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Abstract 
 

In this paper, firstly a new automated reasoning 
algorithm based on Boolean logic is proposed and its 
theorems of soundness and completeness on validating 
the unsatisfiability of logic formulae are given. Then 
this procedure is extended to a linguistic valued 
Łukasiewicz propositional logic L(X) with truth-value 
in Łukasiewicz linguistic valued algebras, and an α-
automated reasoning algorithm with respect to certain 
linguistic value level α in L(X) is given. Its theorems of 
soundness and completeness associated with the α-
unsatisfiability of the logical formulae in L(X) are also 
proved. This reflects the symbolic approach acts by 
direct reasoning on linguistic truth values.  
 
1. Introduction 
 

Since the introduction of resolution in 1965 by 
Robinson [1], resolution-based automated reasoning 
has been extensively studied in the context of finding 
natural and efficient proof systems to support a wide 
spectrum of computational tasks. In essence, all of 
these methods were carried out as follows: firstly the 
problem to prove the validity of a theorem in classical 
Boolean logic is transformed into validating the 
unsatisfiability of a logical formula variation from this 
theorem. Then a resolution algorithm is constructed to 
prove the unsatisfiability of this logical formula. 
Generally, the soundness and completeness theorem of 
the algorithm will be also given. This resolution 
method is of great importance on mechanical theorem 
proving in classical logic. 

As the use of non-classical logics becomes 
increasingly important in computer science, artificial 
intelligence and logic programming, the development 
of efficient automated theorem proving based on non-
classical logic is currently an active area of research. 
e.g., for fuzzy logic, among others, see [2]-[7] and for 
many-valued logic (MVL), among others, see [8]-[21].  

In spite of verifying and extending the classical 
automated reasoning approach, most important 
proposals and results use only the so-called Kleene 
implication (p→q =−p∨q, − is the negation). It implies 
that the formulae of their logic are syntactically 
equivalent to the formulae in classical logic. It is well 
known that several implication connectives, which 
formalize different nuances of many-valued logics, 
have been introduced. Moreover, in using MVL as a 
tool for the modelling of approximate reasoning, it is 
important and necessary to have a sort of control on the 
truth-value assumed by the conclusion, once the truth-
values of the premises are given. Compared to classical 
deduction, the semantics in MVL is much more 
complex and need to be paid more attention. 

Among the various MVLs, the Łukasiewicz logic 
L[0, 1] with truth-values in [0, 1] is considered to be 
one of the most attractive MVLs. The language of Lℵ 
has two primitive logical connective {→, ′}, where 
"→" is the Łukasiewicz implication given by 
a→b=min{1, 1-a+b} (a, b∈[0, 1]) and a′=1-a is the 
negation operation. One can easily check that the truth-
value degrees of the formulae derivable in the Kleene’s 
system and in the Łukasiewicz system not, in general, 
coincide. Especially the Łukasiewicz implication 
connective is more general and not reducible to the 
other classical connectives (e.g., ′, ∧ and ∨), unlike the 
Kleene implication. This irreducibility, though 
semantically justifiable, complicates the calculus. As a 
first step towards a variant automated approach, it is 
important to deal with the implication connectives. 
Also in the light of semantic consideration, the 
development of a relatively efficient calculus for the 
Łukasiewicz system seems desirable.  

Residuated lattice structure is a very popular 
algebraic structure for inexact concepts as shown by 
Goguen in [22]. It was shown in [23] that Łukasiewicz 
algebras, Heyting algebras, Post algebras, Gaines 
algebras, and MV-algebras etc., all define a residuated 
lattice. There have been considerable efforts about 
fuzzy logic based on a residuated lattice, where 
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Pavelka [24] and [28] systematically discussed 
propositional and first-order calculi with values in an 
enriched residuated lattice respectively. 

More importantly, Pavelka showed in [24] that the 
only natural way of formalizing fuzzy logic for truth 
values in the unit interval [0, 1] is by using the 
Łukasiewicz’s implication operator or some 
isomorphic forms of it. There have been some 
important investigations in [17], [19-21], [29-31] from 
different ways on proving systems and automated 
reasoning containing a more general implication, 
especially the Łukasiewicz implication. This kind of 
study can provide a useful framework for the 
development of approximate reasoning. .  

On the other hand, we all know that as human 
beings we are bound to express ourselves in a natural 
language that uses words. The meanings of words are 
inherently, imprecise, vague, and fuzzy, mostly can be 
very qualitative in nature. Therefore, it is necessary to 
investigate natural language based reasoning under 
uncertainty within the realm of AI.  

A nice feature of linguistic variables is that their 
values are structured, which makes it possible to 
compute the representations of composed linguistic 
values from those of their composing parts. In order for 
linguistic variables to be useful tools of analysis, one 
ought to be able to manipulate them through various 
operations. One can directly symbolically manipulate 
the linguistic variables themselves. Based on using 
algebraic operations on the linguistic variables 
themselves, there is no need to manipulate any sort of 
membership functions at all.  

Based on the symbolic approaches and the above 
ideas, we characterize the set of linguistic values by a 
Lukasiewicz algebraic structure, investigate the 
corresponding logic systems with linguistic truth 
values, and automated reasoning based on linguistic 
truth-valued logic system as well. A key idea behind is 
to directly manipulate the available linguistic 
information and knowledge, i.e., the symbolic 
approach acts by direct computation on linguistic truth 
values. 

In this paper, a new automated reasoning method 
which differs from the resolution principle is proposed. 
Firstly, this method is applied to Boolean logic and 
then applied to Łukasiewicz propositional logic L(X) 
with truth-value in a Łukasiewicz linguistic-valued 
implication algebras to prove the satisfiability of 
logical formulae at a certain linguistic truth-value level, 
while the corresponding theorems of soundness and 
completeness are also proved.  

This paper is organized as follows: Section 2 recalls 
the unsatisfiability in Boolean logic and introduces a 
new automated reasoning algorithm based on Boolean 
logic, as well as its theorems of soundness and 
completeness. Section 3 firstly recalls the Łukasiewicz 
linguistic-valued propositional logic system L(X), then 

the automated reasoning algorithm based on Boolean 
logic is extended to an α-automated reasoning 
algorithm in L(X), its soundness and completeness are 
also proved. The conclusion is included in Section 4. 
 
2. An Automated Reasoning Method Based 
on Boolean Logic 
 
2.1. Boolean Satisfiability 
 

Assume that  
(1) S=C1∧...∧Cn is a conjunctive normal form 

without redundant term, denoted by S={C1,…, Cn}, 
where Ci is a disjunction of literals, called a clause; 

(2) The set of literals in Ci is Hi, and denote the 
cardinality of Hi as |Hi| and set |Hi| =hi, i=1,…, n. 

Lemma 2.1  S is unsatisfiable iff ∀ pi∈Hi (i=1,…, 
n), there exist complementary pairs in {p1, …, pn}. 

Lemma 2.2   If S is unsatisfiable, then there exists 
Ci∈S and Cj∈S-{Ci} such that p∈H∀ i, there exists 
q∈Hj such that p=-q. Here "-" means the negation in 
Boolean logic. 

Lemma 2.3  S=C1∧C2 is unsatisfiable if and only if 
C1 and C2 are single-literal clauses and C1=-C2. 
 
2.2. Automated Reasoning Algorithm Based on 
Boolean Logic 
 

The automated reasoning algorithm which differs 
from the resolution algorithm to determine the 
satisfiability of S is given as follows: 

Automated Reasoning Algorithm  

Termination of the algorithm: 
If ∅=S , then S  is satisfiable and the algorithm is 

terminated. 
If 1|| =S , then  is satisfiable and the algorithm is 

terminated. 
S

Step 0: select D1 from S such that: 
(1) Every literal of D1 has a complement in S-{D1}; 
(2) The number of literals in D1 is the least in all the 

clauses satisfying (1).  
If there exists more than one such D1, then select one 

from them. Obviously, the number of literals in D1 is 
the least in all the clauses of S. 

If D1 doesn’t exist, then S is satisfiable, the 
algorithm is terminated; 

If D1 exists, let  and 
. Then go to Step 1. 

}{ 11 DSS −=
}{)()( 11

*
1 ppDpD −=
Step 1: for p1∈D1, search the subsequence clause 

D2(p1) of p1 such that 
(i) D2(p1)∈S-{D1}; 
(ii) There exists p21 in D2(p1) such that there exist 

some complementary pairs in {p1, p21}; 
(iii) The number of literals in D2(p1) is the least in all 

the clauses, which satisfies (ii). Then we have: 
(1) If D2(p1)-{p21}=∅. 
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(i) If  D1-{p1}=∅, then S is unsatisfiable, the 
algorithm is terminated. 

(ii) If D1-{p1} ∅, then let D≠ 1=: D1-{p1}, back to 
Step 1. 

(2) If D2(p1)-{p21}≠∅, then go to Step 2. 
Step 2: for p2∈D2(p1)-{p21}, search its subsequence 

clause D3(p2) such that  
(i) D3(p2)∈S-{D1, D2(p1)}; 
(ii) There exists p32 in D3(p2) satisfying that there 

exist some complementary pairs in {p1, p2, p32} 
(generally this case isn’t unique in that there exists the 
complementary pair in {p1, p32} or in {p2, p32}), it only 
needs to select one; 

(iii) The number of literals in D3(p2) is the least in all 
the clauses, which satisfies (ii). 

Moreover, if D3(p2) doesn’t exist, then S is 
satisfiable, the algorithm can be terminated. 

If D3(p2) exists, then follow the step below: 
Write E(p2)={x | there exists the complementary pair 

in {p1, p2, x}, x∈D3(p2)}. 
(a) If D3(p2)-E(p2)= ∅, let D2(p1)-{p21}=: D2(p1)-{p21, 

p2}, back to Step 1; 
(b) If D3(p2)- E(p2) ∅, then go to Step 3. ≠
Step 3: for p3 ∈ D3(p2)-E(p2), search its 

subsequence clause D4(p3) such that: 
(i) D4(p3)∈S-{D1, D2(p1), D3(p2)}; 
(ii) There exists p43 in D4(p3) such that there exist 

some complementary pairs in {p1, p2, p3, p43} 
(generally this case isn’t unique in that there exist some 
complementary pairs in {p1, p43} or in {p2, p43}, or in 
{p3, p43}), it only needs to select one among them; 

(iii) In all the clauses which satisfies (ii), the number 
of literals in D4(p3) is the least. 

If D4(p3) doesn’t exist, then S is satisfiable, the 
algorithm can be terminated; 

If D4(p3) exists, then follow the steps below: 
Write E(p3)={x | there exist some complementary 

pairs in {p1, p2, p3, x}, x∈D4(p3)}. 
(a) If D4(p3)-E(p3)= ∅, then let D3(p2)-E(p2)=: 

D3(p2)-(E(p2)U {p3}), go back to Step 2. 
(b) If D4(p3)- E(p3) ∅, then go to Step 4. ≠
…… 
Step k: for pk ∈ Dk(pk-1)-E(pk-1), search its 

subsequence clause Dk+1(pk) (k=4,…, n-1) such that: 
(i) Dk+1(pk)∈S-{D1, D2(p1), D3(p2), …, Dk(pk-1)}; 
(ii) There exists pk+1k in Dk+1(pk) such that there exist 

some complementary pairs in {p1, p2, p3, …, pk, pk+1k} 
(generally this case isn’t unique in that there exist some 
complementary pairs in {p1, pk+1k} or in {p2, pk+1k}, …, 
or in {pk, pk+1k}), it only needs to select one of them; 

(iii) The number of literals in Dk+1(pk) is the least in 
all the clauses, which satisfies (ii). 

If Dk+1(pk) doesn’t exist, then S is satisfiable, the 
algorithm can be terminated; 

If Dk+1(pk) exists, then follow the steps below: 
Write E(pk)={x | there exist some complementary 

pairs in {p1, p2, p3, …, pk, x}, x∈Dk+1(pk)}. 

(a) If Dk+1(pk)-E(pk)= ∅, then let Dk(pk-1)-E(pk-1)=: 
Dk(pk-1)-(E(pk-1) {pU k}), go back to Step k-1. 

(b) If Dk+1(pk)- E(pk) ≠ ∅, then go to Step k+1. 
…… 
Until the above algorithms are all terminated. 
Theorem 2.1 (Soundness and completeness) 

S=C1∧C2∧...∧Cn is unsatisfiable iff the automated 
reasoning algorithm above terminates at Step 1. 

Due to the space restriction, the proof is skipped. 
Example 2.1  Let a clause S={C1=-P∨-Q∨R, 

C2=P∨R, C3=Q∨R, C4=-R}. We use the algorithm to 
this clause: 

Step 0: select D1. 
     D1=C4=-R, go to Step 1. 
Step 1: P1∈D1 (i.e., P1=-R), seach D2(P1): 
     D2(P2)=P∨R, P21=R. 
     Judge: D2(P2)-{P21}≠∅, go to Step 2. 
Step 2: D2(P1)-{P21}=P, P2=P, 
     D3(P2)=C1=-P ∨-Q∨R, 
     E(P2)={-P, R}, 
     D3(P2)-E(P2)≠∅, go to Step 3. 
Step 3: P3∈D3(P2)-E(P2)=-Q, P3=-Q: 
    D4(P3)=C3=Q∨R, 
    E(P3)={Q, R}, 
    D4(P3)-E(P3)= ∅, go back to Step 2. 
     D3(P2)- E(P2)= D3(P2)-(E(P2)∪{P3})= ∅ 
Step 2*:  D2(P1)-{P21}=D2(P1)-{P21, P2}=∅, go to 

Step 1. 
Step 1*:  D1-{P1}=∅. 
According to the algorithm, the clause S is 

unsatisfiable. 
 
3. α-Automated Reasoning Method Based 
on L(X) 
 
3.1. Łukasiewicz Propositional Logic L(X) 
 

Definition 3.1 [24]  A residuated lattice is a 
structure <L, ⊗, →>, where  

(1) L=<L, ≤, ∨, ∧, O, I> is a bounded lattice with the 
least element O and the greatest element I. 

(2) <⊗, > is an adjoint couple on L, i.e.,  →
(a) ⊗ is istone (ordering preserving) on L×L; 
(b) →  is antitone (order reversing) in the first and 

isotone in the second variable on L×L; 
(c) for all x, y, z∈L hold the adjointness condition or 

Galois correspondence: x⊗y z iff x≤ y z ≤ →
(3) <L, ⊗, I> is a commutative monoid. 
The operation ⊗ is called multiplication and →  is 

called residuation. 
Example 3.1  (Łukasiewicz algebra on [0, 1]). If the 

operations on [0, 1] are defined respectively as follows: 
x∨y=max(x, y),  x∧y=min(x, y), x→y=min(1, 1-x+y), 
x⊗y=max(0, x+y-1), x′=1-x, then this algebra is a 
residuated lattice, denoted by L[0, 1]. 

Let L be a finite chain, L={ai; 1≤i≤n} and O=a1< ... 
<an=I. If ′: L L is defined by (a→ i)′=an+1-i, and →  
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and ⊗: L×L L are defined by a→ i→aj=an+j-i and 
ai⊗aj=ai+j-n respectively (i, j∈{1,..., n}). Then (L, , 

, ', → , ⊗) is a residuated lattice, denoted by L
∨

∧ n. 
In the following, L[0, 1] and Ln are collectively 

called Łukasiewicz algebra and denoted as L. 
Definition 3.2  Let X be the set of propositional 

variables, T=L∪{′, ⊗, →} be a type with ar(′ ) =1, 
ar(⊗)=  and ar(a)=0 for every 2)( =→ar La∈ . The 
propositional algebra of the Łukasiewicz propositional 
calculus on the set of propositional variables is the free 
T algebra on X and is denoted by L(X) . 

Proposition 3.2 L(X) is the minimal set Y which 
satisfies the following conditions: 

(1) , YLX ⊆U
(2) If , then p⊗q, . Yqp ∈, Yqpp ∈→′,
Note that L and L(X) are the algebras with the same 

type T, where . },,{ →⊗′= ULT
Definition 3.3 A valuation of L(X) is a propositional 

algebra homomorphism γ : L(X)→L.  
Definition 3.4 Let p∈L(X), L∈α . If γ(p)≥α for 

every valuation γ of L(X), we say that p is valid by 
truth-value level α. If there exists a valuation γ of L(X) 
such that γ(p)≥α, then p is called α-satisfiable. 

Definition 3.5  Let p∈L(X), L∈α . p is said to be 
always false by truth-value level α  (α-false in short) if 
for any valuation γ , γ (p) α.. ≤

Beginning from the normal form is the natural and 
usual way to discuss the satisfiability of the formula in 
classical logic. Considering the great extension in 
connectives and truth-values in L(X), especially the 
implication connectives in L(X) are more general and 
not reducible to the other classical connectives unlike 
the Kleene implication. As a first step towards a variant 
resolution, it is important to deal with implication 
connectives and consider the generalized normal form.  

Definition 3.6  An L-valued propositional logical 
formula f is called an extremely simple form, in short 
ESF, if an L-valued propositional logical formula f* is 
obtained by deleting any constant or literal or 
implication term appearing in f is not equivalent to f.  

Definition 3.7  An L-valued propositional logical 
formula f is called an indecomposable extremely 
simple form, in short IESF, if f is an ESF containing no 
connectives other than implication connectives. 

Definition 3.8 An IESF is called an n-IESF, if there 
exist n implication connectives occurring in f.  

Definition 3.9 All the constants, literals and IESF´s 
are called generalized literals. Here, the definition of 
literal is the same as that in classical logic. 

Definition 3.10  An L-valued propositional logical 
formula G is called a generalized clause (phrase), if G 
is a formula of the form: 

G=g1∨…∨ gi∨…∨ gn(G=g1∧…∧ gi∧…∧ gn)  
where gi (i=1,..., n) are generalized literals.  

A conjunction (disjunction) of finite generalized 
clauses (phrases) is called a generalized conjunctive 
(conjunctive) normal form. 

Now we consider some necessary lemmas. In the 
propositional logic L(X), we assume:

(1) S=C1∧C2∧...∧Cn is a generalized conjunctive 
normal form without redundant term, also written as 
S={C1, C2, …, Cn}; 

(2) Denoted the generalized literal set of Ci as Hi, 
also |Hi|=hi, i=1, 2,…, n. 

Lemma 3.1   S= C1∧C2∧...∧Cn ≤ α if and only if 
∀ pi∈Hi, i=1, …, n, p1∧…∧pn≤α. 

Lemma 3.2  Let x, y, z be literals in L(X), α∈L, α<I, 
and suppose that there exists β∈L such that β∧ (β→β 
′)>α , then x∧ (y→z)> α. 

Corollary 3.1  Let x, y, t, and z be literals in L(X), 
and there exists β∈L and α<I such that β ∧ (β→β 
′)>α∈L, then (x→y)∧ (t→z)> α. 
 
3.2. Linguistic-valued Lukasiewicz algebras 
 

Here we characterize the set of linguistic values by 
a Lukasiewicz algebra. In general, the value of a 
linguistic variable can be a linguistic expression 
involving a set of linguistic values such as “high,” 
“middle,” and “low,” modifiers such as “very,” “more 
or less” (called hedges [25], [26]) and connectives (e.g., 
“and,” “or”). Let us consider the domain of the 
linguistic variable “truth”: domain (truth)={true, false, 
very true, possibly true, very false, ...}, which can be 
regarded as a partially ordered set whose elements are 
ordered by their meanings and also regarded as an 
algebraically generated set from the generators 
G={true, false} by means of a set of linguistic 
modifiers M={very, possibly, ...}. The linguistic 
modifiers are strictly related to the notion of vague 
concept. The generators G can be regarded as the 
prime term, different prime terms correspond to the 
different linguistic variables. 

Consider a set of linguistic hedges, e.g. H+={very, 
more or plus}, H={approximately, possibly, little}, 
where H+ consists of hedges which strengthen the 
meanings of “true” and the hedges in H weaken it. Put 
H=H+∪H. H+, H can be ordered by the degree of 
strengthening or weakening, e.g., one may assume that 
very>more, little>approximately. We say that a≤b iff 
a(True)≤b(True) in the natural language, where a and b 
are linguistic hedges. 

Applying the hedges of H to the primary term 
“true” or “false” we obtain a partially ordered set or 
lattice. In this purpose, the first step is to choose the 
basic ingredients that are used in the symbolic 
manipulation. This means that the analyst has to 
choose a context-dependent linguistic terms set to 
describe vague or imprecise information. We suppose 
that T levels of linguistic variables may be used. For 
example, suppose that T=5, and ST={s0=‘Poor’, 
s1=‘Low’, s2=‘Average’, s3=‘High’, s4=‘Good’} (t=0,…, 
4). Here it is supposed that ST is a finite and totally 
ordered term set. Any label, si, represents a possible 
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value for a linguistic variable, and have the following 
characteristics [27]:  
 1) The set is ordered: si≤sj if i≤j.  
 2) There is the negation operator: Neg(si) = sj such 
that j = T-1 -i.  
 3) There is the maximization operator: Max(si, sj)= 
si  if sj≤si.  

4) There is the minimization operator: Min(si, sj) = si 
if si≤sj. 

Moreover, one can define implication (→) based on 
the Ln structure, i.e.,  

5) →: si→sj=sn+j-i (i, j∈{0, 1,..., T} 
The corresponding t-norm ⊗ and the t-conorm ⊕  

can be also given as according to the Ln structure and 
properties respectively. This Ln is called a linguistic-
valued Lukasiewicz algebra. In the following, L(X) 
denotes the propositional algebra of the linguistic-
valued Łukasiewicz propositional calculus. 
 
3.3. α-Automated reasoning algorithm in L(X) 
 

The automated reasoning algorithm to determine the 
α-satisfiability of S is given as follows, here α ∈Ln is a 
linguistic truth-value: 

α-Automated Reasoning Algorithm  

Step 0: select D1 from S, such that the number of 
literals in D1 is the least in all the clauses of S. Then go 
to Step 1. 

Step 1: for p1∈D1, search the subsequence clause 
D2(p1) of p1 such that  

(i) D2(p1)∈S-{D1}; 
(ii) There exists p21 in D2(p1) satisfying p1∧p21≤α; 
(iii) The number of literals in D2(p1) is the least in all 

the clauses satisfying (ii). 
If D2(p1) satisfying the conditions above doesn’t 

exist, select D2(p1) as the clause (with the least number 
of literral) in S-{D1}, then go to Step 2 and set D2(p1)-
{p21}=: D2(p1). 

If D2(p1) satisfying the conditions above exists,  
A. If D2(p1)-{p21}=∅. 
(i) If D1-{p1}=∅, then the algorithm terminates; 
(ii) If D1-{p1} ∅, then let D≠ 1=: D1-{p1}, back to 

Step 1. 
B. If D2(p1)-{p21}≠∅, then go to Step 2. 
Step 2: for p2 ∈ D2(p1)-{p21}, search its 

subsequence clause D3(p2), such that  
(i) D3(p2)∈S-{D1, D2(p1)}; 
(ii) There exists p32 in D3(p2) satisfying 

p1∧p2∧p32≤α; 
(iii) The number of literals in D3(p2) is the least in all 

the clauses satisfying (ii). 
If these D3(p2) doesn’t exist, select D3(p2) as the 

clause (with the least number of literals) in S-{D1, 
D2(p1)}, then go to Step 3 and set D3(p2)-E(p2)=: D3(p2). 

If D3(p2) exists, then do as follows: 
Write E(p2)={x| p1∧p2∧x≤ α , x∈D3(p2)}. 

A. If D3(p2)- E(p2)= ∅, let D2(p1)-{p21}=:D2(p1)-{p21, 
p2}, back to Step 1; 

B. If D3(p2)-E(p2) ≠  ∅, then go to Step 3. 
Step 3: for D3(p2)-E(p2), search its subsequence 

clause D4(p3) such that 
(i) D4(p3)∈S-{D1, D2(p1), D3(p2)}; 
(ii) There exists p43 in D4(p3) satisfying p1∧p2∧p3 

∧p43≤α; 
(iii) The number of literals in D4(p3) is the least in 

the clauses satisfying (ii). 
If these D4(p3) doesn’t exist, select D4(p3) as the 

clause (with the least number of literals) in S-{D1, 
D2(p1), D3(p2)}, then go to Step 4 and set D4(p3)- 
E(p3)=: D4(p3). If these D4(p3) exist, then do as follows: 

Write E(p3)={x| there exist complementary pairs in 
{p1, p2, p3, x}, x∈D4(p3) }. 

A. If D4(p3)- E(p3)=∅, then let D3(p2)-E(p2)=: 
D3(p2)-(E(p2)U {p3}), back to Step 2. 

B. If D4(p3) -E(p3) ≠∅, then go to Step 4. 
…… 
Step k: for Dk(pk-1)-E(pk-1), search its subsequence 

clause Dk+1(pk) such that 
(i) Dk+1(pk)∈S-{D1, D2(p1), ..., Dk(pk-1)}; 
(ii) There exists pk+1k in Dk+1(pk) satisfying p1∧p2∧p3 

∧... pkpk+1k≤α; 
(iii) The number of literals in Dk+1(pk) is the least in 

the clauses satisfying (ii). 
If this Dk+1(pk) doesn’t exist, select Dk+1(pk) as the 

clause (with the least number of literals) in S-{D1, 
D2(p1), D3(p2), …, Dk(pk-1)}, then go to Step k+1 and 
set Dk+1(pk)- E(pk)=: Dk+1(pk). If this Dk+1(pk) does exist, 
then do as follows: 

Write E(pk)={x| there exist complementary pairs in 
{p1, p2, p3, x}, x∈Dk+1(pk) }. 

A. If Dk+1(pk)- E(pk)=∅, then let Dk(pk-1)-E(pk-1)=: 
Dk(pk-1)-(E(pk-1) {pU k}), back to Step k-1. 

B. If Dk+1(pk) -E(pk) ≠∅, then go to Step k+1. 
…… 
Until the above algorithms are all terminated. 
 
Theorem 3.1 (Soundness and Completeness)  

S=C1∧C2∧...∧Cn ≤ α iff the α -automated reasoning 
algorithm of L(X) above terminates at Step 1. 
 
4. Conclusions 
 
Focused on automated reasoning algorithm, two phases 
of results were obtained in this paper: proposed an 
automated reasoning algorithm to validate the 
unsatisfiability of Boolean logic formula, and proved 
that this algorithm is sound and complete; then the 
algorithm was extended to establish an α-automated 
reasoning algorithm to validate the α-unsatisfiability of 
logic formulae in Łukasiewicz linguistic-valued 
propositional logic L(X) with truth value in the 
Łukasiewicz linguistic-valued algebras, and also 
proved that this algorithm is sound and complete. 
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All these results will provide a theoretical support 
for further investigating automated reasoning method 
on linguistic truth-valued logic system. 
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