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Abstract

In the multi-granular context, different theoret-
ical models have been proposed in the litera-
ture to address the consensus reaching process,
in which transformation functions were used to
unify the multi-granular linguistic information.
A drawback of such unification process is that
the consensus reaching process loses information
because the transformations functions used are
not bijective. In this paper we present a type-1
OWA based multi-granular consensus model that
makes the unification step unnecessary and there-
fore does not suffer from the loss of information
in the necessary aggregation step of these GDM
problems.

Keywords: Linguistic variable, Muti-granular
information, Type-1 OWA operator, Consensus.

1 INTRODUCTION

The linguistic approach mostly used nowadays in human
decision processes has its origins in the proposal that Zadeh
outlined in his 1973 seminal paper [16] and further elabo-
ration in [17]. In essence, this approach relies on the use
of the linguistic variable, i.e. a variable whose primary va-
lues are words instead of numbers. The meaning of the
primary values, although assumed to be ‘subjective and
context-dependent,’ is to be specified before other terms are
generated from them using linguistic hedges in conjunction
with the negator and the connective operators [16, 17]. The
main purpose of using linguistic values instead of numbers
is that linguistic characterizations are, in general, less spe-
cific than numerical ones, but much closer to the way that
humans express and use their knowledge [5].

A linguistic variable is formally represented by a 5-tuple
〈L,T (L),U,S,M〉 [17] where (i) L is the name of the va-

riable; (ii) T (L) is a finite term set of (primary) labels or
words (a collection of linguistic values); (iii) U is a uni-
verse of discourse or base variable; (iv) S is the syntactic
rule which generates the terms in T (L); and (v) M is a se-
mantic rule which associates with each linguistic value X
its meaning M(X) : U→ [0,1]. Usually, T (L) is denoted as
L when there is no risk of confusion.

The semantic rule, also known as ‘compatibility function’
[17], associates with each element of the base variable its
compatibility with each linguistic value. This interpreta-
tion of the meaning of a linguistic label coincides with that
of a fuzzy set, and therefore linguistic labels can be con-
sidered and formally represented as fuzzy subsets of their
base variable. Therefore, the nature of the base variable
will dictate the general method to use when manipulating
linguistic values. A non numerical base variable makes the
definition of the compatibility function ‘difficult to be for-
malized in explicit terms’ [17]. As a result, it turns out to be
problematic when implemented at present in computer pro-
grammes. Thus, it is fair to say that most, if not all, impor-
tant linguistic decision models in the literature assume that
the base variable is a subset of the set of real numbers, and
therefore numeric in nature. Indeed, these linguistic deci-
sion models usually start associating the linguistic values
(labels) to be used with membership functions (triangular,
trapezoidal, Gaussian . . . ) to represent their meanings.

Figure 1 (taken from [5]) illustrates a representation
of the linguistic variable ‘Height’, whose correspon-
ding set of primary linguistic values is T (Height) =
{Very Low, Low, Medium, High, Very High}. We can
see how the semantic rule associates each of the primary
linguistic values X to its fuzzy subset M(X) of U . As men-
tioned above, a crucial aspect that will determine the vali-
dity of the linguistic approach is the determination of cor-
rect membership functions for the linguistic term set.

The ideal situation in group decision making (GDM) pro-
blems within a linguistic context would be one where all
the experts use the same linguistic term set to express their
preferences about the alternatives. However, in some cases,



Figure 1: Example of the linguistic variable “Height” [5]

experts may belong to distinct research areas and will,
therefore, have different backgrounds and levels of know-
ledge. A consequence of this is that the expression of pre-
ferences will depend on linguistic term sets with different
granularity. As a result, the development of adequate tools
to manage and model multi-granular linguistic information
becomes essential [6, 8, 9].

In this paper we present a consensus model with multi-
granular linguistic preferences that follows the recommen-
dation above, i.e. a model that makes use of the whole
membership functions used to represent the linguistic terms
within the problem and that is built on the use of the ex-
tension principle of fuzzy sets [17]. This proposal takes
further the model presented in [9], whose methodology
was based on transformation functions to unify the multi-
granular linguistic information. A drawback of such uni-
fication process is that the consensus reaching process
loses information because the transformations functions,
although made use of the membership functions used to
represents the linguistic preference values, are not bi-
jective. Indeed, a different mathematical representation
(membership functions) of the linguistic preference values
could be sought leading to the same result after the uni-
fication process. However, the justification for the neces-
sity of such unification phase was that there were no tools
available at that moment to directly compute over linguis-
tic sets of different granularity, while it was a necessary
step to manipulate the linguistic sets with different granu-
larity in order to make the computation of both consensus
degrees and proximity measures possible [9]. Interestingly,
new tools have emerged that allow for the direct manipu-
lation of different elements belonging to linguistic sets of
different granularity. In particular, the type-1 OWA opera-
tor introduced in [18], and developed by applying the ex-
tension principle to Yager’s OWA operator [15], has been
proved to be a useful tool to aggregate the linguistic opin-
ions or preferences in human decision making with linguis-
tic weights [19]. Thus, our aim is to present a type-1 OWA
based multi-granular consensus model that makes the unifi-

cation step unnecessary and therefore does not suffer from
the loss of information in the necessary aggregation step of
these GDM problems.

The rest of the paper is set out as follows. Section 2 is
devoted to the preliminary concepts needed to present the
consensus model: the multi-granular linguistic GDM pro-
blem is described in Subsection 2.1, while Subsection 2.2
presents the type-1 OWA operator, its fast implementation
and how to derive linguistic weights to be used in type-1
OWA aggregation given a type-2 linguistic quantifier. Sec-
tion 3 details the architecture of the type-1 OWA based
multi-granular consensus model. Finally, in Section 4 we
draw our conclusions and suggest further research.

2 PRELIMINARIES

2.1 MULTI-GRANULAR INFORMATION IN
GROUP DECISION MAKING

GDM problems are classically described as decision sit-
uations where, given a set of feasible alternatives X =
{x1,x2, . . . ,xn} (n≥ 2), a set of experts E = {e1,e2, . . . ,em}
(m≥ 2) try to achieve a common solution together. In a lin-
guistic context, experts’ opinions or preferences are mathe-
matically modelled by means of preference relations [13],
Pei = (plk

i ), l,k ∈ {1, . . . ,n}, where plk
i = µPei

(xl ,xk) is a
fuzzy subset of the unit interval [0,1] and that will represent
the expert ei’s preference of the alternative xl over xk.

As mentioned above, experts may have different back-
grounds and levels of knowledge about the problem to
solve and therefore they could prefer to use linguistic term
sets with different granularity according to their expertise
[6, 7, 14]. The granularity of a linguistic term set should be
small enough so as not to impose useless precision levels
on experts but big enough to allow a discrimination of the
assessments in a limited number of degrees.

In this contribution we deal with GDM problems where
each expert ei may use a distinct linguistic term set with
different cardinality and/or semantics Si = {si

0, . . . ,s
i
g}.

2.2 TYPE-1 OWA OPERATOR

Unlike Yager’s OWA operator that aggregates crisp values
[15], the type-1 OWA operator is able to aggregate type-
1 fuzzy sets with uncertain weights, with these uncertain
weights being also modelled as type-1 fuzzy sets. As a
generalisation of Yager’s OWA operator, and based on the
extension principle, a type-1 OWA operator is defined as
follows [18]:

Definition 1 Given n linguistic weights
{

W i
}n

i=1 in the
form of type-1 fuzzy sets defined on the domain of discourse



[0,1], a type-1 OWA operator is a mapping, Φ,

Φ : P̃(R)×·· · P̃(R) −→ P̃(R)
(A1, · · · ,An) 7→ Y

such that

µY (y) = sup
n

∑
k=1

w̄iaσ(i) = y

wi ∈U,ai ∈ X

(
µW 1(w1)∧·· ·∧µW n(wn)
∧µA1(a1)∧·· ·∧µAn(an)

)

(1)
where w̄i =

wi

∑
n
i=1 wi

; σ is a permutation function such that

aσ(i) ≥ aσ(i+1), ∀i = 1, · · · ,n− 1; and P̃(R) is the set of
fuzzy sets on R.

A Direct Approach to performing type-1 OWA operation
was suggested in [18]. However, this approach is computa-
tionally expensive, which inevitably curtails further appli-
cations of the type-1 OWA operator to real world decision
making. So a fast approach to type-1 OWA operations has
been developed based on the α-level of fuzzy sets [19].

2.2.1 α-Level Type-1 OWA Operator.

Definition 2 Given the n linguistic weights
{

W i
}n

i=1 in the
form of type-1 fuzzy sets defined on the domain of discourse
[0,1], then for each α ∈ [0,1], an α-level type-1 OWA ope-
rator with α-level weight sets

{
W i

α

}n
i=1 to aggregate the

α-level of type-1 fuzzy sets
{

Ai
}n

i=1 is given as

Φα

(
A1

α , · · · ,An
α

)
=


n
∑

i=1
wiaσ(i)

n
∑

i=1
wi

∣∣∣∣∣wi ∈W i
α , ai ∈ Ai

α ,∀i


(2)

where W i
α = {w|µWi(w) ≥ α}, Ai

α = {x|µAi(x) ≥ α}, and
σ is a permutation function such that aσ(i) ≥ aσ(i+1), ∀ i =
1, · · · ,n−1.

According to the Representation Theorem of type-1 fuzzy
sets, the α-level sets Φα

(
A1

α , · · · ,An
α

)
obtained via Defini-

tion 2 can be used to construct the following type-1 fuzzy
set on R

G = ∪
0<α≤1

αΦα

(
A1

α , · · · ,An
α

)
(3)

with membership function

µG(x) = ∨
α:x∈Φα(A1

α ,··· ,An
α)

α

α (4)

2.2.2 Representation Theorem of Type-1 OWA
Operators.

The two apparently different aggregation results in (1) and
(3) obtained according to Zadeh’s Extension Principle and
the α-level of type-1 fuzzy sets, respectively, are equivalent
as proved in [19]:

Theorem 1 Given the n linguistic weights
{

W i
}n

i=1 in the
form of type-1 fuzzy sets defined on the domain of discourse
[0,1], and the type-1 fuzzy sets A1, · · · ,An, then we have
that

Y = G

where Y is the aggregation result defined in (1) and G is the
result defined in (3).

Theorem 1 is called the Representation Theorem of Type-1
OWA Operators. Therefore, an effective and practical way
of carrying out type-1 OWA operations is to decompose
the type-1 OWA aggregation into the α-level type-1 OWA
operations and then reconstruct it via the above representa-
tion theorem. This α-level approach has been proved to be
much faster than the direct approach [19], so it can be used
in real time decision making and data mining applications.

2.2.3 α-Level Type-1 OWA of Fuzzy Numbers.

When the linguistic weights and the aggregated sets are
fuzzy number, the α-level type-1 OWA operator produces
closed intervals [19]:

Theorem 2 Let
{

W i
}n

i=1 be fuzzy numbers on [0,1] and{
Ai
}n

i=1 be fuzzy numbers on R. Then for each α ∈ U,

Φα

(
A1

α , · · · ,An
α

)
is a closed interval.

Based on this result, the computation of the type-1
OWA output according to (3), G, reduces to compute
the left end-points and right end-points of the intervals
Φα

(
A1

α , · · · ,An
α

)
:

Φα

(
A1

α , · · · ,An
α

)
− and Φα

(
A1

α , · · · ,An
α

)
+ ,

where Ai
α = [Ai

α−,Ai
α+],W i

α = [W i
α−,W i

α+].

For the left end-points, we have

Φα

(
A1

α , · · · ,An
α

)
− = min

W i
α− ≤ wi ≤W i

α+
Ai

α− ≤ ai ≤ Ai
α+

n
∑

i=1
wiaσ(i)

/ n
∑

i=1
wi

(5)
while for the right end-points, we have

Φα

(
A1

α , · · · ,An
α

)
+ = max

W i
α− ≤ wi ≤W i

α+
Ai

α− ≤ ai ≤ Ai
α+

n
∑

i=1
wiaσ(i)

/ n
∑

i=1
wi

(6)
It can be seen that (5) and (6) are programming problems.
Solutions to these problems, so that the type-1 OWA aggre-
gation operation can be performed efficiently, are available
from [19].



3 TYPE-1 OWA BASED
MULTI-GRANULAR CONSENSUS
MODEL

Consensus reaching processes can be defined as iterative
processes composed by several rounds where experts ex-
press and discuss about their preferences with the aim to
achieve a minimum level of agreement before making a de-
cision. In real-world problems, these processes are guided
by a human moderator who is in charged of supervising
all process phases and carries out the necessary actions to
drive the consensus process toward success.

In the multi-granular context, the different theoretical mod-
els proposed in the literature [2, 10, 11] have been proposed
to address the consensus reaching process, in which trans-
formation functions were used to unify the multi-granular
linguistic information. As pointed our earlier, a drawback
of such unification process is that the consensus reach-
ing process loses information because the transformations
functions are not bijective. These proposed models did not
address the issues of direct manipulation of different ele-
ments belonging to linguistic sets of different granularity,
specially in the necessary aggregation step of GDM pro-
blems, because there were no mathematical tools available
at that moment. Interestingly, the introduction of the type-1
OWA operator provides such a needed tool for direct ma-
nipulating linguistic sets with different granularity in con-
sensus decision making.

In this section we present, and illustrate in 2, a consen-
sus reaching model based on type-1 OWA operator to ad-
dress GDM problems defined in multi-granular linguistic
contexts. Specifically our proposed model includes the fol-
lowing steps:

Figure 2: Type-1 OWA based multi-granular consensus
model phases

1. Computing the consensus degree. The consensus
degree will represent the level of agreement among
experts, i.e., how close experts’ preferences are. In
order to evaluate the agreement, the model computes

and aggregates the ‘distance’ representing disagree-
ment between the preferences of each pair of experts
on each pair of alternatives. It is well known that
the set of fuzzy sets of the unit interval is not totally
ordered. Therefore, for our purpose, following the
methodology proposed in [4], each fuzzy set will be
associated to a numeric representative score, in our
case its centroid, and the distance between two fuzzy
sets will be set as the distance between their respective
scores.

The centroid of a type-1 fuzzy set A in a continuous
domain X is calculated as,

CA =

∫
x
x ·µA(x)dx∫

x
µA(xi)

. (7)

The centroid when the domain X is discretised into n
points is

CA =

n

∑
i=1

xi ·µA(xi)

n

∑
i=1

µA(xi)
. (8)

The centroid of linguistic label plk
i will be denoted by

clk
i .

For each pair of experts ei, e j (i < j), a similarity ma-
trix, SMi j = (smlk

i j), is obtained as

smlk
i j = 1− | clk

i − clk
j | (9)

where smlk
i j represent the similarity between the prefe-

rences of the experts ei and e j on the pair of alterna-
tives (xl ,xk). The closer smlk

i j to 1 the more similar plk
i

and plk
j are considered, while the closer smlk

i j to 0 the
more distant plk

i and plk
j are considered.

A consensus matrix, CM = (cmlk), is calculated by
aggregating all similarity matrices, where each aggre-
gated pair of alternatives is computed as:

cmlk = θ(smlk
12,smlk

13, . . . ,smlk
1m,

smlk
23, . . . ,smlk

2m, . . . ,smlk
(m−1)m)

for l,k∈{1, . . . ,n} and where θ is an aggregation ope-
rator. Note that different aggregation operators can be
used according to different consensus strategies (more
details on this can be found in [12]).

The level of agreement is computed at three different
levels [9]:

i) Pairs of alternatives,

cplk = cmlk, ∀ l,k = 1, . . . ,n ∧ l 6= k,

where cplk represents the level of agreement by
all experts on the pair of alternatives (xl ,xk).



ii) Alternatives,

cal =
∑

n
k=1, l 6=k cplk

(n−1)
, (10)

where cal represents the level of agreement by all
experts on the alternative xl .

iii) Preference relation,

cr = ∑
n
l=1 cal

n
, (11)

where cr represents the global agreement among
all experts.

2. Consensus control. The agreement cr obtained in the
previous phase is checked here against a consensus
threshold agreed by the set of expert previous to the
application of the consensus process. If cr is greater or
equal than this consensus threshold then the consensus
reaching process is considered over. Otherwise, the
experts need to discuss and attempt to get their opin-
ions closer for their level of agreement to increase and
achieve the threshold value set.

3. Advice generation. In this phase, the model suggests
how experts should change their opinions in order to
bring them preferences closer and to increase the level
of agreement. Three tasks are carried out in order to
achieve this:

(a) Computing the collective preference and the ex-
perts’ proximity values. Firstly, a collective pre-
ference Pec = (plk

c ) is calculated by aggregating
all experts’ preference relations {Pe1 , . . . ,Pem} at
level of pairs of alternatives. This aggregation is
carried out by using the type-1 OWA operator.

Pc = Φ(Pe1 , . . . ,Pem). (12)

The proximity between each individual linguistic
preference relation and the collective linguistic
one is obtained, PMi = (pmlk

i ),

pplk
i = 1− | clk

i − clk
c | (13)

where pplk
i represents the proximity between the

preference of expert ei and the collective one on
the pair of alternatives (xl ,xk). These proximity
values are used by the model to identify the fur-
thest individual preference values from the co-
llective ones, and therefore the preference values
that should be considered by the group of experts
for possible changes.

(b) Identification of preferences to be changed. The
identification of the preference values to be sub-
ject of modification is done by considering both
the consensus degrees and the proximity values.

The alternatives with a level of agreement by all
experts, cal , lower than the consensus threshold
are identified, and for these alternatives the pre-
ference values with a level of agreement by all
experts, cplk, lower than the threshold will be
subject of a recommendation of change:

SC = {(l,k) ∈ {1, . . . ,n} |max{cal ,cplk}< cr}

The recommendation of change will be produced
for just those experts that are furthest from the
whole group in the identified elements of SC.
This is done by comparing, for each (l,k) ∈ SC,
pplk

i with a collective threshold pplk computed
by aggregating all individual proximity values:

pplk = θ(pplk
1 , . . . , pplk

m). (14)

Those experts for which pplk
i < pplk will be pro-

vided with a recommendation of the direction of
change of their current preference values associa-
ted to (l,k) ∈ SC.

(c) Direction changes. For each preference to be
changed, the model will suggest increasing or de-
creasing its current assessment [11]:
DR.1. If (clk

i −clk
c ) < 0, then expert ei should in-

crease the linguistic assessment associated to
the pair of alternatives (xl ,xk).

DR.2. If (clk
i −clk

c ) > 0, then expert ei should de-
crease the linguistic assessment associated to
the pair of alternatives (xl ,xk).

DR.3. If (clk
i −clk

c ) = 0, then expert ei should not
modify the linguistic assessment associated
to the pair of alternatives (xl ,xk).

4 CONCLUSIONS

In this contribution we have presented a consensus mo-
delled for multi-granular linguistic GDM problems that is
based on the use of the type-1 OWA operator. This ope-
rator allows the direct aggregation of fuzzy sets, therefore
making it superfluous to unify the multi-granular informa-
tion as proposed in previous models. An advantage of the
proposed method is that it avoids the loss of information
that the mentioned methods incurred. One further issue is
to carry out a comparative study of the proposed method
with previous ones, in order to ascertain the extent of the
influence that the type-1 OWA operators brings about in the
measuring of consensus.
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