
2011 IEEE International Conference on Fuzzy Systems
June 27-30, 2011, Taipei, Taiwan

978-1-4244-7316-8/11/$26.00 ©2011 IEEE

An Intelligent Decision Support Tool Based on Belief
Rule-Based Inference Methodology

Alberto Calzada, Jun Liu and Hui Wang
School of Computing and Mathematics
Faculty of Computing and Engineering

University of Ulster, Northern Ireland, UK
albertocalsa@gmail.com; {j.liu, h.wang}@ulster.ac.uk

Luis Martinez Anil Kashyap
School of Computing School of the Built Environment

University of Jaén University of Ulster
Jaén, Spain Northern Ireland, UK

luis.martinez@ujaen.es a.kashyap@ulster.ac.uk

Abstract — Taking into account the need of handling hybrid
information with uncertainty in human decision making, a new
belief rule-base inference methodology (RIMER) has been
recently proposed. RIMER approach and its relevant extensions
have proved to be highly positive solving decision problems.
However, for an end user it is difficult to implement the methods
and algorithms from the raw equations in order to solve a specific
problem. This paper presents a decision support tool based on the
RIMER approach that facilitates its implementation and use to
end-users. The overall structure and main functionalities of the
tool are outlined, followed by an example to illustrate the use of
this tool for applications.

Keywords — knowledge-based system, belief rule base, decision
making, uncertainty, decision support system.

I. INTRODUCTION
Nowadays, large amount and heterogeneous information

provided by different sources is common for decision making
problems, this fact implies a high complexity that is rather
difficult of managing for human beings without any support.
Consequently, more and more computer based decision-making
support has been accepted and developed, to provide a stress-
free view of the situation, joining the individuals intellectual
resources with the capabilities of computers for improving the
quality of decisions [1].

The use of rules is one of the most common ways in many
tools for knowledge representation and inference in decision
problems. Knowledge-based systems, usually constructed from
human knowledge by means of if-then rules, have been one of
the most visible and fastest growing branches of artificial
intelligence [2]. In the design and implementation of
knowledge-based systems for supporting human decision
making, it is necessary and inevitable to use a scheme for
representing and processing imprecise, incomplete and
uncertain information in conjunction with precise data. Because
of the need of handling hybrid information with uncertainty in
human decision making, the belief Rule-base Inference
Methodology using the Evidential Reasoning approach –
RIMER was introduced in [3]. This methodology uses a belief
structure for modelling hybrid rule-bases and an evidential
reasoning (ER) approach [4] for making inference in the belief
rule-based system by combining decision science [5], rule-

based systems, and Dempster-Shafer (D-S) theory of evidence
[6-7]. Therefore in RIMER a rule-base is designed with belief
degrees embedded in the entire consequent terms of a rule,
called belief rule-base (BRB), to capture nonlinear causal
relationships as well as uncertainty. RIMER approach has been
further investigated and extended in [8], denoted as RIMER+,
where an extended rule base is designed with belief degrees
embedded in the entire consequent terms as well as in the entire
antecedent terms of each rule. In addition, a simple but efficient
method for automatically generating such extended belief rule-
base from numerical data is proposed involving low time cost
iterative learning procedure and simple rule generation
mechanisms [8]. RIMER results and its relevant extensions
have proved to be highly positive solving decision problems
applied to different areas, such as, among others, safety and
risk analysis, oil pipe leak detection and some other application
in engineering systems [9-13].

This paper presents a decision support software tool which
aims to facilitate the implementation and use of RIMER and
RIMER+ to solve complex decision making problems. This tool
presents a friendly end-user interface that allows the
implementation of RIMER and RIMER+ in a transparent,
informative and integrated way. Concretely, it offers the
following functionalities: 1) A data base to store the input-
output data; 2) a friendly user interface for problem structuring,
information collection, and data presentation in both graphical
and text formats; 3) The necessary modules for the rule-base
which would be automatically generated based on the input-
output sample data or assigned by domain experts and can be
then represented in the interface; 4) management of
heterogeneous input information in an integrated way; 5)
inference algorithms to be applied once the rule-base is
generated and the inputs are obtained; 6) a module to save and
load solutions of a problem in both textual and graphical
formats. Each functionality will be further detailed in the
following sections.

This paper is organized as follows: RIMER and RIMER+
are briefly overviewed in Section II. The architecture of the
decision support tool and its functionalities are presented in
Section III. Section IV introduces an illustrative example. This
paper is concluded in Section V.

2638

II. OUTLINING RIMER APPROACH
RIMER [3] presents a new belief rule representation scheme to
extend traditional IF–THEN rules using a belief structure. The
belief rule base (BRB) introduced in RIMER approach is
designed with belief degrees embedded in the consequent
terms. It has been then extended into a new belief rule base
with belief degrees embedded in the entire consequent terms as
well as in the entire antecedent terms of each rule [8].

Suppose a BRB is given by R={R1, R2,…, RL} with the kth
rule represented as follows [3]:

Rk: IF U is Ak THEN D with belief degrees β k, with a rule
weight θk and attribute weights δ1, δ2,…, Tδ (1)

where U represents the antecedent attribute vector (U1,…,
TU), Ak the packet antecedents { kA1 ,…, k

TA }, and k
iA

(i=1,…, T) the referential value of the antecedent attribute Ui
in the kth rule; T the total number of antecedent attributes used
in the rule base; D the consequent vector (D1,…, DN), and β k
the vector of the belief degrees (kβ1 ,…, Nkβ) for k∈{1,…,
L}, and skβ (s∈{1,…, N} the belief degree to which Di is
believed to be the consequent if in the kth packet rule the input
satisfies the packet antecedents Ak. θk is the relative weight of
the kth rule and δ1,…, δT are the relative weights of the T

antecedent attributes. L is the number of all the packet rules in
the rule-base. ∑ ≤=

N
s skβ1 1. If ∑ ==

N
s skβ1 1, the kth packet rule

is said to be complete; otherwise, it is incomplete.
Take for example the belief rule in safety analysis [10-11]:
Rk: IF the failure rate is frequent and the consequence

severity is critical and the failure consequence probability is
unlikely, THEN the safety estimate is {(good, 0), (average, 0),
(fair, 0.7), (poor, 0.3)}, (2)

where the consequent is a belief distribution representation for
safety consequent, stating that it is 70% sure that safety level
is fair and 30% sure is poor. This kind of rule reflects another
kind of uncertainty caused because an expert is unable to
establish a strong correlation between premise and conclusion.

In [8], to facilitate the more general application cases and
more flexible and simpler rule-base generation scheme, this
belief rule is extended with belief degrees embedded in the
entire possible antecedent terms of each rule as well, for
example, belief rule (2) can be extended as follows:

Rk: IF the failure rate is {(very low, 0), (low, 0),
(reasonably low, 0), (average, 0), (reasonably frequent, 0),
(frequent, 0), (highly frequent, 1) AND the consequence
severity is {(negligible, 0), (marginal , 0), (moderate , 0.3),
(critical, 0.7), (catastrophic, 0)} AND the failure
consequence probability is {(highly unlikely, 0.1), (unlikely ,
0.7), (reasonably unlikely, 0.2), (likely , 0), (reasonably likely,
0), (highly likely, 0), (definite, 0)} THEN the safety estimate
is {(Good, 0), (Average, 0.1), (Fair, 0.6), (Poor, 0.3)} (3)

This kind of extended belief rule is able to not only capture
vagueness (with linguistic terms), uncertainty (with beliefs),
incompleteness (partially known beliefs in antecedents and/or
consequents) and nonlinear relationships (IF-THEN rules)
between these three parameters and the safety level but also

provide the flexible way to incorporate the hybrid input
information as well as more efficient rule generation scheme.

Generally, rule (1) can be extended in the following form:
Rk

*: IF U is (A, αk) THEN D with belief degrees β k, with a
rule weight θk and attribute weights δ1, δ2,…, Tδ
(4)

where (A, αk) is the packet antecedents {{(Aij, k
ijα), j=1,…,

Ji}; i=1,…, T} (as illustrated in (3)) representing antecedent
with belief structure; here Aij (j∈{1,…, Ji}) is the jth
referential value of the ith antecedent attribute Ui (i=1, …, T),

k
ijα the likelihood to which Ui is evaluated to be the referential

value Aij in the kth rule with k
ijα ≥0 and ∑ ≤iJ

j
k
ij 1α (i=1,… T),

k=1,…, L*, L* is the total number of all the packet rules in the
rule-base. A rule base with rules in the form of (4) is called an
extended belief rule base (EBRB) compared with (1). Note
that all the rules in an EBRB share the same antecedent terms
and consequent terms, but have different belief distributions
for each antecedent attribute and the consequent. The use of
the superscript k in (4) reflects this feature.

Once given an input, the activation weight wk which
measures the degree to which the kth rule is weighted and
activated, will be calculated using various ways depending on
the nature of an antecedent attribute as detailed in [3, 8].
Having determined the activation weight of each rule in the
rule base, the ER approach can be directly applied to combine
the rules and generate final conclusions. The final conclusion
generated by aggregating all activated rules by the current
input vector x={xi, i=1,…, T} can be represented as follows:

f(x)={(Ds, β s), s=1,…, N}. (5)

The final result is still estimated a belief distribution,
which gives a panoramic view about estimate for a given input
[3, 8]. The inference methodology based on (1) is referred to
RIMER, and the one based on (4) as RIMER+. The following
introduced software tool includes both methodologies, for the
convenience, we use only RIMER as a representative.

III. DECISION SUPPORT SYSTEM BASED ON RIMER
This section introduces a decision support software tool that
implements the RIMER method.

A. Architecture
This system has been developed under the object-oriented

programming paradigm. So abstract concepts can be defined
and grouped into packages. The general structure of the
packages follows the classic MVC architecture [14]. Each main
package – Model, View and Controller – communicate with the
rest through interface classes, i.e. with non-implemented
methods. The main feature of this design pattern is that permits
the encapsulation of each part of the system with a minimal
decoupling with the rest. The MVC architecture allows us to
build the system iteratively, from the first basic window with
the basic features, until the final result, which is improved due
to the versioning system until all the functionalities required
are achieved.

2639

B. Features of RIMER support system
This section introduces the main features of the system.

Firstly it presents the features related to the problem definition
and secondly related to the solving process.

1) Problem definition

The system provides the flexibility to define the
hierarchical decision structure which is composed of several
attributes. Attributes (also referred to as parameters) are
variables that represent decision sub-problems. They are
organized hierarchically so the attributes in higher levels of the
hierarchy depend on lower-level attributes. The system presents
a clear-cut interface to define the hierarchical structure and its
attributes. The interface has been designed in a way that each
attribute in the structure can be directly modified. Therefore, all
the elements of the problem definition can be managed directly
in an integrated way, just by clicking on them. These elements
are subsequently described.

The system interface is based on two main windows that
show the details of every parameter and keep them visible in
the window to facilitate their management. Hence, an
accessible and fast way to navigate between both windows is
provided. Figure 1 (a) illustrates the layout of attributes
management and Figure 1 (b) shows a general hierarchical
structure window (also taken as the main window).

Figure 1 (a) Attribute window

Figure 1 (b) Hierarchical structure window as main window

a) Attributes management
The attributes management window manages every aspect

regarding the attributes and their referential values (a set of

meaningful and distinctive evaluation standards for describing
an attribute, which is commonly described by subjective
linguistic terms). The definition of each attribute is essential to
obtain proper results when executing RIMER, since both
inputs and outputs are transformed into belief distribution
based on the referential values of each attribute (see Section
II). The attributes management window is divided into three
parts – attributes manager (on the left), referential values
manager (top-centre) and functions graph (bottom-centre).

It is possible to choose among different types of functions
for the referential values when creating a new attribute in the
attributes manager. Figure 2 shows examples about different
functions can be graphically represented in the system– from
top-left to bottom: Triangular, Trapezoidal and Gaussian fuzzy
membership functions, qualitative linguistic terms and utility
functions.

Figure 2. Possible representations in the functions graph

b) Generate hierarchal structure of the problem
From the main window, it is possible to generate a

hierarchical structure of a problem by adding and removing
nodes. In this case, each node of the hierarchy is associated
with one of the attributes defined previously in the attributes
window. By selecting a node included in the hierarchy, users
will be able to modify its properties. Note that the leaf nodes
have different properties from the non-leaf nodes: for a leaf
node, it is possible to assign an input and for the non-leaf
nodes, users can create and manage rules which form a sub-rule
base in the hierarchical structure. Therefore, the content of the
panel on the right side of the main window will change
depending on the type of the current selected node. In Figure 1,
this panel corresponds to a leaf node, since the selected node –
surrounded by blue circles – is a leaf node.

c) Belief rule-bases generation and representation
Once the attributes are defined and organized into a

hierarchical structure, the next step is to generate the belief
rule base to model the causal relationship among the attributes.
Rule based can be generated automatically from a data set, or
can be manually defined and adjusted by an expert. Rules can
be manually assigned in a sub rule-base by selecting one of the
non-leaf nodes in the hierarchical structure. The right-side
panel will shows the information related to the management of
the sub rule-base correspondent to this non-leaf node. Figure 3
illustrates the appearance of the main window when a non-leaf

2640

node (i.e. sub rule-base) is selected. Rules can be assigned
automatically by selecting the option “Load Rules File” in the
“Rule” menu, in the menu bar.

Figure 3. Main window with a non-leaf node selected

There are several options to modify the type of rules in the
hierarchical structure are included. For the comparison
purposes in the RIMER algorithm, the system can adopt three
different types of rules:

• RIMER original rules: Rules with belief degree
distributions in the antecedents of each rule. This is RIMER
algorithm originally developed and executed in [3].

• RIMER+ extended rules: Rules with belief degree
distributions not only in the antecedents of the rules, but
also in each consequent. This is the extended RIMER
algorithm in [8]. In the system, the rules can be
automatically generated from the input-output sample data
based on the simple but efficient generation proposed in [8].

• Wang-Mendel rules: Rules which do not include belief
degree distributions, but linguistic terms in both antecedents
and consequents. The Wang-Mendel algorithm [15] is
executed when these rules are selected in the system.

In order to obtain an improved analysis of the results, the
system includes data to measure the inconsistence [16] of each
sub-rule base. This is an important parameter to explain the
results returned by the algorithm, since it indicates the quality
of the data set the system is working with.

Repeated rules are not necessary when executing the
decision algorithm. Options to remove similar rules – based on
a threshold – are therefore included in the system.

d) Facilate different types of inputs
Inputs can be assigned manual or automatically. To assign

an input manually, click one of the leaf nodes in the
hierarchical structure and select one of the options that appear
in the right-side panel. Therefore, the system will ask for the
required information to generate the input. Figure 4 illustrates
the different types of the input format which the system could
offer:

Figure 4. Different inputs that can be assigned

Fig. 4 (a) shows the initial panel, when there is no option
selected; Fig. 4 (b) sets a referential value (linguistic terms) or
another function that can be defined by the user as an input;
Fig. 4 (c) indicates a numerical input; Fig. 4 (d) sets a belief
degree distribution and Fig. 4 (e) creates an interval (range)
input. Once the button “Set Input” is pressed, the input will be
transformed automatically into a belief degree distribution and
assigned to the current leaf node.

However, to assign inputs automatically from a properly
defined input CSV file the option Load Input File, in the Input
menu, included in the menu bar must be selected. In a CSV
file, it is possible to specify any type of input (i.e. numerical,
range, etc.). The system will automatically recognize each one
of these types when loading a CSV file. Once the inputs are
loaded, the system will be ready to execute the algorithm for all
of them (in multi-execution mode).

Sometimes it is necessary to test a problem with random
data. Thus, the system includes options to define a single
random input or directly assign random values to every leaf
node in the hierarchical structure.

2) Solving process

Once all the elements required for a problem definition are
assigned, it is then ready to generate results by executing the
RIMER approach algorithm embedded into the tool.

Depending on how the inputs have been assigned, the
system could be running in different execution modes:

• If the inputs have been assigned manually, the system will
be ready for single execution (with the inputs currently
assigned in every leaf node). To carry out a single
execution, it is just necessary to press the button so-called
Execute RIMER once in the main window. The system will
report the results of the execution through a label at the
bottom part of the window. Errors during the execution
process will be also specified in this label, if applicable.
Users can obtain graphical representations of every input
and output regarding the last single execution. The Bar
Chart button is included in the right-side panel in the main
window. It is also possible to obtain an entire graphical
summary of the execution selecting the Data Graphic
Summary included in the main window. Figure 5 shows the
window where users can observe different graphical data.

2641

Figure 5. Data graphic summary window

• If the inputs have been loaded from a CSV file, the system
will be ready for a multi-execution (one execution for each
input loaded in the CSV file). For a multi-execution, the
button titled “Execute RIMER for all Input” in the main
window should be enabled. After this multi-execution, a log
window with the results will automatically appear.

Figure 6. Statistics of the multi-execution mode for the Iris data set

Figure 6 illustrates the information log retrieved after a
multi-execution process. As it can be observed, specific details
are shown in this figure for the last execution (Execution 47th):

• List of original inputs used in this execution, before its
transformation into belief degree distributions

• Expected result

• Result of the RIMER approach

• Result of the RIMER approach, in belief degree distribution

As aforementioned, in the multi-execution mode, general
statistics about all the execution performed will be generated
and showed in a log window. The statistics calculated by the
system (See Figure 5) are summarized as follows:

• Executions done: This percentage tells us how many
executions were done above the total that was supposed to

be done (In case that users stop the execution, if not, this
percentage always will be 100%).

• Executions successfully done: This percentage data acts as
an indicator to show us the completeness of our rule bases.
If an execution is not successfully done it is because the
input data does not activate any rule. Therefore, if no rule is
activated, means that a rule is not defined for this input.
Thus, there is a lack of completeness in the rule-base.

• Global and average error: This data will show us the total
and average error in RIMER predictions or classifications.

• Accuracy: This percentage statistic displays in how many
cases RIMER predict the correct classification.

• Average Output: This statistic in a belief degree shape
shows us which referential values of our output are more
likely to be predicted. The data in the Average Normalized
Output eliminates the uncertain degree and shows the
average output with its values normalized.

• T parameter: In case that the root attribute in the
hierarchical scheme has Utility functions defined within it,
the system will calculate a special figure based on the
distance between the output calculated and the expected
one, assessing the T statistic for T=0.25, T=0.5 and T=1.

Another important feature in the system is to provide
methods to load and save in external files all the information
related with the application, which includes loading and
saving the rules and inputs included in the current belief rule-
bases and the information logs that keep information about it.

IV. CASE STUDY
A numerical example is provided in this section to

demonstrate the implementation and potential applications of
the proposed system. The main focus is given on the
illustration of the functionality of the developed system.

A. Problem Description
For this illustrative simulation, Iris data set for

classification was chosen. Its characteristics are: 1) 150
instances (50 in each of three classes); 2) 4 attributes - Sepal
length in cm, Sepal width in cm, Petal length in cm and Petal
width in cm - and three possible output values - Iris Setosa,
Iris Virginica and Iris Versicolor; 3) Does not contain missing
values. In this example, a K-fold cross validation method by
be applied, with K=5. In each test, 120 samples will be used
for training and the rest 30 samples will be used for testing.

B. Implementation
Firstly, the attributes should be defined in the attributes

window. In this simulation, each attribute has been assigned
three linguistic terms as referential values (high, medium and
low) which are defined with utility functions, so those three
terms correspond the value of the maximum, average and
minimum value for this attribute in the data set respectively).
Figure 7 shows the attributes manager window with the
definition of the five attributes for this problem (four for the
input attributes and one output attribute, so called Iris).

2642

Figure 7. Attributes manager window with the Iris problem attributes

After defining all the attributes, it is needed to design the
hierarchical structure for the problem. In the main window, the
structure is built just by adding four son nodes to the root node,
which will be the output attribute Iris.

Afterwards, the data set was downloaded and adapted into
10 CSV files, five for training and another five for testing each
of the training files to apply the K-fold cross validation
method. After loading one of the training files, the right-panel
of the main window is updated and the rules table is filled with
the rules loaded. Figure 8 shows the main window after
defining the problem structure and loading one of the training
files. The last element remaining to complete the definition of
the problem is the input one. It is possible to assign manually
inputs to the leaf nodes in the hierarchical structure. However,
in this simulation one of the test CSV files that has been
created before will be loaded.

Figure 8. Main window with Iris problem structure defined

Finally, the algorithm is executed in multi-execution mode
and after that the results log appears in the window, showing
the results of the test executed (See Figure 6). The results for
this test are 0.966 accuracy, with an average error of 0.141. For
the 5 tests carried out in this simulation, the accuracy is 0.96,
and the average error of 0.136.

V. CONCLUSIONS
This paper presented a decision support tool which

facilitates the implementation of the recently presented RIMER

approach whereby the final user could design and execute
problems to obtain the decision result. The architecture and
features of the system are outlined and illustrated. The system
is expected to be applied for different application and we are
working on further improvement about the overall presentation
and functionality of the system.

ACKNOWLEDGMENT
This paper has been partially supported by the UU strategy
fund, and the research projects TIN2009-08286, P08-TIC-
3548 and Feder Fonds.

REFERENCES
[1] E. Turban, and J.E. Aronson, Decision Support Systems and Intelligent

Systems, Fifth Edition, Prentice Hall, 1997.
[2] R. Sun (1995), “Robust reasoning: Integrating rule-based and similarity-

based reasoning,” Artif. Intell., vol. 75, no. 2, pp. 241–295.
[3] J. B. Yang, J. Liu, J. Wang, H. S. Sii, and H. W. Wang, “A generic rule-

base inference methodology using the evidential reasoning approach—
RIMER,” IEEE Transactions on Systems, Man, and Cybernetics-Part A:
System and Humans, vol. 36, no. 2, pp. 266–285, Mar. 2006.

[4] J. B. Yang and D. L. Xu, “On the evidential reasoning algorithm for
multiple attribute decision analysis under uncertainty,” IEEE Trans.
Syst. Man Cybern., A, Syst. Humans, vol. 32, no. 3, pp. 289–304, May
2002.

[5] J. S. Dyker, P. C. Fishburn, R. E. Steuer, J. Wallenius, and S. Zionts,
“Multiple criteria decision making, multiattribute utility theory: The next
ten years,” Manag. Sci., vol. 38, no. 5, pp. 645–654, May 1992.

[6] G. Shafer (1976), A Mathematical Theory of Evidence. Princeton, NJ:
Princeton Univ. Press.

[7] A. P. Dempster, “A generalization of Bayesian inference,” J. R. Stat.
Soc., Ser. B, vol. 30, no. 2, pp. 205–247, 1968.

[8] J. Liu, L. Martínez, A. Calzada, and Hui Wang, “An extended belief rule
based inference methodology and its rule-base generation by learning
from examples”, submitted to IEEE Transactions on Knowledge and
Data Engineering.

[9] J.B. Yang, J. Liu, D.L. Xu, J. Wang, H.W. Wang, "Optimization models
for training belief-rule-based systems", IEEE Transactions on Systems,
Man, and Cybernetics-Part A, 37(4)(2007) pp. 569-585.

[10] J. Liu, J.B. Yang, D. Ruan, L. Martinez, and J. Wang. Self-tuning of
fuzzy belief rule bases for engineering system safety analysis, Annals of
Operations Research, 163(1): 143-168, 2008.

[11] J. Liu, J.B. Yang, J. Wang, H.S. Sii and Y.M. Wang. “Fuzzy rule-based
evidential reasoning approach for safety analysis”, International Journal
of General Systems, 33(2-3): 183-204, 2004.

[12] D. L. Xu, J. Liu, J. B. Yang, G. P. Liu, J. Wang, I. Jenkinson and J. Ren
(2007), “Inference and learning methodology of belief-rule-based expert
system for pipeline leak detection”, Expert Systems with Applications,
Volume 32, Issue 1, pages 103-113, ISSN 0957-4174.

[13] Z.J. Zhou, C.H. Hu, J.B. Yang, D.L. Xu, and D.H. Zhou, “Online
updating belief-rule-based system for pipeline leak detection under
expert intervention”. Expert Systems with Applications, 36(3): 7700-
7709, 2008.

[14] Reenskaug T. Models - views – controllers, Technical report, Xerox
PARC, Dec. 1979.

[15] L. X. Wang, J.M. Mendel, “Generating fuzzy rules by learning from
examples”, IEEE Transactions on Systems, Man, and Cybernetics, 22:6
(1992) 1414-1427.

[16] J. Liu, L. Martínez, D. Ruan, R.M. Rodriquez, and A. Calzada (2010),
“Optimization algorithm for learning consistent belief rule-base from
examples”, Journal of Global Optimization, in press: 10.1007/s10898-
010-9605-x (22-09-2010).

2643

	2011FUZZ-Proc 2638
	2011FUZZ-Proc 2639
	2011FUZZ-Proc 2640
	2011FUZZ-Proc 2641
	2011FUZZ-Proc 2642
	2011FUZZ-Proc 2643

