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Abstract: - We study different approaches for decision making with linguistic information. We describe 
some basic linguistic aggregation operators. We then analyze the problem of linguistic decision making 
with Dempster-Shafer (D-S) belief structure. We suggest the use of different types of linguistic 
aggregation operators in the D-S framework such as the linguistic ordered weighted averaging (LOWA) 
operator and the linguistic hybrid averaging (LHA) operator. Finally, we develop an illustrative example 
where we can see the different results obtained by using different types of linguistic aggregation 
operators. 
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1  INTRODUCTION 
 
The Dempster-Shafer (D-S) theory of evidence was introduced by Dempster in (1967; 1968) and by 
Shafer in (1976). Since its appearance, this theory has been used in a lot of situations (Srivastava and 
Mock, 2002; Yager et al., 1994). It provides a unifying framework for representing uncertainty because it 
includes as special cases the situations of risk and ignorance. The difference between their works is that 
each one associated a different semantics in the theory although their ideas were practically the same. 
Dempster was interested in a probabilistic framework while Shafer was more oriented to belief 
measurement. The two fundamental measures of the theory developed by Shafer (1976), belief and 
plausibility, were previously studied by Dempster. He referred to them as upper and lower probabilities. 
 
Usually, when using the D-S theory in decision making it is considered that the available information is 
numerical (Engemann, et al., 1996; Merigó and Casanovas, 2006; 2007; Yager, 1992a; 2004). However, 
this may not be the real situation found in the decision making problem. Sometimes, the available 
information is vague or imprecise and it is not possible to analyze it with numerical values. Therefore, it 
is necessary to use another approach such as a qualitative one that uses linguistic assessments. In this 
paper, we will study the decision making problem with D-S belief structure using linguistic information. 
In order to develop the linguistic approach we will follow the ideas of (Herrera and Martínez, 2000a; 
2000b; 2001; Xu, 2004a; 2004b; 2006). We will focus on the approach developed by Xu (2004a; 2004b; 
2006) where it is implicitly assumed high levels of uncertainty and it is not possible to specify the 
linguistic values with the 2-tuples linguistic representation model (Herrera and Martínez, 2000a; 2000b; 
2001). By using a continuous linguistic term set (Xu, 2004a; 2004b) we will be able to establish an order 
of the alternatives in the decision making problem without losing the information given in the aggregation 
step.  
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In order to aggregate the linguistic information we will use different types of linguistic aggregation 
operators. The reason for using various types of linguistic aggregation operators is that we want to show 
that the linguistic decision making problem with D-S theory can be modelled in different ways depending 
on the interests of the decision maker. We will use the linguistic ordered weighted averaging (LOWA) 
(Herrera and Herrera-Viedma, 1997; Herrera et al., 1995;1996; Xu, 2004a) operator because it provides a 
parameterized family of linguistic aggregation operators that include the maximum, the minimum, the 
linguistic average (LA) and the linguistic weighted average (LWA), among others. The LOWA operator 
is an extension of the traditional ordered weighted averaging (OWA) operator (Calvo et al., 2002; 
Merigó, 2007; Yager, 1988; Yager and Kacprzyk, 1997) for the cases where the information is given in 
the form of linguistic values. We should note that we will use the LOWA operator developed by Xu in 
(2004a) that it is also known as the extended ordered weighted averaging (EOWA) operator. Apart from 
the LOWA operator, we will use the linguistic hybrid averaging (LHA) operator (Xu,, 2006) because this 
operator uses in the same formulation the LWA and the LOWA operator. For all these types of linguistic 
aggregation operators we will develop different families of operators that could be used in the linguistic 
decision making problem with D-S belief structure such as the step-LOWA operator, the window-LOWA 
operator, the centered-LOWA operator, the E-Z LOWA weights, the LOWA median, etc (Merigó, 2007). 
Note that these families are based on the original version developed for the OWA operator (Calvo et al., 
2002; Merigó, 2007; Xu, 2005; Yager, 1988; 1992b; 1993; Yager and Kacprzyk, 1997).  
 
In order to do so, this paper is organized as follows. In Section 2 we briefly review some basic concepts 
to be used throughout the paper such as the linguistic approach and some linguistic aggregation operators. 
Section 3 develops the new approach about using linguistic information in decision making with D-S 
theory of evidence. Section 4 gives an illustrative example about the use of the proposed scheme. Finally, 
Section 5 summarizes the main conclusions found in the paper. 
 
 

2  PRELIMINARIES 
 
In this Section, we briefly describe the linguistic approach and some basic linguistic aggregation 
operators that we will use throughout the paper. 
 
 

2.1  Linguistic Approach 
 
Usually, people are used to work in a quantitative setting, where the information is expressed by means of 
numerical values. However, many aspects of the real world cannot be assessed in a quantitative form. 
Instead, it is possible to use a qualitative one, i.e., with vague or imprecise knowledge. In this case, a 
better approach may be the use of linguistic assessments instead of numerical values. The linguistic 
approach represents qualitative aspects as linguistic values by means of linguistic variables (Zadeh, 
1975). 
 
We have to select the appropriate linguistic descriptors for the term set and their semantics. One 
possibility for generating the linguistic term set consists in directly supplying the term set by considering 
all terms distributed on a scale on which a total order is defined (Herrera and Herrera-Viedma, 1997; 
Yager, 1995). For example, a set of seven terms S could be given as follows: 

 
S = {s1 = N, s2 = VL, s3 = L, s4 = M, s5 = H, s6 = VH, s7 = P} 

 
Note that N = None, VL = Very low, L = Low, M = Medium, H = High, VH = Very high, P = Perfect. 
Usually, in these cases, it is required that in the linguistic term set there exists: 
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1. A negation operator: Neg(si) = sj such that j = g+1−i.  
2. The set is ordered: si ≤ sj if and only if i ≤ j. 
3. Max operator: Max(si, sj) = si if si ≥ sj. 
4. Min operator: Min(si, sj) = si if si ≤ sj. 

 
Different approaches have been developed for dealing with linguistic information such as (Bonissone, 
1982; Herrera and Herrera-Viedma, 1997; Yager, 1995). In this paper, we will follow the ideas of 
(Herrera and Martínez, 2000a; 2000b; 2001; Xu, 2004a; 2004b; 2006). Then, in order to preserve all the 
given information, we extend the discrete linguistic term set S to a continuous linguistic term set Ŝ = {sα | 
s1 < sα ≤ st, α ∈ [1, t]}, where, if sα ∈ S, we call sα the original linguistic term, otherwise, we call sα the 
virtual linguistic term. 
 
Consider any two linguistic terms sα, sβ ∈ Ŝ, and µ, µ1, µ2 ∈ [0, 1], we define some operational laws as 
follows (Xu, 2004a; 2004b): 
 
1. µsα = sµα.  
2. sα ⊕ sβ = sβ ⊕ sα = sα+β. 

3. (sα)µ = sαµ. 
4. sα ⊗ sβ = sβ ⊗ sα = sαβ. 

 
 

2.2  Linguistic Aggregation Operators 
 
In the literature, we find a wide range of linguistic aggregation operators (Delgado et al., 1993; Herrera 
and Herrera-Viedma, 1997; Herrera et al., 1995;1996; Herrera and Martínez, 2000; Xu, 2004a; 2004b; 
2006). In this study, we will consider the linguistic ordered weighted averaging (LOWA) operator and the 
linguistic hybrid averaging (LHA) operator, with their particular cases that include among others the 
linguistic average (LA) and the linguistic weighted average (LWA). Note that we follow the ideas 
developed by Xu in (2004a, 2004b; 2006). Then, we should point out that the LOWA operator we are 
going to use is also known as the extended OWA (EOWA) operator (2004a). 
 
Definition 1. A LOWA operator of dimension n is a mapping LOWA: Ŝn → Ŝ, which has an associated 

weighting vector W such that wj ∈ [0, 1] and ∑ = =n
j jw1 1, then: 

 

LOWA(sα1
, sα2

, …, sαn
) = ∑

=

n

j
j j
sw

1
β                                                                             (1) 

 
where sβj

 is the jth largest of the sαi
. 

 
From a generalized perspective of the reordering step, we can distinguish between the descending LOWA 
(DLOWA) and the ascending LOWA (ALOWA) operator. The weights of these operators are related by 
wj = w*n+1−j, where wj is the jth weight of the DLOWA (or LOWA) operator and w*n+1−j the jth weight of 
the ALOWA operator. Note that the ALOWA operator is known in other studies as the inverse LOWA (I-
LOWA) operator (Herrera and Herrera-Viedma, 1997).  
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The LOWA operator provides a parameterized family of aggregation operators that includes as special 
cases the LA and the linguistic weighted average (LWA). The LA is obtained when all the weights wj are 
equal for all j. The LWA is obtained if the ordered position of the sβj

 is the same than the ordered position 

of the sαi
. 

 
In this type of operator it is possible to use different measures for characterizing the weighting vector W 
by using the same measures that it has been used for the OWA operator (Calvo et al., 2002; Merigó, 
2007; Xu, 2005; Yager, 1988; 1992b; 1993; Yager and Kacprzyk, 1997) such as the attitudinal character 
or the measure of dispersion. 
 
Definition 2. A LHA operator of dimension n is a mapping LHA: Ŝn → Ŝ, which has an associated 

weighting vector W such that wj ∈ [0, 1] and ∑ = =n
j jw1 1, then: 

 

LHA(sα1
, sα2

, …, sαn
) = ∑

=

n

j
j j
sw

1
β                                                                             (2) 

 
where sβj

 is the jth largest of the linguistic weighted argument ŝαi
 (ŝαi

 = nωisαi
, i = 1,2,…,n), ω = (ω1, ω2, 

…, ωn)
T is the exponential weighting vector of the sαi

, with ωj ∈ [0, 1] and the sum of the weights is 1. 

 
In this case, we can also distinguish between the descending LHA (DLHA) and the ascending LHA 
(ALHA) operator. Note that in this case they are also related by wj = w*n+1−j, where wj is the jth weight of 
the LHA (or DLHA) operator and w*n+1−j the jth weight of the ALHA operator.  
 
By using a different manifestation of the weighting vectors, we are able to obtain different families of 
LHA operators. For example, the LWA is obtained when the all the weights wj are 1/n, for all j. The 
LOWA operator is obtained when all the weights ωi are 1/n, for all i.  
 
In the following, we are going to develop different types of linguistic geometric operators. Note that these 
operators are extensions of the OWG operator (Chiclana et al., 2000; Xu and Da, 2002) by using 
linguistic variables. 
 

Definition 3. A LOWG operator of dimension n is a mapping LOWG: Ŝ+n
 → Ŝ+ which has an associated 

weighting vector W such that wj ∈ [0, 1] and ∑ = =n
j jw1 1, then: 

 

LOWG(sα1
, sα2

, …, sαn
) = ∏

=

n

j

wj

j
s

1
)( β                                                                          (3) 

 
where sβj

 is the jth largest of the sαi
. 

 
From a generalized perspective of the reordering step, we have to distinguish between the descending 
LOWG (DLOWG) operator and the ascending LOWG (ALOWG) operator (Xu and Da, 2002). Note that 
this operator is commutative, monotonic, bounded and idempotent. 
 
The LOWG operator provides a parameterized family of aggregation operators that includes as special 
cases the LGA and the linguistic weighted geometric average (LWGA). The LGA is obtained when all 
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the weights wj are equal for all j. The LWGA is obtained if the ordered position of the sβj
 is the same than 

the ordered position of the sαi
. 

 

Definition 4. A LHGA operator of dimension n is a mapping LHGA: Ŝ+n
 → Ŝ+ which has an associated 

weighting vector W such that wj ∈ [0, 1] and ∑ = =n
j jw1 1, then: 

 

LHGA(sα1
, sα2

, …, sαn
) = ∏

=

n

j

wj

j
s

1
)( β                                                                       (4) 

 
where sβj

 is the jth largest of the linguistic weighted argument ŝαi
 (ŝαi

 = (sαi
)nωi, i = 1,2,…,n), ω = (ω1, ω2, 

…, ωn)
T is the exponential weighting vector of the sαi

, with ωj ∈ [0, 1] and the sum of the weights is 1. 

 
In this case, it is also possible to distinguish between the descending LHGA (DLHGA) operator and the 
ascending LHGA (ALHGA) operator.  
 
By using a different manifestation of the weighting vectors, we are able to obtain different families of 
LHGA operators. For example, the LWGA is obtained when the all the weights wj are 1/n, for all j. The 
LOWA operator is obtained when all the weights ωi are 1/n, for all i.  
 
Finally, we should note that other types of linguistic aggregation operators could be developed for the 
analysis. But in this paper, we will focus on the ones explained above. 
 
 

3  LINGUISTIC DECISION MAKING USING DEMPSTER-SHAFER THEORY 
 

3.1  Introduction 
 
The D-S theory of evidence was introduced by Dempster in (1967; 1968) and by Shafer in (1976). Since 
then, a lot of new developments have been developed about it such as (Srivastava and Mock, 2002, Yager 
et al., 1994). This type of formulation provides a unifying framework for representing uncertainty as it 
can include the cases of risk and ignorance as special situations of this framework. Obviously, the case of 
certainty is also included in this generalization as it can be seen as a particular situation of risk or 
ignorance. Apart from these traditional cases, the D-S framework allows to represent various other forms 
of information a decision maker may have about the states of nature. 
 
Definition 5. A D-S belief structure defined on a space X consists of a collection of n nonnull subsets of 
X, Bj for j = 1,…,n, called focal elements and a mapping m, called the basic probability assignment, 
defined as, m: 2X → [0, 1] such that: 
 

(1) m(Bj) ∈ [0, 1]. 

(2) )(
1∑ =

n

j
jBm = 1. 

(3) m(A) = 0,  ∀ A ≠ Bj. 
 
As we said before, the cases of risk and ignorance are included as special cases of belief structure in the 
D-S framework. For the case of risk, a belief structure is called Bayesian belief structure (Shafer, 1976) if 
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it consists of n focal elements such that Bj = {xj}, where each focal element is a singleton. Then, we can 
see that we are in a situation of decision making under risk environment as m(Bj) = Pj = Prob {xj}.  
 
For the case of ignorance, the belief structure consists in only one focal element B, where m(B) essentially 
is the decision making under ignorance environment as this focal element comprises all the states of 
nature. Thus, m(B) = 1. Other special cases of belief structures such as the consonant belief structure or 
the simple support function are studied in (Shafer, 1976). 
 
Two important evidential functions associated with these belief structures are the measures of plausibility 
and belief (Shafer, 1976). 
 
 

3.2  Linguistic Aggregation Operators in Dempster-Shafer Framework 
 
The problem of decision making with D-S belief structures has been studied by different authors such as 
(Engemann, et al., 1996; Merigó and Casanovas, 2006; 2007; Yager, 1992a; 2004). In (1992a), Yager 
proposed a more generalized methodology by using the OWA operator. In these papers, the available 
information was supposed to be numerical. However, many decision making problems cannot be assessed 
with numerical values because the knowledge of the decision maker is vague or imprecise. Then, a better 
approach may be the use of linguistic assessments instead of numerical ones. 
 
In order to develop the decision making process with linguistic variables, we need to aggregate the 
linguistic information. For doing this, we will use the operational laws and the different aggregation 
operators commented in Section 2. First, we will study the process to follow when using the LOWA 
operator in decision making with D-S theory of evidence. The procedure can be summarized as follows. 
 
Assume we have a decision problem in which we have a collection of alternatives {A1, …, Aq} with states 
of nature {N1, …, Nn}. Sij is the linguistic payoff to the decision maker if he selects alternative Ai and the 
state of nature is Nj. The knowledge of the state of nature is captured in terms of a belief structure m with 
focal elements B1, …, Br and associated with each of these focal elements is a weight m(Bk). The objective 
of the problem is to select the alternative which best satisfies the linguistic payoff to the decision maker. 
In order to do so, we should follow the following steps: 
 

Step 1: Calculate the linguistic payoff matrix. 
Step 2: Determine the belief function m about the states of nature and the decision makers degree of 

optimism α. Note that for the LOWA operator we use the same measure than (Yager, 1988). 
Step 3: Calculate the collection of weights, w, to be used in the LOWA aggregation for each different 

cardinality of focal elements.  
Step 4: Determine the linguistic payoff collection, Mik, if we select alternative Ai and the focal element 

Bk occurs, for all the values of i and k. Hence Mik = {Sij  | Nj ∈ Bk}. 
Step 5: Calculate the linguistic aggregated payoff, Vik = LOWA(Mik), using Eq. (1), for all the values 

of i and k. Note that it is possible to use for each focal element a different type of LOWA operator. That 
is, for each focal element we can use a different weighting vector W. 

Step 6: For each alternative, calculate the generalized linguistic expected value, Si, where:  
 

                      Si =  ∑
=

r

k
kik BmV

1

)(                                                                                       (5) 

 
Step 7: Select the alternative with the largest Si as the optimal. Note that it is possible to establish an 

order of the results obtained. 
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Analyzing the aggregation steps, we can formulate in one equation the whole aggregation process as: 
 

          Si =   ∑
=

r

k

ikk MLOWABm
1

)()(                                                                            (6) 

 
As we can see, the focal weights are aggregating the results obtained by using the LOWA operator. 
 
Another interesting issue to comment is that in some cases, we could prefer to aggregate with the 
ALOWA operator in the D-S decision process instead of the LOWA operator. As it has been explained 
for the OWA aggregation in (Merigó and Casanovas, 2006), the main motivation for this is that we have 
to make a distinction when dealing with situations where the highest linguistic argument is the best result 
and situations where the smallest linguistic argument is the best result. 
 
Then, if we use the ALOWA operator in decision making with D-S belief structures, we should make the 
following changes in the decision process. 
 
In Step 2-3, when calculating the collection of weights, w, to be used in the ALOWA aggregation for each 
different cardinality of focal elements, we should consider that now the attitudinal character α(W) is 
defined in ascending order.  
 
In Step 5, when calculating the aggregated payoff, we should use Vik = ALOWA(Mik), for all the values of 
i and k. 
 
In Step 7, we should select the alternative with the lowest Si as the optimal because the best result is the 
one which predicts the lowest expected values. Note that it is also possible to use the ALOWA operator in 
situations where the highest value is the best result. But as we already use the DLOWA operator in these 
situations, it is better to use the ALOWA operator in other situations in order to coordinate both 
aggregations. 
 
By choosing a different manifestation of the weighting vector in the LOWA operator, we are able to 
obtain different types of aggregation operators in the decision process with D-S framework. For example, 
we can obtain the maximum, the minimum, the LA, the Hurwicz linguistic criteria, the LWA and the 
LOWA operator. Note that these operators can be obtained by using the LOWA or the ALOWA operator. 
These two parameterized families of aggregation operators are related by wj = w*n+1−j, where wj is the jth 
weight of the LOWA (or DLOWA) operator and w*n+1−j the jth weight of the ALOWA operator. Other 
families of aggregation operators could be obtained with the LOWA operator by using a different 
manifestation in the weighting vector such as the step-LOWA, window-LOWA, olympic-LOWA, E-Z 
LOWA, the median-LOWA, the weighted median-LOWA, the S-LOWA, the centered-LOWA, the 
maximal entropy LOWA (MELOWA), etc. For more information on these families, see (Merigó, 2007).  
 
In some situations, we could prefer to use another type of linguistic aggregation operator in the D-S 
decision process such as the LHA operator. The main advantage of this operator is that it uses in the same 
aggregation the characteristics of the LWA and the characteristics of the LOWA operator. Then, if we 
introduce this operator in decision making with D-S belief structures, we are able to develop a unifying 
framework that includes in the same formulation probabilities, LWAs and LOWAs.  
 
In order to use this type of aggregation operator in D-S framework, we should make the following 
changes to the decision process explained above for the LOWA operator. 
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In Step 3, when calculating the collection of weights, w, to be used in the LHA aggregation for each 
different cardinality of focal elements, we should consider that now we have to define two weighting 
vectors. Note that these two weighting vectors are used for combining in the same aggregation the LWA 
and the LOWA operator.  
 
In Step 5, when calculating the linguistic aggregated payoff, we should use Vik = LHA(Mik), using Eq. (2) 
for all the values of i and k. 
 
In this case, we could also formulate in one equation the whole aggregation process as follows. 
 

          Si =   ∑
=

r

k

ikk MLHABm
1

)()(                                                                    (7) 

 
As we can see, the focal weights are aggregating the results obtained by using the LHA operator, which 
combines in the same aggregation the LWA and the LOWA operator. Note that if all the weights ωi are 
1/n, for all i, then, Eq. (7) is transformed in Eq. (6).  
 
In this case, it is also possible to find situations where it is better to use an ascending order in the 
aggregation. Then, we will use the ALHA operator in the decision process with D-S theory. We should 
note that the main differences against the LHA operator is that now, in Step 3 we should use an ascending 
order in the collection of weights and in Step 5 we should use Vik = ALHA(Mik). 
 
When aggregating the collection of linguistic payoffs of each focal element with the LHA operator, it is 
also possible to use a wide range of families of LHA operators. For example, we could obtain the 
maximum, the minimum, the Hurwicz linguistic criteria, the LA, the LWA, the median-LHA, the step-
LHA, the window-LHA, the E-Z LHA, the S-LHA, the centered-LHA, etc. For more information on these 
families, see (Merigó, 2007). 
 
 

3.3  Linguistic Geometric Operators in Dempster-Shafer Framework 
 
Another alternative for decision making with D-S theory is the use of linguistic geometric aggregation 
operators. The reason for using linguistic geometric operators appears because there are situations where 
the decision maker may prefer to use geometric operators instead of the traditional averaging ones. The 
first model that considered the use of geometric operators in D-S framework was suggested in (Merigó 
and Casanovas, 2006) for situations with numerical information. In this Section we will develop a similar 
approach, but now we will assume that the available information is expressed with linguistic variables.  
 
The process to follow when using linguistic geometric operators (Xu, 2004a; 2004b) in decision making 
with D-S theory of evidence is very similar to the previous methods commented in Section 3.2. First, we 
will consider the use of the LOWG operator, that it is based on the OWG operator (Chiclana et al., 2000; 
Xu and Da, 2002) in D-S framework. Assuming that we use the same variables as it has been explained in 
Section 3.2 when using the LOWA operator we could summarize the procedure as follows. 

 
Step 1: Calculate the linguistic payoff matrix. 
Step 2: Calculate the belief function m about the states of nature and the decision makers degree of 

optimism. 
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Step 3: Calculate the collection of weights, w, to be used in the LOWG aggregation for each different 
cardinality of focal elements.  

Step 4: Determine the payoff collection, Mik, if we select alternative Ai and the focal element Bk occurs, 
for all the values of i and k. Hence Mik = {Sij  | Nj ∈ Bk}. 

Step 5: Calculate the linguistic aggregated payoff, Vik = LOWG(Mik), using Eq. (3), for all the values 
of i and k. 

Step 6: For each alternative, calculate the generalized linguistic expected value, Si, where:  
 

Si =  ∑
=

r

k
kik BmV

1

)(                                                                                    (8) 

 
Step 7: Select the alternative with the largest Si as the optimal. Note that in a situation of costs or 

similar, we should select the alternative with the lowest Si. 
 
Analyzing the aggregation in Step 6 and Step 7, we can formulate in one equation the whole aggregation 
process as: 

 

         Si =   ∑
=

r

k

ikk MLOWGBm
1

)()(                                                                       (9) 

 
As we can see, the focal weights are aggregating the results obtained by using the LOWG operator. 
 
From a generalized perspective of the reordering step we can distinguish between the DLOWG and the 
ALOWG operator. As the definition of the DLOWG operator is the same than the LOWG operator, its 
use in D-S belief structure is also the same. The reason for using ALOWG operators is because 
sometimes it is better to use an ascending order in the aggregation. For example, we could use it in 
situations where the lowest linguistic value is the best result and we want to start the reordering step from 
this best result.  
 
The procedure to follow if we use the ALOWG operator in the aggregation step is the same than the 
procedure used for the LOWG or DLOWG operator with the difference that now we use ascending orders 
in the aggregation. 
 
As it has been explained in Section 3.2, sometimes, the decision maker may prefer to use another type of 
linguistic geometric operator such as the LHGA operator. Its main advantage is that it uses the LWGA 
and the LOWG operator in the same aggregation process. In order to use this type of aggregation operator 
in D-S framework, we just need to replace the LOWA operator by this linguistic geometric operator and 
adequate the rest of characteristics to it. That is, considering that now we have two weighting vectors and 
the attitudinal character of the decision maker is different.  
 
Different families of linguistic geometric operators can be obtained in the decision process with D-S 
theory by using a different manifestation of the weighting vector of the linguistic geometric aggregation 
operators commented above. For example, we could use the linguistic maximum, the linguistic minimum, 
the Hurwicz linguistic geometric criteria, the LGA or the LWGA. Other families that could be used in the 
weighting vector are the step-LOWG operator, the window-LOWG operator, the olympic LOWG, the E-
Z LOWG weights, the LOWG median, the weighted LOWG median, the S-LOWG operator, the centered 
LOWG operator, etc. Note that similar families could also be obtained with the LHGA operator. For more 
information on these families, see (Merigó, 2007).  
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4  ILLUSTRATIVE EXAMPLE 

 
In the following, we are going to develop an illustrative example in order to understand the procedures 
commented above. We will analyze a decision making problem with D-S belief structure. We will use 
different types of linguistic aggregation operators such as the LA, the LWA, the LOWA, the ALOWA, 
the LHA and the ALHA operator. Note that we assume for all the cases a situation where the highest 
value is the best result.  

 
Step 1: Assume an investment company has five possible investments and they want to select the 

alternative that better adapts to his interests. 
 
1) A1 is a car company. 
2) A2 is a food company. 
3) A3 is a computer company. 
4) A4 is a chemical company. 
5) A5 is a TV company. 

 
Depending on different uncertain situations that could happen in the future the experts of the investment 
company establishes the payoff matrix. As the future states of nature are very imprecise, the experts 
cannot determine numerical values in the payoff matrix. Instead, they use linguistic variables to calculate 
the future benefits of the companies depending on the state of nature that happens in the future. They 
establish the following linguistic scale. 
 
S = {s1 = Extremely low, s2 = Very low, s3 = Low, s4 = Medium, s5 = High, s6 = Very high, s7 = Extremely 
high}. 
 
The possible results depending on the state of nature that happens in the future are shown in Table 1. 
 
Table 1: Linguistic payoff matrix 

 N1 N2 N3 N4 N5 N6 N7 N8 

A1 S2 S5 S6 S4 S3 S7 S2 S1 

A2 S3 S4 S4 S4 S7 S6 S1 S2 
A3 S2 S4 S5 S3 S4 S4 S5 S3 
A4 S4 S3 S1 S1 S7 S4 S2 S7 
A5 S3 S4 S6 S2 S1 S6 S7 S2 

 
 

Step 2: Although the information is very imprecise, the experts have obtained some empirical and 
historical data that has permitted them to establish some probabilistic information about which state of 
nature will happen in the future. This information is represented by the following belief structure. 
 
Focal element 
B1 = {N2, N3, N4, N5} = 0.3 
B2 = {N1, N3, N7, N8} = 0.3 
B3 = {N1, N4, N5, N6, N7} = 0.4 
 

Step 3: Assume we have used one of the existing methods for determining the LOWA weights and we 
have obtained W4 = (0.2, 0.2, 0.3, 0.3) and W5 = (0.1, 0.2, 0.2, 0.2, 0.3). For the weighting vector to be 
used in the hybrid aggregations we assume ω4 = (0.2, 0.2, 0.3, 0.3) and ω5 = (0.1, 0.2, 0.2, 0.2, 0.3). 
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Step 4: Calculate the payoff collection, Mik, if we select alternative Ai and the focal element Bk occurs, 

for all the values of i and k. 
 
A1: M11 = 〈S5, S6, S4, S3〉; M12 = 〈S2, S6, S2, S1〉; M13 = 〈S2, S4, S3, S7, S2〉. 
A2: M21 = 〈S4, S4, S4, S7〉; M22 = 〈S3, S4, S1, S2〉; M23 = 〈S3, S4, S7, S6, S1〉. 
A3: M31 = 〈S4, S5, S3, S4〉; M32 = 〈S2, S5, S5, S3〉; M33 = 〈S2, S3, S4, S4, S5〉. 
A4: M41 = 〈S3, S1, S1, S7〉; M42 = 〈S4, S1, S2, S7〉; M43 = 〈S4, S1, S7, S4, S2〉. 
A5: M51 = 〈S4, S6, S2, S1〉; M52 = 〈S3, S6, S7, S2〉; M53 = 〈S3, S2, S1, S6, S7〉. 
 

Step 5: Calculate the aggregated linguistic payoff, Vik, using Eq. (1) for the LOWA, the ALOWA, the 
LA and the LWA, and using Eq. (2) for the LHA and the ALHA, The results are shown in Table 2. 
 
Table 2: Aggregated payoff for the linguistic aggregation operators 

 LA LWA LOWA ALOWA LHA ALHA 
M11 S4.5 S4.3 S4.3 S4.7 S4.2 S4.4 
M12 S2.75 S2.5 S2.5 S3 S2.28 S2.72 
M13 S3.6 S3.6 S3.1 S4.1 S2.4 S3.36 
M21 S4.75 S4.9 S4.6 S4.9 S4.56 S5.24 
M22 S2.5 S2.3 S2.3 S2.7 S2.2 S2.4 
M23 S4.2 S4 S3.6 S4.8 S2.76 S3.64 
M31 S4 S3.9 S3.9 S4.1 S3.8 S4 
M32 S3.75 S3.8 S3.5 S4 S3.56 S4.04 
M33 S3.6 S3.9 S3.3 S3.9 S2.6 S3.64 
M41 S3 S3.2 S2.6 S3.4 S2.76 S3.64 
M42 S3.5 S3.7 S3.1 S3.9 S3.28 S4.12 
M43 S3.6 S3.4 S3 S4.2 S2.24 S3.2 
M51 S3.25 S2.9 S2.9 S3.6 S2.68 S3.12 
M52 S4.5 S4.5 S4.1 S4.9 S4.08 S4.92 
M53 S3.8 S4.2 S3.2 S4.4 S2.6 S4.12 

 
 
Step 6: For each alternative, calculate the generalized expected value, Ci, using Eq. (6) - (7) for the 

LA, the LWA, the LOWA, the ALOWA, the LHA and the ALHA operator. The results are shown in 
Table 3. 
 
Table 3: Generalized linguistic expected value for the linguistic aggregation operators 

 LA LWA LOWA ALOWA LHA ALHA 
A1 S3.615 S3.48 S3.28 S4.25 S2.904 S3.48 
A2 S3.855 S3.76 S3.51 S4.2 S3.132 S3.748 
A3 S3.765 S3.87 S3.54 S3.99 S3.248 S3.868 
A4 S3.39 S3.43 S2.91 S3.87 S2.708 S3.608 
A5 S3.845 S3.9 S3.38 S4.31 S3.068 S4.06 

 
 
Step 7: Select the best alternative for each aggregation operator. That is, select the investment with the 

highest linguistic expected value. As we can see, with the LA we will select alternative A2. With the 
LOWA and the LHA, operator, we will select alternative A3. Finally, we will select alternative A5 with the 
LWA, the ALOWA and the ALHA operator. 
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If we establish an order for the investments, a typical situation if we want to select more than one 
alternative, we can see that each aggregation gives us a different order of the investments. Note that  
means preferred to. The results are shown in table 4.  
 
Table 4: Ordering of the investments 

 Ordering  Ordering 
LA A2A5A3A1A4 ALOWA A5A1A2A3A4 

LWA A5A3A2A1A4 LHA A3A2A5A1A4 
LOWA A3A2A5A1A4 ALHA A5A3A2A4A1 

 
 
As we can see, depending on the linguistic aggregation operator used, the ordering of the investments will 
be different. 
 
 

5  CONCLUSIONS 
 
We have studied the D-S theory of evidence in situations of decision making with linguistic information. 
First, we have reviewed some basic concepts about using linguistic information. We have considered 
different types of linguistic aggregation operators such as the LOWA operator and the LHA operator.  
 
Next, we have developed the new approach about using linguistic information in decision making with D-
S belief structure. We have developed two general cases. In the first case, we have used different types of 
linguistic aggregation operators in the aggregation step of the D-S framework. In the second case, we 
have developed a similar approach by using linguistic geometric operators. In both cases, we have 
considered different families that could be used in the analysis such as the step-LOWA, the window-
LOWA, the E-Z LOWA, the centered LOWA, etc. 
 
Finally, we have shown an illustrative example about the new approach developed in the paper. We have 
developed the example considering a wide range of linguistic aggregation operators. 
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