
Automated Reasoning Algorithm for Linguistic Valued Łukasiewicz
Propositional Logic

Jun Liu
School of Computing

and Mathematics
University of Ulster

N. Ireland, UK
j.liu@ulster.ac.uk

Luis Martínez López
Department of

Computer Science
University of Jaén

E-23071 Jaén, Spain.
martin@ujaen.es

Yang Xu
Dept. of Mathematics
Southwest Jiaotong
University, China

xuyang@home.swjtu.e
du.cn

Zhirui Lu
School of Computing

and Mathematics,
University of Ulster

N. Ireland, UK
Lu-z@ulster.ac.uk

Abstract

In this paper, firstly a new automated reasoning
algorithm based on Boolean logic is proposed and its
theorems of soundness and completeness on validating
the unsatisfiability of logic formulae are given. Then
this procedure is extended to a linguistic valued
Łukasiewicz propositional logic L(X) with truth-value
in Łukasiewicz linguistic valued algebras, and an α-
automated reasoning algorithm with respect to certain
linguistic value level α in L(X) is given. Its theorems of
soundness and completeness associated with the α-
unsatisfiability of the logical formulae in L(X) are also
proved. This reflects the symbolic approach acts by
direct reasoning on linguistic truth values.

1. Introduction

Since the introduction of resolution in 1965 by
Robinson [1], resolution-based automated reasoning
has been extensively studied in the context of finding
natural and efficient proof systems to support a wide
spectrum of computational tasks. In essence, all of
these methods were carried out as follows: firstly the
problem to prove the validity of a theorem in classical
Boolean logic is transformed into validating the
unsatisfiability of a logical formula variation from this
theorem. Then a resolution algorithm is constructed to
prove the unsatisfiability of this logical formula.
Generally, the soundness and completeness theorem of
the algorithm will be also given. This resolution
method is of great importance on mechanical theorem
proving in classical logic.

As the use of non-classical logics becomes
increasingly important in computer science, artificial
intelligence and logic programming, the development
of efficient automated theorem proving based on non-
classical logic is currently an active area of research.
e.g., for fuzzy logic, among others, see [2]-[7] and for
many-valued logic (MVL), among others, see [8]-[21].

In spite of verifying and extending the classical
automated reasoning approach, most important
proposals and results use only the so-called Kleene
implication (p→q =−p∨q, − is the negation). It implies
that the formulae of their logic are syntactically
equivalent to the formulae in classical logic. It is well
known that several implication connectives, which
formalize different nuances of many-valued logics,
have been introduced. Moreover, in using MVL as a
tool for the modelling of approximate reasoning, it is
important and necessary to have a sort of control on the
truth-value assumed by the conclusion, once the truth-
values of the premises are given. Compared to classical
deduction, the semantics in MVL is much more
complex and need to be paid more attention.

Among the various MVLs, the Łukasiewicz logic
L[0, 1] with truth-values in [0, 1] is considered to be
one of the most attractive MVLs. The language of Lℵ
has two primitive logical connective {→, ′}, where
"→" is the Łukasiewicz implication given by
a→b=min{1, 1-a+b} (a, b∈[0, 1]) and a′=1-a is the
negation operation. One can easily check that the truth-
value degrees of the formulae derivable in the Kleene’s
system and in the Łukasiewicz system not, in general,
coincide. Especially the Łukasiewicz implication
connective is more general and not reducible to the
other classical connectives (e.g., ′, ∧ and ∨), unlike the
Kleene implication. This irreducibility, though
semantically justifiable, complicates the calculus. As a
first step towards a variant automated approach, it is
important to deal with the implication connectives.
Also in the light of semantic consideration, the
development of a relatively efficient calculus for the
Łukasiewicz system seems desirable.

Residuated lattice structure is a very popular
algebraic structure for inexact concepts as shown by
Goguen in [22]. It was shown in [23] that Łukasiewicz
algebras, Heyting algebras, Post algebras, Gaines
algebras, and MV-algebras etc., all define a residuated
lattice. There have been considerable efforts about
fuzzy logic based on a residuated lattice, where

Proceedings of the 37th International Symposium on Multiple-Valued Logic (ISMVL'07)
0-7695-2831-7/07 $20.00 © 2007

Pavelka [24] and [28] systematically discussed
propositional and first-order calculi with values in an
enriched residuated lattice respectively.

More importantly, Pavelka showed in [24] that the
only natural way of formalizing fuzzy logic for truth
values in the unit interval [0, 1] is by using the
Łukasiewicz’s implication operator or some
isomorphic forms of it. There have been some
important investigations in [17], [19-21], [29-31] from
different ways on proving systems and automated
reasoning containing a more general implication,
especially the Łukasiewicz implication. This kind of
study can provide a useful framework for the
development of approximate reasoning. .

On the other hand, we all know that as human
beings we are bound to express ourselves in a natural
language that uses words. The meanings of words are
inherently, imprecise, vague, and fuzzy, mostly can be
very qualitative in nature. Therefore, it is necessary to
investigate natural language based reasoning under
uncertainty within the realm of AI.

A nice feature of linguistic variables is that their
values are structured, which makes it possible to
compute the representations of composed linguistic
values from those of their composing parts. In order for
linguistic variables to be useful tools of analysis, one
ought to be able to manipulate them through various
operations. One can directly symbolically manipulate
the linguistic variables themselves. Based on using
algebraic operations on the linguistic variables
themselves, there is no need to manipulate any sort of
membership functions at all.

Based on the symbolic approaches and the above
ideas, we characterize the set of linguistic values by a
Lukasiewicz algebraic structure, investigate the
corresponding logic systems with linguistic truth
values, and automated reasoning based on linguistic
truth-valued logic system as well. A key idea behind is
to directly manipulate the available linguistic
information and knowledge, i.e., the symbolic
approach acts by direct computation on linguistic truth
values.

In this paper, a new automated reasoning method
which differs from the resolution principle is proposed.
Firstly, this method is applied to Boolean logic and
then applied to Łukasiewicz propositional logic L(X)
with truth-value in a Łukasiewicz linguistic-valued
implication algebras to prove the satisfiability of
logical formulae at a certain linguistic truth-value level,
while the corresponding theorems of soundness and
completeness are also proved.

This paper is organized as follows: Section 2 recalls
the unsatisfiability in Boolean logic and introduces a
new automated reasoning algorithm based on Boolean
logic, as well as its theorems of soundness and
completeness. Section 3 firstly recalls the Łukasiewicz
linguistic-valued propositional logic system L(X), then

the automated reasoning algorithm based on Boolean
logic is extended to an α-automated reasoning
algorithm in L(X), its soundness and completeness are
also proved. The conclusion is included in Section 4.

2. An Automated Reasoning Method Based
on Boolean Logic

2.1. Boolean Satisfiability

Assume that
(1) S=C1∧...∧Cn is a conjunctive normal form

without redundant term, denoted by S={C1,…, Cn},
where Ci is a disjunction of literals, called a clause;

(2) The set of literals in Ci is Hi, and denote the
cardinality of Hi as |Hi| and set |Hi| =hi, i=1,…, n.

Lemma 2.1 S is unsatisfiable iff ∀ pi∈Hi (i=1,…,
n), there exist complementary pairs in {p1, …, pn}.

Lemma 2.2 If S is unsatisfiable, then there exists
Ci∈S and Cj∈S-{Ci} such that p∈H∀ i, there exists
q∈Hj such that p=-q. Here "-" means the negation in
Boolean logic.

Lemma 2.3 S=C1∧C2 is unsatisfiable if and only if
C1 and C2 are single-literal clauses and C1=-C2.

2.2. Automated Reasoning Algorithm Based on
Boolean Logic

The automated reasoning algorithm which differs
from the resolution algorithm to determine the
satisfiability of S is given as follows:

Automated Reasoning Algorithm

Termination of the algorithm:
If ∅=S , then S is satisfiable and the algorithm is

terminated.
If 1|| =S , then is satisfiable and the algorithm is

terminated.
S

Step 0: select D1 from S such that:
(1) Every literal of D1 has a complement in S-{D1};
(2) The number of literals in D1 is the least in all the

clauses satisfying (1).
If there exists more than one such D1, then select one

from them. Obviously, the number of literals in D1 is
the least in all the clauses of S.

If D1 doesn’t exist, then S is satisfiable, the
algorithm is terminated;

If D1 exists, let and
. Then go to Step 1.

}{ 11 DSS −=
}{)()(11

*
1 ppDpD −=
Step 1: for p1∈D1, search the subsequence clause

D2(p1) of p1 such that
(i) D2(p1)∈S-{D1};
(ii) There exists p21 in D2(p1) such that there exist

some complementary pairs in {p1, p21};
(iii) The number of literals in D2(p1) is the least in all

the clauses, which satisfies (ii). Then we have:
(1) If D2(p1)-{p21}=∅.

Proceedings of the 37th International Symposium on Multiple-Valued Logic (ISMVL'07)
0-7695-2831-7/07 $20.00 © 2007

(i) If D1-{p1}=∅, then S is unsatisfiable, the
algorithm is terminated.

(ii) If D1-{p1} ∅, then let D≠ 1=: D1-{p1}, back to
Step 1.

(2) If D2(p1)-{p21}≠∅, then go to Step 2.
Step 2: for p2∈D2(p1)-{p21}, search its subsequence

clause D3(p2) such that
(i) D3(p2)∈S-{D1, D2(p1)};
(ii) There exists p32 in D3(p2) satisfying that there

exist some complementary pairs in {p1, p2, p32}
(generally this case isn’t unique in that there exists the
complementary pair in {p1, p32} or in {p2, p32}), it only
needs to select one;

(iii) The number of literals in D3(p2) is the least in all
the clauses, which satisfies (ii).

Moreover, if D3(p2) doesn’t exist, then S is
satisfiable, the algorithm can be terminated.

If D3(p2) exists, then follow the step below:
Write E(p2)={x | there exists the complementary pair

in {p1, p2, x}, x∈D3(p2)}.
(a) If D3(p2)-E(p2)= ∅, let D2(p1)-{p21}=: D2(p1)-{p21,

p2}, back to Step 1;
(b) If D3(p2)- E(p2) ∅, then go to Step 3. ≠
Step 3: for p3 ∈ D3(p2)-E(p2), search its

subsequence clause D4(p3) such that:
(i) D4(p3)∈S-{D1, D2(p1), D3(p2)};
(ii) There exists p43 in D4(p3) such that there exist

some complementary pairs in {p1, p2, p3, p43}
(generally this case isn’t unique in that there exist some
complementary pairs in {p1, p43} or in {p2, p43}, or in
{p3, p43}), it only needs to select one among them;

(iii) In all the clauses which satisfies (ii), the number
of literals in D4(p3) is the least.

If D4(p3) doesn’t exist, then S is satisfiable, the
algorithm can be terminated;

If D4(p3) exists, then follow the steps below:
Write E(p3)={x | there exist some complementary

pairs in {p1, p2, p3, x}, x∈D4(p3)}.
(a) If D4(p3)-E(p3)= ∅, then let D3(p2)-E(p2)=:

D3(p2)-(E(p2)U {p3}), go back to Step 2.
(b) If D4(p3)- E(p3) ∅, then go to Step 4. ≠
……
Step k: for pk ∈ Dk(pk-1)-E(pk-1), search its

subsequence clause Dk+1(pk) (k=4,…, n-1) such that:
(i) Dk+1(pk)∈S-{D1, D2(p1), D3(p2), …, Dk(pk-1)};
(ii) There exists pk+1k in Dk+1(pk) such that there exist

some complementary pairs in {p1, p2, p3, …, pk, pk+1k}
(generally this case isn’t unique in that there exist some
complementary pairs in {p1, pk+1k} or in {p2, pk+1k}, …,
or in {pk, pk+1k}), it only needs to select one of them;

(iii) The number of literals in Dk+1(pk) is the least in
all the clauses, which satisfies (ii).

If Dk+1(pk) doesn’t exist, then S is satisfiable, the
algorithm can be terminated;

If Dk+1(pk) exists, then follow the steps below:
Write E(pk)={x | there exist some complementary

pairs in {p1, p2, p3, …, pk, x}, x∈Dk+1(pk)}.

(a) If Dk+1(pk)-E(pk)= ∅, then let Dk(pk-1)-E(pk-1)=:
Dk(pk-1)-(E(pk-1) {pU k}), go back to Step k-1.

(b) If Dk+1(pk)- E(pk) ≠ ∅, then go to Step k+1.
……
Until the above algorithms are all terminated.
Theorem 2.1 (Soundness and completeness)

S=C1∧C2∧...∧Cn is unsatisfiable iff the automated
reasoning algorithm above terminates at Step 1.

Due to the space restriction, the proof is skipped.
Example 2.1 Let a clause S={C1=-P∨-Q∨R,

C2=P∨R, C3=Q∨R, C4=-R}. We use the algorithm to
this clause:

Step 0: select D1.
 D1=C4=-R, go to Step 1.
Step 1: P1∈D1 (i.e., P1=-R), seach D2(P1):
 D2(P2)=P∨R, P21=R.
 Judge: D2(P2)-{P21}≠∅, go to Step 2.
Step 2: D2(P1)-{P21}=P, P2=P,
 D3(P2)=C1=-P ∨-Q∨R,
 E(P2)={-P, R},
 D3(P2)-E(P2)≠∅, go to Step 3.
Step 3: P3∈D3(P2)-E(P2)=-Q, P3=-Q:
 D4(P3)=C3=Q∨R,
 E(P3)={Q, R},
 D4(P3)-E(P3)= ∅, go back to Step 2.
 D3(P2)- E(P2)= D3(P2)-(E(P2)∪{P3})= ∅
Step 2*: D2(P1)-{P21}=D2(P1)-{P21, P2}=∅, go to

Step 1.
Step 1*: D1-{P1}=∅.
According to the algorithm, the clause S is

unsatisfiable.

3. α-Automated Reasoning Method Based
on L(X)

3.1. Łukasiewicz Propositional Logic L(X)

Definition 3.1 [24] A residuated lattice is a
structure <L, ⊗, →>, where

(1) L=<L, ≤, ∨, ∧, O, I> is a bounded lattice with the
least element O and the greatest element I.

(2) <⊗, > is an adjoint couple on L, i.e., →
(a) ⊗ is istone (ordering preserving) on L×L;
(b) → is antitone (order reversing) in the first and

isotone in the second variable on L×L;
(c) for all x, y, z∈L hold the adjointness condition or

Galois correspondence: x⊗y z iff x≤ y z ≤ →
(3) <L, ⊗, I> is a commutative monoid.
The operation ⊗ is called multiplication and → is

called residuation.
Example 3.1 (Łukasiewicz algebra on [0, 1]). If the

operations on [0, 1] are defined respectively as follows:
x∨y=max(x, y), x∧y=min(x, y), x→y=min(1, 1-x+y),
x⊗y=max(0, x+y-1), x′=1-x, then this algebra is a
residuated lattice, denoted by L[0, 1].

Let L be a finite chain, L={ai; 1≤i≤n} and O=a1< ...
<an=I. If ′: L L is defined by (a→ i)′=an+1-i, and →

Proceedings of the 37th International Symposium on Multiple-Valued Logic (ISMVL'07)
0-7695-2831-7/07 $20.00 © 2007

and ⊗: L×L L are defined by a→ i→aj=an+j-i and
ai⊗aj=ai+j-n respectively (i, j∈{1,..., n}). Then (L, ,

, ', → , ⊗) is a residuated lattice, denoted by L
∨

∧ n.
In the following, L[0, 1] and Ln are collectively

called Łukasiewicz algebra and denoted as L.
Definition 3.2 Let X be the set of propositional

variables, T=L∪{′, ⊗, →} be a type with ar(′) =1,
ar(⊗)= and ar(a)=0 for every 2)(=→ar La∈ . The
propositional algebra of the Łukasiewicz propositional
calculus on the set of propositional variables is the free
T algebra on X and is denoted by L(X) .

Proposition 3.2 L(X) is the minimal set Y which
satisfies the following conditions:

(1) , YLX ⊆U
(2) If , then p⊗q, . Yqp ∈, Yqpp ∈→′,
Note that L and L(X) are the algebras with the same

type T, where . },,{ →⊗′= ULT
Definition 3.3 A valuation of L(X) is a propositional

algebra homomorphism γ : L(X)→L.
Definition 3.4 Let p∈L(X), L∈α . If γ(p)≥α for

every valuation γ of L(X), we say that p is valid by
truth-value level α. If there exists a valuation γ of L(X)
such that γ(p)≥α, then p is called α-satisfiable.

Definition 3.5 Let p∈L(X), L∈α . p is said to be
always false by truth-value level α (α-false in short) if
for any valuation γ , γ (p) α.. ≤

Beginning from the normal form is the natural and
usual way to discuss the satisfiability of the formula in
classical logic. Considering the great extension in
connectives and truth-values in L(X), especially the
implication connectives in L(X) are more general and
not reducible to the other classical connectives unlike
the Kleene implication. As a first step towards a variant
resolution, it is important to deal with implication
connectives and consider the generalized normal form.

Definition 3.6 An L-valued propositional logical
formula f is called an extremely simple form, in short
ESF, if an L-valued propositional logical formula f* is
obtained by deleting any constant or literal or
implication term appearing in f is not equivalent to f.

Definition 3.7 An L-valued propositional logical
formula f is called an indecomposable extremely
simple form, in short IESF, if f is an ESF containing no
connectives other than implication connectives.

Definition 3.8 An IESF is called an n-IESF, if there
exist n implication connectives occurring in f.

Definition 3.9 All the constants, literals and IESF´s
are called generalized literals. Here, the definition of
literal is the same as that in classical logic.

Definition 3.10 An L-valued propositional logical
formula G is called a generalized clause (phrase), if G
is a formula of the form:

G=g1∨…∨ gi∨…∨ gn(G=g1∧…∧ gi∧…∧ gn)
where gi (i=1,..., n) are generalized literals.

A conjunction (disjunction) of finite generalized
clauses (phrases) is called a generalized conjunctive
(conjunctive) normal form.

Now we consider some necessary lemmas. In the
propositional logic L(X), we assume:

(1) S=C1∧C2∧...∧Cn is a generalized conjunctive
normal form without redundant term, also written as
S={C1, C2, …, Cn};

(2) Denoted the generalized literal set of Ci as Hi,
also |Hi|=hi, i=1, 2,…, n.

Lemma 3.1 S= C1∧C2∧...∧Cn ≤ α if and only if
∀ pi∈Hi, i=1, …, n, p1∧…∧pn≤α.

Lemma 3.2 Let x, y, z be literals in L(X), α∈L, α<I,
and suppose that there exists β∈L such that β∧ (β→β
′)>α , then x∧ (y→z)> α.

Corollary 3.1 Let x, y, t, and z be literals in L(X),
and there exists β∈L and α<I such that β ∧ (β→β
′)>α∈L, then (x→y)∧ (t→z)> α.

3.2. Linguistic-valued Lukasiewicz algebras

Here we characterize the set of linguistic values by
a Lukasiewicz algebra. In general, the value of a
linguistic variable can be a linguistic expression
involving a set of linguistic values such as “high,”
“middle,” and “low,” modifiers such as “very,” “more
or less” (called hedges [25], [26]) and connectives (e.g.,
“and,” “or”). Let us consider the domain of the
linguistic variable “truth”: domain (truth)={true, false,
very true, possibly true, very false, ...}, which can be
regarded as a partially ordered set whose elements are
ordered by their meanings and also regarded as an
algebraically generated set from the generators
G={true, false} by means of a set of linguistic
modifiers M={very, possibly, ...}. The linguistic
modifiers are strictly related to the notion of vague
concept. The generators G can be regarded as the
prime term, different prime terms correspond to the
different linguistic variables.

Consider a set of linguistic hedges, e.g. H+={very,
more or plus}, H={approximately, possibly, little},
where H+ consists of hedges which strengthen the
meanings of “true” and the hedges in H weaken it. Put
H=H+∪H. H+, H can be ordered by the degree of
strengthening or weakening, e.g., one may assume that
very>more, little>approximately. We say that a≤b iff
a(True)≤b(True) in the natural language, where a and b
are linguistic hedges.

Applying the hedges of H to the primary term
“true” or “false” we obtain a partially ordered set or
lattice. In this purpose, the first step is to choose the
basic ingredients that are used in the symbolic
manipulation. This means that the analyst has to
choose a context-dependent linguistic terms set to
describe vague or imprecise information. We suppose
that T levels of linguistic variables may be used. For
example, suppose that T=5, and ST={s0=‘Poor’,
s1=‘Low’, s2=‘Average’, s3=‘High’, s4=‘Good’} (t=0,…,
4). Here it is supposed that ST is a finite and totally
ordered term set. Any label, si, represents a possible

Proceedings of the 37th International Symposium on Multiple-Valued Logic (ISMVL'07)
0-7695-2831-7/07 $20.00 © 2007

value for a linguistic variable, and have the following
characteristics [27]:
 1) The set is ordered: si≤sj if i≤j.
 2) There is the negation operator: Neg(si) = sj such
that j = T-1 -i.
 3) There is the maximization operator: Max(si, sj)=
si if sj≤si.

4) There is the minimization operator: Min(si, sj) = si
if si≤sj.

Moreover, one can define implication (→) based on
the Ln structure, i.e.,

5) →: si→sj=sn+j-i (i, j∈{0, 1,..., T}
The corresponding t-norm ⊗ and the t-conorm ⊕

can be also given as according to the Ln structure and
properties respectively. This Ln is called a linguistic-
valued Lukasiewicz algebra. In the following, L(X)
denotes the propositional algebra of the linguistic-
valued Łukasiewicz propositional calculus.

3.3. α-Automated reasoning algorithm in L(X)

The automated reasoning algorithm to determine the
α-satisfiability of S is given as follows, here α ∈Ln is a
linguistic truth-value:

α-Automated Reasoning Algorithm

Step 0: select D1 from S, such that the number of
literals in D1 is the least in all the clauses of S. Then go
to Step 1.

Step 1: for p1∈D1, search the subsequence clause
D2(p1) of p1 such that

(i) D2(p1)∈S-{D1};
(ii) There exists p21 in D2(p1) satisfying p1∧p21≤α;
(iii) The number of literals in D2(p1) is the least in all

the clauses satisfying (ii).
If D2(p1) satisfying the conditions above doesn’t

exist, select D2(p1) as the clause (with the least number
of literral) in S-{D1}, then go to Step 2 and set D2(p1)-
{p21}=: D2(p1).

If D2(p1) satisfying the conditions above exists,
A. If D2(p1)-{p21}=∅.
(i) If D1-{p1}=∅, then the algorithm terminates;
(ii) If D1-{p1} ∅, then let D≠ 1=: D1-{p1}, back to

Step 1.
B. If D2(p1)-{p21}≠∅, then go to Step 2.
Step 2: for p2 ∈ D2(p1)-{p21}, search its

subsequence clause D3(p2), such that
(i) D3(p2)∈S-{D1, D2(p1)};
(ii) There exists p32 in D3(p2) satisfying

p1∧p2∧p32≤α;
(iii) The number of literals in D3(p2) is the least in all

the clauses satisfying (ii).
If these D3(p2) doesn’t exist, select D3(p2) as the

clause (with the least number of literals) in S-{D1,
D2(p1)}, then go to Step 3 and set D3(p2)-E(p2)=: D3(p2).

If D3(p2) exists, then do as follows:
Write E(p2)={x| p1∧p2∧x≤ α , x∈D3(p2)}.

A. If D3(p2)- E(p2)= ∅, let D2(p1)-{p21}=:D2(p1)-{p21,
p2}, back to Step 1;

B. If D3(p2)-E(p2) ≠ ∅, then go to Step 3.
Step 3: for D3(p2)-E(p2), search its subsequence

clause D4(p3) such that
(i) D4(p3)∈S-{D1, D2(p1), D3(p2)};
(ii) There exists p43 in D4(p3) satisfying p1∧p2∧p3

∧p43≤α;
(iii) The number of literals in D4(p3) is the least in

the clauses satisfying (ii).
If these D4(p3) doesn’t exist, select D4(p3) as the

clause (with the least number of literals) in S-{D1,
D2(p1), D3(p2)}, then go to Step 4 and set D4(p3)-
E(p3)=: D4(p3). If these D4(p3) exist, then do as follows:

Write E(p3)={x| there exist complementary pairs in
{p1, p2, p3, x}, x∈D4(p3) }.

A. If D4(p3)- E(p3)=∅, then let D3(p2)-E(p2)=:
D3(p2)-(E(p2)U {p3}), back to Step 2.

B. If D4(p3) -E(p3) ≠∅, then go to Step 4.
……
Step k: for Dk(pk-1)-E(pk-1), search its subsequence

clause Dk+1(pk) such that
(i) Dk+1(pk)∈S-{D1, D2(p1), ..., Dk(pk-1)};
(ii) There exists pk+1k in Dk+1(pk) satisfying p1∧p2∧p3

∧... pkpk+1k≤α;
(iii) The number of literals in Dk+1(pk) is the least in

the clauses satisfying (ii).
If this Dk+1(pk) doesn’t exist, select Dk+1(pk) as the

clause (with the least number of literals) in S-{D1,
D2(p1), D3(p2), …, Dk(pk-1)}, then go to Step k+1 and
set Dk+1(pk)- E(pk)=: Dk+1(pk). If this Dk+1(pk) does exist,
then do as follows:

Write E(pk)={x| there exist complementary pairs in
{p1, p2, p3, x}, x∈Dk+1(pk) }.

A. If Dk+1(pk)- E(pk)=∅, then let Dk(pk-1)-E(pk-1)=:
Dk(pk-1)-(E(pk-1) {pU k}), back to Step k-1.

B. If Dk+1(pk) -E(pk) ≠∅, then go to Step k+1.
……
Until the above algorithms are all terminated.

Theorem 3.1 (Soundness and Completeness)

S=C1∧C2∧...∧Cn ≤ α iff the α -automated reasoning
algorithm of L(X) above terminates at Step 1.

4. Conclusions

Focused on automated reasoning algorithm, two phases
of results were obtained in this paper: proposed an
automated reasoning algorithm to validate the
unsatisfiability of Boolean logic formula, and proved
that this algorithm is sound and complete; then the
algorithm was extended to establish an α-automated
reasoning algorithm to validate the α-unsatisfiability of
logic formulae in Łukasiewicz linguistic-valued
propositional logic L(X) with truth value in the
Łukasiewicz linguistic-valued algebras, and also
proved that this algorithm is sound and complete.

Proceedings of the 37th International Symposium on Multiple-Valued Logic (ISMVL'07)
0-7695-2831-7/07 $20.00 © 2007

All these results will provide a theoretical support
for further investigating automated reasoning method
on linguistic truth-valued logic system.

Acknowledgements

The work has been partially supported by the
Research Project TIN2006-02121 and the National
Natural Science Foundation of P.R. China (Grant No.
60474022).

The authors also would like to thank the anonymous
referees for their valuable suggestions in improving
this paper and on future research work.

References

[1] J.P. Robinson, “A machine-oriented logic based on the

resolution principle”, J. of A.C.M., 12: 23-41, 1965.
[2] R.C.T. Lee, “Fuzzy logic and the resolution principle”,

Journal of A.C.M., 19: 109-119, 1972.
[3] X.H. Liu and H. Xiao, “Operator fuzzy logic and fuzzy

resolution”, Proc. of the 5th IEEE Inter. Symp. on
Multiple-Valued Logic (ISMVL´85), Kingstion, Canada,
pages: 68-75, 1985.

[4] M. Mukaidono, “Fuzzy inference of resolution style”, in:
Fuzzy Sets and Possibility Theory”, R.R. Yager (Ed.),
Pergamon Press, New York, pages: 224-231, 1982.

[5] D. Dubois and H. Prade, “Resolution principle in
possibilistic logic”, International Journal of
Approximate Reasoning 4 (1): 1-21, 1990.

[6] T.J. Weigert, J.P. Tsai and X.H. Liu, “Fuzzy operator
logic and fuzzy resolution”, Journal of Automated
Reasoning, 10(1): 59 – 78, 1993.

[7] C.S. Kim, D.S. Kim, and J.S. Park, “A new fuzzy
resolution principle based on the antonym”, Fuzzy Sets
and Systems, 113 (2): 299-307, 2000.

[8] C.G. Morgan, “Resolution for many-valued logics”,
Logique et Analyses, 19 (74-76): 311-339, 1976.

[9] E. Orlowska, “Mechanical proof methods for Post
logics”, Logique et Analyses, 28(110): 173-192, 1985.

[10] P.H. Schmitt, “Computational aspects of three-valued
logic”, in: Proc. of the 8th Inter. Conf. on Automated
Deduction, J.H. Siekmann (Ed.), Springer, LNCS, pages:
190-198, 1985.

[11] R. Hahnle, Automated Deduction in Multiple-Valued
Logics, Oxford University Press, 1993.

[12] H.A. Blair and V.S. Subrahamnian, “Paraconsistent logic
programming”, Theoretical Computer Science, 68:135-
154, 1989.

[13] M. Kifer and V.S. Subrahamnian, “Theory of
generalized annotated logic programming and its
application”, J. of Logic Prog. 12: 335-367, (1992).

[14] J.J. Lu and L.J. Henschen, “The completeness of gp-
resolution for annotated logic”, Inform. Process. Lett. 44:
135-140, 1992.

[15] M. Baaz, C.G. Fermuller, “Resolution for many valued
logics”. In Proc. of Logic Programming and Automated
Reasoning (LPAR'92), Voronkv, A. (Ed.). Springer,
LNAI 624, page 107-118, 1992.

[16] Z. Stachniak, Resolution Proof Systems: An Algebraic
Theory, Kluwer Academic Publisher, Netherlands, 1996.

[17] S. Lehmke. “A resolution-based axiomatisation of `bold'
propositional fuzzy logic”. In: Fuzzy Sets, Logics, and
Reasoning about Knowledge (Eds. by D. Dubois, E. P.
Klement, and H. Prade), Kluwer Academic Publishers,
Applied Logic, 1999.

[18] V. Sofronie-Stokkermans, “Chaining techniques for
automated theorem proving in finitely-valued logics”. In:
Proc. of the 2000 ISMVL. Portland, Oregon, pages: 337-
344, 2000.

[19] Y. Xu, D. Ruan, E.E. Kerre., J. Liu, “α-resolution
principle based on lattice-valued propositional logic
LP(X)”. Information Sciences, 130: 195-223, 2000.

[20] Y. Xu, D. Ruan, E.E. Kerre., J. Liu, “α-Resolution
principle based on first-order lattice-valued logic
LF(X)”, Information Sciences, 132: 221-239, 2001

[21] J. Liu, D. Ruan, Y. Xu, Z.M. Song, “A resolution-like
strategy based on a lattice-valued logic”, IEEE
Transactions on Fuzzy Systems, 11 (4): 560-567, 2003.

[22] J.A. Goguen, “The logic of inexact concepts”, Synthese,
19: 325-373, 1969.

[23] E. Turunen, “Algebraic structures in fuzzy logic”, Fuzzy
Sets and Systems, 52: 181-188, 1992.

[24] J. Pavelka, “On fuzzy logic I: Many-valued rules of
inference, II: Enriched residuated lattices and semantics
of propositional calculi, III: Semantical completeness of
some many-valued propositional calculi”, Zeitschr. F.
Math. Logik und Grundlagend. Math., 25: 45-52, 119-
134, 447-464, 1979.

[25] N.C. Ho, W. Wechler, “Hedge algebras: an algebraic
approach to structure of sets of linguistic truth values”.
Fuzzy Sets and Systems 35: 281–293, 1990.

[26] N.C. Ho, W. Wechler, “Extended hedge algebras and
their application to fuzzy logic”. Fuzzy Sets and Systems
52: 259–281, 1992.

[27] F. Herrera, L. Martínez, “A 2-tuple fuzzy linguistic
representation model for computing with words”. IEEE
Trans. Fuzzy Systems, 8 (6): 746–752 2000.

[28] V. Novak, Fuzzy Sets and Their Applications.
Philadelphia, PA: Adam Hilger, 1989

[29] S. Lehmke, “On resolution-based theorem proving in
propositional fuzzy logic with ‘bold’ connectives,” Ph.D.
dissertation, Dept. Comp. Sci., Univ. Dortmund,
Dortmund, Germany, 1996.

[30] D. Mundici, N. Olivetti, “Resolution and model building
in the infinite-valued valculus of Lukasiewicz”. Theor.
Comput. Sci. 200(1-2): 335-366 (1998)

[31] A. Robinson, A. Voronkov. Handbook of Automated
Reasoning. MIT Press and Elsevier Science, 2001.

Proceedings of the 37th International Symposium on Multiple-Valued Logic (ISMVL'07)
0-7695-2831-7/07 $20.00 © 2007

