
Diversity of structures and adaptive methods on an
evolutionary hypermedia system

N. Medina-Medina, F. Molina-Ortiz and L. Garcı́a-Cabrera

Abstract: SEM-HP is a model for the development of evolutionary and adaptive hypermedia
systems by means of: a development process that consists in iterative and evolutionary phases;
a layered architecture that captures each phase in subsystems divided into two levels of abstraction
(system and metasystem); and an author tool that implements the model. The paper focuses on the
capability of adaptation of the hypermedia systems developed according to the SEM-HP model, in
particular, the learning subsystem that is in charge of performing the user adaptation. SEM-HP
offers two important contributions: supporting the process of evolution of the development of
adaptive hypermedia systems, ensuring easy, flexible and consistent maintenance; and the
orientation support is that inherent to the navigational structure itself.

1 Introduction: the SEM-HP model

SEM-HP [1] is a model for the development of hypermedia
systems (HS) with antecedents in the Wang [2] and Stotts
[3] approaches. SEM-HP provides to the author the
necessary formalisms, techniques and methods to support
two essential aspects: evolution and adaptation. The ability
to evolve eases the creation of the HS and guarantees its
long-term life. The evolutionary mechanisms provided by
SEM-HP allow the HS to incorporate the needed changes in
an easy, flexible and consistent way. The ability to adapt the
HS to the needs and features of each user is essential if we
take into account that there will be users with very different
profiles accessing our system. This process can be seen as a
particular case of evolution where the system automatically
changes its behaviour depending on the user utilising it [4].
SEM-HP model provides the author with three elements

for the creation of evolutionary and adaptive hypermedia
systems: a development process, an architecture and an
author tool. The development process establishes the
guidelines to follow for the creation of the HS from a
software engineering approach. The architecture describes
the representation models used to capture each phase of
the development process. Finally, the author tool eases the
creation of the system according to the architecture and the
development process proposed in the model.
In this paper we firstly outline the SEM-HP architecture,

describing with more detail the learning subsystem, which
takes care of the user adaptation and maintains a user model,
and update and knowledge rules. After that, we describe the
adaptive methods and techniques used in SEM-HP
(choosing the appropriate subdomain and sets of rules,

and personalisation to user knowledge, his interests
and goals). Finally, conclusions, related work and further
work are discussed.

2 SEM-HP architecture

The architecture proposed by the SEM-HP model (Fig. 1) is
structured in layers, performing a double division [5]:
vertical and horizontal. The vertical division considers four
subsystems: memorisation subsystem, presentation subsys-
tem, navigation subsystem and learning subsystem.
The horizontal division distinguishes two layers in each
subsystem: system and metasystem. The least abstract level
(system) comprises the representation models defined by the
author during the corresponding development phase, while
the most abstract level (metasystem) includes the
evolutionary mechanisms that will permit the integration
and propagation of changes performed by the author in the
elements of the corresponding subsystem.

The evolutionary mechanisms included in the metasys-
tem are mainly three [6]: evolutionary actions, restrictions
and change propagation. The author interacts with
the metasystem to build and modify the HS. To perform
a change in a subsystem the author must choose the
appropriate evolutionary action and run it. To ensure the
integrity of the HS, an evolutionary action is only executed
if it satisfies a set of restrictions imposed by the model and
by the author. In addition, when changing an element in a
subsystem, the need may arise to modify other elements in
the same subsystem or even in other subsystems.
This change propagation is automatically done in the
model, guaranteeing, in addition to the consistent evolution
in each subsystem, the coevolution of the set of subsystems.

In this paper we focus on the capability of adaptation of
the HS developed according to the SEM-HP model, so we
will briefly outline the three first subsystems [5], and we will
describe in depth the learning subsystem.

The memorisation subsystem stores, structures and
maintains the conceptual and informational domain of the
HS. The representation model used for describing both
domains is a conceptual structure, CSM (Fig. 2), or semantic
net with two kinds of nodes: concepts (C) and items (I).
Items are informational units (text, image, audio, video,
executable, etc.). The concepts are connected between them

q IEE, 2005

IEE Proceedings online no. 20050026

doi: 10.1049/ip-sen:20050026

N. Medina-Medina and F. Molina-Ortiz are with the Depto. L.S.I., E.T.S.I.
Informática, Universidad de Granada, Spain

L. Garcı́a-Cabrera is with the Depto. Informática, Universidad de Jaén,
Spain

E-mail: nmedina@ugr.es

Paper received 8th April 2005

IEE Proc.-Softw., Vol. 152, No. 3, June 2005 119



through semantically labelled relations, called conceptual
relations. The informational items are associated with
concepts; in this way the links between items are established
based on the semantic relations among concepts.
The association between an item and a concept is called
functional association and it is labelled with the role the
item plays with respect to the concept. In addition to the
role, each item has some properties that determine the main
features of the information it contains: author, date of
creation, level of difficulty, media (audio, text, video, etc.),
language, etc.

In the presentation subsystem the author selects different
subsets of the CSM created in the memorisation phase, with
the aim of reducing its complexity and size (Fig. 3).
Creating different views of the CSM achieves: (a) provision
to the user of a navigation structure focused on the
knowledge subdomain in which he is interested; and
(b) reduction of the disorientation problems. Based on the
same knowledge domain (conceptual and informational
domain captured in a CSM), the author prepares different
conceptual structures of presentation (CSP). The author is in
charge of defining the subdomains and of labelling each CSP
with the subdomain it represents.

In the navigation subsystem the author establishes
the navigability of the conceptual relations. By default, the
conceptual relations will be navigated from the origin to
the destination concept. Nevertheless, if the author wishes,
he can extend the navigability of a conceptual relation in
the other direction, so that it can be navigated in both ways.
The author defines the navigational possibilities for each
presentation, being able to create different conceptual
structures of navigation (CSN) from the same CSP.

3 Learning subsystem

The learning subsystem permits the HS developed accord-
ing to the SEM-HP model to be qualified as adaptive. In the

two subsystems described above the author prepares
different navigation structures for the same knowledge
domain. These structures differ in the knowledge subdomain
they represent and in the way their conceptual relationships
can be navigated. Because of this diversity, the system can
offer to the user the navigation structure that best matches
his profile this being understood as several general features,
such as the subdomain he is interested in, experience in the
subject and experience in navigation. Two users with the
same profile will obtain the same structure – nevertheless
they are different. For example, although both may be
interested in the same subdomain, their knowledge goals
can be different, or, even if both have similar average
experience in the subject, one may know some concepts
better than the other. Hence, individual adaptation methods
and techniques are needed, which in the SEM-HP
architecture are included in the learning subsystem.
The elements the learning subsystem uses to apply these
adaptation methods are: a user model and a set of learning
rules (update rules and knowledge rules). Again, for the
same CSN the author can define different sets of learning
rules, creating different conceptual structures of learning
(CSL).

3.1 User model

The user model is the internal representation of the user that
the learning subsystem keeps. The information the user
model contains is shown in Table 1. Most of the initial
information is explicitly set by the user the first time he logs
on to the system. Part of that information will stay
unchanged until the user requests to change it, while other
information will be automatically updated as the user
browses the HS. So, we can characterise the HS developed
according to the SEM-HP model as adaptable and adaptive
(following the definition of both terms shown in [7]).

The user will choose the knowledge subdomain in which
he is most interested, selecting one of the subdomains
defined by the author in the presentation phase. Whenever
he wishes he will be able to choose another subdomain by a
direct petition to the system. The initialisation and update
tasks are performed automatically for other entries in the
user model, such as the knowledge degree and the number
of visits. The first time the user logs on to the system the
number of visits is 0 and his knowledge about every item in
the HS is set to ‘null’. While the user navigates, the system
counts his visits and updates the degree of knowledge about
the visited items and other items related to them using the
update rules. There are other entries which are updated by
the system upon the user’s request. This is the case of the

Fig. 1 SEM-HP architecture for a hypermedia system

Asanas
Loto

Ha

I1

I2

I3

I4
I6

I5

Hatha Yoga

I7

Ying Yang

I8

ThaI9

I10

I11

Rpositive

Rnegative

Balance

Is_a

Need

example

example

exampledefinition

definition

comparison

explanation

explanation

clarification

example

Item Concept

Fig. 2 Conceptual structure of memorisation

IEE Proc.-Softw., Vol. 152, No. 3, June 2005120



experience of the user in the subject and in navigation.
Initially the system can only obtain this information by
explicitly asking the user, but later the system can
automatically infer these data from other information in
the user model. The subject experience can be approximated
as the average user knowledge, and the navigation
experience can be inferred from the total number of visits
performed.

3.2 Update rules

The degree of user knowledge about an item I, K(I), is
represented in the usermodel using any of the semantic labels
(labelSEM): ‘null’, ‘very low’, ‘low’, ‘medium’, ‘high’, ‘very
high’ and ‘total’, each one with an associated numerical
value from one to seven. The update rules (Ru) determine
how, after every visit the user carries out, his degree of
knowledge about certain items is increased. There will be an

Ru associated with the visit to each item in the CSL. In it,
the head is the visited item and the body includes a set of
update predicates that will be executed after the visit.
Equation (1) shows the generic structure of an Ru:

VisitðIÞ ! UpdateðIÞ; UpdateðI00Þ . . . UpdateðI000Þ ð1Þ

Each one of the predicates updates a different item in theCSL.
The update of the user knowledge about an item can be:
incremental or fixed (the degree of user knowledge is set to a
fixed degree of knowledge), absolute (it uses an absolute
labelSEM) or relative (it uses the degree of user knowledge
about the visited item), each-time or first-time (it is run only
the first time the item in the head is visited). Table 2 shows the
available update predicates and Table 3 includes examples of
updates to the item I6 after I4 is visited.

To help the author, the system generates by default a set
of Ru for each CSL. In the body of an Ru there is only one

Table 2: Update predicates

Each-time First-time

Incremental Absolute Ink-abs (I, number-of-degrees) Ink-absfirst (I, number-of-grades)

Relative Ink-rel (I, number-of-degrees) Ink-relfirst (I, number-of-degrees)

Fixed Absolute Fix-abs (I, labelSEM) Fix-absfirst (I, labelSEM)

Relative Fix-rel (I ) Fix-relfirst (I )

Fig. 3 Two different views of the same CSM

Table 1: User model

Initialisation Update

Subdomain of interest Asked of the user Performed by the user

Experience in the subject Asked of the user Requested by the user

Experience in navigation Asked of the user Requested by the user

For each item Degree of knowledge Automatic Automatic

No. of visits Automatic Automatic

Interests = goal Asked of the user Performed by the user

Preferences Asked of the user Performed by the user

Personal information Asked of the user Performed by the user

IEE Proc.-Softw., Vol. 152, No. 3, June 2005 121



update predicate by default, which sets to ‘total’ the degree
of knowledge about the visited item. For example: RuðI4Þ :
VisitðI4Þ ! Fix-absðI4; ‘total’Þ: The author can make the
default update rules evolve, adding updates about other
items different from the visited item. All the changes are
done through evolutionary actions, so they will not be run
unless they satisfy several restrictions, such as not removing
the visited item’s update or not including two updates
about the same item. The restrictions guarantee that the set
of Ru satisfies some desirable features, such as that every Ru

must permit the user to achieve a ‘total’ knowledge about
the head item after a finite number of visits to it. For
example, by performing valid changes, the author can
transform the default rule for I4 into this other (the changes
are in boldface): RuðI4Þ : VisitðI4Þ ! Fix-absðI4; ‘total’Þ,
Ink-abs(I6, 2), Ink-abs(I7, 3).

3.3 Knowledge rules

The author defines, for each CSL, a set of knowledge rules
(Rk). These Rk will be used to adapt the user navigation
depending on his degree of knowledge. Hence, the Rk

associated with an item determines which other items must
be known by the user and which degree of knowledge he
must have about them in order to access the item. Equation

(2) shows the structure of an Rk and Table 4 contains
the allowed knowledge restrictions:

Knowledge restrictionðI0Þ opL . . . opL
Knowledge restrictionðI00Þ ! VisitableðIÞ

where opL 2 fand; org
ð2Þ

Once more, to assist the author, the system generates an set
of default Rk, which can be changed by the author using the
appropriate evolutionary actions. For each item in the CSL
the system generates an Rk for each conceptual relation
which can be navigated up to the concept to which the item
is associated. The body of the rule expresses the requirement
of a ‘total’ knowledge about any of the items associated
with the origin concept of the relation. Figure 4 shows the
Rk automatically generated in the example.

Some modifications the author can carry out in an Rk are:
remove an Rk, change the logical operators that connect the
knowledge restrictions, add new restrictions or change the
restriction about an item. For example, the author can
change the default Rk for I3 (Fig. 4), producing the Rk

shown in Table 5.
Before performing the changes requested by the author,

the metasystem checks that the integrity restrictions hold.
For example, the set of Rk must guarantee that performing
the appropriate navigation steps, every item in the CSL will
become accessible (when the navigation is adapted to the
user knowledge, an item is accessible if the user fulfils at
least one of the Rk associated with it). This restriction will
depend not only on the Rk but also on the Ru. To check it,
the system builds a knowledge navigation tree that permits
one to check that all the items are accessible, so as a result it

Table 3: Some possible updates on the item I6 after the visit to I4

Update(I6) K(I6) after visit to I4

Current User Knowledge: K ðI6Þ ¼ ‘null’, K ðI4Þ ¼ ‘medium’ Ink-abs(I6, 2) K ðI6Þ ¼ K ðI6Þ þ 2 ¼ ‘low’

Ink-rel(I6,2) K ðI6Þ ¼ K ðI4Þ þ 2 ¼ ‘very high’

Update Rule: Visit ðI4Þ ! . . . ;UpdateðI6Þ; . . . Fix-abs(I6, ‘total’) K ðI6Þ ¼ ‘total’

Fix-rel(I6) K ðI6Þ ¼ K ðI4Þ ¼ ‘medium’

Table 4: Knowledge restrictions in the body of Rk

Strict Not strict

Equality K ðI Þ ¼ labelSEM

Larger K ðI Þ> labelSEM K ðI Þ> ¼ labelSEM

Smaller K ðI Þ< labelSEM K ðI Þ< ¼ labelSEM

Interval l1<K ðI Þ< l2 l1< ¼ K ðI Þ< ¼ l2

where l1 and l2 are labelSEM and l1< l2

ORSET K(I ) / [restriction1,

restriction2; . . . ; restrictionN]

which means K(I ) satisfies at least one

restriction in the set

Fig. 4 Default knowledge rules

Table 5: Changes in the Rk associated with the visit of I3

Rk1(I3):K ðI1Þ> ‘null’ orK ðI2Þ>¼‘medium’!Visitable (I 3) ½IsA�

Rk2ðI3Þ : ðK ðI2Þ> ‘high’ or K ðI6Þ> ‘high’) and K ðI4Þ> ‘high’ !

Visitable (I3) [Need]

Fig. 5 Treek for the item I3

IEE Proc.-Softw., Vol. 152, No. 3, June 2005122



is possible to reach a ‘total’ knowledge about each one of
them (more details in Section 4.2).
Every Rk can be expressed as a knowledge restriction tree

(TreeK). The head item of the Rk is the root of the TreeK.
The composite restrictions (restrictions joined by logic
operators) in the body of the Rk are decomposed in
the restrictions that integrate it, generating subtrees inside
the TreeK. Every single knowledge restriction is represented
by a child node labelled with the item implied in the
restriction. The branch getting to the node is labelled with
the knowledge degree required for the item in the
restriction. To represent the and operator we join the
implied branches with a horizontal dotted line. All the Rk

associated with an item can be unified in a single tree using
or branches, since it is enough that one Rk holds for the item
to be accessible. Figure 5 shows the TreeK that will allow
one to determine whether I3 is accessible.

4 Adaptive methods and techniques

4.1 Choosing the CSL

In each development phase the author prepares different
CSs, starting from each of the CSs defined in the previous
phase. For example, if the author builds two CSs based upon
each CS in the preceding phase, the number of CSLs
available to be browsed by the user will be 23 (Fig. 6).
During the development process of the HS the author

must label the created CSs so that the system can
automatically determine which is the one that best fits the
user. There are three labels for each CSL:

. Knowledge subdomain: The knowledge subdomain
shown by a CSL is established in the presentation phase,
since in this phase the author perfectly knows which part of
the knowledge domain represented in the CSM he has
captured in the presentation.
. Experience in navigation: The value of this label is
defined in the presentation and navigation phases.
For example, a conceptual structure with a considerable
amount of items, concepts and extended conceptual
relations offers very many navigation possibilities, and
consequently users with little experience in navigation are
more likely to feel lost.
. Experience in the subject: The value of this label is
determined by design decisions taken by the author in the
presentation and learning phases. For example, with
restrictive knowledge rules and update rules that quickly

increase the user’s knowledge, a high level of experience is
required.

Since there are three attributes in the user model with the
same name, meaning and value range, the chosen CSL for
each user is the one whose values in these three labels are
closer to the values of the corresponding attributes in his
user model.

4.2 CSL personalised to user’s knowledge

During the user navigation, the system personalises the CSL
through the annotation of the visited items and the
visualisation in the CSL itself of the user’s knowledge
state. The annotation of the previously visited items with a
special colour permits us to avoid undesired repeated visits.
The visual labelling of the items with the knowledge degree
the user has about them allows him to check how his
knowledge increases as he browses the HS. This makes the
user aware of the knowledge prerequisites of the system and
of his learning process.

In addition, the system uses the item hiding technique, in
which forbidden items are hidden and disabled, ensuring
that the user only visits accessible items according to the Rk

defined in CSL. With this adaptive technique the visible
items in the CSL depend on such an individual thing as the
knowledge state of the user, restricting the navigation in the
function of his knowledge. In Fig. 7 the adaptation of a CSL
after visiting the item I4 is shown.

To calculate the accessible items, theRk must be evaluated
on the user’s current knowledge state. To efficiently perform
this task, the system creates a knowledge navigation tree
(NavigationK Tree) for each CSL, applying its Rk and Ru.
Each node in the tree represents a knowledge state in which
the user can be, that is, the degree of knowledge the user has
in a particular navigational step about every item in the CSL.
The root node represents total ignorance (‘null’ knowledge
about all the items), and the leaf nodes represent ‘total’
knowledge about all the items. Each node has as many
children as items are accessible from the knowledge state
represented by it. The branch that leads to each child node is
labelled with the name of the visited item and the child node
is built applying the visited item’sRu on the knowledge state
represented by the parent node. In Fig. 8we can see part of the
NavigationK Tree generated for the CSL in Fig. 7, using the
default Ru and Rk, after applying to them the changes shown
in Sections 3.2 and 3.3 forRuðI4Þ andRkðI3Þ. The knowledge
state of a user who has only visited I4 is marked in the Figure.

Once the NavigationK Tree has been generated for a CSL,
it is used to restrict the navigation by knowledge of all the
users who browse it. This tree will only be changed when
the Ru or the Rk that were used to generate it change, be it
requested by the author through an evolutionary action or
caused by an automatic change propagation carried out

Fig. 6 Eight different CSL Fig. 7 CSL adapted to user’s knowledge

IEE Proc.-Softw., Vol. 152, No. 3, June 2005 123



by the metasystem. Every time the tree is generated,
the system checks restrictions to guarantee that the set of Ru

and Rk is consistent. For example, the presence of leaf nodes
representing ‘total’ knowledge ensures that this knowledge
state is reachable by the user.

4.3 CSL personalised to user interests

During the choice of the CSL, the system takes into account
the knowledge subdomain in which the user is interested,
contemplating to some extent his interests and wishes.
Nevertheless, inside a knowledge subdomain there can be
many items, and the user will probably be more interested in
a group of them.

Because of this, the user can specify his interests as the
set of items that he is most interested in learning (interesting
items). Hence, during navigation, the system will annotate
in a special way the items of theCSL that will help the user to
achieve his interests (desirable items). An item is desirable
by the user if it satisfies two properties: (i) it is accessible;
and (ii) it is interesting or its visit will directly or indirectly
contribute to turn an interesting item into accessible.
Therefore, when visiting a desirable item the user knows
that he is visiting an item he defined as interesting, or
visiting an item that will bring him closer to the knowledge
state required to be able to visit one or several of his
interesting items.

If all the interesting items are accessible, the set
of desirable items matches the set of interesting items.
If not, to calculate the set of desirable items, the system
builds a tree with the knowledge restrictions that are not
satisfied by the user and are nevertheless necessary for him
to be able to visit the interesting items. This tree is called
TreeD and its leaf nodes represent desirable items. The TreeD
is automatically generated using the Rk represented as
TreeK. In the first level of the TreeD, the interesting items
specified by the user are joined by an and connector. Until
all the leaf items are marked as desirable, we proceed as
follows: If a leaf item is accessible it is marked as desirable;
if not, it is replaced by its TreeK, removing the branches
representing knowledge requirements that the user’s current
knowledge state satisfies.

In Fig. 9a we show the TreeD that is generated for the
interests set Ints ¼ fI3; I7g being the current user knowl-
edge marked in Fig. 8. We can see how the item I3, which is
not currently accessible, is expanded using its TreeK (Fig. 5).
Only the requisites not fulfilled by the user are included, so
the branch corresponding to the KðI4Þ> ‘high’ requisite is

not added. Figure 9b shows the CSL adapted to the user
interests by annotating the desirable items (the name of the
item is underlined and in a larger font).

Obviously, until all the interesting items are marked as
desirable, the TreeD is updated each time the user visits an
item and its Ru is run. The knowledge restrictions fulfilled
by the new knowledge state are removed, and if a node
becomes accessible, it is marked as desirable and the subtree
under it is removed.

Fig. 8 Navigationk tree

Fig. 9 TreeD for Ints ¼ fI3; I7g and annotation of desirable
items

IEE Proc.-Softw., Vol. 152, No. 3, June 2005124



The user can also specify a knowledge goal, indicating
not only the items he wishes to know but also the degree of
knowledge he wants to achieve in each of them. The user
will specify his goal as a set of subgoals in the form
(I, labelSEM), where I is an item in the CSL he browses and
labelSEM represents the desired knowledge degree.
To personalise the CSL in the function of the user goal,
the procedure explained previously is used. The only
difference is that, in this case, the branches that get to the
nodes placed in the first level on the TreeD (the items
included in the goal) are labelled with the knowledge
restriction specified in the corresponding subgoal. Now, the
knowledge restrictions in the first level are also evaluated.
In this way, every time a subgoal is satisfied it is removed
from the tree. When the root node of the TreeD is removed it
will mean that the user goal has been completely achieved.
In addition, the user can request from the system

a navigation route that brings him to his goal. This route
is shown as a list of items and an order to visit them.
To calculate it the system uses the NavigationK Tree
(Section 4.2), taking into account the knowledge state of
the user and his preferences on the items’ idiom, length of
the route, etc. The details of this technique are given in [8].

5 Conclusions and related work

SEM-HP is a systemic, semantic and evolutionary model
that permits the development of adaptive and evolutionary
HS. The architecture of the developed systems is divided
into four subsystems, with two abstraction levels in each
subsystem: the higher level (metasystem) provides
the necessary mechanisms to evolve the structure and the
functioning of the representation models included in the
lower level (system). Among the four subsystems,
the learning subsystem is in charge of performing the user
adaptation and to do this, it defines, among other
mechanisms, a set of rules that calculate the user knowledge
(Ru) and use it to restrict the user’s navigation (Rk). Three
types of adaptive methods are applied during the user
navigation: orientation support, personalised views and
guidance. Table 6 shows the adaptive techniques used to
implement each one of them.
Since the first adaptive hypermedia systems (AHSs)

appeared in the late 1980s, many authors have contemplated
navigation support methods in their systems, models and
architectures. The particularity of the SEM-HP model lies
mainly in that it offers to the author support during the
process of evolution of the developed AHS, ensuring an
easy, flexible and consistent maintenance task.
In addition, SEM-HP integrates an important number of

navigation adaptation methods described by Brusilovsky in
[9], while most of the AHSs we have found focus only on
some of them. The way in which SEM-HP implements each
adaptive method is also different. For example, while most
adaptive architectures place on the navigational structures
a method that provides orientation support (for example,
abstracts views in AHAM [10]), in SEM-HP the orientation
support is inherent to the navigational structure itself,
a separate method not being necessary.
Another differentiating aspect of SEM-HP is that the

navigation structure displays, in addition to the items of
information, the concepts they describe and the relations
between them. Although it is true that other systems, such as
the one proposed in [11], also incorporate concepts, the
difference lies in the homogeneous way SEM-HP treats
them. For example, the system is able to determine the
knowledge the user has about the concepts using a set of
weight rules (Rw) [12] previously defined by the author.

Each Rw calculates the user knowledge about a concept
considering the user knowledge about the items associated
with it. It permits using knowledge about concepts in the
definition of Rk, user interests, etc.

Regarding the adaptation to the group of users, we follow
an approach similar to the one used by Bollen and
Heylighen [13], although with some differences. While
Bollen and Heylighen apply a set of learning rules
(frequency, transitivity and symmetry) to automatically
strengthen or to create new hyperlinks, we build transition
matrices [14], which reflect the number of times the user
goes from one concept to another in each navigation

Table 6: Adaptive techniques and methods

Adaptive

method

Adaptive

technique

Orientation

support

Annotation of visited items

Conceptual structure showing

the position of the last visited

item and its context in

the information=conceptual

domain

Personalised

views

Choice of the navigation structure

according to the subdomain of

interest, navigation experience

and subject experience

Annotation of degree of user

knowledge about the items

Hiding the forbidden items

Annotation of interesting items

Annotation of goal items

Guidance Global Guidance for a knowledge state

taking into account user

preferences

Local Annotation of interesting items and

goal items

To the user

group

Transition matrices

Fig. 10 The author is writing Rk1ðI9Þ

IEE Proc.-Softw., Vol. 152, No. 3, June 2005 125



structure [15]. Based on a matrix, the author will decide if
the corresponding structure will be totally or partially
adapted to the navigation pattern defined by its users.
For example, he can remove a conceptual relation never
used or add a relation frequently followed.

6 Further work: prototype JSEM-HP

Our further work is focused on finishing the development of
a prototype that implements SEM-HP. The prototype in
development is called JSEM-HP, and it is written in Java.
Firstly, we are developing the author tool that will allow the
developer to build and evolve adaptive hypermedia systems.
JSEM-HP explicitly supports the layered division in
systems and metasystems, and for now it implements the
memorisation, presentation and navigation subsystems and
part of the learning subsystem. For the visual manipulation
of graphs it uses the Jgraph library [16]. Figure 10 shows the
prototype interface when the author is editing the first
knowledge rule associated with the item I9 in a conceptual
structure whose knowledge domain is the object orientation
paradigm.

Figure 11 shows the prototype interface during the user
navigation – the moment in which the user has selected the
accessible item I21. The degree of knowledge about the
items is reflected through the colour of the item (darker
means higher knowledge).

More details about the existing versions of the prototype
are described in [14, 17]. Our aim is to use the prototype to
validate the SEM-HP model, mainly in two aspects:

. Development of AHS: We are checking that our
evolutionary approach actually helps the author to build
AHS in a flexible and consistent way, i.e. the four
subsystems keep consistent during their evolution, and the
evolutionary actions and the restrictions are the appropriate
and flexible enough to allow the author to develop and
evolve AHS easily.
. User adaptation: Our objective is to check the different
adaptation techniques implemented and verify that they
enhance the navigation for heterogeneous users, improving
the comprehension of the offered material and reducing the
disorientation problems.

7 References

1 Garcı́a, L., and Parets, J.: ‘A cognitive model for adaptive hypermedia
systems’. 1st Int. Conf. on WISE, Workshop on World Wide Web
Semantics, Hong-Kong, China, June 2000, pp. 29–33

2 Wang, W., and Rada, R.: ‘Structured hypertext with domain semantics’,
ACM Trans. Inf. Syst., 1998, 16, (4), pp. 372–412

3 Stotts, P., Furuta, R., and Ruiz, C.: ‘Hyperdocuments as automata:
verification of trace-based browsing properties by model checking’,
ACM Trans. Inf. Syst., 1998, 16, (1), pp. 1–30

4 Medina, N., Garcı́a, L., Torres, J., and Parets, J.: ‘Evolution in adaptive
hipermedia systems’. Principles of Software Evolution IWPSE.
Orlando, Florida, USA. May 2002, pp: 34–38.

5 Garcı́a, L., Rodrı́guez, M.J., and Parets, J.: ‘Evolving hypermedia
systems: a layered software architecture’, J. Softw. Maint. Evol. Res.
Pract., 2002, 14, (5), pp. 389–405

6 Garcı́a, L., Rodrı́guez, M.J., and Parets, J.: ‘Formal foundations for the
evolution of hypermedia systems’. 5th Eur. Conf. on Software
Maintenance and Reengineering, Workshop on FFSE, IEEE Press,
Lisbon, Portugal, March 2001, pp. 5–12

7 Wadge, W.W., and Schraefel, M.C.: ‘A complementary approach for
adaptive and adaptable hypermedia: intensional hypertext’. 12th ACM
Conf. on Hypertext and Hypermedia, 3rd Workshop on Adaptive
Hypertext and Hypermedia, Aarhus, Denmark, August 2001,
pp. 327–334

8 Medina, N., Molina, F., and Garcı́a, L.: ‘Personalized guided routes in
an adaptive evolutionary hypermedia system’, Lect. Notes Comput. Sci.,
2003, 2809, pp. 196–207

9 Brusilovsky, P.: ‘Methods and techniques of adaptive hypermedia’,
User Model. User-Adapt. Interact., 1996, 6, pp. 87–129

10 Wu, H., and De Bra, P.: ‘Link-independent navigation support in web-
based adaptive hypermedia’. Web-Engineering Track of the 11th Int.
WWW Conf, Honolulu, Hi, USA, May 2002, pp. 74–89

11 Da Silva, P., Durm, R., Duval, E., and Olivié, H.: ‘Concepts and
documents for adaptive educational hypermedia: a model and a
prototype’. 2nd Workshop on Adaptive Hypertext and Hypermedia,
Pittsburgh, USA, June 1998, pp. 35–43

12 Medina, N., Garcı́a, L., Rodrı́guez, M.J., and Parets, J.: ‘Adaptation in
an evolutionary hyperpedia system: using semantic and Petri nets’,
Lect. Notes Comput. Sci., 2002, 2347, pp. 284–295

13 Bollen, J., and Heylighen, F.: ‘A system to restructure hypertext
networks into valid user models’, New Rev. HyperMed. Multimed.,
1998, 4, pp. 189–213

14 Medina, N.: ‘An integral and evolutionary model of adaptation for
hypermedia systems. The learning system of SEM-HP’ (in Spanish).
Doctoral thesis, University of Granada, Spain, November 2004

15 Salmerón, L., Cañas, J., Gea, M., Fajardo, I., Antolı́ A., and Abascal J.:
‘Analysis of the knowledge adquisition in hypertext systems from the
user’s navigation strategies’. (in Spanish). COLINE, Granada, Spain,
November 2002

16 Jgraph Swing Component. http://www.jgraph.com
17 Molina, F., Garcı́a, L., Medina, N., and Hurtado, MV.: ‘Evolutionary

conceptual structure editor: practical considerations’. (in Spanish). 3rd
Jornadas de trabajo DOLMEN JISBD, El Escorial, Madrid, Spain,
November 2002, pp: 77–82

Fig. 11 The user has selected I21

IEE Proc.-Softw., Vol. 152, No. 3, June 2005126

http://www.jgraph.com



