
Managing Natural Noise in Collaborative
Recommender Systems

Raciel Yera Toledo Luis Martínez López Yailé Caballero Mota
Knowledge Management Center Department of Computer Science Department of Computer Science

University of Ciego de Ávila University of Jaen University of Camagüey
Carretera a Morón Km 9 ½,C.A, Cuba 23071- Jaen, Spain Circun. Km 5 ½ , Camagüey, Cuba

ryera@cegic.unica.cu luis.martinez@ujaen.es yaile.caballero@reduc.edu.cu

 Abstract Recommender systems help users to find

information that best fits their preferences and needs in an

overloaded search space. Most of recommender systems research

focuses on improving recommendation methods to obtain a higher

accuracy in recommendations. However, the study of user’s

inconsistencies, so-called natural noise, is becoming a hot topic in

Recommender Systems. In this contribution is proposed a novel

approach to detect and correct those inconsistent ratings that

might bias recommendations, by using global information about

user and item preferences. This proposal characterizes items and

users by their ratings and classifies a rating as noisy if it

contradicts user or item tendencies. This approach just utilizes

ratings on the contrary of previous proposals that use additional

information like item attributes or user interaction.

I. INTRODUCTION

 Recommender systems have become a mainstream
research field in information technologies. They appear as a
solution to help users to obtain information that best fits their
preferences and needs, in scenarios in which information
overloading is an important drawback.

The most popular version of this kind of applications [1],
learns from user preferences about a predefined set of known
items, and predicts the preference degree for this user about an
unknown item. With this goal, an important amount of
applications have been built to recommend different items like
movies, books, TV shows, jokes, news, scientific papers, web
pages, and so on. Some application areas have been e-
commerce and e-learning [2, 3].

Most of recommender systems are developed by using two
main paradigms: content-based and collaborative filtering.
Content-based recommender systems [4, 5], suggest items with
similar features, considering those ones that the user preferred
in the past. On the other hand, collaborative filtering
recommender systems [6, 7] recommend items that other users
with similar tastes liked in the past. Collaborative filtering
systems can generate recommendations by using just
information about user preferences over a group of items. For
this reason, they become popular nowadays.

Lots of work have been done in collaborative filtering to
improve recommendation accuracy [6, 7]. It includes user-user
and item-item approaches, dimensionality reduction
approaches, probabilistic methods, MDP- based methods,
graph-based methods, rule-based methods, and hybrids [8]. In
past years, advances in collaborative filtering [9] have

overcome important challenges like Netflix Prize, showing that
rating prediction can be significantly improved.

In practical data mining problems usually the data
contains a degree of inconsistency, so preprocessing is an
important step in mining processes [10]. However, most of
works done in recommendation problems assumes that rating
data are free of irregularities. Nevertheless, recently
Amatriain, Pujol and Oliver [11] showed that users could be
inconsistent when they rate items, making recommender
systems data vulnerable to inconsistencies. These
inconsistencies, so called natural noise [12], are inserted
without malicious intentions, and its manipulation represents
an open problem to improve recommender systems
performance [6, 13, 14].

In this contribution, we will propose a way to explore
datasets and apply collaborative filtering techniques to correct
noisy ratings. This proposal considers that user and item are
represented by their rating profiles, and classifies them
according to it. After that, a rating is considered as noisy if it is
contradictory with the user/item classification. In such a case,
it is then corrected by using a strategy. To validate the
hypothesis that corrected data improve the accuracy of
collaborative filtering recommender systems, a case study on
Movielens dataset has been carried out.

The paper is organized as follows: Section 2 reviews
collaborative filtering and relevant work on natural noise and
rating correction. Section 3 introduces our approach for
managing natural noise in two steps, first noisy rating
detection and then noise correction. Section 4 performs and
discusses a case study to evaluate the proposal and finally
section 5 concludes the contribution.

II. BACKGROUND

In this section a brief review about collaborative filtering and
natural noise is introduced.

A. Collaborative Filtering
 Collaborative filtering recommender systems (CFRS)
provide recommendations to users about items that have
previously liked to people with similar tastes. While others
recommender systems approaches depend on content directly
associated to items, CF approach generally uses just ratings to
predict user’s preferences over items. The data in CF could be
gathered in an explicit or implicit way [3].

872

 To evaluate our proposal, in our case study we will use
three classical approaches for collaborative filtering [8]:
 a) Memory based user-user collaborative filtering [15]. It
predicts user’s preferences for a not rated item, looking for
other similar users to the active user. Neighbors’ ratings for the
corresponding item are weighted considering similarity
degrees, to predict unknown user’s preference. Similarity
between two users is calculated using different similarity
measures.
 b) Model based item-item collaborative filtering [16]. It
does not use similarities between users to predict preferences.
It uses similarities between items that stores in a model. To
predict an unknown preference for a current user and an item,
it takes from the model similar items and uses user’s rating
from those items to predict an unknown rating.
 c) Matrix factorization approach. It appears as a solution
for classical scalability and sparsity problems in traditional
memory-based collaborative filtering. It proposes a user and
item space reduction to a lower dimensionality space that
retains most of the initial information, mitigating redundancy
and sparsity effects. This new k-space includes a set of k topics
in which user preferences can be expressed considering user’s
interest in a topic, and the degree to which each item is
significant to the topic. Early works like [17] formally use
latent semantic analysis in the form of truncated singular value
decomposition (SVD) to reduce dimensionality in CF.
 However, in the last years less expensive and more
accurate methods have been developed using alternative
procedures to reduce dimensionality. Those proposals,
summarized in [9], focus on directly learn a new space using
gradient descendent techniques, instead of transform the initial
rating matrix in a new one. Our case study, presented in
section IV, uses the framework introduced in [9].

B. Handling Natural Noise in Collaborative Filtering
 Noise in recommender systems dataset has been grouped
in two main categories:
 1) Malicious noise, associated to noise intentionally
introduced by an external agent to bias recommender results
[18], and
 2) Natural noise, involuntarily introduced by users in
recommender dataset that could also affect the
recommendation result.
 While handling malicious noise is a well-developed
research area, natural noise has received less attention. Note
that both noises are produced by different sources, so
techniques to process them must be different.
 Recently, Amatriain et al. [11] consider that natural noise
characterization is a key element in recommender systems.
They made some experiments to quantify users inconsistencies
degree analyzing their ratings, and concluded that this noise
can considerably affect recommendation quality.
 O’ Mahony et al. [12] present one early work that uses
natural and malicious noise terms. It detects noisy ratings
comparing each rating with user’s predicted preference for that
item. These predictions are calculated using a set of genuine

user profiles manually obtained. It then discards ratings which
differences exceed a threshold considering this comparison
process. Ekstrand et al. in [6], point out that this approach
makes the erroneous assumption that all high-deviance ratings
are result of user mistakes, and it does not consider the
presence of some outliers that express the current user
preference.
 An interactive method to eliminate noisy ratings, named
item re-rating, was proposed in [13]. When any noisy rating is
discovered, the system decides to ask the user to rate the
corresponding item again, and the author considers that this re-
rating process will remove the natural noise appeared. It
affirms that denoising extreme ratings yields larger
performance gain than denoising mild ratings. Noisy ratings
and noisy users are previously identified in online rating trials
done by authors as a part of its work. The mandatory user
participation is an important component in this method, and
transforms it in impractical in some scenarios.
 Recently, another important group of works explores data
beyond ratings to correct erroneous rating values in
recommender systems [19]. They use item attributes to learn a
user preference model, and it marks a rating as incorrect if it
belongs to the current user preference model, but it is under a
predefined threshold and under mean rating for this user. They
also propose a way to correct rating, defining some criteria to
classify a user as expert, and proposing three rating-correction
methods using experts. The first one considers a weighted
average rating of experts about the same item. The second one
considers a weighted average rating of items belonging to the
user preference model (similarly to item-to-item collaborative
filtering), and the third one calculates mean value of previous
two. This approach improves recommender performance, but
depends on item attributes to build the preference model. In
the current contribution, we also correct erroneous values, but
without using external sources.
 Eventually, Li [20] proposes an approach to process
natural noise in recommender systems. It detects “noisy but
non-malicious” users in CFRS, assuming that the ratings
provided by a user on closely correlated items should have
similar scores. For each user profile, it quantifies underlying
noise, obtaining users with a high noise degree. Removing
these users for dataset, recommendation accuracy is improved.
However, this work focus on noise detection on user level, so
new approaches beyond users, that deals with rating levels, are
needed. Noise treatment at this deeper level will facilitate
rating correction, avoiding information removal from the
dataset like is demanded in [20].

III. MANAGING NATURAL NOISE BY USING RATINGS

 Here, it is presented a novel approach to detect and
correct noisy ratings, taking into account just rating values. It
does not use any additional information about users or items.
 Disregarding preferences variation over time, it is
considered that erroneous ratings can appear in recommender
systems dataset due to several reasons: i) Users unintentionally
can express information that does not correspond with their

873

preferences and profiles. This is the classical scenario for
natural noise. ii) They also could insert anomalous-but-correct
information intentionally added, that is not actually aligned
with their global profiles and could be considered as noisy.
 For example, if a user likes all Woody Allen’s films
except just one, this anomalous preference could associate user
with a different group of users that they actually do not belong,
and the recommendations that could receive might be
influence from this group. Disregarding the doubt about this
rating and if it represents real preferences or not, it certainly
affects user predictions regarding unknown items. Our
research focuses on processing this kind of incorrect ratings,
but we lack of additional data like “Woody Allen”, so we need
to define new strategies to do it just using ratings.
 In all cases, erroneous ratings or ratings that do not
represent real user’s preferences can cause accuracy decay in
collaborative filtering. Incorrect ratings could alter user’s
profile, and the biased user could fall in a different
neighborhood comparing with unbiased one. This could affect
current user’s predictions, and also predictions for users in the
neighborhood.
 In order to correct natural noisy ratings, we propose a
framework that includes two steps:
 1) Noisy ratings detection: it classifies user and item
profiles considering their ratings into four different classes.
Each rating can also be classified into three different classes.
A rating is marked as possible noise, if exist contradictions
between the rating, considering its class, and the classes
associated to the current user and item.
 2) Noise correction: it uses a basic collaborative filtering
method to predict a new rating for each possible noisy one. If
the difference between both ratings is greater than a predefined
threshold, the old rating is definitively considered as noisy,
and its value is replaced with the new one.
 A further detailed description of previous phases is
introduced below:

A. Noisy Rating Detection
 To detect natural noisy ratings, we initially perform a
classification for ratings, users, and items. We assume that
each user has his/her own tendency when rates items: i) A
group of users tends to positively evaluate all items, ii) another
group provides average values, iii) a third one usually gives
low ratings, and also, iv) there is a fourth group which
behavior oscillates among any of the former categories, and do
not fall into a specific one.
 This classification is also extended to items. i) There is a
group that is highly preferred by all users, ii) a group which
items is averagely preferred, iii) a group that is not preferred
by the majority of users, and like in users, and iv) a group that
contains items with divided opinions about their preferences
degree.
 Eventually, each rating r(u,i) (for a user u and an item i)
is classified into three different classes according its value:
 Rating classes:

1. Weak preference: A rating r(u,i) is classified as a
weak preference if it verifies r(u,i) < ț.

2. Average preference: A rating r(u,i) is classified as an
average preference if it verifies ț ��U�X�L����Ȟ.

3. Strong preference: A rating r(u,i) is classified as a
strong preference if it verifies U�X�L����Ȟ.

 This classification depends on a weak-average threshold ț
and an average-strong threshold Ȟ that must be previously
defined, satisfying ț < Ȟ. We suggest later on a procedure to
calculate tentative values for these parameters.
 Preferences for each user u can be grouped in sets Wu, Au
and Su, and for each item i in sets Wi, Ai and Si, considering U
and I as whole sets of users and items:

 User and item sets:

1. Wu={r(u,i) | } � i � I where r(u,i) is a weak
preference}

2. Au={r(u,i) | } � i � I where r(u,i) is an average
preference}

3. Su={r(u,i) | } � i � I where r(u,i) is a strong
preference}

1. Wi={r(u,i) | } � u � U where r(u,i) is a weak
preference}

2. Ai={r(u,i) | } � u � U where r(u,i) is an average
preference}

3. Si={r(u,i) | } � u � U where r(u,i) is a strong
preference}

 Wu is the set of ratings provided for user u that represents
weak preferences, Au as the set of average preferences for user
u, and Su as the set of strong preferences for user u. Item sets
are similar.
 Considering rating classes and user and item sets, user
profiles can be formally classified into four different
categories: benevolent, average, critical, and variable. On the
other hand, items can be classified in four categories: strongly-
preferred, averagely-preferred, weakly-preferred and
variably-preferred (see Table I).
 They are classified in one of the first three categories in
each case, if the amount of ratings belonging to the
corresponding class rating (following rating classes) exceeds
the amount of the others two. Specifically, for each user and
item, it is counted the amount of ratings belonging to each
preference class and then:
 i) If ratings representing weak preferences exceed both
ratings representing average and strong preferences, then user
is classified as critical, or item is classified as weakly-
preferred.
 ii) If average preferences exceed the sums of other two,
then user is classified as average, or item as averagely-
preferred.
 iii) If strong preferences verify the same condition, then
user is classified as benevolent, or item as strongly-preferred.

874

 iv) If there is no amount that exceeds the sum of other
two, user or item is classified as variable.

TABLE I
USER AND ITEM CLASSES PROPOSED

User classes

Critical user Verifies card(Wu) �� card(Au) + card(Su)
Average user Verifies card(Au) �� card(Wu) + card(Su)
Benevolent user Verifies card(Su) �� card(Wu) + card(Au)
Variable user Does not satisfy the others user conditions

Item classes

Weakly-preferred item Verifies card(Wi) �� card(Ai) + card(Si)
Averagely-preferred item Verifies card(Ai) �� card(Wi) + card(Si)
Strongly-preferred item Verifies card(Si) �� card(Wi) + card(Ai)
Variably-preferred item Does not satisfy the others item conditions

 Table I summarizes user and item classification. It
considers function card(A) that represents the cardinality of
the corresponding set.
 Once each rating, user and item has been classified, the
detection process looks for contradictions among them. In
general, it is assumed that if a rating belongs to similar classes
regarding its user and item, then it must belong to the similar
rating class. If not, the rating could be erroneous.
 Specifically, to determine if a rating could be noisy is
presented the following procedure:
 1. Classify the rating, and classify its corresponding user
and item.
 2. Mark it as possible noise if:

a) User class is critical, item class is weakly-preferred,
and rating class is an average or a strong preference.
b) User class is average, item class is averagely-
preferred, and rating class is a weak or a strong
preference.
c) User class is benevolent, item class is strongly-
preferred, and rating class is an average or a weak
preference.

B. Noise Correction Process
 Some authors propose to discard noisy ratings when it
predicts new ratings [12], while others consider that these
ratings must be corrected [19]. This contribution adopts the
latter view. Before correction, we verify another reason that
classifies ratings as noise. For each marked value as possible
noise, it is predicted another value using traditional memory-
based user-user collaborative filtering with Pearson’s
similarity and k=60 [1], and we compare it with the current
value. If the difference between them exceeds a predefined
threshold then the new value is set as rating. Otherwise, the
initial one is kept.
Summarizing, the whole correction process is:
1. Classify each user and item according definitions.
2. For each rating

2.1. Classify them according definition.
2.2. Following the procedure presented in the previous

section, mark it if represents a possible noise.
3. For each rating marked as possible noise

3.1. Predict its value using traditional collaborative
filtering

3.2. Calculate the difference between predicted and
original value.

3.2.1. If difference exceeds a threshold, then
substitute the original with the predicted value.

3.2.2. Otherwise, remain the value as the original one.

C. On Parameter Values
 Our proposal depends on three parameters: a weak-
average threshold (ț), an average-strong threshold (Ȟ), and a
prediction difference threshold (). These parameters are
highly domain-dependant, so it is difficult to predetermine its
optimal values. However, it could be defined a strategy to
assign them good initial values.
 Considering that ratings are ordinal values and that we
assume three possible classes for ratings, we suggest to select
values for classification thresholds (ț and Ȟ) in a way that
approximately divide the rating range into three equal bins.
 Equations (1) and (2) allow to calculate values for ț and Ȟ
following these criteria, considering the use of ent(n) as a
function to determine the immediately-inferior entire value of
n, to assure that thresholds receive entire values; and using
minimum and maximum possible values for rating.

))min(max*
3
1(min RatingRatingentRating �� N (1)

))min(max*
3
1(max RatingRatingentRating �� Q (2)

 On the other hand, considering that rating values are
represented in an ordinal scale, we suggest to assign the value
of a minimum step in this scale, to the difference threshold ().
We assume that if the difference between new and old rating
values exceeds the minimum difference between two
consecutive values in the rating scale, then it is enough larger
and then the replacement must be performed.
 We leave to future works the proposal of alternatives
strategies to obtain the initial parameter values in our method.

IV. CASE STUDY

 In the previous sections, we have presented an approach
to correct natural noise in CFRS. In order to obtain the effects
of our proposal, we carry out a case study over Movielens,
which is a popular dataset in recommender systems field.
Movielens original version is a well-known dataset containing
100000 movie ratings on 943 users and 1682 items where each
rating is discrete and is in the range [1,5].
 We used the experimental protocol suggested by
Gunawardana and Shani in [21]. It proposes to select a set of
users from the original dataset. Then, randomly select the
amount of items nu to hide for each user u, and finally hide nu
items at the corresponding u. These hidden items will conform
test set, and remaining will be the training set. We repeat this
process several times, conforming several training set-test set
pairs to be used, in order to measure experiment consistency.
In this work, for each dataset, we will consider five pairs.

875

 The referred work proposes for each test rating, to make a
new rating prediction for the corresponding user and item,
using algorithm to evaluate and training data. Algorithm´s
quality is calculated using mean absolute error (MAE) (3) over
all predictions made.

¦ �
�

testui Rr ui
test

riuf
R

fMAE),(1)((3)

 Gunawardana and Shani also show a way to statistically
compare two recommendation algorithms. It suggest to use a
user approach, where for each user in test set we calculate two
MAE values representing average of their predictions, made
using each algorithm. For n users, we will obtain two sets with
predictions, and then a Wilcoxon signed test between these
distributions will inform us about statistical difference between
algorithms. In order to measure our correction process effects,
we run the correction process over training set, and after it, we
compare traditional algorithm performance predicting test set
ratings, using transformed data and using original one.
 Both training and test set can contain noise. So,
considering all ratings in test set to calculate MAE could affect
final experiment results. For this reason, before evaluation, we
exclude from test set, those ratings that also could be possible
noise. With this purpose, for each test rating we classify it
according definition, and verify if it has contradictions
considering corresponding user and item classification
determined with training data (sections III.A and III.B). If
contradictions exist, then rating is considered as noisy, and we
exclude it from test set.
 For the mentioned dataset, we firstly show information
about correction process, like the amount of users and items
per class, the amount of possibly noisy ratings, and the amount
of finally corrected ratings. As a main part, we measure the
behavior, in MAE terms, of three methods explained in section
II (user-user, item-item, and a biased SVD matrix factorization
approach), with and without rating correction. We also refer
statistical processing results. In our experiments, we use biased
SVD implementation provided by MyMediaLite. It allows to
VSHFLI\� WZR� GLIIHUHQW� UHJXODUL]DWLRQ� H[WHQW� YDOXHV� �Ȝ�� IRU�
vectors and for biases. Considering other aspects, it exactly
implements model mentioned in section 2.
 Considering that our experiments goal is to determine
correction effect in recommendation accuracy, we fix some
parameters in biased SVD matrix factorization approach for all
H[SHULPHQWV��7KRVH�SDUDPHWHUV�ZHUH�UHJXODUL]DWLRQ��Ȝ1=0.015),
ELDV� UHJXODUL]DWLRQ� �Ȝ2 ������� DQG� OHDUQLQJ� UDWH� �Į=0.01).
Initial user and item values were initialized considering
init_mean=0 and init_stdev=0.1. We appreciate that different
values on these parameters do not directly affect our
comparison proposal.
 To prepare data for experiments, we randomly selected
900 users, and conforms training and test set as we explained
before. We perform this task five times, selecting each time a
different set with the same amount of users.

 Following suggestions in section III, we set values ț=2 for
weak-average threshold and Ȟ=4 for average-strong threshold.
Considering that ratings in Movielens are in the range [1, 5]
with step 1, we assign 1= for difference threshold between
predicted and original rating.

TABLE II
AVERAGE AMOUNT OF USERS AND ITEMS PER CLASS, RATINGS WITH POSSIBLE

NOISE, AND RATINGS FINALLY CORRECTED IN MOVIELENS
Users per class

Critical users Average users Benevolent
users

Variable users

6.4 178.6 572.2 142.8
Items per class

Weakly-
preferred item

Averagely-
preferred item

Strongly-
preferred item

Variably-
preferred item

89.4 541.8 593.8 333.2

Amount of possible noisy ratings
after classification Amount of finally corrected ratings

5362 (11,27 % of ratings in training
set) 2000 (4,20 %)

Table II presents the average amount of users and items

belonging to each defined class, for all partition obtained. It
shows that the amount of users and items per class, slightly
vary depending on the corresponding case, but it has an
important consistency degree. We can observe that an
important user and items quantity belongs to the benevolent
and strongly-preferred classes respectively. Also, there are few
users with a critical behavior. On the other hand, Table II
shows the average amount of possible noisy ratings in training
set after classification, and the amount of finally corrected
noisy ratings.

TABLE III

MAE VALUES WITH AND WITHOUT RATING CORRECTION (PEARSON’S USER-
USER AND ITEM-ITEM COLLABORATIVE FILTERING)

 User-
User CF

User-User CF +
rating correction

Item-Item
CF

Item-Item CF +
rating

correction
k=10 0.7143 0.6961 0.7179 0.6959
k=20 0.7054 0.6887 0.7111 0.6909
k=30 0.7039 0.6874 0.7100 0.6901
k=40 0.7037 0.6873 0.7099 0.6900
k=50 0.7037 0.6873 0.7098 0.6900
k=60 0.7039 0.6875 0.7098 0.6901

In order to compare user-user Pearson´s collaborative
filtering behavior against user-user behavior with data
correction, for each partition we perform several experiments
modifying the amount of nearest neighbor in collaborative
filtering (k value). Rating correction always implies a MAE
improvement, comparing with the approach that does not
consider correction, and this result is statistically significative
considering the referred procedure using Wilcoxon test
(p<0.05). We also run the same protocol for item-item
Pearson’s collaborative filtering, obtaining the same
improvement. Both results are showed in Table III.

876

TABLE IV
MAE VALUES WITH AND WITHOUT RATING CORRECTION (MATRIX

FACTORIZATION APPROACH)
Matrix factorization

approach
Matrix factorization approach +

rating correction
0.7008 0.6837

In the case of matrix factorization approach, at first we

empirically obtained values for the amount of factors in user
and item vectors, and the amount of iterations needed. We
globally obtain best results for num_factors=5 and
num_iters=20. Using those values, we run algorithm for each
partition, and averaged the results. This process was run
several times, considering that this approach is not a
deterministic one. Table IV shows general average values,
concluding that correction process significantly improve
accuracy recommendation considering this popular
dimensionality reduction approach. Statistical processing
corroborate this sentences, with p<0,05.

Summarizing, the proposed approach obtained positive
results for the datasets used in experiments. It shows that
benevolent users represent the majority of users, and strongly-
preferred items represent the majority of items in the case
study developed. In general, results show that our
classification approach fits well in recommender system’s
dataset, because it finds users and items for all classes. It also
proves that our correction approach decrease MAE value
disregarding the algorithm used. We remark that still for a
dimensionality reduction method like biased matrix
factorization approach, which focus on remove small
disturbances, decreasing the impact of noise [6]; our correction
process improves MAE value in a similar degree comparing
with the other two traditional recommendation methods
(Pearson’s user-user and item-item).

V. CONCLUSIONS

This contribution provides a novel approach to deal with
natural noise in Recommender Systems in order to improve
recommendations. This approach does not need any additional
information to improve recommendations, because it just uses
the ratings provided by users. This is an important
improvement regarding previous approaches in this topic.

Our approach manages natural noise by using a detection
process that classifies items, users and ratings looking for
noisy ratings and a correction process that replaces the noisy
ratings if necessary. The results obtained by this approach
show the importance of managing natural noise to improve
Recommender Systems performance.

ACKNOWLEGMENT
This work is partially supported by the Research Project

TIN-2012-31263 and FEDER funds

REFERENCES
[1] G. Adomavicius, Tuzhilin, A., "Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions," IEEE Transactions on Knowledge and Data Engineering, vol.
17, pp. 734-749, 2005.
[2] K. J. B. Schafer, J.A., Riedl, J., "E-commerce recommendation
applications," Data Mining and Knowledge Discovery, vol. 5, pp. 115-153,
2001.
[3] E. J. Castellano, Martínez, L. , "A Web-Decision Support System based
on Collaborative Filtering for Academic Orientation. Case Study of the
Spanish Secondary School.," Journal of Universal Computer Science, vol.
15, pp. 2786-2807, 2009.
[4] P. Lops, De Gemmis, M., Semeraro, G, "Content-based recommender
systems: state of theart and trends.," in Recommender systems handbook, L.
R. F. Ricci, B. Shapira, P.B. Kantor, Ed., ed: Springer, 2011, pp. 73-105.
[5] L. Martínez, Pérez, L.G., Barranco, M.J., "A multigranular linguistic
content-based recommendation model.," International Journal of Intelligent
Systems, vol. 22, pp. 419-434, 2007.
[6] M. D. Ekstrand, Riedl, J. T., Konstan, J. A., "Collaborative filtering
recommender systems. ," Foundations and trends in Human-Computer
Interaction, vol. 4, pp. 81-173, 2010.
[7] F. Ricci, Rokach, L., Shapira, B, Kantor, P.B., Recommender Systems
Handbook: Springer Science+Business Media, 2011.
[8] X. Su, Khoshgoftaar, T., "A survey of collaborative filtering
techniques," Advances in artificial intelligence, vol. 2009, p. 19, 2009.
[9] Y. Koren, Bell, R. M. Volinsky, C., "Matrix factorization techniques for
recommender systems.," IEEE Computer, vol. 42, pp. 30-37, 2009.
[10] J. Han, Kamber, M., Data Mining: concepts and techniques. (2nd ed.).
San Francisco, 2006.
[11] X. Amatriain, Pujol, J., Oliver, N. , "I like it... I like it not: Evaluating
user ratings noise in recommender systems," presented at the 17th
International Conference on User Modeling, Adaptation and Personalization
(UMAP), 2009.
[12] M. P. O’Mahony, Hurley, N.J., Silvestre, G.C. , "Detecting noise in
recommender system databases.," presented at the 11th ACM International
Conference on Intelligent Users Interfaces (IUI) 2006.
[13] X. Amatriain, Pujol, J., Tintarev, N., Oliver, N., "Rate it again:
Increasing recommendation accuracy by user re-rating.," presented at the 3rd
ACM International Conference on Recommender Systems (RecSys), 2009.
[14] A. Said, Jain, B.J., Narr, S., Plumbaum, T., "Users and Noise: The
Magic Barrier of Recommender Systems," presented at the 23th International
Conference on User Modeling, Adaptation and Personalization (UMAP ’12),
2012.
[15] P. Resnick, Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.,
"Grouplens: an open architecture for collaborative filtering of netnews,"
presented at the ACM Conference on Computer Supported Cooperative
Work, 1994.
[16] G. Linden, Smith, B., York, J., "Amazon.com recommendations: item-
to-item collaborative filtering," IEEE Internet Computing, vol. 7, pp. 76-80,
2003.
[17] B. M. Sarwar, Karypis, G., Konstan, J.A., Riedl,J., "Application of
dimensionality reduction in recommender system — a case study," presented
at the WebKDD 2000, 2000.
[18] B. Mehta, Nejdl, W., "Unsupervised strategies for shilling detection and
robust collaborative filtering.," User Modeling and User-Adapted Interaction,
vol. 19, pp. 65-97, 2009.
[19] H. X. Pham, Jung, J.J., "Preference-based user rating correction process
for interactive recommendation systems," Multimedia Tools and
Applications, 2012.
[20] B. Li, Chen, L., Xingquan, Z., Chengqi, Z., "Noisy but non-malicious
user detection in social recommender systems," World Wide Web, 2012.
[21] A. Gunawardana, Shani, G., "A survey of accuracy evaluation metrics of
recommendation tasks," Journal of Machine Learning Research, vol. 10, pp.
2935-2962, 2009.

877

