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This paper focuses on an inference methodology based on a belief linguistic rule base (B-
LRB) which is a typical framework of a recently developed belief rule-base inference
methodology (called RIMER), and highlights its distinct feature and advantage. It is
called linguistic rule-base instead of fuzzy rule-base because the use of membership
functions associated to the linguistic terms is unnecessary or it does not play a key role.
The feature of B-LRB, the ways to generate a B-LRB, as well as the inference procedure
based on B-LRB are specified along with an illustrate example at the end to show how it
works and its applicability and feasibility.

1. Introduction

A new methodology has been proposed recently [1] for modeling a hybrid rule-
base using a belief structure and for inference in the belief rule-based system
using the evidential reasoning (ER) approach [2]. The methodology is referred to
as a belief Rule-base Inference Methodology using the Evidential Reasoning
approach — RIMER, where a rule-base is designed with belief degrees embedded
in all possible consequents of a rule, called belief rule-base, is used to capture
nonlinear causal relationships as well as uncertainty. The inference of a rule-
based system is implemented using the ER approach. The special application
framework of RIMER into fuzzy belief rule-base has been investigated and
applied to safety analysis [3], along with the optimization model of RIMER [4].
In the paper, we focus on a special type of belief rule base in the framework
of RIMER, i.e., a linguistic rule-base with belief structure, called Belief
Linguistic Rule Base (B-LRB). The inference of a B-LRB is still implemented
using the ER approach as in the RIMER. B-LRB based inference methodology
provides an alternative method to modify and overcome limitations of traditional
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fuzzy rule base approach, where the use of membership functions to the
linguistic terms is unnecessary or the membership function does not play a key
role, so the burden of quantifying a qualitative concept is eliminated and the
systems can be simplified. Tthis is particular useful in the situation where the
parameters involved have a non-probabilistic character related to imprecision of
meanings or the parameters are in very qualitative nature which are difficult or
infeasible to quantify them; or only very limited data are available (or even
unavailable) on system parameters (e.g. at initial design stages or for a system
with a high level of innovation, or consider the cost of a nuclear accident, or
settlements in liability insurance, usually reached out of court and kept secret) in
which only subjective expert judgments are available, hence the construction of
rule-base and the evaluation mainly involves human expertise and knowledge.

The rest of this paper is organized as follows. RIMER approach is briefly
reviewed in Section 2. The belief linguistic rule base framework along with its
construction and its inference procedure is proposed in Section 3, following an
illustration example in Section 4. Conclusions are drawn in Section 5.

2. Outline of RIMER

The RIMER approach is summarized and see [1] for more details. Suppose a
belief rule-base is given by R={R,,..., R,} with the k" rule represented:

Ry IF U is A* THEN D with belief degrees A, with a rule weight 6, and
attribute weights

@cl’ cees 5ka (1)
where U represents the antecedent attribute vector (U,,..., U T, ), AX the packet
antecedents {Alk — A’T‘k }, and A,-k (i=1,..., Ty) the referential value of the i"

antecedent attribute in the k™ rule; 7, is the number of antecedent attributes used
in the k™ rule. Suppose T is the total number of antecedent attributes used in the
rule base, D the consequent vector (Dy,..., Dy), and ﬂ‘ the vector of the belief
degrees (Big..., Bw) for ke {1,..., L}, and S the belief degree to which D; is
believed to be the consequent if in the k™ packet rule the input satisfies the
packet antecedents A, 6, is the relative weight of the k" rule and i the relative
weights of the 7; antecedent attributes used in the " rule. L is the number of all
the packet rules in the rule-base. If ¥, 8, =1, the k™ packet rule is said to be
complete; otherwise, it is incomplete. Rule (1) is referred to as a belief rule.

Once given an input, the activation weight w; for A*, which measures the
degree to which the k" rule is weighted and activated, is calculated by:

T 5. L T ()5, R
Wi = 6y * n1 (a{‘)g /.zl[a,- *lnl (a; )Jl] with &; =8,/ max {5} 2)
= = = =k, k
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where it is assumed that 6, €[0, 1] (k=1,..., L) and & €[0, 1] (i=1,..., T)). a'ik
(i=1,..., Ty, called the individual matching degree, is the degree of belief to
which the input for U; belongs to Af of the /" individual antecedent in the k™

rule, and a'ik e[0, 1]. aik could be generated using various ways depending on
the nature of an antecedent attribute which are discussed in Section 3.

Having determined the activation weight of each rule in the rule base, the
ER approach [2] can be directly applied to combine the rules and generate final
conclusions. The final conclusion generated by aggregating all activated rules by
the actual input vector I= {I;; i=1, 2,..., d} can be represented as follows

SDO={(D;, B ), j=1...., N} 3)

The result in Eq. (3) reads that if the input is given by I, then the consequent is
D, to a degree ..., and Dy to a degree Sy. Using this analytical ER algorithm
[4], the overall combined degree of belief /3 ; in D; is generated as follows:

L N L N
ﬂX{H W Bjp+1=wp ZBig)— TT (1—wy Zﬁi,k)}
k=1 i=1 k=1 i=1

B = JJj=l,...N (4)

L
l—ux{na—wk)}
k=1

N L N L N 4
where u=| ¥ T[] (Wkﬂj,k Hl=wp 2B 1) —(N=DT] A—wy 2B -
j=lk=1 i=1 k=1 i=1
The final result is still a belief distribution on estimate, which gives a
panoramic view about estimate for a given input.

3. Belief Linguistic Rule-based Inference Scheme

The belief linguistic rule-base (B-LRB) is defined following the same definition
as in (1), however, AF ={ Alk P Aﬁk } are all linguistic terms which can be

either quantitative or qualitative in nature, D is the consequent vector (D;,...,
Dy) which are all linguistic terms as well, in this particular application, are
supposed to be qualitative in nature. In terms of the inference scheme, the
following two necessary and crucial steps reflect the distinct features of the
proposed method compared with traditional fuzzy rule-based approach.

3.1. Determine the individual matching degree

Qualitative parameters in a traditional fuzzy model are assessed using a
subjective scale against which a range of linguistic values is mapped in domains
defined by the model builder. In general, quantifying qualitative parameter may
cause either the loss of information or inaccurate inference results due to the
improper quantification approach. It is natural that qualitative attributes are
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assessed using human judgments, which are subjective in nature and are
inevitably associated with uncertainties. This subjective assessment can be taken
as an alternative solution due to the lack of information, e.g. when neither the
membership function of each linguistic term nor numerical forms of the input is
available at all, and is especially useful for qualitative attribute assessments,
which sometimes is totally subjective. Hence a qualitative attribute could be
directly assessed to a distribution using linguistic terms with the degrees of belief
based on subjective judgments. In other words, o can be assigned directly by the
decision maker using his subjective judgments for each Ay If g is the degree of
belief assigned to the association of Ay, then a; = &;. In an assessment of
qualitative parameter, for example, an expert may provide the following
assessment: 30% sure that a parameter is at the medium level and 70% sure that
it is at the high level.

Based on the above matching techniques, an input can be represented as a
belief distribution, which can provide a panoramic view about the status of an
attribute. The main advantage of doing so is that subjective judgments with
uncertainty, whether complete or incomplete, can be consistently modeled under
the unified framework without loss of their original features.

3.2. Generating B-LRB

Due to the qualitative nature of linguistic rule base, the causal relationship
between IF part and THEN part is not possible to be obtained due to lack of
complete and accurate information regarding the training set, e.g., new system.
Such a situation typically arises when learning examples are generated by one or
several experts, whose subjective evaluation of consequence may be tainted with
imprecision and uncertainty. For each expert may not always be able to classify
clearly of consequence class with full certainty. He or she may, however, be able
to assess the “likelihood” that a certain phenomenon is present in the data.
Hence, an approach to obtain B-LRB is to collect the opinions of several
experts, and consider for each example the empirical distribution of expert
opinions about its class belief. Belief distribution in Eq. (1) can be obtained in
several different ways [5], including:

(1) direct elicitation from an expert, who is asked to quantify by a real
number between 0 and 1 the degree of belief that IF part A, belongs to each of
the N evaluation grade D,..., Dy. However, people find words more comfortable
than numbers probably because the vagueness of words captures the uncertainty
they feel about their probability assessment. Since, in addition, directly assessed
numbers tend to be biased, various indirect elicitation methods have been
developed. Here an alternative is suggested, i.e.,



533

(2) from an empirical distribution of expert opinions, using the relative
frequency: Sy=uy /M, where u; denotes the number of experts (out of M) who
assigned IF part A; (k=1,..., L) into the evaluation D; (i=1,..., N) in THEN part.
Alternatively, we could use possibilistic histograms [6] to generate a relative
frequency as follows: Sy=uu/Z. .y g, Where uz=(1/M) Loy ymin (uy up).

4. An Illustrative Example

A simple example may further clarify the rationale of our approach. Consider a
decision problem in evaluating consumer trustworthiness in Internet marketing
[7], where trust has been shown as a predominantly important concept for
establishing customer relationship on the web and is affected by many factors or
attributes (e.g., about 10 factors). Practically the customers are well conversant
with the natural languages about the factors effecting trust. Therefore the values
of the factors become fuzzy because of its simplicity and flexibility, though
vagueness is inherent. The decision on Trust effect can be described as: Not at
all trustworthy, Below Moderate trustworthy, Moderate trustworthy, Somewhat
trustworthy, Fully trustworthy. Suppose a trivial fuzzy rule base with the
following rule to be explicitly put as hypothesis for online purchasing:

- IF the web source is somewhat reliable & advertising rate is very good &
customer is fully satisfied & good services after sale & price is average & quality
is very good & promptness is very good & risk is fully reliable & promises kept
always & technically knowhow is somewhat THEN somewhat trustworthy  (5)

Although there are still factors which could be quantified, like Price, we
mainly concern about factors which are difficult to be quantified, e.g.,
“Reliability of Source” (How the source is reliable that affects consumer trust)
and Satisfaction (How the customers already purchased using Internet are
satisfied. It could be classified as the following cases: one or more factors are in
qualitative nature in IF part (suppose the values in other parameters are same),
what is the decision on Trust effect? Consequently, we always have to handle the
causal relationship between the qualitative factors with the trust effect.
Information as per the questionnaires considering all the above factors, as a
sample, 50 students (customers) were personally interviewed and their responses
were collected to construct the B-LRB. Using the approach in Section 3.2 about
empirical distribution of expert opinions, we may have linguistic rules with
belief degrees for multiple possible consequent terms based on (5) suppose the
same IF part, for example,

THEN the decision on Trust effect is {(Not at all trustworthy, 0), (Below

Moderate trustworthy, 0.05), (Moderate trustworthy, 0.13), (Somewhat

trustworthy, 0.72), (Fully trustworthy, 0.1)}.
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where THEN part is a belief distribution representation for the Trust effect,
representing that we are 72% sure that the Trust effect is high, and 13% sure that
the Trust effect is Moderate trustworthy, 10% sure that the Trust effect is Fully
trustworthy, and 5% sure that the Trust effect is Below Moderate trustworthy
The beliefs in the rule-base are used to characterize the Trust effect in a more
rational and realistic way. Once the B-LRB is constructed in the similar way, the
inference can be implemented following the procedure in Section 2.

5. Conclusions

This paper present and amplify an inference methodology based on a belief
linguistic rule base (B-LRB) based on a recently developed RIMER approach.
The key insight of the method is it enables the inference system more flexible to
better emulate subjective human evaluation processes when numerical data is not
available. B-LRB could be constructed and the inference could be implemented
without necessity of any quantification transformation so that it can reduce or
avoid any loss or distortion of information. Some distinct features to fit with
application are highlighted and illustrated.
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