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Abstract 
 

A belief Rule-base Inference Methodology using 
the Evidential Reasoning approach (RIMER) has been 
developed recently, which is an extension of traditional 
rule based systems and is capable of representing 
more complicated causal relationships using different 
types of information with uncertainties. A rule-base in 
RIMER is designed with belief degrees embedded in all 
possible consequents of a rule, where it is assumed 
that all the consequents are independent of each other 
in order to accommodate the assumption imposed on 
the evidential reasoning (ER) algorithm being used. To 
overcome this limitation, in the paper, we extend the 
RIMER approach to the case of fuzzy consequents, that 
is, each consequent can be defined as a fuzzy linguistic 
term because of vagueness and inexactness. In such 
cases, the intersection of adjacent two fuzzy sets is no 
longer an empty set, which results in the above ER 
algorithm inapplicable during the inference process, 
instead, the inference of the belief rule-based system is 
implemented using an extended fuzzy ER algorithm. 
This work extends the applicality and feasibility of the 
RIMER approach. 

 
1 Introduction 

 A new methodology has been proposed recently 
[4] for modeling a hybrid rule-base using a belief 
structure and for inference in the belief rule-based 
system using the evidential reasoning (ER) approach 
[6, 8, 9]. The methodology is referred to as a belief 
Rule-base Inference Methodology using the Evidential 
Reasoning approach – RIMER. In the RIMER 
approach, a rule-base designed on the basis of the 
belief structure, called belief rule-base, is used to 
capture nonlinear causal relationships as well as 

uncertainty. The inference of a rule-based system is 
implemented using the ER approach. RIMER has been 
applied to the safety analysis of offshore systems [1, 2] 
and is applicable to a wide range of areas such as risk 
and safety analysis, quality assessment, and fault 
diagnosis. The optimization model of RIMER has also 
been introduced in [5]. 
 In an established belief rule-base, input for each 
antecedent is transformed into a distribution on the 
referential values of this antecedent. This distribution 
describes the degree of each antecedent being activated. 
Moreover, the antecedents of an IF-THEN rule form an 
overall attribute, called a packet antecedent attribute. 
The activation weight of a rule can be generated by 
aggregating the degrees to which all antecedents in the 
rule are activated. In this context, an IF-THEN rule can 
be considered as an evaluation problem of a packet 
antecedent attribute being assessed to an output term in 
the consequent of the rule with certain degrees of 
belief. 

In the RIMER approach does not take account of 
vagueness or fuzzy uncertainty of the consequent 
assessment grade in the IF-THEN rule, where it is 
assumed that each consequent assessment grade as 
independent crisp terms, which limit the applicality of 
the approach. It would be more natural to assume that 
the consequent assessment grades can be dependent, 
which may overlap in their meanings. For example, the 
assessment grades “low” and “very low” are difficult to 
be expressed as clearly distinctive crisp sets, but quite 
natural to be defined as two dependent fuzzy sets. In 
other words, the intersection of the two fuzzy sets may 
not be empty.  

In addition, the rules in the belief rule base may 
come in different ways, such as extracted from experts 
or by examining historical data, or self-learned from 
training data. Especially considering the rule-based 
learnt from data, the input and output are both 
numerical case. Many fuzzy systems that automatically 
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generate fuzzy rules from numerical data have been 
proposed, e.g., some fuzzy learning algorithms to 
construct the membership functions of the input 
variables and the output variables of fuzzy rules and to 
induce the fuzzy rules from the numerical training data 
set. In such case, the output variables in the IF-THEN 
rules are dependent instead of being independent.  
 In the paper, we extend the RIMER approach to 
the case of fuzzy consequents, that is, each consequent 
can be defined as a fuzzy linguistic term because of 
vagueness and inexactness. In such cases, the 
intersection of adjacent two fuzzy sets is no longer an 
empty set, so the inference of the belief rule-based 
system is implemented using an extended fuzzy ER 
algorithm. This work extends the applicality and 
feasibility of the RIMER approach. 
 The rest of this paper is organized as follows. 
RIMER approach is briefly reviewed in Section 2. The 
extended RIMER approach to deal with fuzzy 
consequents is proposed in Section 3. Conclusions are 
drawn in Section 4. 

2 RIMER 

The RIMER approach is summarized in this section 
and more details can be found in the references [4]. To 
take into account belief degrees, attribute weights and 
rule weights in a rule, suppose a belief rule-base is 
given by R={R1, R2,…, RL} with the kth rule 
represented as follows: 

Rk: IF U is Ak THEN D with belief degrees βk, 
with a rule weight θk and attribute weights δk1, 
δk2,…,

kkTδ                                                              (1) 
where U represents the antecedent attribute vector 
(U1,…, 

kTU ), Ak the packet antecedents { kA1 ,…, k
Tk

A }, 

and k
iA  (i=1,…, Tk) the referential value of the ith 

antecedent attribute in the kth rule; Tk is the number of 
antecedent attributes used in the kth rule. Suppose T is 
the total number of antecedent attributes used in the 
rule base, D the consequent vector (D1,…, DN), and βk 
the vector of the belief degrees ( kβ1 ,…, Nkβ ) for 
k∈{1,…, L}, and ikβ  (i∈{1,…, N} the belief degree to 
which Di is believed to be the consequent if in the kth 
packet rule the input satisfies the packet antecedents Ak. 
θk is the relative weight of the kth rule and δk1,…, δkTk 
are the relative weights of the Tk antecedent attributes 
used in the kth rule. L is the number of all the packet 
rules in the rule-base. If ∑ ==

N
i ikβ1 1 , the kth packet rule 

is said to be complete; otherwise, it is incomplete. Rule 
(1) is referred to as a belief rule. A belief rule-base 

established using belief rules can be summarized using 
a belief rule expression matrix shown in Table 1: 

Table 1: Belief rule expression matrix for a rule-
base 

Input Belief 

Output A1 
(w1) 

A2 
(w2) 

… Ak 
(wk) 

… AL 
(wL)

D1 β11 β12 … β1k … β1L 

Μ Μ Μ … Μ …   Μ 
Di βi1 βi2 … βik … βiL 

Μ Μ Μ … Μ …   Μ 
DN βN1 βN2 … βNk  … βNL

In the matrix, wk is the activation weight of Ak, which 
measures the degree to which the kth rule is weighted 
and activated. wk is calculated by: 

 
( )
( )∑ ∏∗

∏∗
=

= =

=
L

i

T

l

i
li

T

i

k
ik

k k l

k i

w

1 1

1

][
δ

δ

αθ

αθ
, with { }i

Ti

i
i

k

δ
δδ
 ,...,1

max
=

=    (2) 

where it is assumed that θk ∈[0, 1] (k=1,…, L) and δi 
∈[0, 1] (i=1,…, Tk). k

iα  (i=1,…, Tk), called the 
individual matching degree, is the degree of belief to 
which the input for Ui belongs to k

iA  of the ith 

individual antecedent in the kth rule, and k
iα ∈[0, 1]. 

k
iα  could be generated using various ways depending 

on the nature of an antecedent attribute and the 
available data [4]. In this paper we assume that k

iα  
(i=1,…, Tk) are already given.  
 Based on the above belief rule expression matrix, 
we can use the ER approach to combine rules and 
generate final conclusions. 

Having represented each rule using Equation (1), 
the ER approach can be directly applied as follows. 
First, transform the degrees of belief jkβ  for all 
j=1,…, N, k=1,…, L into basic probability masses 
using the following recursive evidential reasoning (ER) 
algorithm [8, 9]: 

kjkkj βwm ,, = , Nj ,,1Λ= ;  

∑−=∑−=
==

N

j
kjk

N

j
kjkD βwmm

1
,

1
,, 11 ,  

kkD wm −=1, , and )1(~
1

,, ∑−=
=

N

j
kjkkD βwm  

For all Lk ,,1Λ=  , with kDkDkD mmm ,,,
~+=  for all 

Lk ,,1Λ=  and ∑ =L
j jw 1. The probability mass assign
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ed to the consequent set D, which is unassigned to any 
individual consequent, is split into two parts, one cause
d by the relative importance of the kth packet anteceden
t Ak (or kDm , ) and the other by the incompleteness of t
he kth packet antecedent Ak (or kDm ,

~ ). 
Then, aggregate all the packet antecedents of the 

L rules to generate the combined degree of belief in 
each possible consequent Dj in D. Suppose )(, kIjm  is 

the combined degree of belief in Dj by aggregating the 
first k packet antecedents (A1,…, Ak) and )(, kIDm  is the 

remaining degree of belief unassigned to any 
consequent. Let 1,)1(, jIj mm =  and 1,)1(, DID mm = . 

Then the overall combined degree of belief jβ  in Dj is 

generated as follows: 

   
]
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Dβ  represents the remaining belief degrees unassigned 

to any Dj. It has been proved that ∑ =+=
N
j Dj ββ1 1 [8, 

9]. The final conclusion generated by aggregating the 
L rules, which are activated by the actual input vector 
A*={A*k

, k=1,…, L} can be represented as follows  
                    S(A*)={(Dj, β j), j=1,…, N}               (3) 
Here we suppose that all the L rules are independent of 
each other, which means that the packet antecedent 
A1,…, AL are independent of each other. Then, 
aggregate all the packet antecedents of the L rules to 
generate the combined degree of belief in each 
possible consequent Dj in D. An overall analytical ER 
algorithm was also given in [3]. 

Take for example the following belief rule in 
safety analysis:  

Rk: IF the failure rate is frequent and the 
consequence severity is critical and the 

failure consequence probability is unlikely 
THEN the safety estimate is {(Good, 0), 
(Average, 0), (Fair, 0.7), (Poor, 0.3)} 

where {(Good, 0), (Average, 0), (Fair, 0.7), (Poor, 
0.3)} is a belief distribution representation for safety 
consequent, representing that we are 70% sure that 
safety level is Fair, and 30% sure that safety level is 
Poor. In this belief rule, safety estimate is the only 
output fuzzy variable used to produce safety evaluation 
for a particular cause to technical failure. This variable 
is described linguistically, which is described and 
determined by the above three parameters. In safety 
assessment, it is common to express a safety level by 
degrees to which it belongs to such linguistic variables 
as “Poor”, “Fair”, “Average”, and “Good” that are 
referred to as safety expressions, so the safety estimate 
can be regarded as the safety classification in which 
“Poor”, “Fair”, “Average”, and “Good” are 
qualitatively regarded as independent. 
 
3  Extended RIMER 

In the RIMER approach reviewed above, the 
consequent assessment grades are assumed to be crisp 
and independent of each other. In many situations, 
however, an assessment grade may represent a vague 
or fuzzy concept or standard and there may be no clear 
cut between the meanings of two adjacent grades. In 
this section, we will drop the above assumption and 
allow the grades to be fuzzy and dependent. To 
simplify the discussion and without loss of generality, 
fuzzy sets will be used to characterise such assessment 
grades and it is assumed that only two adjacent fuzzy 
grades have the overlap of meanings. This represents 
the most common features of fuzzy uncertainty.  

Suppose a general set of fuzzy consequent grades 
{Dj}(j=1,…, N) are dependent on each other, which 
may be either triangular or trapezoidal fuzzy sets or 
their combinations. Assuming that only two adjacent 
fuzzy consequent grades may intersect, we denote by 
Dj, j+1 the fuzzy intersection subset of the two adjacent 
fuzzy consequent grades Dj and Dj+1 (see Fig. 1).  

Since fuzzy consequent grades and belief degrees 
are used, then rule defined in (1) contains both fuzzy 
sets (grades) and belief degrees. The former can model 
fuzziness or vagueness and the latter incompleteness 
or ignorance. 

In the derivation of Equations (3), it was assumed 
that the consequent evaluation grades are independent 
of each other. Due to the dependency of the adjacent 
fuzzy consequent grades on each other as shown in 
Fig. 1, the ER algorithm used in RIMER can no longer 
be 
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    D 1, 2     D 2, 3         D3, 4     D4 , 5            D 5, 6   
 a      b       c     d     e     f      g      h   x 

Fig .1.  The mutual relationships between fuzzy  consequent grades 
 

employed without modification to aggregate rules 
assessed using such fuzzy grades. However, the 
evidence theory provides scope to deal such fuzzy 
assessments. Based on the ideas similar to those used 
to develop the non-fuzzy evidential reasoning 
algorithm [8, 9], a fuzzy evidential reasoning 
algorithm has been proposed in [7]. The new challenge 
is that the intersection of two adjacent evaluation 
grades Dj and Dj+1  is Dj, j+1, which is not empty as 
shown in Fig. 1. Another difference is that the 
normalisation has to be conducted after all pieces of 
evidence have been combined in order to preserve the 
property that the generated belief and plausibility 
functions still represent the lower and upper bounds of 
the combined degrees of belief. 

Following the assumptions on the fuzzy 
assessment grades made in the previous subsection, 
based on the belief decision matrix as shown in 
Equation (1), it is proven in [7] that the following 
analytical (non-recursive) fuzzy ER algorithm can be 
used to aggregate the L rules generate the combined 
degree of belief in each possible consequent Dj in D: 
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where 1, +jjD  is a normalized fuzzy subset for the 

fuzzy intersection subset 1, +jjD  whose maximum 

degree of membership is represented by max
1, +jjD

μ  and is 

usually less than one.  
1, +jjD  is normalised to 1, +jjD  as shown in 

Equations (5) so that 1, +jjD  can be measured as a 
formal fuzzy set with the maximum membership 
degree being one, therefore assessed in the same scale 
as the other defined fuzzy evaluation grades such as 

jD  (see Fig. 2). The normalisation of 1, +jjD  seems 

logical because the probability mass )( 1, +jjDm  
assigned to the fuzzy intersection subset is directly 
related to the height of 1, +jjD . In other words, how 

jD  and 1+jD  are interrelated is thus taken into 

account in the calculation of the belief assigned to 
their intersection. Without the normalisation, 

)( 1, +jjDm  would remain constant as long as jD  and 

1+jD  intersect, however small or large the intersection 

might be.  
)(xμ  

1    2,1D     3,2D          4,3D    5,4D           6,5D   

                
          
 

    2,1D      3,2D          4,3D    5,4D           6,5D  

  a       b      c    d     e     f     g      h  x 
Fig. 2.  Normalized fuzzy intersection subsets 

  
Since 1, +jjD  (or 1, +jjD ) is not an originally 

defined fuzzy evaluation grade, however, its degree of 
belief (or 1, +jjβ ) should eventually be reassigned to 
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jD  and 1+jD . The question is how to find the 

relations between the two different sets of fuzzy 
assessment grades jD (and 1+jD ) and 1, +jjD , so that 

1, +jjD  can be equivalently represented by jD  (and 

1+jD ) in some sense. The detailed assignment 
approach has been discussed and proposed in [7], and 
is summarized below:  

Fig. 3 shows the typical relative position relations 
between one basic fuzzy assessment grade 1, +jjD  and 

two general assessment grades jD  and 1+jD . From 

Fig. 6 one can see that 1, +jjD  lies completely between 

jD  and 1+jD , and has no intersection with any other 
general fuzzy assessment grades. Therefore, it is 
sufficient to use only jD  and 1+jD  to represent 

1, +jjD . Suppose 1, +jjD  intersects jD  with an area of 

)( 1, ++ jjj SS  and 1+jD  with an area of )( 11, ++ + jjj SS , 

where 1, +jjS  is the common area of 1, +jjD  

intersecting both jD  and 1+jD . The minimum 

distance between the peaks of 1, +jjD  and jD  is 

denoted by jd  and that between the peaks of 1, +jjD  

and 1+jD  by 1+jd .  

   )(xμ  

 1              jD    1, +jjD     1+jD  

 
 
                     Sj    Sj+1 

                    Sj,j+1 

                                                x 
         dj    dj+1 

    Fig.6. The reassignment of the belief degree of fuzzy intersection subset 
 

It seems logical that the belief degree of 1, +jjD  

belonging to an assessment grade, say jD , is related to 

jS , 1+jS , 1, +jjS , jd  and 1+jd . Intuitively, a large 

jS  and a small 1+jS  together with a small jd  and a 

large 1+jd  should imply a high degree of belief to 

which 1, +jjD  belongs to jD . 
We can solve the problem of reassigning the 

belief degree of the fuzzy intersection subset 1, +jjD . 

Since 1, +jjD  intersects jD  and 1+jD  only (see Fig. 6), 

the degree of belief assigned to 1, +jjD  should only be 

reassigned to the two fuzzy grades jD  and 1+jD . 

From Fig. 6, the allocation of 1, +jjS  should be related 

to the distances jd  and 1+jd  as well as the areas jS  

and 1+jS . In order to model the allocation, the 

following two allocation factors jAF  and 1+jAF  are 

introduced (see Fig. 6): 

⎥
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It is obvious that 11 =+ +jj AFAF . Also, if jd  and 

1+jS  are both zero, then 1=jnAF  and 01 =+jAF ; if 

1+jd  and jS  are both zero, then 0=jAF  and 

11 =+jAF . The allocation factors are used to assign 

the belief degrees to which 1, +jjD  is allocated to jD  

and 1+jD   as follows: 

11,

1,
1, )(

++

+
+ ++

⋅+
=⊂

jjjj

jjjj
jjj SSS

SAFS
DDBel     (13) 

11,

1,11
11, )(

++

+++
++ ++

⋅+
=⊂

jjjj

jjjj
jjj SSS

SAFS
DDBel    (14) 

Thus, the belief degree 1, +jjβ  can be divided into 
two parts:  

)( 1,1, jjjjj DDBel ⊂++β , and  

)( 11,1, +++ ⊂ jjjjj DDBelβ .  

The former should be added to jβ  and the latter to 

1+jβ . Therefore, the final belief degree that supports 

the fuzzy assessment grade jD  should include three 

parts:  

)()( 1,1,11,1, jjjjjjjjjjj DDBelDDBelβ ⊂+⊂+ +++++ ββ  

for 1 ,,2 −= Nj Κ . The belief degree for 1D  is given 
by  

)( 12,12,11 DDBelββ ⊂+  and  

)( ,1,1 NNNNNN DDBelββ ⊂+ −−  for ND . 

The belief degree which supports the whole set 
},,{ 1 NDDD Κ=  is still Dβ . For convenience, we 
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denote the above final belief degrees by 
NFFF βββ  , , , 21 Κ  and Dβ . Therefore, the final 

conclusion generated by aggregating the L rules, 
which are activated by the actual input vector A*={A*k

, 
k=1,…, L} can be represented as follows as 

} ,,1 ), ,{(*)( NjβDAS jFj Κ== . 

Different from the ER algorithm in RIMER that 
is of a recursive nature, the new fuzzy ER algorithm 
provides an analytical means for combining all 
attributes in one go without iteration, thus providing 
scope and flexibility for sensitivity analysis and 
optimisation. 

6 Conclusion 

In the RIMER approach in [4] does not take account of 
vagueness or fuzzy uncertainty of the consequent 
assessment grade in the IF-THEN rule, where it is 
assumed that each consequent assessment grade as 
independent crisp terms, which limit the applicality of 
the approach. To overcome this limitation, in the paper, 
we extended the RIMER approach to the case of fuzzy 
consequents, that is, each consequent can be defined as 
a fuzzy linguistic term because of vagueness and 
inexactness. The inference of the belief rule-based 
system is implemented using an extended fuzzy ER 
algorithm. This work extended the applicality and 
feasibility of the RIMER approach. The corresponding 
optimization models will be further investigated. 
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