computation. In the LSGDM framework, the primary and fundamental
steps involve collecting evaluation information from individuals and effectively processing
this information. The ways in which HFS and N-HFS can be used to facilitate this process
warrants further exploration.

Compared to traditional GDM problems, LSGDM problems involve a significantly
larger number of participants, resulting in a more complex and time-consuming decision-
making process [20]. To reduce dimensional complexity, clustering methods are typically
employed to divide a large group of evaluators into several manageable subgroups, as it is
nearly impossible to manage a large decision-making group effectively. After clustering,
evaluators are divided into several subgroups, with each subgroup considered a decision
unit, enabling a more efficient consensus to be reached. The consensus reaching process
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(CRP) is another crucial component of GDM, and it is a tool designed to resolve or reduce
conflicts among evaluators’ viewpoints and facilitate the achievement of consensus within
the group. It is a dynamic iterative process that continuously modifies individual opinions,
assesses whether the group has reached a predetermined consensus threshold, and decides
whether to continue iterating or to stop. Consensus improvement methods can be catego-
rized into two main types as follows: optimization-based consensus models [21–23] and
feedback consensus models [24–28]. The former one typically uses optimization techniques
to minimize the total adjustments needed to achieve consensus within a predetermined
threshold, while the latter identifies the evaluators, alternatives, and criteria that need mod-
ification and then provides advice to evaluators in changing their preferences. Therefore,
in terms of the functional principles, the optimization-based CRP automatically adjusts
evaluators’ opinions, generally serving as a support tool for the moderator. In contrast,
CRP with a feedback mechanism can simulate a real CRP and provides control over the
modifications made to evaluators’ opinions. For this reason, we mainly consider the CRP
with a feedback mechanism for LSGDM problems in this paper. In the literature, CRP
with a feedback mechanism has yielded numerous outcomes [25,28–30]. However, there
are some issues that should be noted. First, consensus measurement represents the de-
gree of agreement among evaluators, and it is defined based on the concept of similarity
or dissimilarity between their preferences. A way to obtain the consensus degree with
hesitant fuzzy information within the LSGDM framework remains an unresolved issue.
Although some definitions exist in the current research [31–33], they incorporate additional
information into the calculations, which inevitably leads to unreasonable decision out-
comes [19]. Second, the feedback mechanism plays a crucial role in CRPs, as it provides
guidance to evaluators on how to adjust their preferences in order to achieve consensus.
Therefore, the ability to offer detailed instructions to evaluators becomes a critical aspect
of the feedback mechanism, something that has been insufficiently addressed in existing
HFS CRPs research. Finally, it is crucial to consider the evaluators’ willingness to modify
their preferences in CRPs, as it reflects the practical applicability of the CRP to some ex-
tent. Exploring ways of integrating this aspect into the feedback mechanism is a key issue
worth investigating.

Since LSGDM involves a large number of evaluators, and considering the outstanding
advantage of HFS in expressing hesitant information, namely, its ability to accommodate
diverse information, some scholars have introduced HFS as an information representation
tool into the LSGDM framework. For example, Rodríguez et al. [33] proposed an adaptive
consensus model for LSGDM problems, aimed at reducing both the time required and the
supervision cost involved in the CRP. Lu et al. [32] developed a CRP for incomplete hesitant
fuzzy preferences, taking distrust behavior into account. To the best of our knowledge,
only a few studies [32,33] have utilized HFS information to address LSGDM problems, yet
several critical issues remain to be addressed and significantly improved. (1) Although
there has been some research on HFS within the LSGDM framework, none has resolved the
problem of needing to include a normalization process that adds values to carry out the
computations, and this process might imply bias in the results. (2) Measuring the level of
consensus is a crucial aspect in a CRP, typically constructed based on distance. However,
the current consensus measurement in an HFS environment often requires that the two
HFSs have identical elements, which results in artificially adding decision information
during the computation process [31–33], and a reasonable consensus measure is still lacking.
(3) There is a lack of CRP with a feedback mechanism that provide detailed suggestions for
evaluators who need to change their opinion and considers evaluators’ willingness.

Taking into account the aforementioned drawbacks, this proposal aims to develop a
novel LSGDM methodology for hesitant fuzzy information, which includes a clustering
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method based on opinion similarity and a consensus model with a feedback mechanism.
The main contributions can be outlined as follows:

• A distance measure based on the statistical information is developed to quantify the
dissimilarity between two N-HFEs (Normal-type hesitant fuzzy elements). On this
basis, a consensus measure is subsequently defined.

• Construct a CRP with a feedback mechanism, which not only provides detailed and
clear guidance to the evaluators who need to revise their opinion but also considers
the extent to which evaluators are willing to modify their views.

• A LSGDM framework based on hesitant fuzzy information is introduced, which does
not require any normalization to deal with the original decision information.

• A case study is offered to show the feasibility of the proposed method, and its merits
and stability are illustrated through sensitivity and comparative analyses.

The reminder of this paper is organized as follows: Section 2 outlines the basic concepts
related to the proposed method. In Section 3, we introduce a hesitant fuzzy CRP with a
feedback mechanism. Section 4 presents a numerical example and conducts the sensitivity
and comparative analyses to validate the effectiveness of the proposed approach.

2. Preliminaries
This section reviews some basic concepts about LSGDM, CRPs, HFS, and some existing

HFS-CRPs that are relevant to the decision model proposed later.

2.1. Large-Scale Group Decision-Making

Decision-making is an extremely common process in daily life. In modern decision-
making problems, it is almost impossible for a single person to make a satisfactory decision
because of the wide range of information and the many factors that influence it. For this
reason, GDM has become a significant part in human life and occupies an important
position in the research of decision making [27,34–36]. Generally, a GDM problem contains
the following aspects:

• The alternatives’ set A = {A1, A2, . . . , Am}, which represents the different options to
the decision problem.

• The set of criteria C = {c1, c2, . . . , cn}, which represents the aspects of evaluating the
alternatives.

• The evaluators’ set E = {e1, e2, . . . , eP}, representing the evaluators who give their
opinion on the alternatives’ set.

Due to the rapid expansion of electronic technology and the arrival of the big data era,
mass participation in important decision-making processes has become an inevitable re-
quirement, and the concept of LSGDM has emerged as a result [37]. Obviously, the concept
of LSGDM is very similar to GDM, but one major difference between the two is the number
of evaluators involved in the decision-making process, which is much higher in the former.
The classical definition of the LSGDM problem involved at least 20 evaluators [38], but
according to García-Zamora et al. [37], this is an old-fashioned and inadequate definition
for society at present, since nowadays, real-world decision situations may require much
larger groups [39]. For this reason, we assume in this paper that a LSGDM problem should
have hundreds or even thousands of evaluators.

Undoubtedly, the expansion of the number of evaluators led to the scalability prob-
lem, since managing large decision groups may be hard because of resource limitations.
Therefore, a clustering method is generally required to reduce dimensionality and im-
prove decision efficiency by dividing the large group of evaluators into several subgroups.
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This is one of the most popular topics of LSGDM, and fruitful contributions have been
made [32,33,37,40,41].

On the other hand, when the number of evaluators is large, it is difficult to ensure
that the obtained solution can be agreed upon by the evaluators because of their different
knowledge, experience, and backgrounds. To improve the level of acceptance degree by
the whole evaluators, it is essential to conduct a CRP before the final decision is made. CRP
is a dynamic and iterative process that helps evaluators modify their original opinions to
bring them closer to each other, thereby increasing the agreement between them. A general
CRP scheme is described in Figure 1 and consists of the following four phases:

Figure 1. The general scheme of CRP.

• Gathering preferences: Collecting preferences provided by the evaluators for each
alternative in relation to the criteria.

• Consensus measurement: Using the individual preferences of the evaluators, the cur-
rent level of agreement of the group is obtained by means of some consensus measures
(mainly based on distance measure and aggregation operators) [37].

• Consensus control: The consensus level obtained in the previous phase is compared
with a predetermined consensus threshold CD. The selection process starts if the
current consensus level exceeds the consensus threshold. Otherwise, more rounds of
discussion will be performed. To avoid an endless process, a maximum number of
iteration rounds is also introduced (rmax).

• Feedback mechanism: Firstly, the opinions of the most divergent evaluators are
identified, and then, some suggestions are provided to guide them on how to modify
their preferences to achieve a higher degree of consensus.

2.2. Hesitant Fuzzy Sets

Due to the inherent vagueness of human cognition, it is difficult to simply describe an
object with a single number. Evaluators may hesitate to choose between multiple values
and fail to accurately describe their preferences. To deal with such a situation, Torra [18]
proposed the concept of HFSs to enable evaluators to depict their views flexibly.

Definition 1 ([18]). Let X be a universal set, a hesitant fuzzy set on X can be defined as follows:

A = {⟨x, hA(x)⟩|x ∈ X } (1)

where hA(x) is a set of various values in the range [0, 1]. For convenience, hA(x) is referred to as a
hesitant fuzzy element (HFE), representing the possible membership degrees of the element x ∈ X
to A.

By using the concept of HFS, evaluators can express different and hesitant opinions,
which also leads to the challenge of defining HFEs with different number of elements and
thus increases computational difficulties. In order to have a consistent number of elements
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in HFEs to perform computations, it is common to add values to a shorter HFE until it has
the same cardinality, which is the β-normalization method proposed by Xu and Zhang [42].

Definition 2 ([42]). Let hi be a HFE that requires to increase the number of elements, then, the
value γ′ to be added to HFE hi is as follows:

γ′ = αh+i + (1− α)h−i (2)

where h+i = max{γ|γ ∈ hi}, h−i = min{γ|γ ∈ hi}, and α ∈ [0, 1] is the evaluator’s risk attitude.

Thus, two HFEs can easily have the same cardinality for computational purposes.
However, the added values inevitably cause information distortion, which affects the
objectivity of the subsequent decision-making process and its results. To overcome this
issue, Hao et al. [19] proposed the definition of N-HFS, which keeps the property of the HFS
of the modeling hesitancy, but expresses the degree of membership in terms of a normal
distribution function.

Definition 3 ([19]). Let X be a fixed set, then, an N-HFS N can be defined as follows:

N = {⟨x, hN(x)⟩|x ∈ X } (3)

where hN(x) is the set of possible membership degrees and the values in hN(x) follow the normal
distribution. For simplicity, hN(x) is called a N-HFE and each of them can be viewed as a data
sample drawn from a specific normal distribution.

As Hao defined in [19], it is generally assumed that the HFEs with numerous elements
follow a normal distribution function. The characteristics of such normal distributions are
inferred from these HFEs by estimation methods. There are several classical estimation
methods in the literature, such as Bayesian estimation, maximum likelihood estimation,
and point estimation. Among them, maximum likelihood estimation is one of the most
commonly used because it performs efficiently and accurately in large samples. Keeping
in mind our proposal focuses on LSGDM, this paper applies the maximum likelihood
estimation to obtain the statistical information of HFS data provided by the evaluators.

Existing HFS information aggregation operators mainly target a small amount of data
and aggregate information by traversing all elements in the HFEs, and the aggregation
results inevitably increase the granularity exponentially [43,44]. For this reason, an aggre-
gation operator for N-HFS was developed by Hao et al. [19] to handle massive HFS data
while avoiding information explosion.

Definition 4 ([19]). Let hi(i = 1, 2, · · · , n) be n N-HFEs, and wi is the weight of the corresponding
N-HFEs, which satisfies ∑n

i=1 wi = 1. Then, the normal-type hesitant fuzzy weighted compositional
averaging (NHFWCA) operator is defined as Yn = w1h1 + w2h2 + · · · + wnhn, which can be
expressed by the following:

NHFWCA(h1, h2, · · · , hn) =
n⊙

i=1

wihi = e

−

(
yn−∑n

i=1 wi x̄hi

)2

(
∑n

i=1 wiσhi

)2

(4)
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we assume hN1 and hN2 are two N-HFEs, and their normal distribution membership functions are

µ1(x) = e
− (x−x̄1)

2

σ2
1 and µ2(x) = e

− (x−x̄2)
2

σ2
2 , respectively.

⊙
means the compositional rule, which is

defined as follows: hN1 ◦ hN2 = ∨
[
hN1(x) ∨ hN2(x)

]
= e
− (x̄1−x̄2)

2

σ2
1+σ2

2 .

Additionally, a score function for N-HFEs is proposed to compare two differ-
ent N-HFEs.

Definition 5 ([19]). Let hN be a N-HFE, then, the score function is calculated by the following:

s(hN) =
x̄
σ

(5)

where x̄ and σ denote the expectation value and the standard deviation in the N-HFS normal
distribution function, respectively. Based on that, the comparison rule for two N-HFEs is defined
as follows:

• If s(hN1) > s(hN2), then hN1 > hN2 ;
• If s(hN1) < s(hN2), then hN1 < hN2 ;
• If s(hN1) = s(hN2), then hN1 ∼ hN2 .

2.3. The Existing HFS-CRPs

Considering that HFS can accommodate multiple possible values, they effectively
capture the inherent hesitation in evaluators’ thinking, making them widely applicable in
GDM. However, in the GDM process, the heterogeneity of evaluators in terms of knowl-
edge background, education level, and professional skills makes it difficult to directly
aggregate the evaluators’ preferences while ensuring a high degree of consensus within the
group. This, in turn, affects the quality and acceptability of the final decision. Therefore,
a CRP is typically required to reduce or eliminate differences among evaluators, ensuring
the consistency of opinions. In response, some scholars have proposed HFS-based CRP
methods to enhance consensus building in GDM. Ding et al. [31] proposed a hesitant fuzzy
consensus model to assess the degree of consensus and identify opinions that require
modification. Zhang et al. [45] developed an HFS-CRP incorporating a feedback mech-
anism that offers evaluators guidance on adjusting their preferences. For hesitant fuzzy
preferences information, Zhang et al. [46] introduced a novel consensus model to facilitate
greater group agreement. Rodríguez et al. [33] proposed an adaptive HFS-CRP within
the LSGDM framework, enhancing the efficiency of CRP and reducing the costs. On this
basis, Lu et al. [32] developed a CRP that considers distrust behavior in a social network
environment and applied it to LSGDM problems.

3. Hesitant Fuzzy Consensus Reaching Process for Large-Scale Group
Decision-Making Problems

In this section, a hesitant fuzzy CRP framework for LSGDM is proposed, which
mainly includes the following three phases: (i) clustering evaluators into different sub-
groups based on the c-means algorithm; (ii) developing a consensus measure for hesitant
fuzzy information; and (iii) constructing a feedback mechanism to help evaluators modify
their opinions.

3.1. Problem Description

Let A = {A1, A2, · · · , Am} be a finite set of alternatives, and a group of evaluators,
denoted as E = {e1, e2, · · · , eP}, needs to assess the alternatives under several criteria
C = {c1, c2, · · · , cn}. Due to the increasing complexity of the environment, evaluators give
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their evaluations by fuzzy numbers to better handle the uncertainty that appears in the
decision-making process. The decision matrix is expressed as follows:

Hk =



c1 c2 · · · cn

A1 γk
11 γk

12 · · · γk
1n

A2 γk
21 γ22 · · · γk

2n
...

...
...

. . .
...

Am γk
m1 γk

m2 · · · γk
mn

, k = 1, 2, · · · , P (6)

Considering the advantages that HFS information has to model hesitant and uncertain
information, the opinions of different evaluators in the same position constitute the HFE,
which is obtained by Equation (7).

hij =
{⋃

γk
ij
∣∣k = 1, 2, · · · , P

}
(7)

Generally, the moderator needs to predetermine two parameters, the consensus thresh-
old and the maximum number of iteration rounds as follows:

• CD ∈ [0, 1]: The consensus threshold, which is established to obtain a solution
accepted by most evaluators.

• rmax: This parameter is the maximum number of discussion rounds allowed for
LSGDM problems to avoid endless discussions.

3.2. C-Means-Based Clustering Method

As described in Section 2.1, the LSGDM problems are more complex than traditional
GDM due to the inclusion of a greater number of evaluators. For this reason, a clustering
algorithm is required to reduce the dimensionality of evaluators in such problems, thereby
simplifying the decision process and enhancing the efficiency of decision making [47].
Clustering is an unsupervised machine learning technique that divides data into a specific
number of clusters (groups, subsets), and it has been widely studied in the fields of
data mining [48], machine learning [49], and image segmentation [29,50]. After years
of research, the relevant scholars have proposed various clustering methods that can
generally be categorized into two types as follows [51]: (i) hierarchical clustering, which
partitions the dataset into successive layers of clusters, with each subsequent layer’s clusters
based on the results of the previous layer, generally with either agglomerative or divisive
modes; (ii) partitioning clustering, which simultaneously finds partitions of the entire
dataset without a hierarchical structure and divides the data into multiple non-overlapping
subsets (clusters), with each subset representing a cluster. Among the various partitioning
clustering algorithms, the k-means algorithm [52] stands out for its robustness and becomes
the most commonly and widely used algorithm. As decision-making environments become
more complex, an extension of k-means, known as c-means [53], has been developed to
be applicable in fuzzy environments. It retains the robustness of k-means for determining
clustering results while being well-suited for fuzzy environments. Motivated by these
advantages, the c-means algorithm is utilized in this paper to cluster the evaluators.

The objective of the c-means algorithm is to find a clustering result that minimizes the
objective function value. To achieve this, a set of data points is initially chosen randomly
as the cluster centroids. The algorithm then proceeds iteratively through two main steps.
(1) Assignment: All remaining data points are assigned to their nearest centroid. (2) Update:
Each cluster centroid is recalculated and the data points are assigned to them. The above
two steps are repeated until the clusters no longer change. According to the basic idea of
c-means, the detailed process of c-means is expressed as follows:
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Step 1. Each decision matrix Hk is transformed into a vector, also denoted by Hk,
k = 1, 2, · · · , P.

Hk =
(

γk
11, γk

12, · · · , γk
mn

)T
(8)

where the dimension of Hk is m · n. Let J = m · n, and Hk can be denoted as

Hk =
(

γk
1, γk

2, · · · , γk
J

)T
(9)

Step 2. The number of cluster centroid is selected randomly. In this proposal, the initial
number of cluster centroids is set by the number of different alternatives m.
Centroids can be either randomly initialized or assigned to a value from the
dataset. To avoid subjectivity, the centroids are initially set randomly here.
Cluster centroid ui is denoted as follows:

ui =
(

ui
1, ui

2, · · · , ui
J

)T
(10)

Step 3. To calculate the distance between Hk and cluster centroids ui and assign it to the
closest one.

dki = ∥Hk − ui∥2 =

√√√√ J

∑
j=1

(
γk

j − ui
j

)2
(11)

Step 4. To recompute the cluster centroids using the current information. Suppose the
new cluster centroids are denoted by the following:

u
′
i =

(
ui
′

1 , ui
′

2 , · · · , ui
′

J

)T
(12)

Step 5. When the distance between cluster centroids of two consecutive iterations is
lower than a threshold ϵ, then, we generally think the clusters keep stable and
the clustering process stops, that is,

Q =
m

∑
i=1
∥ui − u

′
i∥2 =

m

∑
i=1

√√√√ J

∑
j=1

(
uk

j − uk′
j

)2
(13)

Step 6. Output the clusters G1, G2, · · · , Gm

3.3. Consensus Measurement

In this subsection, a consensus measure is defined to compute the level of agreement
between evaluators. First, we define the distance measure between two N-HFEs based on
the Euclidean distance as follows:

Definition 6. Let hN1 and hN2 be two N-HFEs and their normal distribution membership functions

are f1(x) = e
− (x−µ1)

2

σ2
1 and f2(x) = e

− (x−µ2)
2

σ2
2 . According to the concept of Euclidean distance,

the distance of two N-HFEs can be defined as follows:

d(hN1 , hN2) =
√
(µ1 − µ2)2 + (σ2

1 − σ2
2 )

2 (14)

Proposition 1. For the distance measure between two N-HFEs defined in Equation (14), the fol-
lowing properties hold:

(1) 0 ≤ d(hN1 , hN2) ≤ 1.
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(2) d(hN1 , hN2) = 0 if and only if hN1 = hN2 .
(3) d(hN1 , hN2) = d(hN2 , hN1).
(4) d(hN1 , hN2) ≤ d(hN1 , hN3) + d(hN3 , hN2).

Proof of Proposition 1.

(1) Due to 0 ≤ µ1, µ2 ≤ 1, 0 ≤ σ2
1 , σ2

2 ≤ 0.25, then, we have 0 ≤ (µ1 − µ2)
2 ≤ 1

and 0 ≤ (σ1 − σ2)
2 ≤ 0.0625. Accordingly, the upper limits of the distance is√

(µ1 − µ2)2 + (σ1 − σ2)2 ≤
√

1 + 0.0625 ≈ 1.03. However, in a real situation,
the distance value is actually no more than 1 since µ and σ will not be maximized at
the same time. There are three extreme situations.

• When µ1 = 0, σ2
1 = 0, µ2 = 1, σ2

2 = 0, the distance is 1.
• When µ1 = 0, σ2

1 = 0.25, µ2 = 1, σ2
2 = 0.25, the distance is 1.

• In other cases, the difference will be smaller. For instance, when µ1 = 0.5,
σ2

1 = 0.25, µ2 = 0.5, σ2
2 = 0, the distance is 0.25.

In summary, 0 ≤ d(hN1 , hN2) ≤ 1 is proved.
(2) If d(hN1 , hN2) = 0, we have µ1 − µ2 = 0 and σ2

1 − σ2
2 = 0, that is, µ1 = µ2 and

σ2
1 = σ2

2 , so hN1 = hN2 is obtained.
If hN1 = hN2 , we have µ1 = µ2 and σ2

1 = σ2
2 , then, d(hN1 , hN2) = 0 is proved.

(3) As this is obvious, the proof is omitted here.

(4) We assume


a1 = µ1 − µ3

a2 = µ3 − µ2

b1 = σ2
1 − σ2

3

b2 = σ2
3 − σ2

2

, then, we have

a1 + a2 = µ1 − µ2

b1 + b2 = σ2
1 − σ2

2

. According to

the Minkowski inequality, we have the following:

d(hN1 , hN2) =
√
(a1 + a2)2 + (b1 + b2)2 ≤

√
a2

1 + b2
1 +

√
a2

2 + b2
2

= d(hN1 , hN3) + d(hN3 , hN2)

Thus, d(hN1 , hN2) ≤ d(hN1 , hN3) + d(hN3 , hN2) is proved.

To facilitate a clearer comprehension for the reader, an exemplary case is employed to
elucidate the computation of the proposed distance measure.

Example 1. Let the preferences for alternative A1, provided by subgroup G1, be 0.5, 0.6, 0.7, 0.8, 0.8,
0.3, 0.3, 0.44, 0.56, 0.7 and those provided by subgroup G2 be 0.3, 0.44, 0.5, 0.66, 0.3, 0.4, 0.5, respec-

tively. Then, if we express it by NHFS, we have hN1 = e−
(x−0.57)2

0.182 and hN2 = e−
(x−0.44)2

0.122 . Using
Equation (14), the distance between two N-HFEs is as follows:

d(hN1, hN2) =
√
(0.57− 0.44)2 + (0.18− 0.12)2 = 0.1432

In the above example, we can see that if we use NHFS as the information representation
form, the number of elements does not matter. However, if the traditional HFE is adopted
to express the above situation, then, they are h1 = {0.3, 0.44, 0.5, 0.56, 0.6, 0.7, 0.8} and
h2 = {0.3, 0.4, 0.44, 0.5, 0.92}. When we calculate the distance between h1 and h2, the two
HFEs must first be normalized. This involves adding elements to the shorter HFE based on
the decision makers’ risk preferences until the number of elements in both HFEs is equal.
This process not only distorts the original decision-making information but also overly relies
on the decision makers’ subjective judgment, potentially leading to unreasonable outcomes.
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Then, the consensus measure based on the distance measure is defined, and this is
decomposed into four levels, expressed as follows:

(1) The consensus degree of subgroup Gt about alternative Ai with respect to criterion cj

is defined as follows:

CDt
ij = CDij(Ht, Hc) = 1− d

(
Ht

ij, Hc
ij

)
(15)

(2) The consensus degree of subgroup Gt of alternative Ai is defined as follows:

CDt
i = CDi(Ht, Hc) =

1
n

n

∑
j=1

(
1− d

(
Ht

ij, Hc
ij

))
(16)

(3) The consensus degree of subgroup Gt is calculated by the following:

CDt = CD(Ht, Hc) =
1

m · n
m

∑
i=1

n

∑
j=1

(
1− d

(
Ht

ij, Hc
ij

))
(17)

(4) The overall consensus degree can be obtained by the following:

CD =
k

∑
t=1

wt · CDt (18)

where wt represents the weight of the subgroup Gt. In this paper, we assume the
weights of subgroups are equal, that is wt =

1
k .

After obtaining the overall consensus level CD, it is necessary to determine whether
the group has reached an agreement by comparing CD with a predefined consensus
threshold CD. If CD ≥ CD, this means that the whole group has reached a consensus and
can move on to the selection process. Otherwise, it is necessary to perform another round
of discussion and identify which evaluations provided by evaluators need to be modified.
To do so, the following steps are performed.

(1) Identification rule for the subgroup with the lowest consensus in round r. Once
the subgroup is identified, all evaluators in this subgroup need to change their
evaluations.

G(r) =

{
Gt

∣∣∣∣min
t

CDt(r)
}

(19)

(2) Identification rule for the alternative with the lowest consensus in the subgroup Gt

in round r.

At(r) =

{
Ai

∣∣∣∣min
i

CDt(r)
i ∧ Gt ∈ G(r)

}
(20)

(3) Identification rule for the criteria with the lowest consensus regarding alternative Ai

in the subgroup Gt in round r.

Ct(r)
i =

{
cj

∣∣∣CDt(r)
ij < CD ∧ Ai ∈ At(r)

}
(21)

3.4. Feedback Mechanism

After determining the evaluators who need to reconsider their evaluations, we pro-
pose a feedback mechanism for providing detailed advice to evaluators and improve the
consensus of the group. Consequently, a feedback mechanism is constructed as follows:
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Let γ
k(r+1)
ij be the r + 1 round evaluation of evaluator ek, which belongs to subgroup

Gt. Motivated by the proposal of Liang et al. [27], the evaluation can be modified based on
the willingness of the evaluators as follows:

γ
k(r+1)
ij =

(
(1− θk)× γ

k(r)
ij + θk × µ

(r)
ij

)
(22)

where µij represents the mean of the normal distribution of the collective opinion; and θk

represents the willingness of evaluator ek to modify their original opinion, where 0 ≤ θk ≤ 1.
A higher value of θk indicates a greater willingness to adjust the initial preference, while
a lower value suggests a stronger inclination to retain the original judgment. Since this
coefficient is predefined by each evaluator, it varies based on individual attitudes toward
opinion adjustment.

To better explain the process, the flowchart shown in Figure 2 summarizes the entire
CRP model. Additionally, the CRP for handling hesitant fuzzy information is detailed in
Algorithm 1.

Algorithm 1 The proposed hesitant fuzzy CRP

Require: Map preferences
Require: List of alternatives
Require: List of criteria
Require: List of evaluators
Require: Coefficient of modification θ
Require: Consensus threshold CD
Require: Maximum iteration rmax

1: m← length (alternatives)
2: n← length (criteria)
3: P← length (evaluators)
4: r ← 0
5: do
6: Clustering method based on c-means→ G1, G2, . . . Gq
7: q← length (subgroups)
8: for t = 1 to q do
9: for k = 1 to P do

10: for i = 1 to m do
11: for j = 1 to n do
12: CDt

ij ← computeConsensusLevelOfSubgroupOfAlternativeUnderCrite-
rion()

13: CDt
i ← computeConsensusLevelOfSubgroupOfAlternative()

14: CDt ← computeConsensusLevelOfSubgroup()
15: CD ← computeConsensusLevel()
16: if (CD < CD) OR r < rmax then
17: Gt(r)

ij ← identifyChanges()

18: γ
k(r+1)
ij ← feedbackProcess(θ)

19: updateClusters(subgroups(q))
20: end if
21: r ← r + 1
22: end for
23: end for
24: end for
25: end for
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Figure 2. Flowchart of the proposed CRP.

3.5. Selection Process

Once the predefined consensus threshold is reached, the selection process is activated
to generate the ranking of alternatives. In this paper, we aggregate the alternatives under
each criterion by the NHFCWA operator and obtain the score value of each alternative by
Equation (5). The alternatives are ranked according to the score value. The larger the score
value, the better alternative.

4. Case Study
In this section, a numerical example is provided to demonstrate the feasibility and

applicability of the proposed method. We have uploaded the data for three scenarios and
the code for this proposal to the github repository: https://github.com/Wei-Liang913
/HFS_CRP.git (accessed on 1 Febunary 2025).

4.1. Case Description

Since 2023, China’s tourism industry has fully recovered, with residents’ travel inten-
tions consistently remaining above 90% each quarter, averaging 91.85% for the year. These
data not only reflect a sustained enthusiasm for travel but also indicates a strong rebound
in the tourism market. In the first quarter of 2024, the domestic tourism market continued
its positive trend, with total domestic tourism trips reaching 1.419 billion, a 16.7% increase
from the previous year. Domestic tourism revenue amounted to CNY 1.52 trillion, showing
a 17.0% year-on-year growth. This increase highlights the booming development of the
tourism industry, the improvement in residents’ consumption capabilities, and the rising
demand for high-quality travel experiences.

However, with the rapid recovery of the tourism industry, the sector faces a series
of new challenges. Sudden events such as public health crises and natural disasters pose
threats to the stability and safety of the tourism market. For instance, the resurgence
of pandemics, frequent natural disasters, and unexpected social events have impacted
travel safety and tourism experiences. These issues not only raise higher demands for the
operation and management of the tourism industry but also underscore the importance
of strengthening emergency management and risk control. To ensure the sustainable
and healthy development of the tourism sector, it is essential to actively address these
emergencies and safeguard both visitor safety and industry stability.

https://github.com/Wei-Liang913/HFS_CRP.git
https://github.com/Wei-Liang913/HFS_CRP.git
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In emergency management, the role of logistics services, especially emergency logistics
services, is crucial. Emergency logistics service providers focus on delivering rapid and
efficient transportation and distribution of supplies during crises. Compared to traditional
logistics, emergency logistics services demand higher responsiveness and flexibility. These
providers can quickly mobilize resources in emergencies, ensuring that critical supplies
such as medical equipment, food, and rescue materials reach the affected areas promptly.

To quickly address the impact of sudden events on tourists, a large tourism company
in Fujian aims to establish a long-term partnership with an emergency logistics service
provider. After initial research and analysis, four well-know logistic companies in the
industry are identified, denoted as A1, A2, A3, and A4. These logistic companies need to
be evaluated based on three main criteria {c1, c2, c3}, where c1 denotes price, c2 denotes
speed, and c3 denotes customer satisfaction.

Just as García-Zomora et al. [37] said, advancements in technology have enabled
LSGDM to extend beyond just 20 evaluators. Now, it is very common for hundreds
or even thousands of participants to be involved. In order to show the feasibility and
flexibility of the proposed method, there are three scenarios we constructed based on the
number of evaluators involved as follows: 20 evaluators, 50 evaluators, and 100 evaluators.
The moderator set the maximum number of CRP rounds to 5. Considering the large number
of decision makers, achieving a high level of consensus, such as 0.9, is relatively difficult,
as it would require evaluators to be almost in complete agreement with the group opinion.
Therefore, the moderator set the consensus threshold at 0.82 to facilitate reaching consensus.

4.2. Scenario 1

This subsection simulates the LSGDM problem with a lower number of evaluators, 20,
to understand the CRP performance. Given the complexity inherent in the human mind
and the external decision environment, evaluators assess the alternatives under different
criteria by a fuzzy number. Due to space constraints, Table 1 only presents a portion of the
initial preferences. The proposed method is applied to solve this problem, the specific steps
are listed as follows:

Table 1. Original preferences provided by evaluators.

c1 c2 c3

e1

A1 0.12 0.65 0.79
A2 0.35 0.89 0.46
A3 0.57 0.12 0.68
A4 0.79 0.35 0.90

e2

A1 0.23 0.77 0.89
A2 0.46 0.90 0.57
A3 0.68 0.23 0.79
A4 0.89 0.46 0.01

...
...

...
...

...

e20

A1 0.05 0.56 0.69
A2 0.33 0.79 0.25
A3 0.26 0.05 0.37
A4 0.54 0.24 0.88

Step 1. Classify evaluators into several subgroups based on opinion similarity by the
c-means algorithm. Evaluators are divided into four subgroups, as shown in
Table 2.
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Table 2. Clustering result of round 0 by the c-means algorithm.

Subgroup Evaluators in the Subgroup Number of Evaluators

G1 e8, e9, e18, e19 4
G2 e1, e2, e3, e10, e11, e12, e13, e20 8
G3 e4, e14 2
G4 e5, e6, e7, e15, e16, e17 6

Step 2. The individual decision matrix is aggregated by subgroups into subgroup deci-
sion matrices by Equation (7), denoted by N-HFE, and the results are shown in
Tables 3–6. The collective opinions are then obtained by the NHFWCA operator
with Equation (4); see Table 7.

Table 3. Statistical information of subgroup G1 in round 0.

Alternative
c1 c2 c3

Expectation Value Variance Expectation Value Variance Expectation Value Variance

A1 0.8775 0.0005 0.395 0.0022 0.5475 0.0066
A2 0.0975 0.0076 0.59 0.0028 0.19 0.0096
A3 0.2975 0.0029 0.8825 0.0006 0.3725 0.0038
A4 0.5225 0.0024 0.0775 0.0035 0.725 0.0044

Table 4. Statistical information of subgroup G2 in round 0.

Alternative
c1 c2 c3

Expectation Value Variance Expectation Value Variance Expectation Value Variance

A1 0.2838 0.0442 0.7163 0.015 0.8162 0.0076
A2 0.4538 0.0134 0.675 0.1076 0.5062 0.0262
A3 0.6088 0.0274 0.1838 0.0138 0.7175 0.0302
A4 0.7962 0.0148 0.3825 0.0213 0.4975 0.1612

Table 5. Statistical information of subgroup G3 in round 0.

Alternative
c1 c2 c3

Expectation Value Variance Expectation Value Variance Expectation Value Variance

A1 0.42 0.0016 0.97 0.0004 0.12 0.0121
A2 0.73 0.0025 0.12 0 0.735 0.003
A3 0.88 0.0001 0.51 0.0025 0.895 0
A4 0.035 0.0006 0.675 0 0.23 0

Table 6. Statistical information of subgroup G4 in round 0.

Alternative
c1 c2 c3

Expectation Value Variance Expectation Value Variance Expectation Value Variance

A1 0.6717 0.0083 0.1467 0.0024 0.2267 0.0058
A2 0.8217 0.0057 0.325 0.0068 0.6033 0.1702
A3 0.35 0.1518 0.6633 0.0075 0.145 0.0084
A4 0.255 0.0061 0.8383 0.0035 0.44 0.0117
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Table 7. Statistical information of collective opinion in round 0.

Alternative
c1 c2 c3

Expectation Value Variance Expectation Value Variance Expectation Value Variance

A1 0.5632 0.0083 0.557 0.0036 0.4276 0.0079
A2 0.5257 0.0067 0.4275 0.0134 0.5086 0.033
A3 0.5341 0.0239 0.5599 0.0049 0.5325 0.0067
A4 0.4022 0.0047 0.4933 0.0044 0.4934 0.0183

Step 3. To compute the different levels of consensus by Equations (14)–(18), we have
four subgroups’ consensus levels as follows: CD1(0) = 0.7504, CD2(0) = 0.7948,
CD3(0) = 0.7352, and CD4(0) = 0.7878. The overall consensus is CD(0) = 0.77,
which is less than the consensus threshold CD = 0.82. As CD(0) < CD,
the group does not reach the acceptable consensus level. The feedback mecha-
nism is implemented to improve the consensus level.

Step 4. To use the feedback mechanism to modify the evaluators’ opinion.
Round 1:
According to the identification rules, evaluators in the subgroup that have a
minimal consensus degree need to change their opinions, that is, all evaluators in
the subgroup G3, i.e., e4, e14, are required to modify the evaluations of the three
criteria of four alternatives by Equation (22). Taking the example of evaluator
e4’s evaluation of alternative A1 on criterion c1, h4(0)

21 = {0.46}. By Equation (22),

the evaluation for the next round is h4(1)
21 = {0.5116}. Similarly, we can obtain

a new round of evaluations for the other evaluations that need to be modified.
After modification, we apply the c-means algorithm again for clustering 20 evalu-
ators based on their current preferences. The clustering results, updated with the
modified preferences, are presented in Table 8. To better visualize the evolution of
the evaluators’ preferences during the CRP, we apply Principal Component Anal-
ysis (PCA) to project the decision matrices into a 2D space, as shown in Figure 3.
PCA is a dimensionality reduction technique that transforms high-dimensional
data into a smaller number of uncorrelated components while preserving as
much variance as possible. In this visualization, each principal component is a
linear combination of the original decision matrices, with Principal Component 1
capturing the most variance and Principal Component 2 capturing the second
most variance. The closer two evaluators appear in this space, the more similar
their opinions are.

Figure 3. Clustering results of different rounds in scenario 1.
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Table 8. Clustering result of round 1 by the c-means algorithm.

Subgroup Evaluators in the Subgroup Number of Evaluators

G1 e8, e9, e18, e19 4
G2 e1, e2, e10, e11, e12, e20 6
G3 e3, e4, e5, e13, e14, e15 6
G4 e6, e7, e16, e17 4

Due to the updated clustering results, the statistical information for subgroups
G2, G3, and G4 has also changed. The updated results and group evaluations
are shown in Tables 9–12. Accordingly, the consensus levels of each subgroup
are obtained as follows: CD1(1) = 0.8096, CD2(1) = 0.8110, CD3(1) = 0.7820,
and CD4(1) = 0.7717. Then, the overall consensus is improved as CD(1) = 0.79.
However, it still falls short of reaching the consensus threshold.

Table 9. Statistical information of subgroup G2 in round 1.

Alternative
c1 c2 c3

Expectation Value Variance Expectation Value Variance Expectation Value Variance

A1 0.4639 0.008 0.5845 0.1149 0.4363 0.1118
A2 0.6426 0.0066 0.2129 0.0086 0.7339 0.0132
A3 0.7957 0.006 0.4716 0.0161 0.5512 0.1313
A4 0.4279 0.1127 0.6447 0.0086 0.2839 0.0079

Table 10. Statistical information of subgroup G3 in round 1.

Alternative
c1 c2 c3

Expectation Value Variance Expectation Value Variance Expectation Value Variance

A1 0.2633 0.0573 0.6617 0.0081 0.7883 0.007
A2 0.4183 0.0128 0.86 0.0025 0.445 0.0199
A3 0.55 0.0227 0.145 0.0116 0.66 0.0271
A4 0.7617 0.015 0.3183 0.0119 0.715 0.1046

Table 11. Statistical information of subgroup G4 in round 1.

Alternative
c1 c2 c3

Expectation Value Variance Expectation Value Variance Expectation Value Variance

A1 0.73 0.0022 0.165 0.0025 0.2725 0.0022
A2 0.8625 0.0023 0.365 0.0052 0.46 0.1937
A3 0.0775 0.0049 0.705 0.006 0.1925 0.005
A4 0.3 0.0021 0.87 0.0021 0.5 0.0062

Table 12. Statistical information of collective opinion in round 1.

Alternative
c1 c2 c3

Expectation Value Variance Expectation Value Variance Expectation Value Variance

A1 0.5837 0.0099 0.4516 0.0173 0.5112 0.0186
A2 0.5052 0.0068 0.507 0.0045 0.4572 0.0394
A3 0.4302 0.0077 0.551 0.0071 0.444 0.0272
A4 0.503 0.0191 0.4776 0.0059 0.556 0.0194
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Round 2:
Similarly, the evaluators in subgroup G2 are advised to revise their opinions
based on the identification rules. The consensus degrees for subgroups are
calculated as follows: CD1(2) = 0.8060, CD2(2) = 0.8059, CD3(2) = 0.8123, and
CD4(2) = 0.8730. This results in an overall consensus degree of CD(2) = 0.82,
which meets the predefined consensus threshold CD. Table 13 exhibits the
iterations of the CRP. It is evident that with each iteration, both overall consensus
and subgroup consensus demonstrate steady improvement, ultimately reaching
the predefined consensus level.

Table 13. Iterations of the consensus model in scenario 1.

Consensus of G1 Consensus of G2 Consensus of G3 Consensus of G4 Overall Consensus

Round 0 0.7504 0.7948 0.7353 0.7878 0.77
Round 1 0.8096 0.8110 0.7820 0.7717 0.79
Round 2 0.8056 0.8059 0.8123 0.8730 0.82

The consensus level is acceptable, and the selection process starts.
Step 5. The alternatives are aggregated by means of the NHFCWA operator by

Equation (4). Then, based on the score value obtained by Equation (5), the final
ranking is obtained as follows: A3 ≻ A1 ≻ A4 ≻ A2, as shown in Table 14.

Table 14. Score value and final ranking order of the alternatives.

Alternative
Statistical Information

Score Value Ranking Order
Expectation Value Variance

A1 0.5255 0.0127 4.6631 2
A2 0.4797 0.0121 4.3609 4
A3 0.4989 0.0104 6.0565 1
A4 0.4998 0.0125 5.0616 3

4.3. Scenario 2

In this subsection, 50 evaluators are involved in the decision-making process. The as-
sessment provided by evaluators is still in the form of fuzzy numbers. The computational
procedure is identical to that described in the previous subsection. Due to space constraints,
the detailed computational process has been omitted.

Following the clustering process, we identified four subgroups with initial opinion
and visualized the clustering process in each round using Principal Component Analy-
sis, as shown in Figure 4. After that, we calculated their consensus degrees as follows:
CD1(0) = 0.7909, CD2(0) = 0.7950, CD3(0) = 0.7611, and CD4(0) = 0.7829. Then, the over-
all consensus is CD(0) = 0.78, which did not meet the established threshold, indicating
that the evaluators’ opinions required adjustment to improve agreement. Notably, the sub-
group G3 has the lowest level of consensus, necessitating that all evaluators within this
subgroup revise their opinions. After modification, the consensus levels of each subgroup
are as follows: CD1(1) = 0.8262, CD2(1) = 0.7802, CD3(1) = 0.8565, and CD4(1) = 0.7682.
The overall consensus level increased as CD(1) = 0.81, which is still less than the consensus
threshold. We repeated the process, and evaluators in subgroup G4 then revised their
preferences. The resulting consensus degrees of the subgroups in round two are as follows:
CD1(2) = 0.8286, CD2(2) = 0.8237, CD3(2) = 0.8288, and CD4(2) = 0.8809. This yielded an
overall consensus level as CD(2) = 0.84, reaching the required threshold. With consensus
achieved, the CRP ends and the entire process is detailed in Table 15. We then proceed to
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the selection phase, where the final ranking of alternatives obtained based on score values
is as follows: A1 ≻ A2 ≻ A3 ≻ A4.

Figure 4. Clustering results of different rounds in scenario 2.

Table 15. Iterations of the consensus model in scenario 2.

Consensus of G1 Consensus of G2 Consensus of G3 Consensus of G4 Overall Consensus

Round 0 0.7909 0.7950 0.7611 0.7829 0.78
Round 1 0.8262 0.7802 0.8565 0.7682 0.8
Round 2 0.8282 0.8237 0.8288 0.8809 0.84

4.4. Scenario 3

In this scenario, we simulated 100 evaluators to deal with such a LSGDM problem.
In round 0, the evaluators were classified. Figure 5 shows the evolution of the clustering
process. The consensus degrees for each subgroup are naturally calculated as follows:
CD1(0) = 0.7623, CD2(0) = 0.8050, CD3(0) = 0.7932, and CD4(0) = 0.8312, resulting in an
overall consensus of CD(0) = 0.8. This level of overall consensus does not meet the prede-
fined threshold, prompting the activation of CRP to improve evaluator agreement. The CRP
steps remain consistent with the previous scenarios, identifying subgroup G1 as having
the lowest consensus level. After one round of modifying evaluators’ opinions, the up-
dated consensus levels for subgroups are as follows: CD1(1) = 0.8397, CD2(1) = 0.8373,
CD3(1) = 0.7934, and CD4(1) = 0.8197, with an overall consensus degree of CD(1) = 0.82,
as shown in Table 16. With consensus at an acceptable level, the selection process com-
menced, resulting in a final ranking of all alternatives as follows: A4 ≻ A3 ≻ A1 ≻ A2.

Figure 5. Clustering results of different rounds in scenario 3.
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Table 16. Iterations of the consensus model in scenario 3.

Consensus of G1 Consensus of G2 Consensus of G3 Consensus of G4 Overall Consensus

Round 0 0.7623 0.8050 0.7932 0.8312 0.8
Round 1 0.8397 0.8373 0.7934 0.8197 0.82

4.5. Sensitivity Analysis

Sensitivity analysis is regarded as one of the classic methods for testing the stability
of a given method in the field of decision making. It primarily involves altering the input
values within the method and observing the impact of these changes on the final decision
results. In this paper, the evaluators’ modification coefficient is a crucial factor that influence
the consensus process and final decision outcome. Consequently, the sensitivity analysis is
carried out to demonstrate how these parameters influence the outcomes in this subsection.
It should be noted that, given the increased complexity introduced by a larger number of
evaluators, Scenario 3, which involves 100 evaluators, is used for the sensitivity analyses.
Therefore, in this section, we will vary the θ value from 0 to 1 to study its influence on the
proposed method.

Firstly, Figure 6 illustrates the following two important factors related to the CRP: the
number of rounds required to reach consensus and the final consensus degree. It is evident
from the figure that as the value of θ increases, the number of rounds required tends to
decrease. This is because the modification coefficient of the evaluators represents the extent
to which they are willing to adjust their evaluations. When θ = 0.1, it signifies that the
evaluators are barely willing to modify their initial opinions. Consequently, the influence
of group opinions on the evaluators is relatively minimal, leading to consensus being
achieved only after four rounds of opinion adjustments, while when θ ≥ 0.4, only one
round is needed to reach the predetermined consensus level. On the other hand, as the
value of θ increases, the final consensus level also improves. From Figure 6, we can see
that when θ is set to 0.5 and 0.6, consensus is achieved within just one round in both cases.
However, the final consensus levels differ, reaching 0.82 and 0.83, respectively. This also
shows that the stronger the evaluators’ willingness to adjust their opinions, the more easily
they are influenced by collective opinion, and they are more likely to adjust their opinions
significantly in each round. As a result, fewer rounds are needed to reach a consensus,
and a higher level of consensus is ultimately achieved.

Figure 6. Rounds needed and the final consensus degree under different modification coefficients.

Figure 7 displays the experimental results, illustrating how the scores and rankings
of alternatives change as the value of θ fluctuates between 0 and 1. After examining
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Figure 6, it is evident that different θ values influence the final scores, while the ranking
of alternatives remains consistent. From this observation, the following conclusions can
be drawn: (i) The proposed method demonstrates robustness, ensuring the stability of
rankings under varying parameter values. Specifically, regardless of changes in the θ value,
the ranking of alternatives remains unchanged, suggesting that the ranking results are
insensitive to variations in θ. (ii) The θ value has a significant impact on the decision-making
process. As shown in the figure, a general trend can be observed as follows: as the θ value
changes, the score values also fluctuate, and the differences between alternative scores
become more pronounced. This phenomenon indicates that the evaluators’ willingness to
revise their opinions impacts the process of decision making. The greater the willingness,
the more significant the effect.

Figure 7. Score values of the alternatives under different modification coefficients.

4.6. Comparative Analyses

In this paper, we introduce a novel CRP for LSGDM in handling uncertain and
hesitant information using N-HFS, without incorporating any normalizations during the
consensus and decision processes. Solving this kind of decision problems through N-
HFS is creative, and it was previously unexplored in the literature. To emphasize the
advantages and validity of the proposed method, we will conduct qualitative comparative
analysis with the existing methodologies. Additionally, we have implemented a traditional
HFS-based method for a quantitative comparison with the proposed approach. These
comparative analyses aim to highlight the unique contributions and feasibility provided by
the proposed method.

4.6.1. Qualitative Comparison

Previous studies have explored HFS-CRPs, but certain research limitations warrant
further attention. However, a direct quantitative comparison is challenging due to several
factors. First, some existing HFS-CRPs are designed for traditional GDM with only a few
evaluators, and this cannot be directly extended to LSGDM, making direct comparisons
impractical [54]. Furthermore, different CRPs use distinct types of information represen-
tations (e.g., preference relations), which require transformation for comparison. This
transformation inevitably alters the results, making direct comparisons unreliable. Given
these challenges, we provide a qualitative comparison instead. The comparison results are
presented in Table 17, highlighting the distinctiveness of the proposed consensus model.
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Table 17. Comparison between different HFS-CRPs.

Method Number of Evaluators Requirement of
Normalization

Provide How Much
Change to the Opinion

Proposal 100 NO YES
Ding et al. [31] 4 YES NO

Zhang et al. [45] 5 YES YES
Zhang et al. [46] 4 YES YES

Rodríguez et al. [33] 50 YES NO
Lu et al. [32] 20 YES YES

Firstly, relying on only a few evaluators is increasingly inadequate in today’s complex
decision-making environments. The involvement of more decision makers has become
an inevitable trend. However, the studies developed by Ding et al. [31], Zhang et al. [45],
and Zhang et al. [46] only address a small number of evaluators, such 4 or 5. This falls short
of meeting the current decision-making needs and results in decision outcomes lacking
the collective intelligence of a larger group. Secondly, as is well known, HFS can include
multiple elements within a membership degree, which is the primary reason it can handle
hesitation in decision process. However, this also introduces difficulties when performing
calculations between different HFSs. When you make computations with two or more HFSs,
the existing consensus models either assume the number of elements is uniform [32,45],
which is often not the case in reality, or require normalization [31,33,46], leading to the
distortion of the original decision information. Finally, an appropriate feedback mechanism
is needed to guide the evaluators’ adjustments, helping align their viewpoints towards
enhancing group consensus. Among the compared methods, the CRPs proposed by
Lu et al. [32,45,46] includes suggestions for evaluators modifications. However, it does
not consider the evaluators’ willingness to adjust their evaluations, assuming instead that
evaluators are always willing to accept the moderator’s recommendations, which makes
the CRP difficult to apply realistically.

In summary, the CRP proposed in this paper is not only suitable for LSGDM but also
provides a feedback mechanism while considering the evaluators’ personal willingness.
The entire CRP does not require normalization, thus avoiding the issue of decision outcomes
being skewed by artificially added information.

4.6.2. Quantitative Comparison

Due to the differences in information representation, it is difficult to find comparable
methods in the existing literature. To better demonstrate the effectiveness of the proposed
method, we have developed two comparison approaches.

• HFS-based CRP. The evaluation information is expressed with traditional HFSs instead
of N-HFSs, while keeping the overall decision process unchanged.

• AHC-based CRP. The clustering method is replaced with an agglomerative hierarchical
clustering (AHC), while the rest of the process remains the same.

To ensure a fair comparison, we conduct experiments using a scenario with 100 evaluators
across different methods. The detailed discussion of the comparisons is presented below.

(1) Comparison with HFS-based CRP
Due to the change in the form of information, the corresponding methods for aggregat-

ing different HFEs and calculating the distance between them also needed to be adjusted
accordingly. The specific steps are listed as follows:
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Step 1. To use the c-means algorithm to divide evaluators into several subgroups.
Step 2. To aggregate subgroup opinions and collective opinion using the adjusted hesi-

tant fuzzy averaging (AHFA) operator [55], as defined in Equation (23).

AHFA(h1, h2, · · · , hn) =
n⊕

j=1

(
1
n

hj

)
=

1−
n

∏
j=1

(
1− hσ(t)

j

) 1
n |t = 1, 2, · · · , l

 (23)

Step 3. The β normalization method is applied to maintain consistency in the number
of elements within subgroups and the collective opinion. Then, the consensus
degree for different levels is calculated based on the Hamming hesitant fuzzy
distance [56], as shown in Equation (24).

d(h1, h2) =
1
l

l

∑
λ=1

∣∣∣γλ
1 − γλ

2

∣∣∣ (24)

Step 4. If the overall consensus level reaches the predefined threshold, the process
advances to the selection stage. If the threshold is not met, an identification rule
is applied to determine which evaluators within each subgroup should adjust
their preferences. Given the distinct structures of HFS and N-HFS, evaluations
are modified using the following equation. The CRP continues to run until
consensus is reached.

γ
k(r+1)
ij =

(
(1− θk)× γ

k(r)
ij + θk × γ

(r)
ij

)
(25)

We conducted numerical experiments using 100 evaluators (Scenario 3) with the
traditional HFS-based method. The initial consensus obtained is 0.79, which is less than the
consensus threshold, triggering a CRP. After two rounds of iteration, the decision group
reached full consensus with a final consensus degree of 0.84. The ranking result is generated
as A1 ≻ A3 ≻ A4 ≻ A2. Compared with the ranking result obtained by the proposed
method (A4 ≻ A3 ≻ A1 ≻ A2), we can see that the final outcomes obtained by the two
methods are not the same. The cause of this phenomenon is summarized as follows:

• It can be seen that we have employed the aggregation operator proposed by
Liao et al. [55] for aggregating collective decision-making information. This oper-
ator extracts information through ranking orders, addressing the issue of information
overload often encountered with traditional aggregation operators. In other words,
using the AHFA aggregator mitigates the issue of the number of elements in the HFE
increasing exponentially. However, aggregating through ranking essentially leads to
information loss, which affects the reliability of the decision outcomes [19].

• Subgroup opinions are represented using HFS information in the traditional HFS-
based method. This implies that the number of HFE elements contained in different
groups is different. When calculating the degree of consensus, the β-normalization
method is used based on the evaluators’ risk preferences to standardize the HFEs,
ensuring they have the same cardinality. However, this can distort the decision
information and increase the subjectivity of the decision outcomes.

(2) AHC-based CRP
To highlight the importance of evaluator clustering, we have compared our proposed

method with the Agglomerative Hierarchical Clustering (AHC) approach. Specifically, we
have replaced the clustering step in our framework with AHC, and we have obtained the
corresponding clustering and decision results, as shown in Figure 8 and Table 18.
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As we can see from Figures 5 and 8, the clustering results differ due to the distinct
approaches used to group evaluators. The AHC method is a bottom–up clustering
method that starts with each data point as an individual cluster and iteratively merges
the closest clusters until a single cluster remains. In contrast, c-means clustering is a
partition-based method that assigns evaluators to a fixed number of clusters by mini-
mizing intra-cluster variance. These fundamental differences in clustering mechanisms
lead to variations in the initial cluster structure, which subsequently impact the CRP
and final decision outcomes. As seen in Table 18, although both methods ultimately
reached the same final consensus level (0.82) within one iteration, their initial consensus
levels vary slightly due to their different method for evaluator grouping. This variation
affects how individual opinions are aggregated, ultimately leading to different ranking
orders of alternatives. Specifically, in AHC, the hierarchical merging process tends to
form more imbalanced clusters, which might cause certain evaluators’ opinions to have
a stronger influence on the final decision. On the other hand, c-means ensures more
balanced clusters by iteratively optimizing evaluator assignments, leading to a more
stable aggregation of preferences. Given that AHC has a higher computational complex-
ity and does not improve the efficiency of reaching consensus, c-means remains a more
suitable choice for LSGDM. Moreover, the observed ranking differences reinforce the
idea that clustering strategies significantly affect the CRP, emphasizing the importance
of selecting an appropriate method for evaluator grouping.

(a) Clustering result of round 1

(b) Clustering result of round 2

Figure 8. Clustering results of different rounds obtained by AHC.
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Table 18. Decision results obtained by different methods.

Proposal AHC-Based CRP

Original consensus 0.80 0.79
Final consensus 0.82 0.82
Rounds required 1 1

Ranking order A4 ≻ A3 ≻ A1 ≻ A2 A3 ≻ A1 ≻ A4 ≻ A2

5. Conclusions
With the surge of social media and continuous advancements in science and technol-

ogy, LSGDM has become increasingly common in various real-world scenarios. In light
of this trend, we introduced a new CRP framework for LSGDM that integrates a detailed
feedback mechanism in this paper. By incorporating N-HFS for LSGDM problems, we
address the shortcomings of traditional HFS methods, which often require additional sub-
jective information, thus expanding the applicability of LSGDM. Below, we outline the key
features of our proposed method:

• The use of N-HFS accommodates different evaluation preferences provided by
multiple evaluators, resolving the computational difficulties associated with tradi-
tional HFS due to varying numbers of elements, which makes it difficult to apply
to LSGDM.

• Utilizing N-HFS information to develop a consensus model with a feedback mecha-
nism not only expands the application scope of N-HFS but also enhances the evalua-
tors’ acceptance of recommendations, thereby advancing the field of LSGDM.

• A consensus feedback mechanism which provides evaluators with detailed recom-
mendations and considers their acceptance of the suggestions has been introduced.
This mechanism helps to increase low feedback acceptance, thereby facilitating the
consensus process.

This framework can be applied to various real-world decision-making fields where
large-scale and hesitant fuzzy decision making is prevalent. For instance, in healthcare
decision making, the framework assists in aggregating expert evaluations for diagnosis and
treatment planning, especially in cases involving uncertainty and hesitation. In supplier
selection within supply chain management, it provides a structured methodology for
assessing multiple criteria, ensuring more informed and strategic procurement decisions.
These applications demonstrate the adaptability of our approach in handling complex
decision-making problems across different domains.

A possible future work could explore the functionality and effectiveness of minimum
cost considerations within the CRP framework and incorporate Kolmogorov–Smirnov
distance. Another intriguing research direction would be to investigate the impact of unco-
operative behavior among evaluators who may refuse to adhere to the recommendations
of moderators.
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