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 Abstract  Recommender systems help users to find 

information that best fits their preferences and needs in an 

overloaded search space. Most of recommender systems research 

focuses on improving recommendation methods to obtain a higher 

accuracy in recommendations. However, the study of user’s 

inconsistencies, so-called natural noise, is becoming a hot topic in 

Recommender Systems. In this contribution is proposed a novel 

approach to detect and correct those inconsistent ratings that 

might bias recommendations, by using global information about 

user and item preferences. This proposal characterizes items and 

users by their ratings and classifies a rating as noisy if it 

contradicts user or item tendencies. This approach just utilizes 

ratings on the contrary of previous proposals that use additional 

information like item attributes or user interaction.  

 
I.  INTRODUCTION 

 Recommender systems have become a mainstream 
research field in information technologies. They appear as a 
solution to help users to obtain information that best fits their 
preferences and needs, in scenarios in which information 
overloading is an important drawback.  

The most popular version of this kind of applications [1], 
learns from user preferences about a predefined set of known 
items, and predicts the preference degree for this user about an 
unknown item. With this goal, an important amount of 
applications have been built to recommend different items like 
movies, books, TV shows, jokes, news, scientific papers, web 
pages, and so on. Some application areas have been e-
commerce and e-learning [2, 3].  

Most of recommender systems are developed by using two 
main paradigms: content-based and collaborative filtering. 
Content-based recommender systems [4, 5], suggest items with 
similar features, considering those ones that the user preferred 
in the past. On the other hand, collaborative filtering 
recommender systems [6, 7] recommend items that other users 
with similar tastes liked in the past. Collaborative filtering 
systems can generate recommendations by using just 
information about user preferences over a group of items. For 
this reason, they become popular nowadays. 

Lots of work have been done in collaborative filtering to 
improve recommendation accuracy [6, 7]. It includes user-user 
and item-item approaches, dimensionality reduction 
approaches, probabilistic methods, MDP- based methods, 
graph-based methods, rule-based methods, and hybrids [8]. In 
past years, advances in collaborative filtering [9] have 

overcome important challenges like Netflix Prize, showing that 
rating prediction can be significantly improved. 

In practical data mining problems usually the data 
contains a degree of inconsistency, so preprocessing is an 
important step in mining processes [10]. However, most of 
works done in recommendation problems assumes that rating 
data are free of irregularities. Nevertheless, recently 
Amatriain, Pujol and Oliver [11] showed that users could be 
inconsistent when they rate items, making recommender 
systems data vulnerable to inconsistencies. These 
inconsistencies, so called natural noise [12], are inserted 
without malicious intentions, and its manipulation represents 
an open problem to improve recommender systems 
performance [6, 13, 14]. 

In this contribution, we will propose a way to explore 
datasets and apply collaborative filtering techniques to correct 
noisy ratings. This proposal considers that user and item are 
represented by their rating profiles, and classifies them 
according to it. After that, a rating is considered as noisy if it is 
contradictory with the user/item classification. In such a case, 
it is then corrected by using a strategy. To validate the 
hypothesis that corrected data improve the accuracy of 
collaborative filtering recommender systems, a case study on 
Movielens dataset has been carried out. 

The paper is organized as follows: Section 2 reviews 
collaborative filtering and relevant work on natural noise and 
rating correction. Section 3 introduces our approach for 
managing natural noise in two steps, first noisy rating 
detection and then noise correction. Section 4 performs and 
discusses a case study to evaluate the proposal and finally 
section 5 concludes the contribution. 

II.  BACKGROUND 

In this section a brief review about collaborative filtering and 
natural noise is introduced. 

A. Collaborative  Filtering 
 Collaborative filtering recommender systems (CFRS) 
provide recommendations to users about items that have 
previously liked to people with similar tastes. While others 
recommender systems approaches depend on content directly 
associated to items, CF approach generally uses just ratings to 
predict user’s preferences over items. The data in CF could be 
gathered in an explicit or implicit way [3].  
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 To evaluate our proposal, in our case study we will use 
three classical approaches for collaborative filtering [8]:  
 a) Memory based user-user collaborative filtering [15].  It 
predicts user’s preferences for a not rated item, looking for 
other similar users to the active user. Neighbors’ ratings for the 
corresponding item are weighted considering similarity 
degrees, to predict unknown user’s preference. Similarity 
between two users is calculated using different similarity 
measures. 
 b) Model based item-item collaborative filtering [16]. It 
does not use similarities between users to predict preferences. 
It uses similarities between items that stores in a model. To 
predict an unknown preference for a current user and an item, 
it takes from the model similar items and uses user’s rating 
from those items to predict an unknown rating. 
 c) Matrix factorization approach. It appears as a solution 
for classical scalability and sparsity problems in traditional 
memory-based collaborative filtering. It proposes a user and 
item space reduction to a lower dimensionality space that 
retains most of the initial information, mitigating redundancy 
and sparsity effects. This new k-space includes a set of k topics 
in which user preferences can be expressed considering user’s 
interest in a topic, and the degree to which each item is 
significant to the topic. Early works like [17] formally use 
latent semantic analysis in the form of truncated singular value 
decomposition (SVD) to reduce dimensionality in CF.  
 However, in the last years less expensive and more 
accurate methods have been developed using alternative 
procedures to reduce dimensionality. Those proposals, 
summarized in [9], focus on directly learn a new space using 
gradient descendent techniques, instead of transform the initial 
rating matrix in a new one. Our case study, presented in 
section IV, uses the framework introduced in [9].  
 
B. Handling Natural Noise in Collaborative Filtering 
 Noise in recommender systems dataset has been grouped 
in two main categories:  
 1) Malicious noise, associated to noise intentionally 
introduced by an external agent to bias recommender results 
[18], and 
 2) Natural noise, involuntarily introduced by users in 
recommender dataset that could also affect the 
recommendation result. 
 While handling malicious noise is a well-developed 
research area, natural noise has received less attention. Note 
that both noises are produced by different sources, so 
techniques to process them must be different.  
 Recently, Amatriain et al. [11] consider that natural noise 
characterization is a key element in recommender systems. 
They made some experiments to quantify users inconsistencies 
degree analyzing their ratings, and concluded that this noise 
can considerably affect recommendation quality. 
 O’ Mahony et al. [12] present one early work that uses 
natural and malicious noise terms. It detects noisy ratings 
comparing each rating with user’s predicted preference for that 
item. These predictions are calculated using a set of genuine 

user profiles manually obtained. It then discards ratings which 
differences exceed a threshold considering this comparison 
process. Ekstrand et al. in [6], point out that this approach 
makes the erroneous assumption that all high-deviance ratings 
are result of user mistakes, and it does not consider the 
presence of some outliers that express the current user 
preference. 
 An interactive method to eliminate noisy ratings, named 
item re-rating, was proposed in [13]. When any noisy rating is 
discovered, the system decides to ask the user to rate the 
corresponding item again, and the author considers that this re-
rating process will remove the natural noise appeared. It 
affirms that denoising extreme ratings yields larger 
performance gain than denoising mild ratings. Noisy ratings 
and noisy users are previously identified in online rating trials 
done by authors as a part of its work. The mandatory user 
participation is an important component in this method, and 
transforms it in impractical in some scenarios. 
 Recently, another important group of works explores data 
beyond ratings to correct erroneous rating values in 
recommender systems [19]. They use item attributes to learn a 
user preference model, and it marks a rating as incorrect if it 
belongs to the current user preference model, but it is under a 
predefined threshold and under mean rating for this user. They 
also propose a way to correct rating, defining some criteria to 
classify a user as expert, and proposing three rating-correction 
methods using experts. The first one considers a weighted 
average rating of experts about the same item. The second one 
considers a weighted average rating of items belonging to the 
user preference model (similarly to item-to-item collaborative 
filtering), and the third one calculates mean value of previous 
two. This approach improves recommender performance, but 
depends on item attributes to build the preference model. In 
the current contribution, we also correct erroneous values, but 
without using external sources. 
 Eventually, Li [20] proposes an approach to process 
natural noise in recommender systems. It detects “noisy but 
non-malicious” users in CFRS, assuming that the ratings 
provided by a user on closely correlated items should have 
similar scores. For each user profile, it quantifies underlying 
noise, obtaining users with a high noise degree. Removing 
these users for dataset, recommendation accuracy is improved. 
However, this work focus on noise detection on user level, so 
new approaches beyond users, that deals with rating levels, are 
needed. Noise treatment at this deeper level will facilitate 
rating correction, avoiding information removal from the 
dataset like is demanded in [20]. 

III.  MANAGING NATURAL NOISE BY USING RATINGS 

 Here, it is presented a novel approach to detect and 
correct noisy ratings, taking into account just rating values. It 
does not use any additional information about users or items. 
 Disregarding preferences variation over time, it is 
considered that erroneous ratings can appear in recommender 
systems dataset due to several reasons: i) Users unintentionally 
can express information that does not correspond with their 

873



preferences and profiles. This is the classical scenario for 
natural noise. ii) They also could insert anomalous-but-correct 
information intentionally added, that is not actually aligned 
with their global profiles and could be considered as noisy.  
 For example, if a user likes all Woody Allen’s films 
except just one, this anomalous preference could associate user 
with a different group of users that they actually do not belong, 
and the recommendations that could receive might be 
influence from this group. Disregarding the doubt about this 
rating and if it represents real preferences or not, it certainly 
affects user predictions regarding unknown items.  Our 
research focuses on processing this kind of incorrect ratings, 
but we lack of additional data like “Woody Allen”, so we need 
to define new strategies to do it just using ratings. 
 In all cases, erroneous ratings or ratings that do not 
represent real user’s preferences can cause accuracy decay in 
collaborative filtering. Incorrect ratings could alter user’s 
profile, and the biased user could fall in a different 
neighborhood comparing with unbiased one. This could affect 
current user’s predictions, and also predictions for users in the 
neighborhood.  
 In order to correct natural noisy ratings, we propose a 
framework that includes two steps:  
 1) Noisy ratings detection: it classifies user and item 
profiles considering their ratings into four different classes. 
Each rating can also be classified into three different classes. 
A rating is marked as possible noise, if exist contradictions 
between the rating, considering its class, and the classes 
associated to the current user and item. 
 2) Noise correction: it uses a basic collaborative filtering 
method to predict a new rating for each possible noisy one. If 
the difference between both ratings is greater than a predefined 
threshold, the old rating is definitively considered as noisy, 
and its value is replaced with the new one.  
 A further detailed description of previous phases is 
introduced below: 
 
A. Noisy Rating Detection 
 To detect natural noisy ratings, we initially perform a 
classification for ratings, users, and items. We assume that 
each user has his/her own tendency when rates items: i) A 
group of users tends to positively evaluate all items, ii) another 
group provides average values, iii) a third one usually gives 
low ratings, and also, iv) there is a fourth group which 
behavior oscillates among any of the former categories, and do 
not fall into a specific one. 
 This classification is also extended to items. i) There is a 
group that is highly preferred by all users, ii) a group which 
items is averagely preferred, iii) a group that is not preferred 
by the majority of users, and like in users, and iv) a group that 
contains items with divided opinions about their preferences 
degree. 
 Eventually, each rating r(u,i) (for a user u and an item i ) 
is classified into three different classes according its value: 
 Rating classes: 

1. Weak preference: A rating r(u,i) is classified as a 
weak preference if it verifies r(u,i) < ț. 

2. Average preference: A rating r(u,i) is classified as an 
average preference if it verifies ț ��U�X�L����Ȟ. 

3. Strong preference: A rating r(u,i) is classified as a 
strong preference if it verifies U�X�L����Ȟ.  

  
 This classification depends on a weak-average threshold ț 
and an average-strong threshold Ȟ that must be previously 
defined, satisfying ț < Ȟ. We suggest later on a procedure to 
calculate tentative values for these parameters. 
 Preferences for each user u can be grouped in sets Wu, Au 
and Su, and for each item i in sets Wi, Ai and Si, considering U 
and I as whole sets of users and items:   
 
 User and item sets: 

1. Wu={r(u,i) | } � i �  I where r(u,i) is a weak 
preference} 

2. Au={r(u,i) | } � i �  I where r(u,i) is an average 
preference} 

3. Su={r(u,i) | } � i �  I where r(u,i) is a strong 
preference} 
 

1. Wi={r(u,i) | } � u �  U where r(u,i) is a weak 
preference} 

2. Ai={r(u,i) | } � u �  U where r(u,i) is an average 
preference} 

3. Si={r(u,i) | } � u �  U where r(u,i) is a strong 
preference} 

 
 Wu is the set of ratings provided for user u that represents 
weak preferences, Au as the set of average preferences for user 
u, and Su as the set of strong preferences for user u. Item sets 
are similar. 
 Considering rating classes and user and item sets, user 
profiles can be formally classified into four different 
categories: benevolent, average, critical, and variable. On the 
other hand, items can be classified in four categories: strongly-
preferred, averagely-preferred, weakly-preferred and 
variably-preferred (see Table I). 
 They are classified in one of the first three categories in 
each case, if the amount of ratings belonging to the 
corresponding class rating (following rating classes) exceeds 
the amount of the others two. Specifically, for each user and 
item, it is counted the amount of ratings belonging to each 
preference class and then:  
 i) If ratings representing weak preferences exceed both 
ratings representing average and strong preferences, then user 
is classified as critical, or item is classified as weakly-
preferred.  
 ii) If average preferences exceed the sums of other two, 
then user is classified as average, or item as averagely-
preferred.  
 iii) If strong preferences verify the same condition, then 
user is classified as benevolent, or item as strongly-preferred. 
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 iv) If there is no amount that exceeds the sum of other 
two, user or item is classified as variable. 
 

TABLE I 
USER AND ITEM CLASSES PROPOSED 

User classes 

Critical user Verifies card(Wu) �� card(Au) + card(Su) 
Average user Verifies card(Au) �� card(Wu) + card(Su) 
Benevolent user Verifies card(Su) �� card(Wu) + card(Au) 
Variable user Does not satisfy the others user conditions 

Item classes 

Weakly-preferred item Verifies card(Wi) �� card(Ai) + card(Si) 
Averagely-preferred item Verifies card(Ai) �� card(Wi) + card(Si) 
Strongly-preferred item Verifies card(Si) �� card(Wi) + card(Ai) 
Variably-preferred item Does not satisfy the others item conditions 

 
 Table I summarizes user and item classification. It 
considers function card(A) that represents the cardinality of 
the corresponding set. 
 Once each rating, user and item has been classified, the 
detection process looks for contradictions among them. In 
general, it is assumed that if a rating belongs to similar classes 
regarding its user and item, then it must belong to the similar 
rating class. If not, the rating could be erroneous.  
 Specifically, to determine if a rating could be noisy is 
presented the following procedure: 
 1. Classify the rating, and classify its corresponding user 
and item. 
 2. Mark it as possible noise if: 

a) User class is critical, item class is weakly-preferred, 
and rating class is an average or a strong preference. 
b) User class is average, item class is averagely-
preferred, and rating class is a weak or a strong 
preference. 
c) User class is benevolent, item class is strongly-
preferred, and rating class is an average or a weak 
preference. 
 

B. Noise Correction Process 
 Some authors propose to discard noisy ratings when it 
predicts new ratings [12], while others consider that these 
ratings must be corrected [19]. This contribution adopts the 
latter view. Before correction, we verify another reason that 
classifies ratings as noise. For each marked value as possible 
noise, it is predicted another value using traditional memory-
based user-user collaborative filtering with Pearson’s 
similarity and k=60 [1], and we compare it with the current 
value. If the difference between them exceeds a predefined 
threshold  then the new value is set as rating. Otherwise, the 
initial one is kept. 
Summarizing, the whole correction process is: 
1. Classify each user and item according definitions. 
2.  For each rating 

2.1. Classify them according definition. 
2.2. Following the procedure presented in the previous 

section, mark it if represents a possible noise.  
3. For each rating marked as possible noise 

3.1. Predict  its value using traditional collaborative 
filtering 

3.2. Calculate the difference between predicted and 
original value.  

3.2.1. If difference exceeds a threshold, then 
substitute the original with the predicted value. 

3.2.2. Otherwise, remain the value as the original one. 
 

C. On Parameter Values 
 Our proposal depends on three parameters: a weak-
average threshold (ț), an average-strong threshold (Ȟ), and a 
prediction difference threshold (). These parameters are 
highly domain-dependant, so it is difficult to predetermine its 
optimal values. However, it could be defined a strategy to 
assign them good initial values. 
       Considering that ratings are ordinal values and that we 
assume three possible classes for ratings, we suggest to select 
values for classification thresholds (ț and Ȟ) in a way that 
approximately divide the rating range into three equal bins. 
 Equations (1) and (2) allow to calculate values for ț and Ȟ 
following these criteria, considering the use of ent(n) as a 
function to determine the immediately-inferior entire value of 
n, to assure that thresholds receive entire values; and using 
minimum and maximum possible values for rating. 

))min(max*
3
1(min RatingRatingentRating �� N    (1) 

))min(max*
3
1(max RatingRatingentRating �� Q  (2) 

 On the other hand, considering that rating values are 
represented in an ordinal scale, we suggest to assign the value 
of a minimum step in this scale, to the difference threshold (). 
We assume that if the difference between new and old rating 
values exceeds the minimum difference between two 
consecutive values in the rating scale, then it is enough larger 
and then the replacement must be performed.   
 We leave to future works the proposal of alternatives 
strategies to obtain the initial parameter values in our method.  

IV. CASE STUDY 

 In the previous sections, we have presented an approach 
to correct natural noise in CFRS. In order to obtain the effects 
of our proposal, we carry out a case study over Movielens, 
which is a popular dataset in recommender systems field. 
Movielens original version is a well-known dataset containing 
100000 movie ratings on 943 users and 1682 items where each 
rating is discrete and is in the range [1,5]. 
 We used the experimental protocol suggested by 
Gunawardana and Shani in [21]. It proposes to select a set of 
users from the original dataset. Then, randomly select the 
amount of items nu to hide for each user u, and finally hide  nu 
items at the corresponding u. These hidden items will conform 
test set, and remaining will be the training set. We repeat this 
process several times, conforming several training set-test set 
pairs to be used, in order to measure experiment consistency. 
In this work, for each dataset, we will consider five pairs. 
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 The referred work proposes for each test rating, to make a 
new rating prediction for the corresponding user and item, 
using algorithm to evaluate and training data. Algorithm´s 
quality is calculated using mean absolute error (MAE) (3) over 
all predictions made. 
 

¦ �
� 

testui Rr ui
test

riuf
R

fMAE ),(1)(      (3) 

 
 Gunawardana and Shani also show a way to statistically 
compare two recommendation algorithms. It suggest to use a 
user approach, where for each user in test set we calculate two 
MAE values representing average of their predictions, made 
using each algorithm. For n users, we will obtain two sets with 
predictions, and then a Wilcoxon signed test between these 
distributions will inform us about statistical difference between 
algorithms. In order to measure our correction process effects, 
we run the correction process over training set, and after it, we 
compare traditional algorithm performance predicting test set 
ratings, using transformed data and using original one.  
 Both training and test set can contain noise. So, 
considering all ratings in test set to calculate MAE could affect 
final experiment results. For this reason, before evaluation, we 
exclude from test set, those ratings that also could be possible 
noise. With this purpose, for each test rating we classify it 
according definition, and verify if it has contradictions 
considering corresponding user and item classification 
determined with training data (sections III.A and III.B). If 
contradictions exist, then rating is considered as noisy, and we 
exclude it from test set.  
 For the mentioned dataset, we firstly show information 
about correction process, like the amount of users and items 
per class, the amount of possibly noisy ratings, and the amount 
of finally corrected ratings. As a main part, we measure the 
behavior, in MAE terms, of three methods explained in section 
II (user-user, item-item, and a biased SVD matrix factorization 
approach), with and without rating correction. We also refer 
statistical processing results. In our experiments, we use biased 
SVD implementation provided by MyMediaLite. It allows to 
VSHFLI\� WZR� GLIIHUHQW� UHJXODUL]DWLRQ� H[WHQW� YDOXHV� �Ȝ�� IRU�
vectors and for biases. Considering other aspects, it exactly 
implements model mentioned in section 2.  
 Considering that our experiments goal is to determine 
correction effect in recommendation accuracy, we fix some 
parameters in biased SVD matrix factorization approach for all 
H[SHULPHQWV��7KRVH�SDUDPHWHUV�ZHUH�UHJXODUL]DWLRQ��Ȝ1=0.015), 
ELDV� UHJXODUL]DWLRQ� �Ȝ2 ������� DQG� OHDUQLQJ� UDWH� �Į=0.01). 
Initial user and item values were initialized considering 
init_mean=0 and init_stdev=0.1.  We appreciate that different 
values on these parameters do not directly affect our 
comparison proposal.  
 To prepare data for experiments, we randomly selected 
900 users, and conforms training and test set as we explained 
before. We perform this task five times, selecting each time a 
different set with the same amount of users. 

 Following suggestions in section III, we set values ț=2 for 
weak-average threshold and Ȟ=4 for average-strong threshold. 
Considering that ratings in Movielens are in the range [1, 5] 
with step 1, we assign 1= for difference threshold between 
predicted and original rating.  
 

TABLE II 
AVERAGE AMOUNT OF USERS AND ITEMS PER CLASS, RATINGS WITH POSSIBLE 

NOISE, AND RATINGS FINALLY CORRECTED IN MOVIELENS 
Users per class 

Critical users Average users Benevolent 
users 

Variable users 

6.4 178.6 572.2 142.8 
Items per class 

Weakly-
preferred item 

Averagely-
preferred item 

Strongly-
preferred item 

Variably-
preferred item 

89.4 541.8 593.8 333.2 
 

Amount of possible noisy ratings 
after classification Amount of finally corrected ratings 

5362 (11,27 % of ratings in training 
set) 2000 (4,20 %) 

 
Table II presents the average amount of users and items 

belonging to each defined class, for all partition obtained. It 
shows that the amount of users and items per class, slightly 
vary depending on the corresponding case, but it has an 
important consistency degree. We can observe that an 
important user and items quantity belongs to the benevolent 
and strongly-preferred classes respectively. Also, there are few 
users with a critical behavior. On the other hand, Table II 
shows the average amount of possible noisy ratings in training 
set after classification, and the amount of finally corrected 
noisy ratings. 

 
TABLE III 

MAE VALUES WITH AND WITHOUT RATING CORRECTION (PEARSON’S USER-
USER AND ITEM-ITEM COLLABORATIVE FILTERING)  

 User-
User CF 

User-User CF + 
rating correction  

Item-Item 
CF 

Item-Item CF + 
rating 

correction   
k=10 0.7143 0.6961 0.7179 0.6959 
k=20 0.7054 0.6887 0.7111 0.6909 
k=30 0.7039 0.6874 0.7100 0.6901 
k=40 0.7037 0.6873 0.7099 0.6900 
k=50 0.7037 0.6873 0.7098 0.6900 
k=60 0.7039 0.6875 0.7098 0.6901 

 
 

In order to compare user-user Pearson´s collaborative 
filtering behavior against user-user behavior with data 
correction, for each partition we perform several experiments 
modifying the amount of nearest neighbor in collaborative 
filtering (k value). Rating correction always implies a MAE 
improvement, comparing with the approach that does not 
consider correction, and this result is statistically significative 
considering the referred procedure using Wilcoxon test 
(p<0.05). We also run the same protocol for item-item 
Pearson’s collaborative filtering, obtaining the same 
improvement. Both results are showed in Table III. 
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TABLE IV 
MAE VALUES WITH AND WITHOUT RATING CORRECTION (MATRIX 

FACTORIZATION APPROACH)  
Matrix factorization 

approach 
Matrix factorization approach + 

rating correction  
0.7008 0.6837 

 
In the case of matrix factorization approach, at first we 

empirically obtained values for the amount of factors in user 
and item vectors, and the amount of iterations needed. We 
globally obtain best results for num_factors=5 and 
num_iters=20. Using those values, we run algorithm for each 
partition, and averaged the results. This process was run 
several times, considering that this approach is not a 
deterministic one. Table IV shows general average values, 
concluding that correction process significantly improve 
accuracy recommendation considering this popular 
dimensionality reduction approach. Statistical processing 
corroborate this sentences, with p<0,05. 

Summarizing, the proposed approach obtained positive 
results for the datasets used in experiments. It shows that 
benevolent users represent the majority of users, and strongly-
preferred items represent the majority of items in the case 
study developed. In general, results show that our 
classification approach fits well in recommender system’s 
dataset, because it finds users and items for all classes. It also 
proves that our correction approach decrease MAE value 
disregarding the algorithm used. We remark that still for a 
dimensionality reduction method like biased matrix 
factorization approach, which focus on remove small 
disturbances, decreasing the impact of noise [6]; our correction 
process improves MAE value in a similar degree comparing 
with the other two traditional recommendation methods 
(Pearson’s user-user and item-item). 

V. CONCLUSIONS 

This contribution provides a novel approach to deal with 
natural noise in Recommender Systems in order to improve 
recommendations. This approach does not need any additional 
information to improve recommendations, because it just uses 
the ratings provided by users. This is an important 
improvement regarding previous approaches in this topic. 

Our approach manages natural noise by using a detection 
process that classifies items, users and ratings looking for 
noisy ratings and a correction process that replaces the noisy 
ratings if necessary. The results obtained by this approach 
show the importance of managing natural noise to improve 
Recommender Systems performance. 
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