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Abstract: In this paper, we present a methodology for Real-Time Activity Recognition of Interleaved
Activities based on Fuzzy Logic and Recurrent Neural Networks. Firstly, we propose a representation
of binary-sensor activations based on multiple Fuzzy Temporal Windows. Secondly, an ensemble
of activity-based classifiers for balanced training and selection of relevant sensors is proposed.
Each classifier is configured as a Long Short-Term Memory with self-reliant detection of interleaved
activities. The proposed approach was evaluated using well-known interleaved binary-sensor
datasets comprised of activities of daily living.

Keywords: real-time activity recognition; interleaved activities; fuzzy temporal windows; long
short-term memory

1. Introduction

Globally, the population demographics are gradually shifting from younger to older age groups
meaning elderly care is becoming unsustainable [1]. In order to relieve some workload from carers,
whilst encouraging older adults to remain independent at home, assistive systems have been
developed [2]. Some of these systems are capable of identifying simple to complex human activities,
as well as the context in which they occur, from sensor data; this is currently a core aspect of smart
assistive technologies [3]. Activity recognition assists with identifying the tasks being carried out and
can determine whether the occupant has any difficulties with completing tasks or daily activities [4].
When tasks and scenarios become more complex, they are referred to as interleaved activities [5].

In this paper, we address the real-time recognition of interleaved activities. Real time refers to the
recognition of activities while they are taking place; new sensor events are recorded, whilst streaming,
without including explicit information on the evaluations labelled time interval [6]. In this way,
the methodology presented in this work faces two key problems: (i) learning from activities which
are developed in any order, interweaving and performing tasks in parallel if desired [7]; and (ii) recognizing
activities in real time, without including explicit information on the future sensor events [8].

Activity recognition is the process of retrieving high level knowledge about activities and
occurrences taking place in an environment such as a smart home; whilst also learning about the
behaviour of those present in the environment [9].
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Real-time activity recognition is a challenging area of smart home technology [8]. The main
difficulty with real-time activity recognition approaches is the ability to correctly define the size of the
temporal window to allow effective recognition of activities [6,10]. The main concern of including a
single sliding window is that the more sensor events from the past are included, the more noise the data
representation includes on the model [11]. In this work, the use of multiple temporal windows and
fuzzy aggregation methods are proposed to enable the long and middle-term evaluation of sensors.

Furthermore, daily activity datasets suffer from a severe class imbalance problem [12,13],
which are presented when their classes are not equally represented [14]. We balance the training
dataset for each activity classifier in order to solve the imbalance problem within datasets.

In the context of interleaved activities, a scarce number of approaches face this complex problem.
In [15] authors proposed a multi-layer model for activity recognition, using RFID technology and
appliance signatures to identify errors related to cognitive decline from daily activities. Focusing on
morning routine activities, they carried out activity recognition in real time through RFID based
localization and through the use of electrical sensors. It was found that using multiple sensors
increased the accuracy of recognition, however, interleaved activities were not considered. In [16],
authors addressed this challenge using a data set collected from an elderly person living alone by
means of an event-driven approach [6]. It was found that although they were able to effectively
distinguish concurrent activities, more event factors could have been used for better accuracy in results,
as only the timing and the sensor were taken in to account when the location could have been added.

In [17], authors present an approach through ontological and probabilistic reasoning,
which requires a relevant knowledge engineering effort to define a comprehensive ontology of activities,
home environment, and sensor events. This work does not include real-time evaluation presenting a
results based on sensor events of 81%.

In this work, we face to novelty challenge of the real-time recognition of interleaved activities,
which present a hard problem due to: (i) the evaluation in real-time while the activities are being
developed without including future information of sensors; and (ii) the concurrence and disorder of
activities performed by the participants.

The remainder of the paper is structured as follows: the Section 2 details an overview of the
methodology proposed. In Section 3, we highlight the experiments performed, of which are discussed
in Section 4. Finally, the Conclusions and Ongoing Works are presented in Section 5, providing a
critique of the study overall and proposing plans for future work.

2. Methodology

In this section, we detail the proposed methodology for recognizing interleaved human activities
in real-time, using an ensemble classifier of Long Short-Term Memory, with Fuzzy Temporal Windows.
It is based on a previous methodology for sequential learning of activity recognition [18]. This work
is based around the following: (i) the concurrent activation in a parallel way of the ensemble of
activity-based classifiers to provide a suitable interleaved response; and (ii) the computing of relevant
sensors, which are filtered for improving the learning capabilities.

In summary, the proposed methodology for real-time recognition of interleaved activities is
focused on three key points:

• A fuzzy temporal representation of long-term and short-term activations, which define
temporal sequences.

• An ensemble of of activity-based classifiers, which are defined by the suitable sequence classifier:
Long Short-Term Memories (LSTM) [19].

• Balanced learning for each activity-based classifier, to avoid the imbalance problem that suffers
daily activity datasets [12,13]. It is optimized by the similarity relation between activities which:
(i) determines the adequate samples within the training dataset, based on the similarity with
activity to learn; and (ii) filters the relevant sensors to take into account in the learning process.
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In Figure 1, we show the scheme of the methodology proposed.

Figure 1. Scheme of ensemble of classifiers and balanced training for interleaved activity recognition.
Ai and Ai+1 represent different activities which can be activated in an interleaved way.

2.1. Representation of Binary Sensors and Activities

A set of binary sensors is represented by S = {S1, . . . , S|S|} and a set of daily activities is
represented by A = {A1, . . . , A|A|}, where |S| and |A| are the number of sensors and daily activities
respectively. They are described by a set of binary activations within a set of ranges of time, which are
defined by a starting and ending point of time by Equation (1):

Si = {Si0 , . . . , S|Si |}, Sij = {S
0
ij

, S+
ij
}

Ai = {Ai0 , . . . , A|Ai |}, Aij = {A0
ij

, A+
ij
}

(1)

where (i) |Si|, |Ai| is the total number of activations for a given binary sensor Si and daily activity
respectively; and (ii) S0

ij
,S+

ij
is the starting and ending point of a given time of activation.

2.2. Segmentation of Dataset in Time-Slots

We generated a segmented timeline defined by time-slots (also known as time-steps),
which indicate the activation of activities and sensors for a given in a time interval of fixed duration ∆t.
The range for evaluating each time-slot ti is defined by a sliding window between [ti, ti + ∆t].

For each time-slot and a given sensor we determine its activation based on if it has been activated
within it:

S(ti, s) =

1 ∃[S0
sj

, S+
sj
] ∩ [ti, ti + ∆t]∀Ssj

0 otherwise
(2)

In a similar way, for define the activation of an activity a in a time-slot ti,:
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S(ti, a) =

1 ∃[A0
ij

, A+
ij
] ∩ [ti, ti + ∆t]∀Aij

0 otherwise
(3)

Each sensor or activity is represented as a set of activation by ordered time-slots
S(s) = {S(t0, s), . . . , S(tn, s)}. For sake of simplicity, we call extensively t+ to a time-slot ti in the
timeline T.

2.3. Sensor Features Defined by Fuzzy Temporal Windows

In this Section, a binary-sensor representation approach based on fuzzy temporal windows (FTWs)
is detailed. FTWs are therefore described from a given current time t∗ to a past point of time ti as a
function of the temporal distance ∆t∗i = t∗ − ti, t∗ > ti [20]. For that, a given FTW Tk relates the sensor
activation S(s, ti) in a current time t∗ to a fuzzy set Tk(∆t∗i ), which is characterized by a membership
function µT̃k

(∆t∗i = t∗ − ti). For a given FTW, we can write Tk(∆t∗i ) instead of µT̃k
(∆t∗i ).

Firstly, for a given FTW Tk and the current time t∗, each past sensor activation Sti, s is weighted
by calculating the degree of time-activation within the fuzzy temporal window Tk according to
Equation (4).

Tk(s, t∗, ti) = S(ti, s) ∩ Tk(∆t∗i ), ti <= t∗ (4)

Secondly, the degrees of time-activation are aggregated using the t-norm operator in order to
obtain a single activation degree of both fuzzy sets S(s) ∩ Tk by Equation (5).

Tk(s, t∗) = S(s) ∪ Tk(∆t∗) =
⋃

t̄i∈T

S(ti, s) ∩ Tk(∆t∗i ), ti <= t∗ (5)

We propose using the maximal and minimal operators as t-norms, which are recommended for
representing binary sensors [21].

Tk(s, t∗) = S(s) ∪ Tk(∆t∗) = max(min(S(ti, s), Tk(∆t∗i )), ∀ti ∈ T, ti <= t∗ (6)

2.4. Sequence Features of FTW

The representation of sensor activation based on FTWs is used to define a sequence for the
purposes of classification. It has been proposed that FTWs of incremental temporal sizes are defined,
to collect the long-term to the short-term temporal activations.

Each TFW Tk is described by a trapezoidal function based on the time interval from a previous time
ti to the current time t∗: Tk(∆t∗i )[l1, l2, l3, l4] is described by a fuzzy set characterized by a membership
function whose shape corresponds to a trapezoidal function. The well-known trapezoidal membership
functions are defined by a lower limit l1, an upper limit l4, a lower support limit l2, and an upper
support limit l3 (refer to Equation (7)):

TS(x)[l1, l2, l3, l4] =



0 x ≤ l1
(x− l1)/(l2 − l1) l1 < x < l2
1 l2 ≤ x ≤ l3
(l4 − x)/(l4 − l3) l3 < x < l4
0 l4 ≤ x

(7)

To generate FTWs in a simple manner, we propose to define them from a set of incremental
ordered times of evaluation L = {L1, . . . , L|L|}, Li−1 < Li, which the limits of the trapezoidal functions
are calculated regarding to the index of the temporal window Tk.

Tk = Tk(∆t∗i )[Lk, Lk−1, Lk−2, Lk−3] (8)
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In order to define the FTWs, we purpose incremental FTWs straightforwardly defined by the
Fibonacci sequence [22] L = {1, 2, 3, 5, 8, . . .} · ∆t, whose example is shown in Figure 2.

Figure 2. An example of incremental size for FTWs is straightforwardly defined by Fibonacci sequence.

So, L generates a feature vector: (i) which is composed of components the Tk(s, t+) for each time-slot
in the timeline t+ and a given sensor s; and (ii) whose size is equal to the number of TFWs times the
number of sensors |T| × |S|:

T(s, t+) = {T0(s, t+)→ . . .→ Tk(s, t+)→ . . .→ T|T|(s, t+)} (9)

2.5. Ensemble of Classifiers for Activities

Each LSTM activity-based classifier is focused on learning a given activity Ai by means of a
balanced training dataset. Therefore, each classifier learns two class problems: the target activity Ai
and not-being the target activity Ai, which represents other classes and idle class.

For each time-slot t+ and a given classifier Ai the target class O(t+) is defined by:

O(t∗) =

{
1 S(Ai, t+) == 1

0 S(Ai, t+) 6= 1
(10)

So, O(t+) represents the target class to learn by each classifier, whose activation can be concurrent
with several activities ∃Ai, Aj, t+ : S(Ai, t+) = S(Aj, t+) = 1, Aj 6= Ai.

The feature vector for this time-slot t+ is formed by the sequence of aggregated activation degrees
Tk(s, t+) from the FTWs Tk for each sensor s for a given time-slot t+, as we described in Section 2.4.

Once the learning process is complete, the activation of the target activity Ai is presented when
the prediction for the target activity pAi overcomes the prediction of not-being the target activity pAi

.
We note several classifiers within the ensemble which can (and must) be activated in same time-slot t+.

2.5.1. Balancing Learning With Similarity Relation Between Activities and Filtering of Relevant Sensors

In this section, we describe how to build ad-hoc balanced training for each activity-based
classifier from the similarity relation between other activities and filter the relevant sensors while the
learning process.

Based on a given activity Ai and other activity Aj, we define a similarity relation Ra as a function
Ra : Ai × Aj → [0, 1], which determines the similarity degree between both activities.
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To compute the similarity, we calculate a similarity relation Rs : Ai × Sj → [0, 1] between activities
and sensors using the relative frequency of sensor activation within each activity:

Rs(Ai, Sj) =
|Sj ∩ Ai|

∑S
Sk
|Sj ∩ Ai|

(11)

where |Sj ∩ Ai| represents the number of time-slots activated when the sensor Sj is activated together
with the activity Ai. This measure is also called Mutual Information [6].

First, the similarity Rs(Ai, Sj) is used to compute the relevant sensors S+
j for a given activity Ai

based on a relevance factor sα:
S+

j : Rs(Ai, Sj) > sα (12)

Secondly, we evaluate the similarity relation between activities Ra aggregating the similarity
relation between their sensors:

Ra(Ai, Aj) =
S

∑
Sk

Ra(Ai, Sk)× Ra(Aj, Sk), Ai 6= Aj (13)

Thirdly, we propose to build a balanced-activity training dataset, which contains a weight or
percentage of samples for each activity Ai based on the similarity relation:

• wAi , defines a fixed percentage of samples corresponding to the activity to learn.
• wA0 , defines a fixed percentage of samples corresponding to any activity (Idle).
• wAi

, configures a dynamic percentage from the all other activities in the balanced-activity training
dataset wAi + wA0 + wAi

= 1, which is calculated by weighting the normalized similarity degree
with the percentage from the other activities:

wAj = wAi
× R̃a(Ai, Aj) (14)

In order to re-sample the time-slots for each balanced-activity training dataset, a straightforward
random process is included to select a random time-slots rejecting or accepting based on the percentages
of activities wAi .

3. Experimental Setup

In this Section, the experiments performed on the proposed methodology is evaluated using the
interleaved dataset [7], which provides data from 20 participants who performed eight activities in
any order, interweaving and performing tasks in parallel if desired. Up to three activities can be performed
concurrently by the participant. We note the complexity of learning in this extreme problem.

The activities developed were (1) Filling a medication dispenser; (2) Watching a DVD; (3) Watering
plants; (4) Answering the phone; (5) Preparing a birthday card; (6) Preparing soup; (7) Cleaning;
and (8) Choosing an outfit. 41 sensors, including motion, item and water sensors, describe the activities
within WSU smart apartment testbed.

The methodology proposed in this work uses following parameters:

• Number of FTWs=|T| = 10.
• Incremental FTWs defined by the Fibonacci sequence [22] L = {720, 540, 360, 180, 60, 30, 8, 5, 3, 2, 1} ·

∆t.
• For balancing training dataset for each activity:

– Number of training samples = 5000.
– Percentage of samples from target activity wAi = 0.4.
– Percentage of idle activity wA0 = 0.1.
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– Percentage of samples corresponding to the non-target activity wAi
= 0.6.

• For each LSTM activity-based classifier: learning rate = 0.003, number of neurons = 64, number of
layers = 3.

We evaluated three different time intervals of fixed duration ∆t to define the time-slots
∆t = {30 s, 60 s, 90 s} and three different values for the relevance factor; to identify the selected sensors
for learning in each activity sα = {0%, 3%, 6%}. For this, two metrics are introduced:

• F1-coverage (F1-sc), which provides an insight into the balance between precision
(precision = TP

TP+FP ), and recall (recall = TP
TP+FN ) from predicted and ground truth time-slots.

Although well-known in activity recognition [23], we note a key issue from this metric on time
interval analysis: the false positives of an activity, far from any time interval activation, are equally
computed to false positives closer to end of activities. Which is common in the end of activities
more so than in interleaved activities.

• F1-interval-intersection (F1-ii), evaluates the time intervals of each activity based on: (i) the
precision of predicted time intervals; which intersects to a ground truth time interval; (ii) the recall
of the ground truth time intervals; which intersects with a predicted time interval.

For evaluation purposes we have developed a leave-one-participant cross-validation, where for each
participant, the test is composed by the activities performed by the given participant and training is
composed by the activities performed by other participants.

4. Results

In this section we describe the results of F1-sc and F1-ii from the interleaved dataset [7].
Table 1 describes the metrics for the duration of time-slots ∆t = {30 s, 60 s, 90 s} and the the relevance
factor sα = {0%, 3%, 6%} for each configuration of values. Due to the recognition of the activities
being frequently adjacent to the ground truth of the activity, included also is: (i) a strict comparison
without error margin 0-time-slot, and (ii) a time-slot margin, comparing the prediction and ground
truth; which evaluates as correct if both match in the adjacent time-slot. Finally, in Tables 2 and 3 we
detail the values of metrics for each activity and the best configuration of the relevance factor sα.

Table 1. Global results.

∆t F1-ii F1-sc
sα = 0% sα = 3% sα = 6% sα = 0% sα = 3% sα = 6%

0 slot margin 30s 84.54 80.75 79.13 70.95 70.78 66.98
60s 85.96 85.87 86.35 73.03 73.89 72.52
90s 81.50 87.60 90.47 68.52 75.99 75.48

1 slot margin 30s 88.30 85.46 87.34 73.97 72.91 69.56
60s 88.09 89.26 91.05 74.31 77.16 74.77
90s 84.23 91.96 95.61 70.86 77.94 77.58

Table 2. Detailed values of metric F1-ii for each activity, duration of time-slot ∆t and relevance factor sα.

∆t = 30 s ∆t = 60 s ∆t = 90 s
Ai sα = 0% sα = 3% sα = 6% sα = 0% sα = 3% sα = 6% sα = 0% sα = 3% sα = 6%

t1 90.06 86.17 92.83 91.16 94.87 98.29 91.19 92.43 100.00
t2 91.35 84.26 90.40 85.69 87.37 90.41 85.61 93.39 93.37
t3 82.58 85.05 88.95 86.21 90.87 90.23 78.29 93.74 91.04
t4 82.00 71.05 71.67 81.28 77.74 75.65 75.65 86.04 86.72
t5 91.78 89.07 89.92 95.08 95.85 95.07 87.07 91.84 96.58
t6 88.91 92.32 83.02 90.84 96.27 95.62 90.18 93.93 100.00
t7 93.30 85.91 89.26 85.28 87.64 89.50 85.15 90.36 98.15
t8 86.45 89.83 92.72 89.19 83.44 93.59 80.68 94.00 98.99
t9 88.30 85.46 87.34 88.09 89.26 91.05 84.23 91.96 95.61
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Table 3. Detailed values of metric F1-sc for each activity, duration of time-slot ∆t and relevance
factor sα.

∆t = 30 s ∆t = 60 s ∆t = 90 s
Ai sα = 0% sα = 3% sα = 6% sα = 0% sα = 3% sα = 6% sα = 0% sα = 3% sα = 6%

t1 81.50 76.64 77.82 80.87 84.60 80.94 75.17 81.12 81.40
t2 76.74 67.88 64.55 73.99 75.72 74.56 75.85 76.89 72.87
t3 65.43 68.03 66.28 67.85 77.21 70.75 68.94 80.11 79.23
t4 63.07 50.49 50.20 60.47 61.56 46.15 58.42 61.73 46.15
t5 85.96 88.73 85.97 85.51 86.01 84.23 76.99 86.90 87.48
t6 70.67 75.63 58.03 75.28 80.41 74.60 67.11 73.99 76.96
t7 77.40 72.31 68.66 75.49 75.84 76.55 76.21 75.67 83.51
t8 70.99 83.56 84.94 75.03 75.93 90.39 68.15 87.13 92.99
t9 73.97 72.91 69.56 74.31 77.16 74.77 70.86 77.94 77.58

4.1. Discussion

From the results previously described, the suitable performance for the challenging problem
presented in the interleaved dataset [7] is highlighted. The evaluation based on leave-one-participant
cross-validation presents a hard comparative, due to each participant having the opportunity to
carry out activities in any order, thus introducing unseen and unlearned habits within the activity
learning process.

It is noted that the relevant detection of activity intervals, is presented by F1-ii) close or up to 90%
for the three duration of time-slots ∆t = {30 s, 60 s, 90 s}. Patently, a higher aggregation of time-slots
with duration ∆t = 90 s increases the performance, but at the cost of reducing the evaluation time,
which present three times less responses than ∆t = 30 s. For same reason, the difference in error
margin between 0-time-slot and 1-time-slot is more relevant with ∆t = 90 s.

Furthermore, the use of a relevance factor sα, which identifies and selects the key sensors
for each activity while learning, has increased the accuracy rate. In higher duration of time-slots
∆t = {90 s, 60 s} the filtering by the relevance factor is noteworthy due to a greater number of sensors
being activated concurrently in the same time-slots. It increases the noise in the feature representation
of sensors, but a filtering of relevant sensors aims to reduce the conflicting activations in time-slots.

In [17] the approach presents results based on sensor events without real-time capabilities of
81%, where the classification was evaluated only when a change in a sensor was detected. Due to
this, our work is based on the evaluation of time-slots in the further timeline; a direct evaluation is
not possible. The coverage of time-slots F1-sc presents an excellent prediction in real-time close to 75%,
which is remarkable due to any external information and modelling being required previously, as well
as, the requirements of evaluating in real-time each time-slot without introducing future information
of sensor.

5. Conclusions and Ongoing Works

The use of fuzzy temporal representation on binary sensors, learned by an ensemble of Long
Short-Term Memory, have been demonstrated as an encouraging methodology to recognize interleaved
activities in real-time. The use of multiple FTWs enables a flexible temporal evaluation in interleaved
activities, whose duration is strongly variant. Moreover, the Fibonacci sequence represents a suitable
shape of incremental FTWs to avoid the hard selection in temporal segmentation.

The results show an encouraging real-time recognition of activity intervals, which represent
the intersection of recognition intervals in the ground truth interval, as f1-ii= 90%. The coverage of
predicted time-slots in real-time within the activity intervals is f1-sc= 75%.

In ongoing works, we will translate the proposed methodology in multi-occupancy and
interleaved activities represented by recent devices, such as, wearable and vision sensors,
which provide a challenging problem to be solved. To evaluate these non-binary sensors in long
and middle-term, it will be necessary to extract several temporal features from signals including a
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filter to remove those non-relevant. For that, the performance of human defined features versus deep
learning approaches will be also compared.
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