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Abstract — Taking into account the need of handling hybrid 
information with uncertainty in human decision making, a new 
belief rule-base inference methodology (RIMER) has been 
recently proposed. RIMER approach and its relevant extensions 
have proved to be highly positive solving decision problems. 
However, for an end user it is difficult to implement the methods 
and algorithms from the raw equations in order to solve a specific 
problem. This paper presents a decision support tool based on the 
RIMER approach that facilitates its implementation and use to 
end-users. The overall structure and main functionalities of the 
tool are outlined, followed by an example to illustrate the use of 
this tool for applications. 

Keywords — knowledge-based system, belief rule base, decision 
making, uncertainty, decision support system. 

I.  INTRODUCTION 
Nowadays, large amount and heterogeneous information 

provided by different sources is common for decision making 
problems, this fact implies a high complexity that is rather 
difficult of managing for human beings without any support. 
Consequently, more and more computer based decision-making 
support has been accepted and developed, to provide a stress-
free view of the situation, joining the individuals intellectual 
resources with the capabilities of computers for improving the 
quality of decisions [1]. 

The use of rules is one of the most common ways in many 
tools for knowledge representation and inference in decision 
problems. Knowledge-based systems, usually constructed from 
human knowledge by means of if-then rules, have been one of 
the most visible and fastest growing branches of artificial 
intelligence [2]. In the design and implementation of 
knowledge-based systems for supporting human decision 
making, it is necessary and inevitable to use a scheme for 
representing and processing imprecise, incomplete and 
uncertain information in conjunction with precise data. Because 
of the need of handling hybrid information with uncertainty in 
human decision making, the belief Rule-base Inference 
Methodology using the Evidential Reasoning approach – 
RIMER was introduced in [3]. This methodology uses a belief 
structure for modelling hybrid rule-bases and an evidential 
reasoning (ER) approach [4] for making inference in the belief 
rule-based system by combining decision science [5], rule-

based systems, and Dempster-Shafer (D-S) theory of evidence 
[6-7]. Therefore in RIMER a rule-base is designed with belief 
degrees embedded in the entire consequent terms of a rule, 
called belief rule-base (BRB), to capture nonlinear causal 
relationships as well as uncertainty. RIMER approach has been 
further investigated and extended in [8], denoted as RIMER+, 
where an extended rule base is designed with belief degrees 
embedded in the entire consequent terms as well as in the entire 
antecedent terms of each rule. In addition, a simple but efficient 
method for automatically generating such extended belief rule-
base from numerical data is proposed involving low time cost 
iterative learning procedure and simple rule generation 
mechanisms [8]. RIMER results and its relevant extensions 
have proved to be highly positive solving decision problems 
applied to different areas, such as, among others, safety and 
risk analysis, oil pipe leak detection and some other application 
in engineering systems [9-13].  

This paper presents a decision support software tool which 
aims to facilitate the implementation and use of RIMER and 
RIMER+ to solve complex decision making problems. This tool 
presents a friendly end-user interface that allows the 
implementation of RIMER and RIMER+ in a transparent, 
informative and integrated way. Concretely, it offers the 
following functionalities:  1) A data base to store the input-
output data; 2) a friendly user interface for problem structuring, 
information collection, and data presentation in both graphical 
and text formats; 3) The necessary modules for the rule-base 
which would be automatically generated based on the input-
output sample data or assigned by domain experts and can be 
then represented in the interface; 4) management of 
heterogeneous input information in an integrated way; 5) 
inference algorithms to be applied once the rule-base is 
generated and the inputs are obtained; 6) a module to save and 
load solutions of a problem in both textual and graphical 
formats. Each functionality will be further detailed in the 
following sections. 

This paper is organized as follows: RIMER and RIMER+ 
are briefly overviewed in Section II. The architecture of the 
decision support tool and its functionalities are presented in 
Section III. Section IV introduces an illustrative example. This 
paper is concluded in Section V. 
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II. OUTLINING RIMER APPROACH 
RIMER [3] presents a new belief rule representation scheme to 
extend traditional IF–THEN rules using a belief structure. The 
belief rule base (BRB) introduced in RIMER approach is 
designed with belief degrees embedded in the consequent 
terms. It has been then extended into a new belief rule base 
with belief degrees embedded in the entire consequent terms as 
well as in the entire antecedent terms of each rule [8].  

Suppose a BRB is given by R={R1, R2,…, RL} with the kth 
rule represented as follows [3]: 

Rk: IF U is Ak THEN D with belief degrees β k, with a rule 
weight θk and attribute weights δ1, δ2,…, Tδ                      (1) 

where U represents the antecedent attribute vector (U1,…, 
TU ), Ak the packet antecedents { kA1 ,…, k

TA }, and k
iA  

(i=1,…, T) the referential value of the antecedent attribute Ui 
in the kth rule; T the total number of antecedent attributes used 
in the rule base; D the consequent vector (D1,…, DN), and β k 
the vector of the belief degrees ( kβ1 ,…, Nkβ ) for k∈{1,…, 
L}, and skβ  (s∈{1,…, N} the belief degree to which Di is 
believed to be the consequent if in the kth packet rule the input 
satisfies the packet antecedents Ak. θk is the relative weight of 
the kth rule and δ1,…, δT are the relative weights of the T 

antecedent attributes. L is the number of all the packet rules in 
the rule-base. ∑ ≤=

N
s skβ1 1. If ∑ ==

N
s skβ1 1, the kth packet rule 

is said to be complete; otherwise, it is incomplete. 
Take for example the belief rule in safety analysis [10-11]: 
Rk: IF the failure rate is frequent and the consequence 

severity is critical and the failure consequence probability is 
unlikely, THEN the safety estimate is {(good, 0), (average, 0), 
(fair, 0.7), (poor, 0.3)},                                                           (2) 

where the consequent is a belief distribution representation for 
safety consequent, stating that it is 70% sure that safety level 
is fair and 30% sure is poor. This kind of rule reflects another 
kind of uncertainty caused because an expert is unable to 
establish a strong correlation between premise and conclusion. 

In [8], to facilitate the more general application cases and 
more flexible and simpler rule-base generation scheme, this 
belief rule is extended with belief degrees embedded in the 
entire possible antecedent terms of each rule as well, for 
example, belief rule (2) can be extended as follows: 

Rk: IF the failure rate is {(very low, 0), (low, 0), 
(reasonably low, 0), (average, 0), (reasonably frequent, 0), 
(frequent, 0), (highly frequent, 1) AND the consequence 
severity is {(negligible, 0), (marginal , 0), (moderate , 0.3), 
(critical, 0.7), (catastrophic, 0)} AND the failure 
consequence probability is {(highly unlikely, 0.1), (unlikely , 
0.7), (reasonably unlikely, 0.2), (likely , 0), (reasonably likely, 
0), (highly likely, 0), (definite, 0)} THEN the safety estimate 
is {(Good, 0), (Average, 0.1), (Fair, 0.6), (Poor, 0.3)}         (3) 

This kind of extended belief rule is able to not only capture 
vagueness (with linguistic terms), uncertainty (with beliefs), 
incompleteness (partially known beliefs in antecedents and/or 
consequents) and nonlinear relationships (IF-THEN rules) 
between these three parameters and the safety level but also 

provide the flexible way to incorporate the hybrid input 
information as well as more efficient rule generation scheme.  

Generally, rule (1) can be extended in the following form:  
Rk

*: IF U is (A, αk) THEN D with belief degrees β k, with a 
rule weight θk and attribute weights δ1, δ2,…, Tδ                  
(4) 

where  (A, αk) is the packet antecedents {{(Aij, k
ijα ), j=1,…, 

Ji}; i=1,…, T} (as illustrated in (3)) representing antecedent 
with belief structure; here Aij (j∈{1,…, Ji}) is the jth 
referential value of the ith antecedent attribute Ui (i=1, …, T), 

k
ijα  the likelihood to which Ui is evaluated to be the referential 

value Aij in the kth rule with k
ijα ≥0 and ∑ ≤iJ

j
k
ij 1α  (i=1,… T), 

k=1,…, L*,  L* is the total number of all the packet rules in the 
rule-base. A rule base with rules in the form of (4) is called an 
extended belief rule base (EBRB) compared with (1). Note 
that all the rules in an EBRB share the same antecedent terms 
and consequent terms, but have different belief distributions 
for each antecedent attribute and the consequent. The use of 
the superscript k in (4) reflects this feature. 

Once given an input, the activation weight wk which 
measures the degree to which the kth rule is weighted and 
activated, will be calculated using various ways depending on 
the nature of an antecedent attribute as detailed in [3, 8].  
Having determined the activation weight of each rule in the 
rule base, the ER approach can be directly applied to combine 
the rules and generate final conclusions. The final conclusion 
generated by aggregating all activated rules by the current 
input vector x={xi, i=1,…, T} can be represented as follows:  

f(x)={(Ds, β s), s=1,…, N}.                                              (5) 

The final result is still estimated a belief distribution, 
which gives a panoramic view about estimate for a given input 
[3, 8]. The inference methodology based on (1) is referred to 
RIMER, and the one based on (4) as RIMER+.  The following 
introduced software tool includes both methodologies, for the 
convenience, we use only RIMER as a representative.  

III. DECISION SUPPORT SYSTEM BASED ON RIMER 
This section introduces a decision support software tool that 
implements the RIMER method. 

A. Architecture 
This system has been developed under the object-oriented 

programming paradigm. So abstract concepts can be defined 
and grouped into packages. The general structure of the 
packages follows the classic MVC architecture [14]. Each main 
package – Model, View and Controller – communicate with the 
rest through interface classes, i.e. with non-implemented 
methods. The main feature of this design pattern is that permits 
the encapsulation of each part of the system with a minimal 
decoupling with the rest. The MVC architecture allows us to 
build the system iteratively, from the first basic window with 
the basic features, until the final result, which is improved due 
to the versioning system until all the functionalities required 
are achieved. 
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B. Features of  RIMER support system 
This section introduces the main features of the system. 

Firstly it presents the features related to the problem definition 
and secondly related to the solving process.  

1) Problem definition 

The system provides the flexibility to define the 
hierarchical decision structure which is composed of several 
attributes. Attributes (also referred to as parameters) are 
variables that represent decision sub-problems. They are 
organized hierarchically so the attributes in higher levels of the 
hierarchy depend on lower-level attributes. The system presents 
a clear-cut interface to define the hierarchical structure and its 
attributes. The interface has been designed in a way that each 
attribute in the structure can be directly modified. Therefore, all 
the elements of the problem definition can be managed directly 
in an integrated way, just by clicking on them. These elements 
are subsequently described. 

The system interface is based on two main windows that 
show the details of every parameter and keep them visible in 
the window to facilitate their management. Hence, an 
accessible and fast way to navigate between both windows is 
provided. Figure 1 (a) illustrates the layout of attributes 
management and Figure 1 (b) shows a general hierarchical 
structure window (also taken as the main window). 

 
Figure 1 (a) Attribute window 

 
Figure 1 (b) Hierarchical structure window as main window 

a) Attributes management 
The attributes management window manages every aspect 

regarding the attributes and their referential values (a set of 

meaningful and distinctive evaluation standards for describing 
an attribute, which is commonly described by subjective 
linguistic terms). The definition of each attribute is essential to 
obtain proper results when executing RIMER, since both 
inputs and outputs are transformed into belief distribution 
based on the referential values of each attribute (see Section 
II). The attributes management window is divided into three 
parts – attributes manager (on the left), referential values 
manager (top-centre) and functions graph (bottom-centre). 

It is possible to choose among different types of functions 
for the referential values when creating a new attribute in the 
attributes manager. Figure 2 shows examples about different 
functions can be graphically represented in the system– from 
top-left to bottom: Triangular, Trapezoidal and Gaussian fuzzy 
membership functions, qualitative linguistic terms and utility 
functions. 

 
Figure 2. Possible representations in the functions graph 

b) Generate hierarchal structure of the problem  
From the main window, it is possible to generate a 

hierarchical structure of a problem by adding and removing 
nodes. In this case, each node of the hierarchy is associated 
with one of the attributes defined previously in the attributes 
window. By selecting a node included in the hierarchy, users 
will be able to modify its properties. Note that the leaf nodes 
have different properties from the non-leaf nodes: for a leaf 
node, it is possible to assign an input and for the non-leaf 
nodes, users can create and manage rules which form a sub-rule 
base in the hierarchical structure. Therefore, the content of the 
panel on the right side of the main window will change 
depending on the type of the current selected node. In Figure 1, 
this panel corresponds to a leaf node, since the selected node – 
surrounded by blue circles – is a leaf node. 

c) Belief rule-bases generation and representation 
Once the attributes are defined and organized into a 

hierarchical structure, the next step is to generate the belief 
rule base to model the causal relationship among the attributes. 
Rule based can be generated automatically from a data set, or 
can be manually defined and adjusted by an expert. Rules can 
be manually assigned in a sub rule-base by selecting one of the 
non-leaf nodes in the hierarchical structure. The right-side 
panel will shows the information related to the management of 
the sub rule-base correspondent to this non-leaf node. Figure 3 
illustrates the appearance of the main window when a non-leaf 
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node (i.e. sub rule-base) is selected. Rules can be assigned 
automatically by selecting the option “Load Rules File” in the 
“Rule” menu, in the menu bar. 

 

Figure 3. Main window with a non-leaf node selected 

There are several options to modify the type of rules in the 
hierarchical structure are included. For the comparison 
purposes in the RIMER algorithm, the system can adopt three 
different types of rules: 

• RIMER original rules: Rules with belief degree 
distributions in the antecedents of each rule. This is RIMER 
algorithm originally developed and executed in [3]. 

• RIMER+ extended rules: Rules with belief degree 
distributions not only in the antecedents of the rules, but 
also in each consequent. This is the extended RIMER 
algorithm in [8]. In the system, the rules can be 
automatically generated from the input-output sample data 
based on the simple but efficient generation proposed in [8]. 

• Wang-Mendel rules: Rules which do not include belief 
degree distributions, but linguistic terms in both antecedents 
and consequents. The Wang-Mendel algorithm [15] is 
executed when these rules are selected in the system. 

In order to obtain an improved analysis of the results, the 
system includes data to measure the inconsistence [16] of each 
sub-rule base. This is an important parameter to explain the 
results returned by the algorithm, since it indicates the quality 
of the data set the system is working with. 

Repeated rules are not necessary when executing the 
decision algorithm. Options to remove similar rules – based on 
a threshold – are therefore included in the system. 

d) Facilate different types of inputs 
Inputs can be assigned manual or automatically. To assign 

an input manually, click one of the leaf nodes in the 
hierarchical structure and select one of the options that appear 
in the right-side panel. Therefore, the system will ask for the 
required information to generate the input. Figure 4 illustrates 
the different types of the input format which the system could 
offer: 

 
Figure 4. Different inputs that can be assigned 

Fig. 4 (a) shows the initial panel, when there is no option 
selected; Fig. 4 (b) sets a referential value  (linguistic terms) or 
another function that can be defined by the user as an input; 
Fig. 4 (c) indicates a numerical input; Fig. 4 (d) sets a belief 
degree distribution and Fig. 4 (e) creates an interval (range) 
input. Once the button “Set Input” is pressed, the input will be 
transformed automatically into a belief degree distribution and 
assigned to the current leaf node. 

However, to assign inputs automatically from a properly 
defined input CSV file the option Load Input File, in the Input 
menu, included in the menu bar must be selected. In a CSV 
file, it is possible to specify any type of input (i.e. numerical, 
range, etc.). The system will automatically recognize each one 
of these types when loading a CSV file. Once the inputs are 
loaded, the system will be ready to execute the algorithm for all 
of them (in multi-execution mode). 

Sometimes it is necessary to test a problem with random 
data. Thus, the system includes options to define a single 
random input or directly assign random values to every leaf 
node in the hierarchical structure.  

2) Solving process 

Once all the elements required for a problem definition are 
assigned, it is then ready to generate results by executing the 
RIMER approach algorithm embedded into the tool. 

Depending on how the inputs have been assigned, the 
system could be running in different execution modes: 

• If the inputs have been assigned manually, the system will 
be ready for single execution (with the inputs currently 
assigned in every leaf node). To carry out a single 
execution, it is just necessary to press the button so-called 
Execute RIMER once in the main window. The system will 
report the results of the execution through a label at the 
bottom part of the window. Errors during the execution 
process will be also specified in this label, if applicable. 
Users can obtain graphical representations of every input 
and output regarding the last single execution. The Bar 
Chart button is included in the right-side panel in the main 
window. It is also possible to obtain an entire graphical 
summary of the execution selecting the Data Graphic 
Summary included in the main window. Figure 5 shows the 
window where users can observe different graphical data. 
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Figure 5. Data graphic summary window 

• If the inputs have been loaded from a CSV file, the system 
will be ready for a multi-execution (one execution for each 
input loaded in the CSV file). For a multi-execution, the 
button titled “Execute RIMER for all Input” in the main 
window should be enabled. After this multi-execution, a log 
window with the results will automatically appear. 

 

Figure 6. Statistics of the multi-execution mode for the Iris data set 

Figure 6 illustrates the information log retrieved after a 
multi-execution process. As it can be observed, specific details 
are shown in this figure for the last execution (Execution 47th): 

• List of original inputs used in this execution, before its 
transformation into belief degree distributions 

• Expected result  

• Result of the RIMER approach  

• Result of the RIMER approach, in belief degree distribution 

As aforementioned, in the multi-execution mode, general 
statistics about all the execution performed will be generated 
and showed in a log window. The statistics calculated by the 
system (See Figure 5) are summarized as follows: 

• Executions done: This percentage tells us how many 
executions were done above the total that was supposed to 

be done (In case that users stop the execution, if not, this 
percentage always will be 100%). 

• Executions successfully done: This percentage data acts as 
an indicator to show us the completeness of our rule bases. 
If an execution is not successfully done it is because the 
input data does not activate any rule. Therefore, if no rule is 
activated, means that a rule is not defined for this input. 
Thus, there is a lack of completeness in the rule-base. 

• Global and average error: This data will show us the total 
and average error in RIMER predictions or classifications. 

• Accuracy: This percentage statistic displays in how many 
cases RIMER predict the correct classification. 

• Average Output: This statistic in a belief degree shape 
shows us which referential values of our output are more 
likely to be predicted. The data in the Average Normalized 
Output eliminates the uncertain degree and shows the 
average output with its values normalized. 

• T parameter: In case that the root attribute in the 
hierarchical scheme has Utility functions defined within it, 
the system will calculate a special figure based on the 
distance between the output calculated and the expected 
one, assessing the T statistic for T=0.25, T=0.5 and T=1.  

Another important feature in the system is to provide 
methods to load and save in external files all the information 
related with the application, which includes loading and 
saving the rules and inputs included in the current belief rule-
bases and the information logs that keep information about it. 

IV. CASE STUDY 
A numerical example is provided in this section to 

demonstrate the implementation and potential applications of 
the proposed system. The main focus is given on the 
illustration of the functionality of the developed system. 

A. Problem Description 
For this illustrative simulation, Iris data set for 

classification was chosen. Its characteristics are: 1) 150 
instances (50 in each of three classes); 2) 4 attributes - Sepal 
length in cm, Sepal width in cm, Petal length in cm and Petal 
width in cm - and three possible output values - Iris Setosa, 
Iris Virginica and Iris Versicolor; 3) Does not contain missing 
values. In this example, a K-fold cross validation method by 
be applied, with K=5. In each test, 120 samples will be used 
for training and the rest 30 samples will be used for testing. 

B. Implementation 
Firstly, the attributes should be defined in the attributes 

window. In this simulation, each attribute has been assigned 
three linguistic terms as referential values (high, medium and 
low) which are defined with utility functions, so those three 
terms correspond the value of the maximum, average and 
minimum value for this attribute in the data set respectively). 
Figure 7 shows the attributes manager window with the 
definition of the five attributes for this problem (four for the 
input attributes and one output attribute, so called Iris). 
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Figure 7. Attributes manager window with the Iris problem attributes 

After defining all the attributes, it is needed to design the 
hierarchical structure for the problem. In the main window, the 
structure is built just by adding four son nodes to the root node, 
which will be the output attribute Iris.  

Afterwards, the data set was downloaded and adapted into 
10 CSV files, five for training and another five for testing each 
of the training files to apply the K-fold cross validation 
method. After loading one of the training files, the right-panel 
of the main window is updated and the rules table is filled with 
the rules loaded. Figure 8 shows the main window after 
defining the problem structure and loading one of the training 
files. The last element remaining to complete the definition of 
the problem is the input one. It is possible to assign manually 
inputs to the leaf nodes in the hierarchical structure. However, 
in this simulation one of the test CSV files that has been 
created before will be loaded. 

 

Figure 8. Main window with Iris problem structure defined 

Finally, the algorithm is executed in multi-execution mode 
and after that the results log appears in the window, showing 
the results of the test executed (See Figure 6). The results for 
this test are 0.966 accuracy, with an average error of 0.141. For 
the 5 tests carried out in this simulation, the accuracy is 0.96, 
and the average error of 0.136. 

V. CONCLUSIONS 
This paper presented a decision support tool which 

facilitates the implementation of the recently presented RIMER 

approach whereby the final user could design and execute 
problems to obtain the decision result. The architecture and 
features of the system are outlined and illustrated. The system 
is expected to be applied for different application and we are 
working on further improvement about the overall presentation 
and functionality of the system. 
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