A Lattice-Valued Linguistic-Based Decision-
Making Method

Jun Liu, Yang Xu, Da Ruan, and Luis Martinez

Abstract— The subject of this work is to establish a
mathematical framework that provides the basis and tool for
synthesis and evaluation analysis in decision making, especially
from the logic point of view. This paper focuses on a flexible and
realistic approach, i.e., the use of linguistic assessment in decision
making, specially, the symbolic approach acts by direct
computation on linguistic values. A lattice-valued linguistic
algebra model, which is based on a logical algebraic structure,
i.e., lattice implication algebra, is applied to represent imprecise
information and deal with both comparable and incomparable
linguistic values (i.e., non-ordered linguistic values). Within this
framework, some known weighted aggregation functions are
analyzed and extended to deal with these kinds of lattice-value
linguistic information.
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I. INTRODUCTION

In real decision making problem, most of information can be
very qualitative in nature, e.g., with vague or imprecise
knowledge. A more realistic approach in qualitative setting
may be to use linguistic assessments instead of numerical
values. The linguistic approach is an approximate technique
appropriate for dealing with qualitative aspects of problems.
Considering the proposed linguistic approaches, two main
different approaches can be found in order to aggregate
linguistic values in decision making: the first, i.e., the
approximation approach, uses the associated membership
functions of the linguistic values [1], [2]. The second is the
symbolic approach, acts by direct computation on linguistic
values [3]. The latter kind of methods assumes that the
linguistic value set is an ordered structure uniformly
distributed on a scale. These methods seem natural when the
linguistic approach is used, because the linguistic assessments
are just approximations which are given and handled when it
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is impossible or unnecessary to obtain more accurate values.
Thus, in this case, the use of membership functions in the
former approach is unnecessary. Furthermore, they are
computationally simple and quick [3].

A nice feature of linguistic variables is that their values are
structured, which makes it possible to compute the
representations of composed linguistic values from those of
their composing parts. These linguistic values, in different
natural language, seem difficult to distinguish their boundary
sometime, but their meaning of common usage can be
understood. Moreover, there are some “vague overlap
districts” among some words which cannot be strictly linearly
ordered on the universe. Accordingly, establishing certain
suitable algebras to characterize and represent the values of
linguistic variables is therefore desired.

It was shown that lattice has been a very useful and a well-
developed branch of abstract algebra for modeling the
ordering relations in real-world. Lattice-valued algebra for
modeling linguistic values would be a good choice.

Based on the symbolic approaches and the above ideas, a
lattice-valued linguistic algebra model, which is based on a
logical algebraic structure, i.e., lattice implication algebra, is
applied in decision making to represent imprecise information
and deal with both comparable and incomparable linguistic
values (i.e., non-ordered linguistic values). Within this
framework, some known weighted aggregation functions are
analysed and extended to deal with these kinds of lattice-value
linguistic information.

The paper is organized as follows: Section II is an overview
of the symbolic approach focusing on the issue of aggregation.
Based on it, a lattice-valued linguistic approach for
aggregation and decision-making is proposed in Section III
with an example illustration. The paper is concluded in
Section IV.

II. WEIGHT AGGREGATION OF LINGUISTIC ASSESSMENTS

The issue of aggregation has been studied extensively in
many applications of fuzzy sets [4]. To manipulate the
linguistic information in decision making, we shall work with
operators for combining the linguistic un-weighted and
weighted values by direct computation on labels. Specifically,
we focus on the analysis of the operators like Min-type and
Max-type weighted aggregation operators which are all
introduced by Yager [5]-[7].



The aggregation of weighted information involves the
transformation of the weighted information under the
importance degrees. The transformation form depends upon
the type of aggregation of weighted information being
performed. Yager [S]-[7] discussed the effect of the
importance degrees in the types of aggregation Max and Min

and suggested a class of functions for importance
transformation in both types of aggregations, i.e.,

=  Min-type aggregation:

D=Min(g(wy, @), gW2, @),..., W, ay)) )

* Max-type aggregation:

D(x)=Max(g(wi, 1), g(W2, @), ..., 8(Wn, Q1)) @

where g: PxP—P is a weight transformation function, and P is
a finite ordered set. For Min type aggregation he suggested a
family of t-conorms acting on the weighted information and
the negation of the weights, which presents the non-increasing
monotonic property in the weights. For Max type aggregation
he suggested a family of t-norms acting on the weighted
information and the weight, which presents the non-decreasing
monotonic property in the weights. Yager proposed a general
specification of the requirements that any importance
transformation function g: PxP—P, must have the following
properties:

I.  if a>b then g(w, a)2g(w, b);
II.  g(w, a) is monotone in w;
1. g(0, a)=1D;

IV. IV.g(l,a)=a:

with a, beP expressing the satisfaction with regard to a
criterion, we P the weight associated to the criterion, and ID
an identity element, which is such that if we add it to our
aggregations it doesn't change the aggregated value. Some
justifications of conditions I-IV have been given in [5]-[7].

Note that the conditions I-IV are in fact a subset of general
axioms required by a fuzzy implication operators [8]. As
analyzed in [8] for the axioms hold by different fuzzy
implication operators (about 18 implication operators), some
of the implication operators satisfy conditions I-IV. These
implication operators can be suggested as the manifestation of
the transformation function g, which are used for Min-type
aggregation operator. Because t-norms generally satisfy the
conditions I-IV, some T-norms can also be given for Max-type
aggregation operator.

Considering the aforementioned ideas and assuming a
linguistic framework, i.e., a label set L;, to express the
information and the weights. Let Ly={0=s,<...<s,=1} be a
finite set of linguistic terms, ne {0} UN. Two general forms of
the overall aggregation functions are given by

® Min-type aggregation:
D=T(8(W1, al)’ g(w2’ 02)"“, g(wm an)) (4)

where w;, a;€ Ly (i=1,...,n), g is an implication-type transform
function satisfying the conditions I-IV. T is a t-norm. It is the
aggregation rule used in the pessimistic strategy. For a linear
scale, T can be taken as A or T, (Bounded Difference [9]).

= Max-type aggregation:
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D(x)=S(g(w, @), g2, @), ..., W, Gr)) ©)

Here w;, acLy (i=l,..,n), g is a t-norm type transform
function, and § is the corresponding t-conorm. It is the
aggregation rule used in the optimistic strategy. For the linear
scale here, accordingly, S can be taken as v=Max or S, [9].

In the following section, we will consider the more general
linguistic cases, i.e., lattice-valued linguistic terms by using
the logical algebraic structure.

III. LATTICE-VALUED LINGUISTIC APPROACH FOR
AGGREGATION AND DECISION-MAKING

A. Lattice structure and lattice implication algebras

Considering the extension of two-valued logic to multi-
valued logic, two important cases of L are of interest and often
being used: when L is a finite simple ordered set; and when L
is the unit interval [0, 1]. More general, L should be a lattice
with suitable operations like A, v, —, ’. The question of the
appropriate operation and lattice structure has generated much
literature [9-14]. Goguen [11] established L-fuzzy logic of
which truth value set is a complete lattice-ordered monoid,
also called a complete residuated lattice in Pavelka and
Novak's L-fuzzy logic [9], [12]. Since this algebraic structure
is quite general, it is relevant to ask whether one can specify
the structure. In this note, we specify the algebraic structure to
lattice implication algebras (LIA) introduced by Xu [13], [14],
which was established by combining lattice and implication
algebra with the attempt to model and deal with the
comparable and incomparable information. There has been
lots of work about LIAs, as well as the corresponding lattice
valued logic system, reasoning theory and methods [13], [14].
The LIA [13] is defined axiomatically as:

Definition 3.1 (LIA) Let (L, vV, A, ) be a bounded lattice
with an order-reversing involution “ “ ” and the universal
bounds O, I, —>: LXL —> L be a mapping. (L, V, A,’, —)is
called a lattice implication algebra (LIA) if the following
axioms hold for all x, y, z€ L:

(A1) x = (y > 2)=y = (x = z2), (exchange property)

(Az) x = x=1, (identity)

(A3) x = y=y' =/, (contrapositive symmetry)

(A4) x = y=y — x=I implies x=y, (equivalency)

(As) x> ) = y=(y—>x)—>x,

(Ag) xVY) D =x—22) Ay 2),

(A7) xAYy) > z=(x—2)V (y—2).

Remarks:

(1) The implication operation in LIA satisfies the conditions
I-IV of the importance transformation function. Hence the
implication operation in LIA can be used to capture the
transformation between the weight and the individual ratings
in Min-type aggregation.

(2) The corresponding t-norm ® [7], [12] in LIA can be
taken as the transformation function in Max-type aggregation.
And it also can be taken as the Min-type aggregation operator.



(3) The s-norm @ [7], [12] in LIA can be taken as the Max-
type aggregation operator.

B. Lattice-valued linguistic terms

In a natural language, there are some ‘“vague overlap
districts” among some words which cannot be strictly linearly
ordered, as given in Fig. 1 of Example 3.1.

Example 3.1 The ordering relations in the linguistic terms:

a
b

C

e S

g

Fig. 1 Linguistic terms in an ordering. a=very true, b=more true, c=true,
d=approximately true, e=possibly true, f=more or less true, g=little true

Note that d=approximately true, e=possibly true, f=more or
less true are incomparable. You can not collapse that structure
into a linearly ordered structure, because you would impose an
ordering on d, e, and f which was originally not present. It
means the set of linguistic values may not be strictly linearly
ordered. Naturally, it should be suitable to represent these
values by a partially ordered set or lattice.

Here we characterize the set of linguistic values by a LIA
structure. In general, the value of a linguistic variable can be a
linguistic expression involving a set of linguistic values such
as “high,” “middle,” and “low,” modifiers such as “very,”
“more or less” (called hedges [15]) and connectives (e.g.,
“and,” “or”). Let us consider the domain of the linguistic
variable “truth”. domain (truth)={true, false, very true, more
or less true, possibly true, very false, ..}, which can be
regarded as a partially ordered set whose elements are ordered
by their meanings and also regarded as an algebraically
generated set from the generators G={true, false} by means of
a set of linguistic modifiers M={very, more or less, possibly,
...}. The linguistic modifiers are strictly related to the notion of
vague concept. The generators G can be regarded as the prime
term, different prime terms correspond to the different
linguistic variables.

Consider a set of linguistic hedges, e.g. H'={very, more
or plus}, H={approximately, possibly, more or less, little},
where H' consists of hedges which strengthen the meanings of
“true” and the hedges in H weaken it. Put H=H'UH. H", H can
be ordered by the degree of strengthening or weakening, e.g.,
one may assume that very>more, little>approximately,
possibly, and more or less, and “approximately,” “possibly,”
“more or less” are incomparable. We say that a<b iff
a(True)<b(True) in the natural language, where a and b are
linguistic hedges.

Applying the hedges of H to the primary term “frue” or
“false” we obtain a partially ordered set or lattice. For
example, as represented in Fig. 2, we can obtain a lattice
generated from “frue” or “false” by means of operations in H.
Moreover, one can define A, v, implication (—) and
complement operation * on this lattice based on the LIA
structure (Tables I and II).
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Example 3.2 LIA of linguistic terms with 6 elements.
I

o

Fig. 2 The lattice-ordering structure of linguistic terms with 6 elements. Here
I=more true, a=less false, b=true, c=less true, d=false, O=more false

TABLE I TABLE II
AN’ TABLE AN — TABLE

X x’ - | 0 a b c d 1
(0] 1 0| I 1 1 1 1 I
a c a c 1 b c b I
b d b d a 1 b a 1
c a c a a I I a 1
d b d b 1 1 b I I
I (4] I | O| a b c d I

Note that c=approximately true, d=possibly true are
incomparable. We set L={0, a, b, ¢, d, M, e, f, g, h, I}. }. The
operations “A” and “v”can be shown in the Hasse diagram
Fig. 2. The complement operation “’ ” is given in Table I, the
implication operation is given in Table II, the corresponding t-
norm ® and the t-conorm @ [7], [12] can be also given as
according to the LIA structure and properties respectively: As
we can show that (L, v, A, ’, =) is a LIA, all the properties of
LIA will hold in L. So the finite set of linguistic values can be
characterized by a finite LIA.

Accordingly, we can deal with the more general linguistic
information, i.e., from a linear ordered linguistic label set to
lattice-valued linguistic label set. According to Egs. (4) and
(5), we have the following extended aggregation function for
lattice-valued linguistic terms: where w;, a; € L, L is the finite
set of linguistic values characterized by a finite LIA. While in
Eq. (4), g is an implication operation in LIA, T=A or ® in
LIA. For Eq. (5), g2=A or ® in LIA. § can be taken as v or ©@.

For the implication operator I: AXH—H, here H=[0,1], L,
(the set of the linearly order linguistic terms) or L (the set of
the lattice-order linguistic terms based on LIA), we consider
the following properties of I:

1. I(w, a) is non-decreasing in q;
II. I(w, a) is non-increasing in w;
L. 10,a)=1;1IV.I(1,a)=a;
IV. w<aiff I(w, a)=1,

V. w<aiff I(w, a)=1;

VL. I(w, a) 2a for any w, a.

The following Table III gives a comparison among different
implication operators I+ given in [8] as well as the implications
in LIA on the properties for characterizing the transformation
function g.



TABLE III
FULFILMENT OF SOME CONDITIONS FOR THE SELECTED IMPLICATION OPERATORS FOR THE FUNCTION G (Y=YES, N=NO)

L I I Iy I+ Ia I Tax Ie ILia
I Y Y Y Y Y Y Y Y Y Y
i Y Y Y Y Y Y Y Y Y Y
I Y Y Y Y Y Y Y Y Y Y
v Y Y Y Y Y Y Y Y Y Y
\% Y Y Y N Y Y N Y N Y
VI Y N Y Y Y N Y Y Y Y
Feasible for g on [0,1] Y Y N Y Y Y Y Y Y Y
Feasible for g on Lo N N N Y Y N N Y N Y
Feasible forgon L N N N Y Y N N N N Y

The order relation L2 1 21,2> Ig Tua2lys 21,

C. An example

To illustrate how the proposed lattice-valued linguistic
method works, we consider a simple example to evaluate the
set of cars {C,=Chevrolet, C,= Toyota, C;= Buick, C,=Fiat}.

Let X={X, X,, X3,} the set of objectives, where X,;=comfort,
Xo= price and X;=repair frequency.

Assume the evaluation set is the lattice of linguistic terms L
as defined in Example 3.2 of 6-element LIA, where “frue” is
changed as “high”, and ‘false” is changed as “low”
respectively.

For the objective X;, we have the following set of
satisfaction degrees:

A1={I/C1, c /Cz, b/C3, d/C4},

Similarly, for the objective X, and X3, we have

A2={0/C1, b/Cz, C/C3, a/C4}; A3={C/C1, d/Cz, I/C3, b/C4}

Next, we evaluate the importance of each objective. In this
case, we may assume weights of importance for X as b,=c,
by=b, by=d, respectively. Taking these weights into account,
we have: .

M= bl—)Al ={I/C1, I/Cz, C/C3, a/C4};

Alz:bz-—)Az:{d/Cl, I/Cz, b/C3, a/C4};

M= b3—)A3 ={b/C1, I/Cz, I/C3, I/C4} .
Here — is an implication in LIA. By using Eq. (4), the final
decision set

D= M N AJZ N Alg={d/C1, I/Cz, C/C3, a/C4}.
The optimal alternative is the C,={Toyota}€ X that maximizes
D. Here we take T as "min" operation in Eq. (4). The overall
evaluation also can be seen from D.

IV. CONCLUSIONS

A lattice-valued linguistic decision approach was proposed
in the paper. This method offers the advantage that it does not
require the definition of the membership functions associated
with the linguistic terms. Especially, we do use a finite set of
linguistic terms with a rich lattice ordering algebraic structure
to represent the weights of the criteria. So this procedure has
another advantage of handling incomparable linguistic terms
and the implication operation to combine the importance of
criteria with the performance scores of alternatives in decision
models. Computing with words is applied. Note that lattice is
a more universal structure than the set of linguistic terms, and
the implication operation in LIA is much general richer, it
would be reasonable and realistic to design decision making
models based on these methodologies. The further
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investigations on linguistic-valued decision making, linguistic-
valued reasoning approach will be carried out based on the
established lattice-valued reasoning approaches in [14], [16]-
[18].
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