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SUMMARY

This paper presents a comparison between algorithms (Oriented FAST and Rotated BRIEF (ORB) and
Aruco) for the detection of fiducial markers placed throughout a smart environment. A series of activities
of daily living (ADL) were conducted while monitoring a first-person perspective of the situation; this
was achieved through the usage of the Google Glass platform. Fiducial markers were employed, as a means
to assist with the detection of specific objects of interest, within the environment. Each marker was assigned
unique Identification (ID) and was used to identify the object. Three activities were performed by a
participant within the environment. On subsequent trials of the solution, lighting conditions were modified
to assess fiducial marker detection rates on a frame-by-frame basis. This paper presents the results from this
investigation, detailing performance measure for each object detected under various lighting conditions,
motion blur and distance from the objects. An intelligent system was developed to specifically consider
distance estimation in order to aid with the filtering out of false interactions. A linear filtering method
was applied along with a fuzzy membership function to estimate the degree of user interaction, which assists
in removing false positives generated by the occupant. The intelligent system returns an average precision,
recall and an F-Measure of 0.99, 0.62 and 0.49, respectively. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The use and manipulation of objects is of key importance when carrying out activities of daily liv-
ing (ADL) [1]. Unfortunately, those suffering from cognitive decline often find that their ability to
independently carry out ADLs independently is reduced. Cognitive decline is typically attributed to
a condition such as Alzheimer’s disease, or due to the effects of stroke or traumatic brain injury. The
symptoms include impaired memory, which can affect recognition with respect to people, objects or
locations, in addition to causing a degradation in both short-term or long-term memory [2]. Smart
Environments have long been postulated as a means to improve the quality of life of those suffering
from cognitive decline, offering increased independence and postponing the need for full time care
or institutionalisation [3].
These sensorised Smart Environments typically monitor an environment and its occupant and

aim to reason on available sensor inputs towards offering some level of support to occupants. Sup-
port can range from automated temperature management through to detailed support with complet-
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ing ADLs. Within a health context, Smart Environments offer a number of potential benefits that
include reducing the number of accidents, providing support and intervention for specific illnesses
or conditions as well as providing general assistance; previous systems include [4–6].
Given that ADLs range widely in terms of variety and complexity, varying approaches have been

investigated in an effort to support automatic recognition. A common approach has been to employ
dense sensor placement within an environment to determine which object(s) is being interacted with
[7]. However, this method has limitations, due to the binary nature of the sensors and its ability to
only determine the occupant’s location if an object has been interacted with. In addition, this
approach has difficulty handling a multiple occupancy scenario as it may not be possible to deter-
mine which occupant has interacted with a particular object. There are also more practical issues to
contend with, such as the typical need for retrofit installation, and the requirement for ongoing
maintenance costs of such systems [8].
Machine vision techniques have been postulated as one potential solution to the abovementioned

challenges. These techniques offer the ability to track an occupant’s activity throughout an environ-
ment. Rather than relying on embedded sensors within the environment, the sensing is carried out
directly through machine vision processing of the environment. This also offers the advantage that
it works on an unmodified environment; therefore, a smart environment is not needed. Additional
data streams can also be augmented with the vision stream, such as accelerometer readings to assist
in inferring user context.
The system proposed in the current work makes use of fiducial markers to assist in the process of

detecting objects. Fiducial markers, in the context of the current work, are defined as being images
placed within a physical environment which can be used in support of tracking, alignment and iden-
tification of objects or location [9]. They can both be placed either on a mobile person/object in
order to determine the location/identity of that person/object or, as in the work presented, they
can be placed on fixed objects in order to determine the relative location of a moving camera. Fidu-
cial markers do not have to be purposely placed within a scene as the use of natural markers within a
scene can be used to determine location. An example of this would be a scene of a kitchen that con-
tains a cooker; the cooker itself would be able to function as a fiducial marker thus assisting in iden-
tifying the scene. Other features such as windows and other miscellaneous objects would also
suffice, so long as they make up a unique set of feature points to assist in identifying the scene
as being unique [10]. The use of fiducial markers also reduces some of the traditional issues
reported when performing object recognition, such as the requirement to learn variants of the same
objects, for example, different models of a household appliance. They also aid in alleviating the
problem of distinguishing between multiple identical objects in close proximity, such as kitchen
cupboards [11].
This paper proposes a novel non-invasive solution to that of occupant localisation and object in-

teraction, offering a unique first-person view of the environment. The proposed method reduces the
invasiveness normally associated with the installation and maintenance of traditional systems, for
instance, dense sensor based or static camera methods, along with the costs involved with the addi-
tional financial acquisition and deployment from the aforementioned systems. Additionally, the use
of fiducial markers negates the need for training to each unique environment, which the system may
be deployed within, as they will all share common objects that the occupant can interact with. The
issue of multiple occupancy is also addressed with each occupant wearing a vision device that offers
a first person view of each occupant in turn allowing individual support to be given. However, this
is assuming that it will only be the occupants whom require support.
In a real world situation, different objects have different means of interaction; some objects

require direct interaction during their use, whereas some objects only require passive interaction
[12]. An indirect effect of this is that the distance between the user and object will differ depending
on the type and level of interaction, an example of this would be a toaster and a television. A toaster
requires a direct interaction to operate, that is, putting the bread in, turning on the toaster then
removing the toast. A television would require a passive degree of interaction, the occupant would
be viewing the object at a distance and would not require direct interaction with the object for it to
be considered ‘in use’. As a result of this, an intelligent system has been developed that allows the
determination of whether an occupant is interacting with an object versus if they are viewing the
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object due to general gaze activity. An example of this would be looking around the environment
while locating an object/item or viewing objects while navigating throughout the environment. In
order to determine interaction, a threshold value is set by a human expert, which determines if an
interaction is taking place [12]. The distance from the object is then calculated in real time and com-
pared with the threshold value to establish interaction. These interactions between humans and
objects are highly useful to infer both the activity and temporal information. In this paper, we
aim to study the detection of interactions between users and objects by means of a vision sensor.
The future growth of vision sensors, driven by devices such as Google Glass, offers benefits to

those in cognitive decline. An example of these benefits is the ability to record images to boost
memory recall, or as this paper will focus on, to detect interactions with the future goal of providing
timely and relevant assistance to aid in ADLs. Section 2 will discuss the current state-of-the-art in
indoor localisation leveraging fiducial markers, Section 3 will detail the system along with the al-
gorithms and markers used and the filtering process to remove false positives (FP). Section 5 will
present the results gathered from evaluating the system and finally Section 6 will provide conclud-
ing remarks and detail the direction in which the work will proceed.

2. RELATED WORK

This Section will present an overview of the current state-of-the-art in machine vision solutions,
facilitating indoor localisation through the use of fiducial markers, with the goal of supporting
applications in the domain of ambient assisted living (AAL).
Rivera-Rubio et al. [13] implemented a solution that estimated the occupant’s location through

scene recognition. The study was implemented using an LG Google Nexus 4 paired with Google
Glass. A dataset of the locations was obtained by recording a video of the occupant walking through
the environment 10 times while wearing the relevant device (a 50/50 split between the Nexus and
Glass). The recorded scenes simulated both daytime and nighttime lighting conditions with occa-
sional strong lighting assessed via windows within the environment. The system was tested using
a range of descriptor methods; three being custom designed and three standard methods. A bag-
of-words and Kernel encoding pipeline method was used along with HOG3D matching to establish
a baseline. Their results demonstrated an error rate as low as 1.6 m over a 50 m distance. However,
for the purposes of AAL, a greater level of refinement is required in order to distinguish the occu-
pant’s location within a single room.
Zhang et al. [14] proposed a method of indoor localisation using still images captured at regular

intervals from a smart-phone worn via a lanyard. The goal of the approach was to assist navigation
throughout a familiar environment for those with impaired vision. The system relied on collecting
data of a building that describes its features and descriptors along with relevant 3D co-ordinates,
floor plans and other location data. Images were captured and sent at regular intervals to a server
for processing, where they were matched against the template map of the building to determine
location and offer assistance if required. Some challenges faced by this system, as noted by the
authors, were that there were null spots caused by a lack of features in the image to create a map.
This tended to happen when the user made a 90 degree turn, for example, when entering a room.
A further shortcoming, related to intermittent images, was due to their intermittent nature; as there
was a period of time between images being captured where data can be lost. This could lead to
interactions being missed, such as an interaction with an object; which could be vital for determin-
ing an activity.
Orrite et al. [15] developed a system titled ‘Memory Lane’ which aimed at providing a

contextualised life-blog for those with special needs. It contained images and sounds, as perceived
by the user, which would be chronologically ordered and automatically tagged by the system,
thereby providing contextual meaning. From the occupants environment, a data-set of images were
gathered from which feature points were computed using SIFT with RANSAC. During each
RANSAC iteration, a candidate fundamental matrix was calculated using the eight-point algo-
rithm [16], normalising the problem to improve robustness to noise. The system consisted of a
wearable camera, which would systematically record still images as the occupant moved throughout
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the environment. These images would be matched against the data-set of images that were gathered
previously, in order to determine the occupant’s location. To determine the distance from the object,
a match correspondence amongst features, based on scale, is used. This solution involves generating
a variable circle cantered on the average position of the detected features and comparing it to the
average position in the next image. When the radius increased, it was determined that the occupant
had moved closer to the object. This solution has some limitations; due to the intermittent nature of
the images some key information could be lost, such as room transitions or the image lacking suf-
ficient features in order to perform a match.
Zeb et al. [17] developed a system that supported blind users with navigating throughout a

known environment. It achieved this via the user holding a web-cam in their hand and moving
through the environment. The web-cam continuously took video frames from the environment,
which were then processed for relevant markers. Whenever a relevant marker was detected, the
detection and identification module compared it to the stored markers in a database, returning a
unique ID that associated the user’s position and direction. The main drawback from this system
was that it required constant interaction from the user in the form of having to manipulate a hand-
held camera at all times, in order for the system to detect markers.
The proposed approach within this paper aim to address these aforementioned shortcomings via

the use of a head worn camera that requires no direct interaction by the user. As the system performs
marker detection on each individual frame, it addresses the problem of data being lost due to inter-
mittent images being taken. This method increases robustness; if the marker was not identified in an
image, it may be identified in the following frames. In a system that captures intermittent images; if
the marker is not detected then key information may be lost.

3. APPROACH

This Section details the methodology adopted to develop the system. The design of the fiducial
markers that were used to identify the objects is presented along with a detailed overview of the al-
gorithms used in the evaluation of the system. A description of the feature point identification
method along with the implemented matching process is also presented. Finally, the analysis of
occupant-object interaction was carried out in order to determine whether an interaction was a true
positive, or a false positive generated via the occupant’s navigation through the environment.
The initial approach aimed to compare the performance of two ‘off-the-shelf’ algorithms for

performing fiducial marker recognition when coupled with a wearable Google Glass vision sensor

Figure 1. Sequence diagram of the wearable vision sensors in ADLs.
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towards accurate discrimination of occupant-object interaction. Figure 1 demonstrates the general
sequence of events and presents: (i) frames that are returned from the wearable vision sensor; (ii)
fiducial markers are then located within the returned frames; (iii) the degree of occupant-object in-
teraction is established as a quantifiable metric.
Google Glass (Explorer) platform was employed to provide a first-person view of the user’s en-

vironment. Google Glass facilitates the recording of high definition video (1280x720) and accept
audio based commands from wearers of the device via natural spoken language commands. Perti-
nent information can also be presented to the wearer via a small prism display that is located in front
of the eye.
Traditionally, the impact of wearable computing devices has been partly slowed by their lack of

streaming [18]. In an effort to overcome this, a Glass App was developed in our previous work that
supports transmission of live video to a cloud-based server via Real Time Streaming Protocol
(RTSP) [19]. This approach does however introduce a short latency between (<4 s) due to Glass’
efforts to lower its temperature during high load situations, such as streaming. This is achieved by
reducing the clock speed of the CPU [20].
Each fiducial marker has a custom identifier applied to it to represent the object it is associated

with. The occupant’s location is then estimated by means of a 3D reconstruction method that incor-
porates the known size of the markers, along with the calibration parameters of the vision sensor.
Occupant location is of key importance when supporting ADLs; in the presented work distance is
estimated to determine the degree of occupant-object interaction. Two feature point algorithms were
employed to detect the markers located in the environment, using inputs from the vision sensor. In
this work, we have integrated two detection algorithms, to detect the markers located in the environ-
ment, using vision sensors, they are:

3.1. ORB algorithm

The first method employs the OpenCV implementation of the ORB algorithm for both feature de-
tection and description. This method was developed by Rublee et al. [21], and implements FAST in
pyramids to facilitate the detection and selection of stable key-points. ORB implements the intensity
centroid method of corner detection as defined by Rosin [22].
A Brute Force algorithm (k-Nearest Neighbour) has been implemented as a feature point matcher

to determine if a marker is present in the frame. A formal representation of a k-Nearest Neighbour
algorithm locates the k nearest features to a query feature N points in a D-dimensional space. Even
though a Brute Force matcher is often one of the worst performing algorithms, in terms of time
taken to resolve a match, this is counterbalanced by high levels of accuracy in identifying the cor-
rect matches. This can be found in [23], which benchmarked multiple techniques for the purposes of

Figure 2. A) example of ORB fiducial marker. B) example of Aruco fiducial marker.
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image matching. Within this implementation for each feature in the marker, the matcher locates the
closest feature in the scene by systematically trying each feature point. The similarity between fea-
ture points is represented by Norm Hamming distance. With a minimum distance set ensuring good
matches are selected: a match is deemed to be good when the distance is less than three times the
minimum distance set.
In order to reduce the number of FP found by the system, a key-point match threshold was used,

where the number of inliers that contributed to the homography was calculated and compared
against a threshold value. If the number of inliers met or exceeds the threshold, then a marker
was deemed to be present. A strength of the approach is that the markers can be partly freely de-
signed; refer to Figure 2.

3.2. Aruco algorithm

The second algorithm is Arcuo [24], developed around the concept of fiducial markers. The markers
are automatically generated by Aruco by means of a marker dictionary [25] and is focused on
extracting the binary code from the rectangles that make up the fiducial marker, see Figure 2. This
process involves image segmentation, based on local adaptive thresholding. In order to increase ro-
bustness to varied lighting conditions, contour extraction and filtering, marker code extraction to
obtain the internal binary code, and dictionary based correction once the binary code is extracted.
This tracker is developed under Open Source license: the Berkeley Software Distribution. It has
been deployed in several research and enterprise projects‡.§

4. INTELLIGENT SYSTEM FOR DETECTING INHABITANT-OBJECTS INTERACTIONS

During testing of the vision algorithms, it was discovered that FP were being generated through
general gaze activity due to the occupant looking around the environment when locating an object
of interest. Further FP was generated through the occupant’s navigation of the environment as var-
ious objects came into their field of view as they moved through the environment. An intelligent
filter was developed with the aim to detect the degree of interaction between the occupant and
the object, this is based around the observation that when the occupant is interacting with an object
of interest they are in a close proximity to the object. This also aids in taking account of the differing
forms of interaction that certain objects require, namely passive or active interaction, those objects
that require active interaction will have a much closer distance threshold compared with those that
passive objects which are interacted with from a larger distance – such as viewing TV. It is known
as the intelligent system for detecting inhabitant-object interaction (ISDII). The output from the
marker detection algorithms serve as the input for the ISDII system. These consist of the unique
ID associated with the detected markers and the distance of the occupant to the marker. A three
stage process is employed:

1. The first stage is to collect and analyse the scenes where interaction occurs between the occu-
pant and the object.

2. Thresholds are then determined by an expert, establishing the distance at which occupant-
object interaction is known to be occurring.

3. Once the threshold distances have been established, ISDII is able to identify interaction on a
real-time basis.In order for ISDII to recognise if occupant-object interactions are occurring, a
preliminary threshold value needs to be set by a human expert. An initial process was carried
out that consisted of recording scenes where an occupant interacted with a series of objects
throughout the environment and threshold distances were then set by a human expert; a
sequence diagram detailing this step is presented in Figure 3. This allows ISDII to calculate,
in real time, the distance between the occupant and the object and determine whether an inter-
action is taking place; the pseudo-code is presented in Algorithm 1.

‡http://www.vision4uav.com/?q=node/386
§http://vision4uav.eu/?q=researchline/seeAndAvoid_CE_MFandRules
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When estimating object interaction in real time scenes, uncertainty is introduced due to missed
marker detections in the video stream and measurement errors introduced by the algorithms. In.

Algorithm 1. Estimation of reference distance thresholds to objects.

distances = ∅
detections = ∅
for marker ∈ detectedM arkers do
for interval ∈ InteractionIntervals do
if marker.time ∈ interval then
distances[marker.object]+ = marker.distance
detections[marker.object] + +

en d i f
end for

end for
threshold = ∅
for object ∈ objects do
threshold[object] = distances[marker.object]/detections[marker.object]

end for
return threshold

order to manage this uncertainty a two stage filter has been developed. The first stage is to remove
the high frequency noise using a low-pass filter. The exponential smoothing [26, 27], is defined in
equation 1:

s0 ¼ d0; st ¼ ω0dt þ 1� ω0ð Þst�1;ω0∈ 0½ ; 1� (1)

Where d0 is the initial distance to a marker, t is the temporal index ∈ [0, N ) being N the final size
of the set of distances, st is the filtered output, dt the measured data – the distance from the marker,
and ω0 is the smoothing factor; this method is widely used in control applications [28, 29].
The second filter is designed to mitigate two main causes of FP – removing isolated detections,

where a marker is detected due to general gaze activity. Fitting the window of interaction to the true

Figure 3. Sequence diagram of studying scenes of user-object interactions.

7 of 15OBJECT INTERACTION IN ADLS USING A WEARABLE VISION SENSOR

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2017;30:e3223.
DOI: 10.1002/dac



occupant-object interaction, that is, removing the preceding time where the occupant is approaching
the object and the proceeding time where the occupant is finished interacting with the object. In
order to achieve this, a fuzzy membership function was developed. Fuzzy logic [30] has been suc-
cessfully applied in sensor based signal processing applications [31]. In the context of fuzzy logic,
the semantics of the linguistic terms are given by fuzzy sets; where the membership degree of the
elements x of the base set X in the fuzzy set A, μA : X → [0, 1] is defined. The smoothing distance
of the markers from the first stage was evaluated by the fuzzy membership function which describes
the linguistic term ‘there is interaction with’.
For each object oi a membership function μOi is defined which evaluates the distance between the

occupant and the object st into a degree of occupant-object interaction between [0,1]. The member-
ship function is parameterised by the threshold value of the object doi, and two weighted factors, ω1

and ω2, representing the lower and upper cut-off threshold for interaction respectively, (as presented
in Figure 4).

μeO μeOi
st; doið Þ ¼

1 if st ≤ω1�doi
st � ω2�doi

ω1�doi � ω2�doi
if st∈ ω1�doi ;ω2�doi½ �

0 if st ≥ w2�doi

8>>><
>>>:

9>>>=
>>>;

(2)

ISDII provides a degree of interaction representing the occupant-object interaction within the en-
vironment. It should be noted that an upper threshold can be applied using α � cut between [0,1]
above which an interaction is determined to have taken place. Pseudo-code detailing the second
stage filter is presented in Algorithm 2 along with a sequence diagram presented in Figure 5.

5. RESULTS AND DISCUSSION

This Section presents the experimental use case scenarios. A series of markers were applied to
objects within a smart lab. Three different scenarios were evaluated that required an occupant to en-
ter the environment and proceed to complete pre-defined activities, while wearing a pair of Google
Glass. The three activities were: making a hot drink; preparing a hot snack and washing

Algorithm 2. Detecting Object Interaction.

degree = ∅
detection = ∅
for marker ∈ detectedM arkers do

distance[marker.object] = ω0 • marker.distance + (1 � ω0) • distance[marker.object]
degree[marker.object] = μOi (distance[marker.object], threshold[marker.object]) ˜

end for
for object ∈ objects do
if degree[object] > α then
detection[object] = true

en d i f
end for
return [degree, detection]

dishes/cutlery. A sequential breakdown of the objects interacted with during the completion of
each activity is presented in Table I.
To facilitate the experiments, a total of 18 markers (9 unique), were placed within the environ-

ment on: kitchen door, cupboard doors, a microwave, a refrigerator, a tap and a chair. Multiple
lighting conditions were simulated via the use of blinds and artificial lighting to provide a realistic
context to the scenarios.
Low brightness and high motion blur situation. B) High brightness and low motion blur situation.
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Videos conformed to Google Glass specification and were recorded at 24 fps in mp4 format.
The video recordings can be previewed here¶: The quantitative findings from the three case
scenes are described in Table II. Each scene is represented by the total number of frames, the
duration of the scene and the percentage of frames during which an object was correctly identi-
fied (true positive rate).

5.1. Analysing algorithm performance

As can be seen from the results, both algorithms provide good performance in low blur and high
brightness situations, with Aruco displaying higher accuracy in general. The strength of ORB is its

¶https://drive.google.com/file/d/0B_rp8F6H7iwDNFVsUGpxQ1RqeDg/view?usp=sharing

Figure 5. Sequence diagram of detecting object interaction in real-time scenes.

Figure 4. Membership function to obtain the degree of interaction with the object.
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ability to accommodate low brightness conditions; this is in part due to ORB’s implementation of the
Harris Corner Detection algorithm, which has been shown to have strong performance in low lighting
conditions [32, 33]. An example of favourable and unfavourable conditions regarding movement and
brightness are presented in Figure 6. In addition to these statistics, the results from this evaluation will
provide the initial threshold distance references for ISDII to be adjusted by an expert.
Tables III, IV and V detail the objects sequentially interacted with during each scene, along with

the average distance that each object was detected, the number of frames and duration of frames that
the occupant-object interaction took place within. Tables III and IV and V also specifies the lighting
conditions during the interaction with each object, along with the calculated distance from the
occupant’s view point to the marker. Details of the simulated conditions are provided, specifying
the amount of motion blur during the interaction and the level of ambient lighting. The detection
ratio of ORB and Aruco algorithms are presented, displaying the percentage of frames where an
object was detected within the duration window.

5.2. Adjusting and evaluating ISDII thresholds

Asdiscussed inSection4, an initial thresholdvalue forobjectswasgeneratedduring thealgorithmeval-
uation. These values can then be adjusted by an expert to determine at what distance an occupant is de-
termined to be interactingwith an object. TableVI details the average distance of detection as found by
ISDII as well as the final threshold distance after being modified by a human expert for each object.

Table II. Scenes and general statistics.

Parameters Detection ratio

Scene Total frames duration (s) Object frames Aruco (%) ORB (%)

1 2574 96 658 44.8 25.9
2 1567 52 624 44.8 22.7
3 1663 96 604 36.5 28.3

Table I. Breakdown of activities.

Hot chocolate Hot snack Washing dishes

Kitchen door Kitchen door Kitchen door
Cup cupboard Fridge Tap
Fridge Plate cupboard Cup cupboard
Microwave Microwave Cutlery cupboard
Tea/coffee cupboard Cutlery cupboard Tea/coffee cupboard
Cutlery cupboard Microwave Plate cupboard
Microwave Chair Kitchen door
Tea/coffee cupboard Kitchen door N/A
Kitchen door N/A N/A

Figure 6. Frames from the wearable vision sensor showing first person view of interactions with objects. A)
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Table III. Scene 1 and statistics of object interactions.

Objects Output Simulated conditions Detection ratio

Interaction order
Avg.

distance (m) Frames Duration (s) Brightness motion blur Aruco (%) ORB (%)

Door is opened in 0.36 95 3.96 High Normal 50.00 43.48
Cupboard-A is opened 0.36 32 1.33 High Low 78.79 50.0
Cupboard-A is closed 0.19 34 1.42 High Low 61.29 66.67
Refrigerator is opened 0.29 47 1.96 High High 56.25 21.28
Refrigerator is closed 0.24 44 1.83 High High 62.22 45.45
Microwave is opened 0.47 54 2.25 Low High 3.64 0.00
Microwave is closed 0.37 50 2.08 Low High 17.65 6.00
Cupboard-B is opened 0.22 38 1.58 Normal Low 61.54 5.26
Cupboard-B is closed 0.30 49 2.04 Normal Low 68.00 2.04
Cupboard-C is opened 0.29 29 1.21 Low High 0.0 31.02
Cupboard-C is closed 0.26 26 1.08 Low High 0.0 11.54
Microwave is opened 0.44 42 1.75 Low Normal 13.95 4.76
Microwave is closed 0.37 24 1.00 Low Normal 24.00 5.88
Cupboard-D is opened 0.31 29 1.21 High Low 80.00 10.34
Cupboard-D is closed 0.19 35 1.45 High Low 69.44 2.86
Door is opened out 0.20 125 5.21 Normal High 44.44 23.33

Table IV. Scene 2 and statistics of object interactions.

Objects Output Simulated conditions Detection ratio

Interaction order Avg.
distance (m)

Frames Duration (s) Brightness motion blur Aruco (%) ORB (%)

Door is opened in 0.35 95 3.96 High Normal 52.08 24.21
Turn tap on 0.32 101 4.28 Low Low 39.22 3.79
Cupboard-C is opened 0.21 41 1.71 High Low 4.76 14.63
Cupboard-C is closed 0 24 24 1.00 High Low 0.0 14.63
Cupboard-A is opened 0.23 32 1.33 High Low 78.79 81.08
Cupboard-A is closed 0.18 34 1.42 High Low 80.00 87.50
Cupboard-B is opened 0.32 54 2.25 Normal Low 70.91 5.55
Cupboard-B is closed 0.20 35 1.46 Normal Low 66.67 2.85
Cupboard-D is opened 0.25 45 1.88 Normal Low 43.48 48.88
Cupboard-D is closed 0.22 35 1.46 Normal Low 58.33 60.00
Door is opened out 0.32 111 1.46 Normal High 58.33 7.82

Table V. Scene 3 and statistics of object interactions.

Objects Output Simulated conditions Detection ratio

Interaction order Avg.
distance (m)

Frames Duration (s) Brightness motion blur Aruco (%) ORB (%)

Door is opened in 0.28 58 2.42 High Low 72.80 22.41
Refrigerator is opened 0.30 48 2.00 High Low 79.59 45.83
Refrigerator is closed 0.19 29 1.21 High Low 60.00 44.82
Cupboard-D is opened 0.24 29 1.21 Normal Low 13.33 87.50
Cupboard-D is closed 0.18 27 1.13 Normal Low 60.71 88.88
Microwave is opened 0.25 35 1.46 Low Normal 22.22 11.42
Microwave is closed 0.23 50 2.08 Low Normal 5.88 0.00
Cupboard-C is opened 0 30 1.25 High Low 0 46.15
Cupboard-C is closed 0 26 1.08 High Low 0 50.00
Chair interaction 0.35 159 6.63 Normal Normal 40.00 13.20
Door is opened out 0.25 111 4.63 Normal High 22.32 21.52
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The precision and recall have been evaluated from the ISDII output against the time window
defined by an expert. An interaction has been determined when the interaction degree exceeds
α � cut = 0.95. The evaluation has included the full range of options for estimating the ω0 ∈ [0,
1], ω1 ∈ [0, 5], ω2 ∈ [0, 5], ω1 < ω2 with a step offset of 0.05. Table VII presents the best precision
results from the three scenes in function of ω0, ω1, ω2 and Table VIII displaying the best results for
recall. (Table IX).
While the precision results obtained by ISDII determine if an interaction is a true positive are

promising, it relies on a high accuracy of detections from the marker detection algorithm in order
to return a high recall. The lack of detections in the results from Section 5 results in a low recall
which cannot be improved through the filtering and estimation process. The Averaged Ratio Detec-
tion (ARD) from the detection algorithm in each scene must match the distance threshold value to
be able to analyse the recall obtained by ISDII. This improves the ratio of marker detection due to
the exponential smoothing filter. The averaged parameters have been set to allow a comparison of
ISDII interaction estimations to expert-defined interaction estimations. The results are displayed in
Figure 7, which presents the human expert defined degree of interaction along with an overlay of
the ISDII defined interaction.

Table VI. Threshold distances to objects.

Object Average distance Final threshold distance

Chair 0.350 0.350
Cupboard-A 0.240 0.235
Cupboard-B 0.260 0.250
Cupboard-C 0.240 0.250
Cupboard-D 0.230 0.235
Door 0.296 0.300
Microwave 0.355 0.355
Refrigerator 0.255 0.255
Tap 0.320 0.320

Table VII. Best precision from scenes in function of ω0, ω1, ω2.

Scene Precision ω0, ω1, ω2

1 1.00 [0.95, 0.00, 0.05]
2 0.98 [0.95, 0.00, 0.80]
3 1.00 [0.95, 0.00, 0.60]

Table VIII. Best recall from scenes in function of ω0, ω1, ω2.

Scene Recall ARD Recall/ARD ω0, ω1, ω2

1 0.45 0.43 1.05 [0.95, 0.20, 4.90]
2 0.45 0.47 0.95 [0.95, 0.00, 2.40]
3 0.37 0.34 1.09 [0.95, 0.00, 3.10]

Table IX. Best Fβ = 1.5 from scenes in function of ω0, ω1, ω2.

Scene Fβ = 15 ω0, ω1, ω2

1 0.51 [0.95, 0.20, 2.20]
2 0.52 [0.95,0.00,2.45]
3 0.43 [0.95,0.00,1.65]
Average 0.49 [0.95, 0.00, 2.10]
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Adjusting the threshold of object interaction offers improved performance when the detection al-
gorithm provides a high rate of detection, as the lack of detections shown in some scenes results in a
loss of occupant-object interactions reported from ISDII. The final values of ω0, ω1 and ω2 provide
the best averaged parameters in all scenes, and results in a low computational overhead method of
determining object interaction, as well as a method of isolating FP.

Figure 7. Comparison of ISDII vs human-defined interactions: a) the human-defined interaction is shown by
the solid columns and b) the blue line represents the estimation degree as determined by ISDII.
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6. CONCLUSIONS AND FUTURE WORK

The proposed method offers many advantages/innovations over existing methods to determine
object interaction within the domain of AAL. One of the methods biggest strengths is the ease to
which it is able to be deployed within differing environments, the use of fiducial markers with as-
sociated ID’s negates the need for specific training to each environment. This is due to the markers
being associated with common static items that are commonly found within home environments,
with the ID of the object being tied to the marker rather than any features of the object itself. Sec-
ondly, the use of a moving camera couple with static objects reduces the issues traditionally seen
with a static camera solution such as the limited field of view, which may require the installation
of multiple cameras within an environment. Occlusions that may be created through environmental
objects, such as doors and large items of furniture, or occlusions generated by the user themselves,
such as hands/head/torso occluding objects that they are interacting with [34]. This coupled with
being a superior solution for object interaction due to the added advantages a head-mounted camera
provides. Firstly, occlusions of the manipulated object tend to be lessened as the object being
interacted with is usually the centre of attention for the user [34]. As the object is the centre of
the users attention, the object is usually in the centre of the image and in focus, providing a high
quality image for processing [34]. Because of the high levels of noise that are typically present in
egocentric videos many FP are unavoidable [35]. It can be difficult to identify the correct object
as it is possible that multiple objects can be within the occupants’ field of view. This is due to some
areas of the environment being densely populated with relevant objects, such as the kitchen.
As can be seen in Section 5, a detailed comparison has been carried out on the ORB and Aruco

algorithms. The results show that the Aruco algorithm is generally more accurate, with the ORB al-
gorithm providing better performance in extreme light conditions. Based on the information from
marker trackers, we have proposed an Intelligent System for Detecting Inhabitant-objects Interac-
tion. It determines if the interaction is a true positive by using two filters: a low-pass filter and a
fuzzy filter. A study has been carried out to determine the performance of ISDII, showing an im-
proved precision by removing FP. However, it is highly sensitive to missed detections from the de-
tection algorithm which can result in a deteriorated recall result.
The proposed solution offers a non-intrusive method of detecting occupant object interaction and

localisation. The use of a single head-worn camera provides a unique first person view of the envi-
ronment and their activities, offering additional opportunities within the domain. This solution also
minimises the cost in terms of hardware, implementation and maintenance costs associated with
alternative solutions, for example, dense sensor placement or static camera approaches. Future work
will focus on translating the results to the next generation of wearable vision devices, such as
Google Glass 2.0, and the inclusion of the analysis of ISDII commercial markers and tracker devel-
oped by companies.**
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