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Summary

Consensus based approaches provide a way
to drive group decisions which are more ac-
cepted and appreciated by decision makers.
Different consensus approaches and method-
ologies have been proposed to conduct these
processes successfully, but there still remain
some aspects that must be further studied,
such as the use and effects of different ag-
gregation operators to measure consensus in
the group. This paper shows the applica-
tion of ordered weighted averaging (OWA)
operators based on linear RIM (Regular In-
creasing Monotone) quantifiers in a consen-
sus support system, and analyzes the impact
of using them to measure consensus in deci-
sion problems with a large number of experts
participating.

Keywords: OWA, GDM, Consensus, Lin-
guistic Quantifier, Attitude, Optimism.

1 INTRODUCTION

Group Decision Making (GDM) problems can be
roughly defined as decision situations where two or
more decision makers or experts try to achieve a com-
mon solution to a decision problem, which consists of
a set of possible solutions or alternatives [6]. Experts
must express their individual opinion on each of these
alternatives.

Some guiding rules have been proposed to support real
situations in GDM problems, for example the majority
rule, minority rule, unique person-based decision and
unanimity [1]. However, in many situations a prob-
lem arises when some experts consider that their in-
dividual opinions haven’t been sufficiently taken into
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account, and therefore they disagree with the solution
achieved [14], what could imply either a lack of impli-
cation in future GDM problems or a behavior against
the solution obtained. For this reason, the need for
making relevant decisions under consensus is becom-
ing increasingly common in a variety of social situa-
tions.

Consensus processes imply that experts achieve an
agreement, about the problem before making the de-
cision, thus yielding a more accepted solution by the
organization, society or themselves. Different consen-
sus approaches have been proposed, ranging from a
rigid view of consensus as unanimity to more flexible
approaches [2, 6, 7]. In these approaches, it is cru-
cial to establish a consensus measure to calculate the
level of agreement. Consensus measures are, therefore,
an indicator to evaluate how far a group of experts’
opinions are from unanimity. To achieve this purpose,
consensus measures can use different similarity mea-
sures to calculate closeness among opinions, as well as
aggregation operators to obtain a collective consensus
degree and determine a collective opinion [8].

Different aggregation operators have been applied to
some developed consensus support systems (CSS),
with successful results. However, no practical appli-
cation of aggregation operators in consensus processes
involving many experts has been performed, due to
the considerable computational cost and scalability re-
quired to do this [9]. In this paper, a practical study on
the effect of OWA aggregation operators [15] defined
by RIM quantifiers [17] is conducted on a multi-agent-
based CSS, whose high scalability allows to solve de-
cision problems involving large groups efficiently. The
aim of this study is to determine how inherent prop-
erties and parameters in RIM quantifier-based OWA
operators can be used to express the decision group’s
desired attitude regarding the consensus problem to
address, i.e. how the group can express a desired at-
titude (optimistic, pessimistic or neutral) by setting
OWA and RIM quantifier’s parameters properly.
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This paper is organized as follows. In Section 2, we
briefly review some basic concepts about consensus ap-
proaches and OWA operators defined by RIM quanti-
fiers. Section 3 presents the experimental study con-
ducted and the results obtained. Section 4 concludes
the paper summarizing the results and commenting
some future works.

2 PRELIMINARIES

In this Section, we briefly describe consensus ap-
proaches in GDM and OWA operators based on RIM
quantifiers.

2.1 CONSENSUS APPROACHES IN GDM

GDM problems are formally defined by:

o Aset X = {x1,...,2,} (n > 2) of possible al-
ternatives to choose as possible solutions to the
problem.

o Aset E={e,...,en} (m > 2) of decision mak-
ers or experts, who express their judgements on
the alternatives in X, having all of them the in-
tention to achieve a common solution to the pro-
posed problem.

Each expert e; must express his opinions over alter-
natives in X by means of a preference structure [5].
One of the most usual preference structures, especially
appropriate when dealing with uncertain information,
is the so-called fuzzy preference relation (FPR). The
FPR P; associated to an expert e; on a set of alterna-
tives X, is characterized by the membership function
up, + X x X — [0,1] and usually represented as a
n X n matrix as follows:
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where the numerical opinion or assessment pék =
wp, (2, 21) is the degree of preference of alternative
x; over xy, so that pl¥ > 1/2 indicates that x; is pre-
ferred to xy, whereas pi* < 1/2 indicates that zy is
preferred to z; and pi* = 1/2 indicates indifference
between x; and zy.

One of the main shortcomings found in classic GDM
approaches, such as the majority rule, or minority rule,
is the possible disagreement shown by one or more ex-
perts, since they might consider that their opinions
have been taken into account enough. The need for a
high agreement among all experts is becoming increas-
ingly crucial in real GDM problems, hence consensus-

based approaches to achieve a mutual agreement be-
fore making the decision have attained a great im-
portance [14]. In order to achieve such agreement, it
is usually necessary that experts modify their initial
opinions in a discussion process, moving them towards
a collective opinion which must be considered as sat-
isfactory by all of them.

The notion of consensus may be interpreted in differ-
ent ways, ranging from a strict view of consensus as
a total agreement or unanimity [2], where consensus
is only assumed when all experts have achieved a to-
tal mutual agreement in all their opinions, to a more
flexible approach considering different degrees of par-
tial agreement among experts (usually measured with
a real number in the unit interval), to decide about
the existence of consensus. One of the most widely
accepted flexible approaches for measuring consensus
is based on the concept of soft consensus, proposed by
J. Kacprzyk in [6], where the concept of fuzzy linguis-
tic majority is introduced, which establishes that there
exists consensus if most experts participating in a prob-
lem agree with the most important alternatives. Soft
consensus-based approaches have been used in differ-
ent consensus models [3, 18], and consensus measures
with OWA operators based on linear RIM quantifiers
are appropriate to adopt this notion.

Overall, consensus approaches are based on a dynamic
and iterative discussion process [14], frequently coor-
dinated by a moderator, whose main responsibilities
are evaluating the degree of agreement achieved in
each round of discussion, identifying those alternatives
that hamper reaching a consensus, and giving feed-
back to experts, regarding changes they should per-
form in their opinions, in order to increase the level
of agreement in the next rounds. The experimental
study conducted in this paper focuses on evaluating
the collective degree of agreement achieved, by using
different instances of OWA operators. Further detail
on the consensus model and CSS used to perform this
study can be found in [11, 12].

2.2 OWA OPERATORS BASED ON
LINGUISTIC QUANTIFIERS

OWA (Ordered Weighted Averaging) operators were
introduced by R. Yager in [15]. These operators ful-
fill some desirable properties in aggregation operators
[4], including idempotence, continuity, monotonicity,
neutrality and compensativeness.

Definition. Let A = {a,...,a,} be aset of values to
aggregate in [0,1]. An OWA operator of dimension n
is defined as a mapping OW Ay : [0, 1]™ — [0, 1], with
an associated weighting vector W = [wyws ... w,]T,
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where w; € [0,1], >, w; =1 and,

OWAW(al,...,an) = ijbj (].)
J=1

where b; is the jth largest of the a; values.

A key issue in OWA operators is the previous re-
ordering of values a;, so that a particular weight w;
is not associated with a value a;, but rather with a
particular ordered position in the set of values to ag-
gregate. OWA operators lie between maximum (“or”)
and minimum (“and”), and thus allow an easy ad-
justing of the degree of optimism/pessimism by the
appropriate choice of weights w;. A measure of the
optimism or orness associated with W was introduced
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orness(W) =

The closer orness(W) is to one, the closer OW Ay is
to “or” and the more optimistic the decision maker’s
attitude is, since higher values are given more impor-
tance in the aggregation. Analogously, the closer this
value is to zero, the more similar to “and” the oper-
ator is, thus leading to the adoption of a pessimistic
attitude. Therefore, a decision group represented by
a moderator can express different attitudes regarding
optimism/pessimism by choosing an appropriate set of
weights W.

Another measure, the dispersion or entropy, is used as
an indicator of the degree to which information con-
tained in values ay,...,a, is considered when aggre-
gating. Since OWA weights can be seen as a discrete
probability distribution, dispersion is also an indicator
of how uniformly weights are distributed. This mea-
sure is defined as

Disp(W) = — Z w; Inw; (3)
i=1

where for any n > 2, 0 < Disp(W) < In(n). The
higher dispersion is, the more weights are non-null.
Some widely known special cases of OWA operators
[16] are the “or” operator, where w; = 1 and w; =
0, Vi # 1, orness(W) = 1 and Disp(W) = 0; the
“and” operator, where w, = 1 and w; = 0, Vi # n,
orness(W) =1 and Disp(W) = 0; and the arithmetic
mean, where orness(W) = 0.5, Disp(W) = In(n) and
w; = 1/n, Vi.

The problem of determining weights for an OWA op-
erator can be addressed in different ways, for example
with the use of the so-called linguistic quantifiers, in-
troduced by L. Zadeh in [17]. A relative linguistic
quantifier ), such as most, few, many and all, can
be represented as a fuzzy subset of the unit interval,
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Figure 1: Example of linguistic quantifier Q =“most”.

where for a given proportion r € [0,1] of the total of
values to aggregate, Q(r) indicates the extent to which
this proportion satisfies the semantics defined in Q.
For example, given Q@ =“most”, if Q(0.7) = 1 then
we would say that a proportion of 70% totally satis-
fies the idea conveyed by the quantifier most, whereas
Q(0.55) = 0.25 indicates that the proportion 55% is
barely compatible (only 0.25) with this concept.

Regular Increasing Monotone (RIM) quantifiers are es-
pecially interesting for their use in OWA operators.
These quantifiers present the following properties:

1. Q(0)=0
2. Q(1) =1
3. If vy > ro then Q(r1) > Q(r2).

In [15], Yager suggested the following way to compute
weights w; with the use of a RIM quantifier Q:

w,-zQ(fL)—Q(i;l),i:l,...,n (4)

where the membership function of a linear RIM quan-
tifier Q(r) is defined by two parameters a,b € [0, 1]
as

0 if r < a,
Qr)=9,— ifa<r<y, (5)
1 if r > b.

An example of RIM quantifier Q =“most”, with a =
0.5 and b = 0.7 (see Fig. 1) is

0 if r < 0.5,
Q(r)=45r—25 if0.5<r <0.7, (6)
1 if > 0.7.

Since the use of OWA with RIM quantifiers captures
Kacprzyk’s notion of soft consensus properly, they can
be adopted for our purpose of studying the effect of
different aggregation operators on the resolution of a
consensus problem with many experts, and expressing
a desired group’s attitude.
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3 EXPERIMENTAL STUDY

In this section, we present the experimental study con-
ducted on a CSS [11, 12], aimed to the repeated reso-
lution of a consensus-based GDM problem under un-
certainty, with a high number of experts involved. The
proposed problem is always defined in a similar context
and conditions attempting to simulate real-life situa-
tions, with the particularity of using flexible consensus
measures in the different simulations performed, ap-
plying OWA operators based on different RIM quan-
tifiers for aggregating in the consensus measurement
phase.

The moderator determines consensus degrees as fol-
lows [10, 11]: for each pair of experts (e;,e;) @ < j,
a similarity matrix SM;; = (smi?) is obtained, where
each element smif € [0, 1] represents the similarity be-
tween experts e; and e; in their opinion on the pair of
alternatives (z;, x1), calculated using a similarity mea-
sure based on euclidean distance, smi% = 1—[pl* —pl¥|.
Experts’ pairwise similarity matrices are then aggre-
gated by means of an operator OW Ay, to obtain a
consensus matrix CM = (em!*), where each element
em!® € [0,1] indicates the collective degree of agree-
ment achieved on pair (z;, z).

Ik ko Uk Ik
em'™ = OW Aw (smiy, smis, ..., smi},,

(7)
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Elements in CM are successively aggregated with an
arithmetic mean operator to obtain the degree of con-
sensus on each alternative x; € X, as well as the over-
all consensus degree cr € [0, 1]. Thereto, this study fo-
cuses exclusively in the use of different RIM quantifiers
to aggregate similarity values into consensus values for
each pair (z;,xy), as shown in Equation 7.

Regarding the decision group’s attitude, they might
adopt an optimistic attitude if they accept that only a
few of the pairs of experts must have a high agreement
in their opinion to consider the existente of consensus,
i.e. higher similarity values are rather considered in
aggregation. On the other hand, they shall be pes-
simistic if they accept the existence of consensus only
when all or a vast majority of the pairs of experts agree
themselves with such opinion, hence lower values are
given more importance in aggregation. A neutral atti-
tude is neither optimistic nor pessimistic, and implies
no preference for higher or lower values in aggregation.
Regarding the dispersion of the operator, it indicates
the proportion of non-null weights given to elements to
aggregate, i.e. the amount of information considered
in aggregation.

The proposed problem is an example of frequent real
situations usually solved through classic GDM criteria

such as the majority rule. Since this way of making
the decision may often lead to controversy as earlier
discussed, we propose to simulate the problem’s reso-
lution through consensus by using a multi-agent based
CSS. The problem’s formulation is as follows:

A neighborhood community composed of fifty neighbors
is meant to make changes related to their monthly fees.
The possible alternatives X = {z1,...,z4} are: 1 =
Increase running costs by 10%; xo = Increase mainte-
nance costs by 20%; v3 = Reduce employees’ fees; and
x4 = Install a new lift and keep rest of services.

We assume the following settings for all the simula-
tions performed to solve the problem:

e Fifty experts £ = {e1,...,e50} give their prefer-
ences on X using FPRs denoted as P;.

e Before the process begins, each expert’s initial
preference relation is set by using random assess-
ments pék in the unit interval, ensuring reciprocal
assessments (pf = 1 — p!* [ # k), in order to
guarantee consistency in them.

e The moderator introduces the two initial param-
eters before the problem begins: (i) a consen-
sus threshold p = 0.85, i.e. a value to compare
the overall consensus degree cr achieved in each
round and decide whether accepting or not the ex-
istence of consensus, and (ii) a maximum number

of rounds allowed # M AX_ROUNDS = 10.

e When c¢r < mu, the moderator gives experts a
series of advices to modify their opinions on some
pairs of alternatives (x;, z)) [11]. We suppose for
all simulations a real-like pattern of experts’ be-
havior regarding obedience of these advices as fol-
lows: 70% of experts always follow advices, and
the remaining ones may ignore each received ad-
vice with a probability of 0.5. For all experts, the
extent of change (increase/decrease an assessment
p¥) is also variable and set randomly as either one
of the values {0.05, 0.1, 0.15}.

Experiments consist in the repeated solution of the for-
mulated problem using OWA operators based on dif-
ferent RIM quantifiers, where each quantifier will be
denoted as Q(,3), with parameters a,b € [0,1], a < b
as stated in Equation 5. Table 1 shows the differ-
ent quantifiers considered, including their approximate
measures of orness and dispersion, computed taking
into account that for m experts in the problem, Equa-
tion 7 requires the aggregation of m(m — 1)/2 simi-
larity values, therefore we have to make aggregations
between 1.225 values.

Each quantifier is used in 20 simulations, and the
results show the degree of convergence achieved, ex-
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Table 1: RIM quantifiers considered in experiments.

Quantifier | Orness | Dispersion
Qo.7-1) 0.15 5.91
Q0.7-0.9) 0.2 5.5
Q0.7-0.8) 0.25 4.81
Q(0.45-0.75) 0.4 5.91
Q(0.45-0.65) 0.45 5.34
Q(0.45-0.55) 0.5 4.81
Q0.2-0.5) 0.65 5.91
Q(0.2-0.4) 0.7 5.5
Q0.2-0.3) 0.75 4.2

0071 QO7-09) Q07-0B) 0045075 Q045-0.65) Q[045-0.55) Q0.2-05) Q0.2-04) Q0.2-0.3)

mmm Average Number of Rounds ~ =——Orness

Figure 2: Average number of rounds required with
different quantifiers.

pressed as the average number of rounds required to
reach a consensus (exceeding threshold p = 0.85) with
a particular quantifier. The reason to solve the prob-
lem with the same parameters repeatedly is the exis-
tence of some stochastic components, i.e. the random
initial preferences of experts and their behavior pat-
tern regarding the obedience of advice. These stochas-
tic components have shown not to be significantly in-
fluential in the process performance, thus making our
results with different quantifiers more trustworthy.

Figure 2 shows the average results obtained with each
quantifier. RIM quantifiers based on an optimistic at-
titude (orness > 0.5) favor a greater convergence to-
wards consensus, whereas RIM quantifiers based on a
pessimistic attitude (orness < 0.5) favor a lower con-
vergence and a further discussion process. However,
no clear conclusions regarding dispersion in operators
can be extracted from these results. Therefore, we de-
cided to do some additional experiments considering
the use of quantifiers with same orness and different
dispersion degrees. Table 2 shows the characteristics
of these quantifiers, and results are shown in Figure 3.

129

Table 2: Linguistic quantifiers with similar orness and
different dispersion.

Quantifier | Orness | Dispersion

Q(0.75-0.85) 0.2 4.8
Q(0.7-0.9) 0.2 5.37
Q0.6-1) 0.2 6.19

Q(0.35-0.45) 0.6 44
Q(0.3-0.5) 0.6 5.5
Q(0.2-0.6) 0.6 6.19

61— =
/:

0 T T T T T

Q(0.75-0.85) Q(07-08)  Q(0.6-1) Q(0.35-045) Q(0.3-05)  Q[0.2-0.5)

[——Average number of rounds with orness = 0.2

[ Average number of rounds with orness = 0.6

Dispersion (Entropy)

Figure 3: Average number of rounds with similar or-
ness and different dispersion degrees.

Results show that dispersion does not exert a signif-
icant impact on the performance of consensus pro-
cesses.  Nevertheless, dispersion is another factor
worth to consider in the reflection of a group’s desired
attitude, since depending on the context of the prob-
lem, decision makers may desire to consider different
ranges of values to calculate consensus.

4 CONCLUSIONS AND FUTURE
WORKS

This paper has applied OWA operators defined with
different RIM quantifiers in a CSS to solve consen-
sus problems with a high number of experts, in order
to analyze the effects of varying some of the param-
eters inherent to these operators in the system’s per-
formance through quantifier’s definition. Having con-
ducted an experimental study, we conclude that the
use of a specific OWA aggregation operator, based on a
RIM quantifier Q(q,5) to solve a real-like problem with
many experts, may depend on the needs of the decision
team at a given moment. The use of optimistic opera-
tors is recommended when their priority is to achieve
a quick agreement (greater convergence), giving more
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importance to higher similarity values, whereas the use
of pessimistic operators is more appropriate when the
problem to solve requires further discussion among ex-
perts (lower convergence).

In forthcoming stages of research, we are aiming to
show in a more precise and quantitative way the rela-
tion between a group’s attitude and the different pa-
rameters in OWA operators with RIM quantifiers, by
adjusting them, thus defining an approach to deter-
mine an group’s attitude, taking into account all ex-
perts’ individual concerns, and translating it into an
appropriate OWA operator. We also intend to apply
different types of non-linear RIM quantifiers and ana-
lyze their effect in consensus processes.
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