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Abstract. In this paper, we focus on the linguistic-valued logic system with truth-values in the 
lattice-ordered linguistic truth-valued algebra, then investigate its satisfiability problem and its 
corresponding Quasi-Horn-clause logic framework, while their soundness and completeness 
theorems are provided. The present framework reflects the symbolic approach acts by direct 
reasoning on linguistic truth values, i.e., reasoning with words, and provides a theoretical sup-
port for natural-language based reasoning and decision making system. 

1   Introduction 

Resolution principle is a single rule of inference for a test of unsatisfiability of a logi-
cal formula. Since its introduction in 1965 [1], automated reasoning based on Robin-
son’s resolution rule has been extensively studied in the context of finding natural and 
efficient proof systems to support a wide spectrum of computational tasks. As the use 
of non-classical logics becomes increasingly important in computer science and artifi-
cial intelligence, the development of efficient automated reasoning on non-classical 
logic is currently an active area of research. e.g., on fuzzy logic, among others, see 
[2]-[7] and on many-valued logic, among others, see [8]-[21]. 

Lattice-valued logic is an important many-valued logic. In this paper, we extend 
the resolution principle from two-valued logic into lattice-valued logic with truth-
value in a lattice-ordered logical algebraic structure - Residuated Lattice (RL). RL 
structure is a very popular algebra for inexact concepts as shown by Goguen in [22]. 
There have been considerable efforts about many-valued logic based on a RL, where 
Pavelka [23] and Novak [24] systematically discussed propositional and first-order 
calculi with truth values in an enriched RL. Although there are some important inves-
tigations in [17], [19-21] among others, up to now, the study of proving systems and 
automated reasoning based on RL, has not been extensively reported.  

In this paper, we focus on a lattice-valued logic [19-20], [25] with truth-value  
in a LIA [25-26], which is a kind of RLs established by combining the lattice and  
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implication algebra. This kind of lattice-valued logics are an extension of classical 
logic in several aspects such as connectives, truth-valued field and inference rules, 
which includes Łukasiewicz logic L[0, 1] with truth-values in [0, 1] as a special case. 
Especially their implication connectives are more general and not reducible to the 
other classical connectives (like ~, ∧ and ∨), unlike the Kleene implication (p→q 
=~p∨q, ~ is the negation, it implies that the formulae of its logic are syntactically 
equivalent to those in classical logic). This irreducibility, though semantically justifi-
able, complicates the calculus.  

On the other hand, we all know that as human beings we are bound to express our-
selves in a natural language that uses words. The meanings of words are inherently, 
imprecise, vague, and fuzzy, mostly can be very qualitative in nature. Hence, it is 
necessary to investigate natural language based reasoning within the realm of AI. A 
nice feature of linguistic variables is that their values are structured, which makes it 
possible to compute the representations of composed linguistic values from those of 
their composing parts. In order for linguistic variables to be useful tools of analysis, 
one ought to be able to manipulate them through various operations so that one can 
directly symbolically manipulate the linguistic variables themselves.  

Accordingly, in the present work, we characterize the set of linguistic values by a 
lattice-valued algebraic structure (i.e., LIA) and investigate the corresponding logic 
systems with linguistic truth-value LIA. Furthermore, we address the satisfiability 
problems of the logical formula with respect to a certain linguistic truth-value level 
and the corresponding Quasi-Horn clause logic framework by establishing the resolu-
tion principles. A key idea behind these approaches is to directly manipulate the avail-
able linguistic information and knowledge, i.e., the symbolic approach acts by direct 
computation on linguistic truth values. 

The paper is organized as follows. In Section 2, we describe and define the linguis-
tic truth-value algebra and recall some basic concepts about LIAs, then define the 
lattice-valued propositional logic system with truth-valued in a linguistic-valued LIA. 
In Section 3, the corresponding resolution principle as well as its theorems of sound-
ness and completeness are given on proving the satisfiability of logical formulae with 
respect to a certain linguistic truth-value level. Section 4 establishes a calculus for 
linguistic-valued Quasi-Horn clause and claims its soundness and completeness. The 
conclusion is included in Section 5. 

2   Linguistic Truth-Value Logics 

2.1   Linguistic-Valued Logical Algebra 

2.1.1   Linguistic Assessment Instead of Numerical Assessment 
Human beings cannot be seen as a precision mechanism. They usually express their 
knowledge about the world using linguistic variable in natural language with full of 
vague and imprecise concepts. The linguistic approach is an approximate technique 
appropriate for dealing with qualitative aspects of problems. Since words are less pre-
cise than numbers, the concept of a linguistic variable serves the purpose of providing 
a measure for an approximate characterization of the phenomena which are too com-
plex or ill-defined to be amenable to their description by conventional quantitative 
terms [28].  
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In order for linguistic variables to be useful tools of analysis, one ought to be able 
to manipulate them through various operations so that one can directly symbolically 
manipulate the linguistic variables themselves, i.e., symbolic approach acting by di-
rect reasoning on words, different from approximation approach which uses the asso-
ciated membership functions, avoid the burden steps implying the investigation of 
human factor, semantics of the linguistic terms, subjective beliefs etc.  

2.1.2   Lattice Structure and Lattice Implication Algebras 
A nice feature of linguistic variables is that their values are structured. Symbolic lin-
guistic approach assumes that the linguistic term set is an ordered structure. In gen-
eral, lattice structures apply whenever ordinal information must be represented. Lat-
tice structures actually provide one possible solution for model the linguistic value 
structure. The question of the appropriate operation and lattice structure has generated 
much literature [22-25]. One of most important work is by Goguen [22] who estab-
lished L-fuzzy logic of which truth value set is a complete lattice-ordered monoid, 
which is also called a complete residuated lattice in Pavelka and Novak´s L-fuzzy 
logic [23-24].  

Definition 2.1 [23].  A residuated lattice (RL) is a structure <L, ⊗, →>, where  

(1) L=<L, ≤, ∨, ∧, O, I> is a bounded lattice with the least element O and the great-
est element I.  

(2) <⊗, → > is an adjoint couple on L, i.e.,  
(a) ⊗ is istone (ordering preserving) on L×L; (b) →  is antione (order reversing) in 

the first and isotone in the second variable on L×L; (c) for all x, y, z∈L hold the ad-
jointness condition or Galois correspondence: x⊗y ≤ c iff x ≤ y → z 

(3) <L, ⊗, I> is a commutative monoid. 
The operation ⊗ is called multiplication and →  is called residuation.  

Since this algebraic structure is quite general, it is relevant to ask whether one can 
specify the structure. In this note, we specify the algebraic structure to lattice implica-
tion algebras introduced by Xu [25-26]. 

Definition 2.2 (LIA).  Let (L, ∨ , ∧ , ′) be a bounded lattice with an order-reversing 
involution “ ′ ” and the universal bounds O, I, → : L×L → L be a mapping. (L, ∨ , 
∧ , ′, → ) is called a lattice implication algebra (LIA) if the following axioms hold 
for all x, y, z∈L:  

(A1) x → (y → z)=y → (x → z), (exchange property) 
(A2) x → x=I, (identity) 
(A3) x → y=y′ → x′, (contraposition or contrapositive symmetry) 
(A4) x → y=y → x=I implies x=y, (equivalency)  
(A5) (x → y) → y=(y → x) → x, 
(A6) (x ∨ y) → z=(x → z) ∧ (y → z),  
(A7) (x ∧ y) → z=(x → z) ∨ (y → z).  

Some basic concepts and properties of LIAs can be seen in [25].  
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2.1.3   Lattice-Valued Linguistic Algebra 
A linguistic term differs from a numerical one in that its values are not numbers, but 
words or sentences in a natural or artificial language. On the other hand, these words, 
in different natural language, seem difficult to distinguish their boundary sometime, 
but their meaning of common usage can be understood. Moreover, there are some 
“vague overlap districts” among some words which cannot be strictly linearly or-
dered, as given in Fig. 1 of Example 1.1. 

Example 1.1. The ordering relationships in some linguistic terms: 

           

                 a

                 b

                 c

      d          e                   f

                 g
 

Fig. 1. Linguistic terms in an ordering a=very true, b=more true, c=true, d=approximately  
true e=possibly true, f=more or less true, g=little true 

Note that d, e, and f are incomparable. One can not collapse that structure into a 
linearly ordered structure, because then one would impose an ordering on d, e, and f 
which was originally not present. This means the set of linguistic values may not be 
strictly linearly ordered. It is shown that linguistic term can be ordered by their mean-
ings in natural language. Naturally, it should be suitable to represent the linguistic 
values by a partially ordered set or lattice. To attain this goal we characterize the set 
of linguistic truth-values by a LIA structure, i.e., use the LIA to construct the structure 
of value sets of linguistic variables. 

In general, the value of a linguistic variable can be a linguistic expression involv-
ing a set of linguistic terms such as “high,” “middle,” and “low,” modifiers such as 
“very,” “more or less” (called hedges [27]) and connectives (e.g., “and,” “or”). Let us 
consider the domain of the linguistic variable “truth”: domain (truth)={true, false, 
very true, more or less true, possibly true, very false, possibly false, ...}, which can be 
regarded as a partially ordered set whose elements are ordered by their meanings and 
also regarded as an algebraically generated set from the generators G={true, false} by 
means of a set of linguistic modifiers M={very, more or less, possibly, ...}. The gen-
erators G can be regarded as the prime term, different prime terms correspond to the 
different linguistic variables. 

Taking into account the above remarks, construction of an appropriate set of lin-
guistic values for an application can be carried out step by step. Consider a set of 
linguistic hedges, e.g. H+={very, more or plus}, H={approximately, possibly, more or 
less, little}, where H+ consists of hedges which strengthen the meanings of “true” and 
the hedges in H weaken it. Put H=H+∪H. H+, H can be ordered by the degree of 
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strengthening or weakening. We say that a≤b if and only if a(True)≤b(True) in the 
natural language, where a and b are linguistic hedges. 

Applying the hedges of H to the primary term “true” or “false” we obtain a par-
tially ordered set or lattice. For example, we can obtain a lattice generated from “true” 
or “false” by means of operations in H. We add these three special elements I, M, O 
called “absolutely true,” “medium,” and “absolutely false” to the obtaining set so that 
they have natural ordering relationship with the linguistic truth values. The set of 
linguistic truth-values obtained by the above procedure is a lattice with the boundary. 
Moreover, one can define ∧, ∨, implication → and complement operation ′ on this 
lattice according to the LIA structure. 

Consider a totally ordered linguistic term set as an example, let n=5, Ln={s0=Poor, 
s1=Low, s2=Average, s3=High, s4=Good}. Any label, si, represents a possible value for 
a linguistic variable, and has the following characteristics [28]:  

1. The set is ordered: si≤sj if i≤j.  
2. There is the negation operator: Neg(si) = sj such that j = n-1 -i.  
3. There is the maximization operator: Max(si, sj)= si  if sj≤si.  
4. There is the minimization operator: Min(si, sj) = si if si≤sj. 

Moreover, implication (→) based on the Ln structure can be further defined. 
For example, let Ln={si ; 1≤i≤n} is a totally ordered linguistic term set (O=s1<s2< ... 

<sn=I). If the negation operator ′: Ln → Ln is defined by (si)′=an+1-i, and → : L×L → L 
is defined by si→sj=sn+j-i (i, j∈{1,..., n}). Then (Ln, ∨ , ∧ , ', → ) is a residuated lat-
tice, also a LIA, denoted by Ln. 

2.2   Linguistic-Valued Propositional Logic 

In the following sections, L always represents the linguistic truth-value LIA. 

Definition 2.3. Let X be the set of propositional variables, T=L∪{′, ⊗, →} be a type 
with ar(′ ) =1, ar(⊗)= 2)( =→ar  and ar(a)=0 for every La ∈ . The propositional 

algebra of the linguistic-valued propositional calculus on the set of propositional vari-
ables is the free T algebra on X and is denoted by LP(X). 

Proposition 2.1. LP(X) is the minimal set Y which satisfies the following conditions: 
(1) YLX ⊆∪ ;  (2) If Yqp ∈, , then p⊗q, Yqpp ∈→′, . 

Note that L and LP(X) are the algebras with the same type T, where },,{ →⊗′= ∪LT . 

Definition 2.4  A valuation of LP(X) is a propositional algebra homomorphism γ : 
LP(X)→L.  

Definition 2.5. Let p∈LP(X), L∈α . If γ(p)≥α for every valuation γ of LP(X), we say 
that p is valid by truth-value level α. If there exists a valuation γ of LP(X) such that 
γ(p)≥α, then p is called α-satisfiable. 

Beginning from the normal form is the usual way to discuss the satisfiability of the 
formula in classical logic. As a first step towards a variant resolution, it is important 
to deal with implication connectives and consider the generalized normal form.  
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Definition 2.6.  An L-valued propositional logical formula f is called an extremely 
simple form, in short ESF, if a logical formula f* obtained by deleting any constant or 
literal or implication term appearing in f is not equivalent to f.  

Definition 2.7. if f is an ESF containing no connectives other than implication con-
nectives, then f is called an indecomposable extremely simple form, in short IESF.  

Definition 2.8. All the constants, literals and IESF´s are called generalized literals.  

Definition 2.9. An L-valued propositional logical formula G is called a generalized 
clause (phrase), if G is a formula of the form: 

                  G=g1 ∨ … ∨ gi ∨ … ∨ gn  (G=g1 ∧ … ∧ gi ∧ … ∧ gn)                  

where gi (i=1,..., n) are generalized literals.  

A conjunction (disjunction) of finite generalized clauses (phrases) is called a general-
ized conjunctive (conjunctive) normal form. 

3   α-Satisfiability of Linguistic-Valued Propositional Logic 

The following concepts and theorems can be obtained based on the work in [19]. Due 
to the limited space, the proofs are omitted. 

Definition 3.1. (α-Resolution)  Let α∈L, and G1 and G2 be two generalized clauses of 
the form: G1=g1 ∨ … ∨ gi ∨ … ∨ gm and G2=h1 ∨ … ∨ hj ∨ … ∨ hn. If  gi ∧ hj ≤α, then 
G=g1 ∨ … ∨ gi -1 ∨ gi +1 ∨ … ∨ gm ∨ h1 ∨ … ∨ hj -1 ∨ hj +1 ∨ … ∨ hn is called an α-
resolvent of G1 and G2, denoted by G=Rα(G1, G2), and gi and hj form an α-resolution 
pair, denoted by (gi, hj)-α. It can be regarded as the complemented pair in the sense of 
α-false. 

Definition 3.2. Suppose a generalized conjunctive normal form S=C1∧C2∧...∧Cn, 
,L∈α  ω={D1, D2,..., Dm} is called an α-resolution deduction from S to generalized 

clause Dm, if  

(1) },...,,{ 21 ni CCCD ∈ or (2) there exist j, k<i, such that ),( kji DDRD α= . 

If there exists an α-resolution deduction from S to the empty clause ∅ (denoted by α-
false), then ω  is called an α-refutation. 

Theorem 3.1. (Soundness) Suppose a generalized conjunctive normal form 
S=C1∧C2∧...∧Cn, ,L∈α  {D1, D2,..., Dm} is an α-resolution deduction from S to a 
generalized clause Dm. If Dm=α-false, then S≤α, that is, if Dm≤α, then S≤α  

Theorem 3.2. (Completeness) Let S be a regular generalized conjunctive normal 
form, α∈L, α<I, α be a dual numerator in L. And suppose that there exists β∈L such 
that β ∧ (β→β′)>α. If S≤α, then there exists an α-resolution deduction from S to  
α-false. 
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4   Linguistic-Valued Quasi-horn Clause Logic 

In [20], [25], a lattice-valued first-order logic LF(X) based on LIA is established. In 
this section, we consider the restrict set ℑ of LF(X), called lattice-valued Quasi-Horn 
clause class as an extension of classical Horn clause. Some concepts about symbols, 
terms, well-formed formulas, and interpretation can be referred to [20], [25]. 

Definition 4.1. A linguistic-valued Quasi-Horn clause (in short, L-type Q-Horn 
clause) is a well-formed formula without free variables as the following form:   

                                        )()()( 1 qpxx k →∀∀ "                                                (1) 

or 

                 )()()( 1 qxx k∀∀ "                                                    (2) 

where q is an atom formula with the variables kxx  ,  ,1 "  only, p is a formula without 

restriction of qualifiers and including only connective ∨ or ∧.  
In classical logic, a clause with at most one positive literal is called a Horn clause. 

Prolog programming problem in knowledge engineering, as the direct application of 
Horn, generally consists of three clauses as follows: 

(1) Facts (or asserts) expressing the related objects and the relations among these 
objects, P. 

(2) Rules defining the relationship among some objects. P : - P1, P2, …, Pn. 
(3) Problems (or objectives). ? - Q1, …, Qm. 

Here P in (1) is obviously a Horn clause. (2) can be represented as 

PPPP n →∧∧∧ )( 21 " .  

That is, PPP n ∨¬∨∨¬ "1 , also a Horn clause. (3) represents if mQQ ∧∧"1  can be 

inferred from (1) and (2). From the resolution point of view, the negation of conclu-
sion of objective, i.e., mQQ ¬∨∨¬ "1 , is again a Horn clause. Prolog programming 

is based on this kind of Horn clause logic.  
The L-type Q-Horn clause in Definition 3.1 is an extension of classical Horn clause 

in order to establish an extended linguistic-valued or called a L-type Prolog program-
ming. L-type Q-Horn clause looks similar as that in classical logic, however, here 
“→” has been different and been generalized, i.e., not any more a Kleene implication, 
but the more general implication form in LIA. At the same time, the rules and facts in 
classical Prolog can be interpreted as the set of axioms which are always true. The L-
type Prolog which will be established in the following is an extension of this frame-
work, i.e., the rules and facts are extended into L-type fuzzy rules and fuzzy facts, i.e., 
truth-value is extended from {0, 1} into lattice-ordered linguistic truth-values, and the 
reasoning process is associated with the change of truth-values.  

Suppose that F is the set of all L-type Q-Horn clauses in ℑ, and FL(F) represents 
the set of all the L-type fuzzy set on F. Let A∈FL(F), A is called a non-logical fuzzy 
axiom set. For any logical formula ϕ∈F, always associated with a value A(ϕ)∈L. In 
the real-world practices, one may suppose that A(ϕ) is the minimal truth-value degree 
of a proposition ϕ or possibility degree, or credibility degree (based on the application 
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context). It is expected that during the reasoning process, every inferred formula 
ψ∈LP(X), whose associated (truth) value should be larger than A(ψ). Thus, we need 
to know the minimal value A(ψ) of the involved formula ψ, in addition, the associated 
truth values may continuously improved during the deduction process.  

In the following, we always assume that for any L-type Q-Horn clause 0)( , >ϕϕ A  

or A is said to be regular, and ϕ is called a non-logical axiom of A.  

Definition 4.2. Let D be an interpretation of the language ℑ, A∈FL(F). D is called a 
model of A or D satisfies A, if for arbitrary ϕ∈F, A(ϕ)≤γ(ϕ)D holds, where γ(ϕ)D is the 
truth-value of ϕ  under the interpretation D.  

Definition 4.3. Let A∈FL(F), ϕ∈F, α∈L. ϕ  is said to be α -true in A, denoted as A||α 
= ϕ if      |||     { }ADD  satisfyingtion interpretaan  is   ;)(ϕγα ∧= .  

Set =))(( ϕACon { }ADD  satisfyingtion interpretaan  is   ;)(ϕγα ∧=  

Now we consider the syntax in the following part. For arbitrary p, q∈F, set 
p⊗q=:(p→q′)′.  

Theorem 4.1. For any p, q, r, L∈α , m, n∈N, the following statements hold: 

(1) ||= I→p ; (2) || = pp → ; (3) || = pqp →∧ ; (4) || = qqp →∧  

(5) || = pp →′′)( ; (6) || = pxp →∀  

Definition 4.4. Axioms in lattice-valued first-order Q-Horn clause logic system are L-
type fuzzy set AL (AL∈FL(F)) in the following forms: 

            
⎪
⎩

⎪
⎨

⎧
∈==
.Otherwise  ,O

; ,   ,

1.4 Theoremin  (6)~(1) of form in the formula a is    ,I

)( LAL ααϕα
ϕ

ϕ
；

 

Definition 4.5. Let A∈ FL(F), ϕ∈  F. A formal proof ω of ϕ from A is a finite se-
quence in the following form: ) ,( , ), ,( 11 nn αϕαϕ " , where ϕϕ =n . For any 

LFnii ii ×∈≤≤ ) ,(  ,1  , αϕ , and  

(i) iiLA αϕ =)(  or (ii) iiA αϕ =)(  or (iii) There exists j, k<i,  

ϕj= ( ) ( )( )pxx m∀∀ "1 , ϕk= ( ) ( )( )qpxx m →∀∀ "1 , ϕi = ( ) ( )( )qxx m∀∀ "1 , 

and ( ) ( )( )[ ][ ] ( ) ( )( )[ ]qxxAqpxxA mmji ∀∀∨→∀∀⊗= "" 11αα . 

(iv) There exist k<i, such that ϕk= ( )1x∀ ⋅⋅⋅ ( )kx∀ (q) and there exists a term 

rii tt ,,
1
" ( rii ,,1 "  } , ,1{ k…∈ ) without free variables, where ϕk is obtained from ϕi by 

replacing the variables ),,1( rjx
ji "=  in q as 

jit , the qualifiers only bound to the 

remaining variables. In addition, ( ) ( )[ ] )()(1 iki AqxxA ϕα ∨∀∀= " .  

Here n is called the length of the proof ω, denoted as )(ωl ; nα  is called the value 

of the proof ω, denoted as )(ωval .  
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Definition 4.6. Let A∈ FL(F), ϕ ∈ F, α ∈L. ϕ  is called an α-theorem of A, denoted 
as A ||— α ϕ, if { }A from  of proof a is   ; )( ϕωωα val∨= .  

Denote LFADed → :)(  as { }A from  of proof a is   ; )())(( ϕωωϕ valADed ∨= .  

More generally, since it is reasonable that the uncertain premises will infer the un-
certain conclusion, so starting from L-type fuzzy premise set A ∈FL(F), the inferred 
output would be also L-type fuzzy set A, B ∈FL(F). We can generalize Definition 3.6 
into the following form: 

Definition 4.7. Let A, B∈FL(F) be regular. B is said to be syntactically inferred from 
A, if there exists a finite sequence of the form A0, ... , An∈FL(F), where B≤An, and for 
each k∈{0, ... , n-1}, Ak+1 can be obtained from Ak as the following steps: 

(1) There exists a Q-Horn clause ( ) ( )( )qpxx m →∀∀ "1  in F such that 

(i) if q0∈F, where the free variables are x1, …, xr and q0≠q, then 
                A[ ( ) ( )( )01 qxx m∀∀ " ]=Ak+1[ ( ) ( )( )01 qxx r∀∀ " ];  

or (ii) ( ) ( )( )[ ]qxxA mk ∀∀+ "11  

     = ( ) ( )( )[ ] ( ) ( )( )[ ][ ]qpxxApxxA mmk →∀∀⊗∀∀ "" 11 ( ) ( )( )[ ]qxxA m∀∀∨ "1 .  

(2) There exists a Q-Horn clause ϕ= ( )1x∀ ⋅⋅⋅ ( )kx∀ (q) and a term 

rii tt ,,
1
" ( rii ,,1 "  } , ,1{ k…∈ ) without free variables, such that ϕ  is transformed into 

ϕ* by replacing the variables ),,1( rjx
ji "=  in q as 

jit , where the remaining vari-

ables are bounded by the qualifiers, and Ak+1(ϕ*)= ( ) ( )[ ] *)()(1 ϕAqxxA k ∨∀∀ " .  

The mapping LFADed → :)(  is given as follows: 

Ded(A)(ϕ) =∨{B(ϕ); B is syntactically inferred from A},  

where ϕ is the Q-Horn clause in the form of (2) in Definition 4.1.  
For an universal qualifier, if q∈F, x is an individual variable, then 

γ(∀xq)D= )/()( dxD
Dd

qγ
∈
∧ , where D(x/d) is an interpretation from the interpretation D 

by replaced x as d. 

Lemma 4.1. Let p, q∈F, x does not appear in p as a free variable. Then 

∀x(p→q)=p→∀xq. 

Corollary 4.1. Let p, q∈F, both x and y does not appear in p as a free variable. Then 
∀x∀y(p→q)=p→∀x∀yq. 

Corollary 4.2. Let p, q∈F, x1, …, xk do not appear in p as the free variables. Then 
(∀x1)…(∀xk)(p→q)=p→(∀x1)…(∀xk)(q). 

Lemma 4.2. Let p, q∈F, x does not appear in p as a free variable. Then  

γ(∀xq)D ≥γ(∀xp)D ⊗γ(∀x(p→q))D 

holds for any interpretation D. 
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Corollary 4.3. Let p, q∈F, x1, …, xk do not appear in p as the free variables. Then  
γ((∀x1)…(∀xk)(q))D ≥γ((∀x1)…(∀xk)(p))D ⊗γ((∀x1)…(∀xk)(p→q))D  
holds for any interpretation D. 

Theorem 4.2. (Soundness) Let A∈FL(F) be regular. Then   

))(())(( ϕϕ AConADed ≤  

holds for any lattice-valued Q-Horn clause ϕ in the form of (2) in Definition 4.1. 

Theorem 4.3. (Completeness) Let A∈FL(F) be regular. Then  

))(())(( ϕϕ AConADed ≥  

holds for any lattice-valued Q-Horn clause ϕ in the form of (2) in Definition 4.1. 
It follows from Theorems 4.2 and 4.3 that if A∈FL(F) is regular, then 

Con(A)=Ded(A). That means the established linguistic-valued Q-Horn clause logic is 
sound and complete, which will provide a support and theoretical foundation for fur-
ther establishing lattice-ordered linguistic-valued Prolog language. 

4   Conclusions 

Based on the key idea of the symbolic approach acts by direct reasoning on linguistic 
truth values, we characterized the set of linguistic values by a lattice-valued algebraic 
structure (lattice implication algebra) and investigated the corresponding logic sys-
tems with linguistic truth values, and furthermore, investigated the automated reason-
ing scheme based on linguistic truth-valued logic system, while the resolution method 
as well as its theorems of soundness and completeness were given on proving the 
satisfiability of logical formulae with respect to a certain linguistic truth-value level, 
and a linguistic-valued quasi-Horn clause logic were investigated with its soundness 
and completeness theorem being given.  
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