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a b s t r a c t

Recent research has focused on developing real-time sign language recognition systems (SLRSs) based
on gesture recognition to classify hand motions into their equivalent meaning in spoken language,
but no comprehensive system with all desirable features has been presented. The existence of
different systems has hindered the process of selecting the most preferred system. Therefore, many
researchers have compared and evaluated several recognition systems to identify the best one using
multicriteria decision-making methods. These studies extended the fuzzy decision by opinion score
method (FDOSM) using a single Likert scale under the Pythagorean fuzzy set (PFS) or one of its
extensions. However, no comparative study has examined the influence of using multiple Likert scales
with a single fuzzy set. Furthermore, the effect of employing multiple Likert scales on benchmarking
results is a challenging task. Therefore, this paper examines the three Likert scales (five-, seven- and
ten-point) under the same fuzzy environment. This paper extends FDOSM into PFSs based on the
power Bonferroni mean (PBM) operator (named PFDOSM-PBM) to benchmark the real-time SLRS. The
decision matrix is constructed based on 30 real-time SLRS-based wearable sensory devices and the 11
evaluation criteria. The results reveal that the five-point Likert scale is superior to other scales (i.e.,
seven- and ten-point) as it is flexible, easy to use and generates more accurate findings on the basis
of uncertainty compared to other scales. Systematic ranking and comparative analysis are conducted
to validate and evaluate the proposed method.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Approximately 9.1 billion individuals worldwide are deaf and
ute [1]. Deafness is a disability that impairs individuals’ hearing
nd renders them unable to hear [2], whereas muteness is a
isability that impairs individuals’ ability to speak and renders
hem unable to talk [3]. Owing to birth abnormalities and other
hallenges, the population of deaf-mute victims has increased
n recent years. According to the World Health Organization,
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nc-nd/4.0/).
approximately 5% of the global population or 466 million individ-
uals suffer from hearing impairment. Deaf-mute individuals are
impaired in hearing and/or speaking, but they are still capable of
performing many other tasks. Communication is the single thing
that divides them from normal people. If normal and deaf-mute
people can communicate, they can easily lead normal lives. The
only means of communication available to them is sign language
(SL) [4,5].

SL evolved similarly to spoken languages. It is utilized by deaf-
mute individuals for daily communication. It is considered the
native language of those with hearing/specking impairments. No
global standardization of SLs for deaf-mute individuals is avail-
able. Similar to spoken languages, SLs are not uniformly the same;
they vary from location to another. Obtaining trained, experi-
enced translators on demand is also impossible [6]. In contrast,
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Abbreviations

SL Sign language
IHAM Interactive hybrid arithmetic mean
SLRSs Sign language recognition systems
IPFWA Interval-valued Pythagorean fuzzy weighted

average
MCDM Multicriteria decision-making
FWZIC Fuzzy-weighted zero-inconsistency
FDOSM Fuzzy decision by opinion score method
CPFWA Cubic Pythagorean fuzzy weighted averaging
FFSs Pythagorean fuzzy sets
PMPFWA Pythagorean m-polar fuzzy weighted aver-

age mean

a computer can be designed to convert SL into text, reducing
the gap between normal people and the deaf-mute community.
Recent research has focused on developing real-time sign lan-
guage recognition systems (SLRSs) based on gesture recognition
to classify hand motions into their equivalent meaning in spoken
language [7]. Typically, a sensor- or vision-based technique is
utilized for hand gesture recognition [8]. The primary benefit
of sensor-based systems over vision-based systems is the de-
creased need to transform raw data into useful values [9]. Vision-
based systems do not require sensors to be installed. Nonetheless,
earlier research has highlighted a number of shortcomings in
vision-based SLR systems [7]. The most significant issues, such
as high processing costs [10], the limited field of vision of the
capturing device, and the necessity for several cameras to achieve
sufficient findings, are caused by enormous storage space, a com-
plicated environment, imprecise gesture capture and fluctuating
illumination [11].

In contrast, the adoption of wearable sensing devices pro-
ides numerous advantages, such as simplified data process-
ng [12], supplying the recognition system with direct informa-
ion regarding finger-bend data and wrist orientation, considering
oltage values [13], lack of movement restrictions (e.g., sitting
ehind a desk/chair), and adaptability to various surroundings
e.g., background conditions have little effect on hand shape
ecognition) [14], and SLR-based glove devices are portable,
ightweight, and comfortable [15]. Thus, sensor-based wearable
ystems (also known as wearable sensory devices) are convenient
or capturing SL motions without environmental constraints.

Various types of sensors, including optical [16], flex [17],
ouch, tilt, and Hall effect magnetic sensors [18], have been built
nto wearable sensory systems. The finger’s tilt angle was mea-
ured with the help of these sensors. Nonetheless, a great number
f publications utilize the flex sensor to gather finger bend infor-
ation. The sensor also collects data regarding motion tracking
nd hand orientation. For hand motion detection/orientation, a
-axis accelerometer [19], 6-axis inertial measurement unit [20],
nd 9-axis inertial measurement unit [21] were used. Data gloves
re used to detect hand gestures. Commercial and noncommercial
loves exist. Commercial examples include the DG5-V hand glove
ith 5-flex sensors and a 3-accelerometer [22], the 5DT Data
love with 5-fiber-optic sensors [23], and the Cyberglove™ with
2-flexible sensors [24]. A noncommercial example includes an
lectronic glove with an accelerometer, 5-contact sensors, and
-flex sensors [25].
There are several studies on SL in various languages, such as

rabic SL [26], Indian SL [27], Chinese SL [28], Thai SL [29], Bangle
L [30], English SL [31], and American SL [32,33]. These examples
how an increasing amount of research devoted to SLRS-based
2

wearable sensory devices. In addition, distinct differences in the
development of SLRS-based wearable sensory devices have been
noted. Multiple studies that have focused on the number of
sensors [34], data channels [35], signs [36], signers [18] as well as
a complete set for full fingers [18], wrist [37], forearm joint anal-
ysis [38], gesture repetitions per signer [36] and SLRS cost [39]
have demonstrated these distinctions. Moreover, the investiga-
tion has shown a connection between system effectiveness and
whether sensory data are processed online or offline based on
wearable sensory devices [13]. Despite the presence of a large
number of SLRS-based wearable sensory devices, no comprehen-
sive system with all desirable features has been presented. The
existence of different systems has hindered the process of select-
ing the most preferred system [40]. Therefore, many researchers
have compared and evaluated several recognition systems to
identify the best one.

The layout of this paper is organized as follows: Section 2
reviews the recent studies evaluating real-time SLRS-based wear-
able sensory devices and the existing multicriteria decision-mak-
ing (MCDM) solutions. Section 3 provides the methodology used
to evaluate and benchmark real-time SLRS-based wearable sen-
sory devices. Section 4 presents the results and discussions of
PFDOSM-PBM. Section 5 introduces the evaluation of the findings
of the proposed methodology. Section 6 outlines the conclusion,
limitations and directions for future research.

2. Literature review

Recently, [7] presented a ‘state of the art’ review of real-
time SLRS-based wearable sensory devices from 2007 to 2017.
Later, [41] proposed 30 American SLRS-based wearable sensory
devices selected from [7] and updated them to cover the years
2018 through 2020. They chose American SL for the richness of its
literature and as a proof of concept in their research. The 30 SLRS-
based wearable sensory devices were evaluated by six evaluation
criteria based on the perspectives of hand gesture recognition.
The first criterion ‘Dataset’ included seven sub criteria, Number,
Alphabet, Word/phrases, Gesture number, Participants, Repeti-
tions and size; the second criterion ‘Gesture type’ included two
sub criteria, Static and Dynamic; the third criterion ‘Sign type’
included two sub criteria, Isolated and Continuous; the fourth
criterion ‘Solving misclassification error’ included six sub criteria,
Cluster 1, Cluster 2, Cluster 3, Cluster 4, Cluster 5 and Cluster 6;
the fifth criterion ‘Recognition systems’ included two sub criteria,
Online and Offline; and the sixth and last criterion ‘Communi-
cation’ included two sub criteria, One way and Two ways. As
stated by [7], the evaluation and benchmarking of real-time SLRS-
based wearable sensory devices is an MCDM problem. Therefore,
they extended the new MCDM ranking method, fuzzy decision
by opinion score method [42], also known as FDOSM under
Pythagorean fuzzy sets (FFSs) [43]. The fuzzy opinion matrices
were aggregated using the interactive hybrid arithmetic mean
(IHAM) operator for individual benchmarking, whereas the arith-
metic mean was employed for group benchmarking. In addition,
a five-point Likert scale was used to identify the difference degree
between the ideal solution and the remaining values under a
certain criterion. The robustness of their method was verified
using a systematic ranking and comparative analysis.

Recently, [44] took 30 SLRS-based wearable sensory devices
from [41] as alternatives and evaluated them using 11 crite-
ria based on two main perspectives: hand gesture recognition
and sensor glove systems. In addition to the six hand gesture
recognition criteria [41], the five criteria of the sensor glove
system included system cost, data channels, number of hands
with two sub criteria (one hand and two hands), finger move-
ments with three sub criteria (adduction–abduction [AA], flexion–
extension [FE] and finger-pointing [FP]) and hand movement
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ith two sub criteria (orientation and position). The authors
ntroduced a new extension of the FDOSM for evaluating and
enchmarking real-time SLRS-based wearable sensory devices
nder interval-valued PFSs. The fuzzy opinion matrices were ag-
regated using the interval-valued Pythagorean fuzzy weighted
verage (IPFWA) operator for individual benchmarking, whereas
he arithmetic mean was employed for group benchmarking.
n addition, a seven-point Likert scale was employed to deter-
ine the degree of difference between the ideal solution and the

emaining values under certain criteria. Their method’s robust-
ess was evaluated utilizing systematic ranking and comparison
nalysis.
To evaluate and benchmark real-time SLRS-based wearable

ensory devices, a more recent study [45] adopted and evaluated
0 SLRS-based wearable sensory device alternatives based on 11
valuation criteria [41,44]. They employed the fuzzy-weighted
ero-inconsistency (FWZIC) [46] method to estimate the impor-
ance level of evaluation criteria and integrated it with FDOSM to
enchmark real-time SLRS-based wearable sensory devices under
ubic PFSs. The fuzzy opinion matrices were aggregated using the
ubic Pythagorean fuzzy weighted averaging (CPFWA) operator
or individual benchmarking, whereas the arithmetic mean was
mployed for group benchmarking. A ten-point Likert scale was
mployed to determine the degree of difference between the
deal solution and the remaining values under certain criteria.
hey evaluated the robustness of their method using systematic
anking and sensitivity analysis.

Additionally, [47] integrated FWZIC and FDOSM to evaluate
nd benchmark real-time SLRSs under Pythagorean m-polar fuzzy
ets. They adopted 30 SLRS-based wearable sensory device al-
ernatives and 11 evaluation criteria [41,44]. The fuzzy opinion
atrices were aggregated using the Pythagorean m-polar fuzzy
eighted average mean (PMPFWA) operator for individual bench-
arking, whereas the arithmetic mean was employed for group
enchmarking. In this paper, a ten-point Likert scale was used
o measure the degree of difference between the ideal solu-
ion and the remaining values. The robustness of their method
as evaluated using systematic ranking, sensitivity analysis and
omparison analysis.
Table 1 compares the four aforementioned studies [41,44,45],

nd [47] in terms of differences and consensus about the group’s
enchmarking results, fuzzy sets, aggregation operator, and Lik-
rt scale. Comparing the group’s benchmarking results of [41,
4], the rankings of 24 SLRS-based wearable sensory devices,
epresenting 80%, were distinct, whereas the rankings of 6 SLRS-
ased wearable sensory devices, representing 20%, were similar.
he comparison of the group’s benchmarking results of [41,45]
ielded similar findings. Comparing the benchmarking findings
f [41,47] revealed that the rankings of 25 SLRS-based wear-
ble sensory devices, representing 83.3%, were distinct, but the
ankings of 5 SLRSs, representing 16.7%, were similar. When
he group benchmarking findings of [44,45] are compared, the
ame results were achieved. Furthermore, the comparison of the
roup benchmarking results of [44,47] showed that 26 SLRS-
ased wearable sensory devices, representing 86.7%, were dif-
erent, but the rankings of 4 SLRS-based wearable sensory de-
ices, representing 13.3%, were similar. Finally, comparing the
roup’s benchmarking results of [45,47], the rankings of 9 SLRS-
ased wearable sensory devices, representing 30%, were distinct,
hereas the rankings of 21 SLRS-based wearable sensory devices,
epresenting 70%, were similar. Overall, comparing the group
enchmarking findings of [41,44,45], and [47] revealed that the
ankings of 29 SLRS-based wearable sensory devices, representing
6.7%, were distinct, but the rankings of only one SLRS-based
earable sensory device, representing 3.3%, were similar.
3

As proven by the preceding studies, the evaluation and bench-
marking of real-time SLRSs have gained a great amount of atten-
tion in recent years. Many fuzzy sets have been employed, such
as PFSs, interval-valued PFSs, cubic PFSs and Pythagorean m-polar
fuzzy sets, to handle the hesitancy and uncertainty of decision-
makers. Furthermore, in individual benchmarking, fuzzy opinion
matrices were aggregated using the IHAM, IPFWA, CPFWA and
PMPFWA operators. In addition, five-, seven- and ten-point Likert
scales were utilized with these fuzzy sets (see Table 1). However,
no study has explored the influence of changing the Likert scale
with a single fuzzy set, which is considered a research gap and
challenging task due to the effect of employing multiple Likert
scales on benchmarking results [41,44,45,47]. Therefore, the main
objective of this paper is to answer the following question: Which
of the three Likert scales – five-point, seven-point, and ten-
point – is flexible, easy to use by experts in data gathering, and
produces more accurate findings based on expert certainty in
same fuzzy environment?. FDOSM was used by [41,44,45,47] to
evaluate and benchmark real-time SLRSs. Thus, FDOSM is applied
in the present paper to identify the differences in the ranking
results across the three Likert scales with a single fuzzy set and
fill the identified research gap.

To overcome the limitation of the traditional operational laws
of Pythagorean fuzzy numbers (PFNs), minimize the negative
effect of unreasonable evaluations on aggregating results, cap-
ture heterogeneous interrelationships among attributes and con-
sider the interactions between the grades of membership and
nonmembership, many aggregation operators were utilized with
PFNs (i.e., IHAM, IPFWA, CPFWA and PMPFWA operators). Re-
cently, [48] extended the power Bonferroni mean (PBM) operator
to incorporate PFNs based on PFS to capture the interactions
between the grades of membership and nonmembership while
retaining the key advantages of PBM operators (Wang L. et al.
2021). The motivation of this work is to extend FDOSM into a
PFS based on the PBM operator, namely, PFDOSM-PBM, to take
advantage of previous characteristics. Through the evaluation
and benchmarking of real-time SLRS-based wearable sensory de-
vices as a comparative study, this extension is utilized to fill the
previously described gap.

The novelty and main contribution of this paper is to examine
the primary differences between three Likert scales (five-, seven-
and ten-point) under the same fuzzy environment. This paper
extends FDOSM into PFSs using a PBM operator (named PFDOSM-
PBM) to evaluate and benchmark real-time SLRS-based wearable
sensory devices and achieve the objective of this research.

3. Methodology

The methodology applied in the present research is shown
in Fig. 1. The adaptation and formulation of the real-time SLRS
decision matrix is presented in Section 3.1. The formulation and
development of PFDOSM-PBM, which is used to evaluate and
benchmark the real-time SLRS alternatives, is presented in Sec-
tion 3.2.

3.1. Real-time SLRS decision matrix adaptation

This section presents the adaptation and formulation of the
real-time SLRS decision matrix that consists of three steps. The
first step identifies the real-time SLRS alternatives, the second
step identifies the evaluation criteria of the real-time SLRS, and
the third step intersects the real-time SLRS alternative and the
evaluation criteria to construct the decision matrix.

Step 1: Identify real-time SLRS alternatives
Following [44,45,47], 30 real-time American SLRS-based wear-

able sensory devices were adopted from [41]. These SLRS-based

https://link.springer.com/article/10.1007/s00500-020-05193-z#auth-Lei-Wang
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Table 1
Comparison points among the state of art SLRS-based wearable sensory device studies.
Group’s benchmarking
results Differences

[41] [44] [45] [47]

[41] – 24 (80%) 24 (80%) 25 (83.3%)
[44] – – 25 (83.3%) 26 (86.7%)
[45] – – – 9 (30%)
[47] – – – –
Overall differences 29 (96.7%)

Group’s benchmarking
results consensus

[41] [44] [45] [47]

[41] – 6 (20%) 6 (20%) 5 (16.7%)
[44] – – 5 (16.7%) 4 (13.3%)
[45] – – – 21 (70%)
[47] – – – –
Overall consensus 1 (3.3%)

Other comparison points [41] [44] [45] [47]

Fuzzy sets PFSs Interval-valued PFSs Cubic PFSs Pythagorean m-polar
fuzzy sets

Aggregation operator IHAM operator IPFWA operator CPFWA operator PMPFWA operator
Likert scale five-point seven-point ten-point ten-point
Fig. 1. Research methodology.
earable sensory devices were selected for evaluation and bench-
arking using PFDOSM-PBM considering three Likert scales (i.e.,

ive-, seven- and ten-point). The proposed method is unaffected
y an increase in the number of selected systems. Moreover, the
4

evaluation and benchmarking method can be used for other real-
time SLRS-based wearable sensory devices in a range of other lan-
guages [13]. Nevertheless, following the study presented by [41],
American SLRS-based wearable sensory devices were chosen as a
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Table 2
Real-time SLRS decision matrix.
SLRSs based
wearable
sensory
devices/
Criteria

Hand gesture recognition Sensor glove system

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
C1

–1

C1
–2

C1
–3

C1
–4

C1
–5

C1
–6

C1
–7

C2
–1

C2
–2

C3
–1

C3
–2

C4
–1

C4
–2

C4
–3

C4
–4

C4
–5

C4
–6

C5
–1

C5
–2

C6
–1

C6
–2

C9
–1

C9
–2

C1
0–

1

C1
0–

2

C1
0–

3

C1
1–

1

C1
1-
2

SLRS1 C1-
1/SLRS1

C1-
2/SLRS1

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. C11-2/
SLRS1

SLRS2 C1-
1/SLRS2

C1-
2/SLRS2

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. C11-2/
SLRS2

SLRS3 C1-
1/SLRS3

C1-
2/SLRS3

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. C11-2/
SLRS3

. . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
SLRS30 C1-

1/SLRS30
C1-
2/SLRS30

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. C11-2/
SLRS30
t
a
b
o
b
n
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u
t
b
p
d
m

S

roof of concept for this paper due to the extensiveness of their
iterature.

tep 2: Identify the evaluation criteria of real-time SLRS-based
earable sensory devices
In previous research, SLRS-based wearable sensory devices

ave been evaluated based on two perspectives: hand gesture
ecognition and sensor glove systems. As mentioned in the Intro-
uction Section, [41] considered hand gesture recognition criteria,
hereas [44] considered sensor glove system criteria with hand
esture recognition criteria. Both [45,47] adopted the two sets
f criteria from [44]. Therefore, the present paper adopted the
ix evaluation criteria under hand gesture recognition (Dataset
C1], Gesture type [C2], Sign type [C3], Solving misclassification
rror [C4], Recognition systems [C5] and Communication [C6])
nd the five evaluation criteria under the sensor glove system
System cost [C7], Data channels [C8], Number of hands [C9],
inger movements [C10] and Hand movement [C11]). Refs. [44,
5,47] provided detailed definitions of the 11 evaluation criteria.

tep 3: Intersect real-time SLRS alternatives and evaluation
riteria
This step describes the formulation of the decision matrix for

eal-time SLRS. The decision matrix was constructed based on
he intersection between the 30 real-time SLRS-based wearable
ensory devices and the 11 evaluation criteria. Table 2 presents
he formulated real-time SLRS decision matrix. Depending on the
riteria, the evaluation of real-time SLRS-based wearable sensory
evices may be undertaken objectively or subjectively. The objec-
ive criteria were determined as factual, quantitative or measur-
ble information. The criteria measured based on the objective
alues were C1 (including Gesture number [C1-4], Participants
C1-5], Reparation [C1-6] and Size [C1-7]), C7 and C8. In contrast,
he subjective criteria were evaluated based on their presence in a
iven system. The criteria measured subjectively were C1 (includ-
ng Number [C1-1], Alphabet [C1-2] and Word/phrases [C1-3]), C2
including Static [C2-1] and Dynamic [C2-2]), C3 (including Iso-
ated [C3-1] and Continuous [C3-2]), C4 (Cluster 1 [C4-1], Cluster
[C4-2], Cluster 3 [C4-3], Cluster 4 [C4-4], Cluster 5 [C4-5] and
luster 6 [C4-6]), C5 (Online [C5-1] and Offline [C5-2]), C6 (One
ay [C6-1] and Two ways [C6-2]), C9 (One hand [C9-1] and Two
ands [C9-2]), C10 (FE [C10-1], AA [C10-2] and Pointing [C10-3])
nd C11 (Orientation [C11-1] and Position [C11-2]).
The evaluation criteria for the two perspectives, hand gesture

ecognition and sensor glove system, fall under multiple prin-
iples: cost, benefit and binomial criteria. All objective criteria
re beneficial (a higher value is desired) except for (C7), which
s a cost criterion (a higher value is undesired). All subjective
riteria are binomial and evaluated by either Yes or No, indicating
he presence or dearth of the criteria in a particular SLRS. The
valuation and benchmarking of real-time SLRS is hindered by

hree MCDM issues: the presence of various evaluation criteria,

5

he importance of the criteria and their conflict [41,44,45,47]. To
ddress this issue and compare the different ranking outcomes
ased on a single fuzzy set and multiple Likert scales in terms
f logic and reality, constructing an MCDM solution is essential
ased on the proposed PFDOSM-PBM method, as described in the
ext section.

.2. Real-time SLRS benchmarking using PFDOSM-PBM

The PFDOSM-PBM method is a new extension of FDOSM [42]
nder the PFS environment. The PFDOSM-PBM was developed
o benchmark real-time SLRS-based wearable sensory devices
ased on three Likert scales (five-point, seven-point and ten-
oint). It consists of four main steps: data transformation unit,
ata-processing unit, individual benchmarking and group bench-
arking, as shown in Fig. 1 and explained below.

tep 1: Data transformation unit
The decision matrix was converted into an opinion matrix:

i. The ideal solution for each criterion in the real-time SLRS-
based wearable sensory device decision matrix was se-
lected. The selection of ideal solutions was determined
by the preferences of experts. At least three experts with
a minimum of seven years of expertise in sensor-based
recognition systems should be recruited for this purpose.
The ideal solution is defined in Eq. (1):

A∗
=

{[(
max

i
vij

⏐⏐⏐j ∈ J
)

,

(
min

i
vij

⏐⏐⏐j ∈ J
)

,

(Opij ∈ I.J)|i = 1.2.3. . . . .m
]}

,

(1)

where max and min represent the benefit and cost criteria,
respectively, and Opij represents the critical value that lies
between the max and min values and is determined based
on the expert’s opinion. Notably, no critical value was
selected for real-time SLRS benchmarking.

ii. The ideal solution for each criterion was compared with the
values of all alternatives in terms of differences. Three Lik-
ert scales were used in the comparison (five- [49], seven-
point [50] and ten-point [49]). Table 3 presents the lin-
guistic expressions used with each Likert scale. Eq. (2)
expresses the comparisons performed in this step.

OpLang =

{((
vij ≧ Aj

∗
⏐⏐j ∈ J

)
.

⏐⏐⏐i = 1.2.3. . . . .m
)}

, (2)

where ≧ refers to the comparison conducted between the
ideal solution and the values of all real-time SLRS alterna-
tives under a certain criterion.
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Table 3
Likert scale linguistic expressions and their associated PFNs.

Five-point Likert scale [49]

Linguistic expressions Numerical scale PFNs

µ v

No Difference (Equal) ND 1 0.05 0.9
Slight Difference SD 2 0.2 0.75
Difference D 3 0.4 0.50
Big Difference BD 4 0.6 0.25
Huge Difference HD 5 0.8 0.1

Seven-point Likert scale [50]

Linguistic expressions Numerical scale PFNs

µ v

Very No Difference (Equal) VND 1 0.95 0.05
No Difference ND 2 0.75 0.15
Slight Difference SD 3 0.65 0.25
Difference D 4 0.50 0.35
Big Difference BD 5 0.35 0.55
Huge Difference HD 6 0.15 0.75
Very Huge Difference VHD 7 0.05 0.95

Ten-point Likert scale [49]

Linguistic expressions Numerical scale PFNs

µ v

Extremely No Difference (Equal) END 0 0.9999 0.0001
Very No Difference VND 1 0.9 0.2
No Difference ND 2 0.8 0.25
Slight Difference SD 3 0.7 0.35
Difference D 4 0.6 0.5
Big Difference BD 5 0.5 0.6
Huge Difference HD 6 0.45 0.7
Very Huge Difference VHD 7 0.4 0.75
Extremely Huge Difference EHD 8 0.2 0.8
Extremely very Huge Difference EVHD 9 0.1 0.9
1

The final results of this step are the opinion matrices of
three experts with each Likert scale used, as represented
in Eq. (3).

Op_Lang =

A1
...

Am

⎡⎢⎢⎣
op11 · · · op1n

...
. . .

...

opm1 · · · opmn

⎤⎥⎥⎦ . (3)

Step 2: Data-processing unit
The opinion matrices for each Likert scale were transformed

into fuzzy matrices. The linguistic expressions within the opin-
ion matrices were replaced with PFNs, as presented in Table 3.
According to [51–54], PFSs, PFNs and their operational laws are
defined as follows:

Definition 1 ([51,55]). Let X be a universal set, and a PFS P is
defined as

P = {⟨x, (µP (x), vP (x))⟩ | x ∈ X} , (4)

where µP (x) and vP (x) represent the grades of membership and
nonmembership of the element x ∈ X to the set P , respectively.
The functions µP (x), vP (x) : X → [0, 1] meet the condition 0 ≤

(µP (x))2 + (νP (x))2 ≤ 1. The indeterminacy grade is πP (x) =√
1 − (µP (x))2 − (vP (x))2. For ease of presentation [53], PFN is

epresented by α = (µα, vα) a PFN, where µα ∈ [0, 1], vα ∈

0, 1] and 0 ≤ µ2
α + v2

α ≤ 1.

efinition 2 ([51,53]). Let α = (µα, vα) , α1 =
(
µα1 , vα1

)
and

2 =
(
µα2 , vα2

)
be three PFNs, and their operational laws are

hown as follows:

i. αc
= (vα, µα);

ii. α1 ⊕ α2 =

(√(
µα1

)2
+

(
µα2

)2
−

(
µα1

)2 (
µα2

)2
, vα1vα2

)
;

6

iii. α1 ⊗ α2 =

(
µα1µα2 ,

√(
vα1

)2
+

(
vα2

)2
−

(
vα1

)2 (
vα2

)2);

iv. λα =

(√
1 −

(
1 − (µα)2

)λ
, (vα)λ

)
, λ > 0;

v. αλ
=

(
(µα)λ ,

√
1 −

(
1 − (vα)2

)λ

)
, λ > 0.

The three scales were selected due to their frequent use in the
context of decision-making in the literature; thus, these scales
were used based on their frequency and importance [49,50]. The
final results of this step were the fuzzy opinion matrices of three
experts with each Likert scale used.

Step 3: Individual benchmarking
The PFNs within three fuzzy opinion matrices of each expert

per Likert scale were aggregated using the Pythagorean fuzzy
interaction PBM (PFIPBM) operator. Let αi =

(
µαi , vα1

)
(i =

, 2, . . . , n) be the set of PFNs and p, q ≥ 0. The PFIPBM operator
is defined [48] as follows: (see Eq. (5) given in Box I) where

ϕi =
(1 + T (αi))∑n
i=1(1 + T (αi))

, (6)

T (αi) =

n∑
j=1,j̸=i

Sup
(
αi, αj

)
, (i = 1, 2, . . . , n), (7)

Sup
(
αi, αj

)
=

(
1 − d

(
αi, αj

)
+

⏐⏐ναi
2
− ναj

2
⏐⏐ +

⏐⏐παi
2
− παj

2
⏐⏐) ,

(8)

d
(
αi, αj

)
=

1
2

⏐⏐µαi
2
− µαj

2
⏐⏐ , (9)

π =

√
1 − µ 2 − ν 2. (10)
αi αi αi
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PFIPBMp,q (α1, α2, . . . , αn)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∏

i,j=1,i̸=j

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 −

(
1 −

(
1 −

(
µαi

)2)nϕi
)

+ (1 −

((
µαi

)2
+

(
ναi

)2))nϕip(
1 −

(
1 −

(
µαj

)2)nϕj
)

+ (1 −

((
µαj

)2
+

(
ναj

)2))nϕjq+

(1 −

((
µαi

)2
+

(
ναi

)2))nϕip(1 −

((
µαj

)2
+

(
ναj

)2))nϕjq

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1
n(n−1)

+

⎧⎨⎩
n∏

i,j=1,i̸=j

(
(1 −

((
µαi

)2
+

(
ναi

)2))nϕip(1 −

((
µαj

)2
+

(
ναj

)2))nϕjq
)⎫⎬⎭

1
n(n−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

1
p+q

−

⎧⎪⎨⎪⎩
⎧⎨⎩

n∏
i,j=1,i̸=j

(
(1 −

((
µαi

)2
+

(
ναi

)2))nϕip(1 −

((
µαj

)2
+

(
ναj

)2))nϕjq
)⎫⎬⎭

1
n(n−1)

⎫⎪⎬⎪⎭
1

p+q

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

1
2
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∏

i,j=1,i̸=j

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 −

(
1 −

(
1 −

(
µαi

)2)nϕi
)

+ (1 −

((
µαi

)2
+

(
ναi

)2))nϕip(
1 −

(
1 −

(
µαj

)2)nϕj
)

+ (1 −

((
µαj

)2
+

(
ναj

)2))nϕjq+

(1 −

((
µαi

)2
+

(
ναi

)2))nϕip(1 −

((
µαj

)2
+

(
ναj

)2))nϕjq

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1
n(n−1)

+

⎧⎨⎩
n∏

i,j=1,i̸=j

(
(1 −

((
µαi

)2
+

(
ναi

)2))nϕip(1 −

((
µαj

)2
+

(
ναj

)2))nϕjq
)⎫⎬⎭

1
n(n−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

1
p+q ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

1
2
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

Box I.
t

The aggregated results were defuzzied using the PFS score
unction [48] and transformed into crisp values according to
q. (11). The crisp values represent the score values for each
eal-time SLRS.

(α) = µα
2
− υα

2 (11)

These scores were sorted in descending order, that is, the
inest real-time SLRS with the greatest score was ranked first, and
ice versa.

tep 4: Group benchmarking
Group benchmarking was performed to unify the ranking re-

ults of the three recruited experts. Thus, the scores of the real-
ime SLRS of the three experts for each Likert scale were aggre-
ated using the arithmetic mean shown in Eq. (12). The resulting
core values were the final benchmarking results of the real-time
LRS-based wearable sensory devices. Notably, the real-time SLRS
ith the greatest score value was the best and ranked first, and
ice versa.

roup benchmarking = ⊕ R∗ (12)

here ⊕ represents the arithmetic mean, and R∗ represents the
inal rank for each expert.

. Results and discussion

This section presents and examines the findings of the ex-
ended PFDOSM-PBM approach developed for real-time SLRS
valuation and benchmarking. The real-time SLRS decision matrix
esult is reported in Section 4.1. The real-time SLRS opinion
atrices, real-time SLRS fuzzy opinion matrices, and individual
nd group benchmarking are discussed in Section 4.2.

.1. Real-time SLRS decision matrix results

This section reports the results of the real-time SLRS decision

atrix. The recruited experts (the same experts whose opinions

7

were collected in Section 3.2 Step 1) evaluated 30 real-time SLRS-
based wearable sensory devices (Section 3.1). The evaluation
findings of the SLRS decision matrix were constructed based on
the intersection between the set of SLRS alternatives and criteria.
Table 4 summarizes the final evaluation result of the real-time
SLRS decision matrix.

As stated in Section 3.1, each real-time SLRS within the de-
cision matrix is evaluated either subjectively or objectively, de-
pending on the evaluation criteria. With subjective criteria, each
real-time SLRS is given a Yes or No reflecting the existence or
the nonexistence of each criterion in the selected system. For
instance, C5-1=Yes in SLRS1 indicates that the online recognition
system is available, whereas C6-2=No indicates that two-way
communication is absent in the same system. Experts looked
for the measurable information of the objective criteria in the
selected articles and wrote the values in the decision matrix. If
the article did not mention the values of the criteria, the expert
wrote ‘N/A’ (not available) into the decision matrix to indicate
the absence of information. Selecting the most suitable real-time
SLRS based on a particular criterion was simple. Based on the cost
criterion, the SLRS28 system was the best alternative, whereas
SLRS10, SLRS20, and SLRS26 were the best alternatives based on
the data channel criterion. In the same scenario, SLRS1 was the
worst alternative based on the cost criterion, whereas SLRS19
was the worst alternative based on the data channel criterion.
However, identifying the best suited system while simultaneously
taking into account all the listed criteria was a challenging task.
Following [41,44,45,47], the decision matrix was fed to the bench-
marking method (PFDOSM-PBM) to address this difficulty and
examine the influence of changing the Likert scale with a single
fuzzy set on the ranking results.

4.2. Real-time SLRS benchmarking results

In this section, the results of four PFDOSM-PBM formulation
steps are reported.

First, the real-time SLRS decision matrix was transformed into
he real-time SLRS opinion matrix, as explained in Section 3.2
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Table 4
Real-time SLRS decision matrix results.

al
te
rn

at
iv
es

Hand gesture recognition Sensor glove system

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 11

C1
–1

C1
–2

C1
–3

C1
–4

C1
–5

C1
–6

C1
–7

C2
–1

C2
–2

C3
–1

C3
–2

C4
–1

C4
–2

C4
–3

C4
–4

C4
–5

C4
–6

C5
–1

C5
–2

C6
–1

C6
–2

C9
–1

C9
–2

C1
0–

1

C1
0–

2

C1
0–

3

C1
1–

1

C1
1-
2

SLRS1 No No Yes 6 1 1 6 Yes No Yes No Yes Yes No No No No Yes No Yes No 150 5 Yes No Yes No No No No

SLRS2 No No Yes 5 1 1 5 Yes No Yes No Yes Yes No No No No No Yes Yes No 112 10 Yes No Yes No No No No

SLRS3 No No Yes 26 N/A N/A N/A Yes No Yes No Yes Yes No No No No Yes No Yes No 72 5 Yes No Yes No No No No

SLRS4 No Yes No 10 1 1 10 Yes No Yes No Yes Yes No No No No No Yes Yes No 63 5 Yes No Yes No No No No

SLRS5 No No Yes 4 1 2 8 Yes No Yes No Yes No No No No No Yes No Yes No 47 5 Yes No Yes No No No No

SLRS6 No Yes No N/A N/A N/A N/A Yes No Yes No No No No No No No Yes No Yes No 50 5 Yes No Yes No No No No

SLRS7 Yes Yes No 36 N/A 30 1080 Yes No Yes No Yes Yes Yes No No No Yes No Yes No 66 8 Yes No Yes Yes Yes No No

SLRS8 Yes No No 10 1 20 200 Yes No Yes No Yes Yes No No No No Yes No Yes No 50 8 Yes No Yes No No Yes No

SLRS9 No Yes Yes N/A 7 5 N/A Yes Yes Yes No Yes Yes Yes Yes No No No Yes Yes No 87 13 Yes No Yes Yes No Yes No

SLRS10 No Yes Yes 25 5 40 200 Yes No Yes No Yes Yes Yes No No No Yes No Yes No 60 30 Yes No Yes Yes Yes Yes No

SLRS11 No Yes No 24 9 1 N/A Yes No Yes No Yes Yes No No No No Yes No Yes No 130 18 Yes No Yes No No Yes No

SLRS12 No Yes No 26 1 10 260 Yes Yes Yes No Yes No Yes No Yes No No Yes Yes No 75 12 Yes No Yes Yes No Yes No

SLRS13 No Yes No 8 1 10 80 Yes No Yes No Yes Yes Yes No No No No No Yes No 65 13 Yes No Yes Yes No Yes No

SLRS14 No Yes No 26 1 10 260 Yes Yes Yes No Yes Yes Yes Yes No No Yes No Yes No 60 13 Yes No Yes Yes No Yes No

SLRS15 No No Yes 4 1 N/A N/A Yes Yes Yes No Yes Yes No No No No Yes No Yes No 55 8 Yes No Yes No No Yes No

SLRS16 No Yes No 26 1 1 26 Yes No Yes No Yes Yes Yes No No No No No Yes No 87 6 Yes No No No No Yes No

SLRS17 No Yes Yes 36 N/A N/A 120 Yes No Yes No No No No No No No Yes No Yes No 30 5 Yes No Yes No No No No

SLRS18 Yes Yes No 26 N/A N/A 256 Yes No Yes No Yes Yes No No No No Yes No Yes No 55 8 Yes No Yes Yes No Yes No

SLRS19 No Yes No 7 1 1 7 Yes No Yes No Yes No No No No No Yes No Yes No 34 2 Yes No Yes No No No No

SLRS20 No Yes No 5 1 1 5 Yes Yes Yes No Yes No Yes No No No No Yes Yes No 65 30 Yes No Yes No No No No

SLRS21 No No Yes 32 1 1 32 Yes No Yes No Yes Yes Yes No No No Yes No Yes No 85 5 No Yes Yes No No No No

SLRS22 No Yes No 26 2 1 32 Yes No Yes No Yes Yes Yes No No No Yes No Yes No 50 5 Yes No Yes No No Yes No

SLRS23 No Yes Yes 28 10 5 N/A Yes No Yes No Yes Yes No No No No Yes No Yes No 50 8 Yes No Yes No No Yes No

SLRS24 No Yes Yes 8 1 10 80 Yes No Yes No Yes Yes No No No No No Yes Yes No 120 13 Yes No Yes Yes No Yes No

SLRS25 No No Yes 60 3 10 1800 Yes Yes No Yes Yes Yes Yes No Yes No Yes No Yes No 120 4 No Yes Yes No No Yes No

SLRS26 No Yes No N/A 57 5 6270 Yes No Yes No Yes Yes Yes Yes Yes No No Yes Yes No 125 30 Yes No Yes No Yes Yes No

SLRS27 No Yes Yes N/A 1 4 N/A Yes No Yes No Yes Yes Yes No No No No Yes Yes No 70 11 Yes No Yes Yes No No No

SLRS28 No Yes No 26 1 100 2600 Yes Yes Yes No Yes Yes Yes No No No No Yes Yes No 20 8 Yes No Yes Yes No No No

SLRS29 Yes Yes No 36 N/A 30 1080 Yes Yes Yes No Yes Yes Yes No No No Yes No Yes No 97 8 Yes Yes Yes Yes No No No

SLRS30 Yes No No 10 10 No N/A Yes No Yes No Yes No Yes No No No No Yes Yes No 43 5 Yes No Yes No No No No
Step 1. Three opinion matrices were created based on the opinion
of the recruited experts for each Likert scale.

Second, each real-time SLRS opinion matrix was transformed
into a real-time SLRS fuzzy opinion matrix using PFNs, as ex-
plained in Section 3.2 Step 2. Accordingly, three fuzzy opinion
matrices were generated for each expert across each Likert scale.

Third, the PFNs within three fuzzy opinion matrices of each
expert for each Likert scale were aggregated using the PFIPBM
operator and defuzzied to find the score of each alternative, as
explained in Section 3.2 Step 3. The alternatives of real-time
SLRS were ranked based on the calculated scores of each expert
across the three Likert scales, as given in Table 5. The experiment
included certain values of p and q.

The benchmarking findings of the real-time SLRS when p =

and q = 1 are given in Table 5, which explains the importance
f the experts’ opinions for each criterion from their different
erspectives. Notably, the real-time SLRS with the greatest score
as the best, whereas the real-time SLRS with the lowest score
as the worst. According to Table 5, SLRS10 earned the first
anking results across the three experts for each Likert scale,
ith the exception of the third expert’s seven-point scale, where
LRS29 ranked first. The first and second experts ranked SLRS14
he second best alternative across the three Likert scales, and
xcept for the seven-point scale of the first expert, SLRS9 ranked
8

first. However, the third expert’s ranking results of the second-
best alternative varied across the three Likert scales. SLRS26,
SLRS9 and SLRS29 were ranked second by the third expert when
five-, seven- and ten-point Likert scales were used, respectively.
The third best alternative was SLRS7 with a five-point Likert scale
and SLRS29 across the seven- and ten-point Likert scales of the
first expert. The third best alternative was varied across the three
Likert scales of the second and third experts. Furthermore, the
first expert ranked SLRS5, SLRS1 and SLRS6 thirty across five-
, seven- and ten-point Likert scales, respectively, as the worst
alternative. The second expert ranked SLRS1 and SLRS2 worst
with a five-point Likert scale and SLRS6 with the remaining scales.
Finally, the third expert ranked SLRS19 worst with a five-point
Likert scale and SLRS6 with the remaining scales.

These results reveal that different experts have varied ranks
based on distinct scales. This situation necessitated the use of
the differences and consensus indicator tests to determine the
distinctions and matches by calculating the ranking differences
and similarities for the same expert using different scales. This
test was undertaken to determine the differences between the
ranks. Table 6 presents the results of the difference indicator test
for each expert when p = 0 and q = 1.
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Table 5
Benchmarking results of three experts across three Likert scales (p = 0 and q = 1).

Sy
st
em

s

Expert 1 Expert 2 Expert 3

Five-point
Likert Scale

Seven-point
Likert Scale

Ten-point
Likert Scale

Five-point
Likert Scale

Seven-point
Likert Scale

Ten-point
Likert Scale

Five-point
Likert Scale

Seven-point
Likert Scale

Ten-point
Likert Scale

Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank

SLRS1 0.1365 28 −0.1351 30 −0.1125 27 0.1740 29 −0.2840 28 −0.2663 26 0.1363 27 −0.0037 28 0.0013 27

SLRS2 0.1554 26 −0.0711 28 −0.1012 26 0.1740 29 −0.2040 26 −0.2736 28 0.1554 26 0.0141 26 0.0423 26

SLRS3 0.2294 21 0.0187 23 −0.0376 23 0.2638 22 −0.0676 23 −0.1809 22 0.2114 22 0.0541 23 0.0736 23

SLRS4 0.2073 23 0.0130 24 −0.0714 25 0.2073 25 −0.0823 24 −0.2173 24 0.1695 25 0.0483 24 0.0733 24

SLRS5 0.1233 30 −0.0460 26 −0.1393 29 0.1924 27 −0.2840 28 −0.2663 26 0.1363 27 0.0214 25 −0.0227 29

SLRS6 0.1421 27 −0.0512 27 −0.2186 30 0.1957 26 −0.3875 30 −0.4002 30 0.1233 29 −0.1105 30 −0.0572 30

SLRS7 0.5138 3 0.3538 10 0.4121 4 0.4776 8 0.4729 6 0.2983 7 0.5171 4 0.4195 6 0.4679 6

SLRS8 0.3314 16 0.2396 14 0.1541 15 0.3314 17 0.2130 13 0.0162 15 0.3171 14 0.1459 19 0.2488 15

SLRS9 0.4523 6 0.4785 2 0.3778 7 0.5075 4 0.5112 3 0.3190 5 0.4951 6 0.5284 2 0.4959 3

SLRS10 0.5606 1 0.5368 1 0.5076 1 0.5741 1 0.6141 1 0.4802 1 0.5429 1 0.5147 3 0.5376 1

SLRS11 0.3121 17 0.2394 15 0.0386 18 0.3517 15 0.1454 16 −0.0917 18 0.3023 18 0.0805 20 0.2060 18

SLRS12 0.4520 7 0.3990 6 0.3390 9 0.4786 7 0.4478 7 0.2140 8 0.4152 9 0.3976 9 0.4171 9

SLRS13 0.3657 11 0.1070 21 0.1970 12 0.3813 12 0.2831 12 0.0500 13 0.3687 12 0.2148 16 0.2852 13

SLRS14 0.5404 2 0.4383 5 0.4616 2 0.5511 2 0.5972 2 0.3824 2 0.5242 3 0.4790 5 0.4882 4

SLRS15 0.2953 18 0.1161 20 0.0012 20 0.3281 19 0.0126 19 −0.1501 19 0.3147 15 0.1567 18 0.1148 21

SLRS16 0.1931 24 −0.0926 29 −0.0175 22 0.2114 24 −0.0059 21 −0.1553 20 0.1931 23 0.0028 27 0.1068 22

SLRS17 0.1924 25 0.1924 16 −0.0171 21 0.2801 21 −0.1953 25 −0.2537 25 0.1748 24 0.0735 21 0.0699 25

SLRS18 0.4478 8 0.3657 8 0.2253 10 0.4610 10 0.3312 10 0.1044 11 0.4000 10 0.2780 12 0.3259 11

SLRS19 0.1237 29 0.0130 24 −0.1264 28 0.1789 28 −0.2142 27 −0.3532 29 0.1231 30 −0.0037 28 −0.0114 28

SLRS20 0.2950 19 0.1259 19 0.0079 19 0.3127 20 −0.0285 22 −0.1925 23 0.2767 19 0.1723 17 0.1686 19

SLRS21 0.2416 20 0.0431 22 0.1240 17 0.3299 18 0.1094 17 0.0041 16 0.2579 20 0.2460 14 0.2172 16

SLRS22 0.3493 14 0.2714 13 0.1656 14 0.3657 14 0.3310 11 0.0482 14 0.3146 16 0.2239 15 0.2814 14

SLRS23 0.3657 11 0.4390 4 0.2130 11 0.4283 11 0.1466 15 0.1354 9 0.3848 11 0.2831 11 0.3575 10

SLRS24 0.3657 11 0.2994 12 0.1929 13 0.3813 13 0.2122 14 0.0649 12 0.3146 16 0.2773 13 0.3045 12

SLRS25 0.3988 10 0.3557 9 0.3884 6 0.4639 9 0.3391 9 0.3121 6 0.4493 7 0.4823 4 0.4535 7

SLRS26 0.5005 4 0.3838 7 0.3901 5 0.4830 5 0.4897 5 0.3325 3 0.5284 2 0.3997 8 0.4820 5

SLRS27 0.3323 15 0.1561 17 0.1249 16 0.3465 16 0.0006 20 −0.0135 17 0.3323 13 0.3107 10 0.2130 17

SLRS28 0.4340 9 0.3538 10 0.3530 8 0.4804 6 0.3933 8 0.1164 10 0.4304 8 0.4133 7 0.4195 8

SLRS29 0.4966 5 0.4448 3 0.4551 3 0.5097 3 0.5103 4 0.3252 4 0.5001 5 0.5629 1 0.5164 2

SLRS30 0.2294 21 0.1434 18 −0.0505 24 0.2631 23 0.0578 18 −0.1667 21 0.2451 21 0.0731 22 0.1248 20
Table 6
Difference indicator test for each expert results (p = 0 and q = 1).

Experts Expert 1 Expert 2 Expert 3

Scales Difference % Consensus % Difference % Consensus % Difference % Consensus %

Five-Seven Scales 26 86.7% 4 13.3% 22 73.3% 8 26.7% 27 90% 3 10%

Five-Ten Scales 24 80% 6 20% 25 83.3% 5 16.7% 22 73.3% 8 26.7%

Seven-Ten Scales 26 86.7% 4 13.3% 23 76.7% 7 23.3% 23 76.7% 7 23.3%
i
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Three experts with their between-scale differences were dis-
ussed based on the table results. The following three compar-
sons were established: (i) five-seven scales, (ii) five-ten scales
nd (iii) seven-ten scales. A total of (n = 26/30) that represents
6.7% differences were identified for the first expert, and the
emaining (n = 4) that represents 13.3% were consistent for the
irst scale and similar alternatives (i.e., SLRS6, SLRS10, SLRS18 and
LRS20). The scale comparisons revealed fewer differences (80%)
ompared with the first (n = 24/30), leaving six alternatives (20%)
n the rank with the same position (i.e., SLRS2, SLRS10, SLRS14,
LRS20, SLRS22 and SLRS23). The last scale comparison resulted
 (

9

n (n = 26/30) that represented 86.7% differences in ranking and
nly four (13.3%) consistent ones (i.e., SLRS3, SLRS10, SLRS15 and
LRS20).
The result for the second expert started with a total of (n =

2/30) that represented 73.3% differences for the first scale com-
arison, leaving eight alternatives that represent 26.7% with the
ame rank (i.e., SLRS10, SLRS12, SLRS13, SLRS14, SLRS15, SLRS18,
LRS25 and SLRS26). The subsequent comparison between five
nd ten scales identified additional differences (n = 25/30) that
epresented 83.3% with five (16.7%) identical ranking alternatives
i.e., SLRS3, SLRS10, SLRS14, SLRS15 and SLRS22). The third and
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Fig. 2. Benchmarking differences and consensus between three experts within Likert scales: (a) Five, (b) Seven and (c) Ten (p = 0 and q = 1).
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ast comparison for the second expert identified a total of (n =

3/30) that represented 76.7% rank differences, and the seven
23.3%) remaining unchanged ranks were attributed to SLRS4,
LRS6, SLRS10, SLRS14, SLRS15, SLRS17 and SLRS29.
The third and last expert results started with a total of (n =

7/30) that represented 90% rank differences and three (10%)
onsistent rankings for SLRS2, SLRS12 and SLRS23. Afterward, the
econd comparison between five and ten scales identified (n =

2/30) differences that represented 73.3% with eight (26.7%) iden-
ical ranking alternatives (SLRS1, SLRS2, SLRS10, SLRS11, SLRS12,
LRS20, SLRS25 and SLRS28). The third and final comparison
or the third expert revealed a total of (n = 23/30) rank dif-
erences, representing 76.7%, and the remaining seven (23.3%)
naltered ranks were attributed to SLRS2, SLRS3, SLRS4, SLRS6,
LRS7, SLRS12 and SLRS19. Notably, some alternatives with con-
istent ranking were found across the three different scales for
he third expert, including SLRS2 and SLRS12 between the three
cales. Such an occurrence revealed the clarity of rank differences
nd similarities using each of the scales and across each of the
xperts. Using different scales can result in varying rankings,
hich affect the ranking in the MCDM approach. The visual
epresentation of the benchmarking differences and consensus
mong three experts within the same Likert scale is shown in
ig. 2.
Fig. 2 reveals that some of the SLRS-based wearable sensory

evices are identical across different Likert scales. For the five-
oint Likert scale, only two SLRSs have a consistent position based
n three experts’ rankings (SLRS10 and SLRS23), and the ratio of
dentical SLRSs is 6.7%. For the seven-point Likert scale, two SLRSs
lso maintained their ranking position across the three experts
SLRS2 and SLRS3) with a 6.7% ratio. Finally, for the ten-point
ikert scale, five SLRSs have a consistent position based on three
xperts’ rankings (SLRS6, SLRS8, SLRS10, SLRS11 and SLRS22), and
he ratio of identical SLRSs is 16.7%.

Fourth, previous findings indicated the clarity of variations
etween the ranks. Therefore, group benchmarking was applied
10
o aggregate the results of the three experts into a final result by
sing Eq. (12), as explained in Section 3.2 Step 4. The results were
ivided into three subsections according to the three Likert scales.
able 7 reports the final results of real-time SLRS-based wearable
ensory device group benchmarking when p = 0 and q = 1. The
eal-time SLRS with the greatest score was the best, whereas the
eal-time SLRS with the lowest score was the worst.

Table 7 presents that SLRS10 was the best across all the
ifferent scales. In contrast, SLRS19 was considered worst for
he five-point Likert scale, whereas SLRS6 was worst for the re-
aining two scales, namely, the seven-point and ten-point scales.
ifferences, which can be easily identified, were presented from
ne Likert scale to another. Nonetheless, the difference indicator
est was still necessary to compute the differences between the
hree Likert scales. Therefore, this test was applied for the final
roup benchmarking results to compute the differences for the
inal rank using the three Likert scales, as given in Table 8.

Group benchmarking results with their between-scale differ-
nces were discussed based on the table results. The follow-
ng three comparisons were established: (i) five-seven scales,
ii) five-ten scales and (iii) seven-ten scales. The first compari-
on (Five-Seven Scales) revealed a total of (n = 22/30) differ-
nces representing 73.3%, with eight representing 26.7% consis-
ent SLRSs (SLRS1, SLRS5, SLRS10, SLRS11, SLRS12, SLRS18, SLRS23
nd SLRS24). The subsequent comparison between the Five-Ten
cales resulted in a total of (n = 23/30) representing 76.7% dif-
erences and seven representing 23.3% SLRSs with the same rank
SLRS2, SLRS4, SLRS5, SLRS10, SLRS14, SLRS20 and SLRS22). The
ast scale comparison between the Seven-Ten Scales presented
n = 22/30) differences, and eight representing 26.7% consistently
anked SLRSs (SLRS3, SLRS5, SLRS6, SLRS7, SLRS8, SLRS10, SLRS28
nd SLRS29). Only two SLRSs had the same position in the final
ank when the three scales were used (SLRS5 and SLRS10).
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Table 7
Real-time SLRS group benchmarking results (p = 0 and q = 1).

Systems Five-point Likert scale Seven-point Likert scale Ten-point Likert scale

Score Rank Score Rank Score Rank

SLRS1 0.1489 29 −0.1409 29 −0.1258 27

SLRS2 0.1616 26 −0.0870 27 −0.1108 26

SLRS3 0.2349 22 0.0017 23 −0.0483 23

SLRS4 0.1947 25 −0.0070 24 −0.0718 25

SLRS5 0.1507 28 −0.1029 28 −0.1428 28

SLRS6 0.1537 27 −0.1831 30 −0.2253 30

SLRS7 0.5028 4 0.4154 6 0.3928 6

SLRS8 0.3266 16 0.1995 15 0.1397 15

SLRS9 0.4850 6 0.5060 2 0.3976 5

SLRS10 0.5592 1 0.5552 1 0.5085 1

SLRS11 0.3220 17 0.1551 17 0.0510 18

SLRS12 0.4486 7 0.4148 7 0.3233 8

SLRS13 0.3719 12 0.2016 14 0.1774 13

SLRS14 0.5386 2 0.5048 4 0.4440 2

SLRS15 0.3127 18 0.0951 19 −0.0114 20

SLRS16 0.1992 24 −0.0319 25 −0.0220 21

SLRS17 0.2158 23 0.0235 22 −0.0670 24

SLRS18 0.4363 10 0.3249 10 0.2186 11

SLRS19 0.1419 30 −0.0683 26 −0.1636 29

SLRS20 0.2948 19 0.0899 21 −0.0053 19

SLRS21 0.2765 20 0.1328 18 0.1151 16

SLRS22 0.3432 14 0.2754 12 0.1651 14

SLRS23 0.3929 11 0.2896 11 0.2353 10

SLRS24 0.3539 13 0.2630 13 0.1874 12

SLRS25 0.4374 9 0.3924 8 0.3847 7

SLRS26 0.5040 3 0.4244 5 0.4016 4

SLRS27 0.3370 15 0.1558 16 0.1081 17

SLRS28 0.4483 8 0.3868 9 0.2963 9

SLRS29 0.5022 5 0.5060 3 0.4322 3

SLRS30 0.2459 21 0.0914 20 −0.0308 22
Table 8
Result of the difference indicator test for group benchmarking.

Scales Difference % Consensus %

Five-Seven Scales 22 73.3% 8 26.7%

Five-Ten Scales 23 76.7% 7 23.3%

Seven-Ten Scales 22 73.3% 8 26.7%

5. Validation and evaluation

In this section, the proposed method is validated by perform-
ng systematic ranking (Section 5.1). Subsequently, a comparative
nalysis of the proposed method based on the three Likert scales
ith a single fuzzy set with four benchmark studies is undertaken
Section 5.2).
11
5.1. Systematic ranking

The validation of the PFDOSM-PBM results was achieved by
verifying the group benchmarking findings of the real-time SLRS-
based wearable sensory devices using each expert’s opinion ma-
trix across the used Likert scales (five-, seven-and ten-point).
Several researchers have used systematic ranking to validate their
findings [56,57]. The points listed below summarize the valida-
tion procedure:

i. The opinion matrices given were replaced with a numerical
scale (see Table 3) and aggregated using the arithmetic
mean to produce a final value for each SLRS.

ii. The SLRS alternatives within each opinion matrix and their
aggregated values were sorted based on the results of
group benchmarking for each Likert scale.
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Table 9
Group benchmarking results validation across three Likert scales (p = 0 and q = 1).

Groups Real-time SLRSs based wearable sensory devices Means

Five-point Likert Scale

First Group SLRS10, SLRS14, SLRS26, SLRS7, SLRS29, SLRS9, SLRS12,
SLRS28, SLRS25, SLRS18

2.085556

Second Group SLRS23, SLRS13, SLRS24, SLRS22, SLRS27, SLRS8, SLRS11,
SLRS15, SLRS20, SLRS21

2.395556

Third Group SLRS30, SLRS3, SLRS17, SLRS16, SLRS4, SLRS2, SLRS6, SLRS5,
SLRS1, SLRS19

2.681111

Seven-point Likert Scale

First Group SLRS10, SLRS9, SLRS29, SLRS14, SLRS26, SLRS7, SLRS12,
SLRS25, SLRS28, SLRS18

2.804526749

Second Group SLRS23, SLRS22, SLRS24, SLRS13, SLRS8, SLRS27, SLRS11,
SLRS21, SLRS15, SLRS30

3.19037037

Third Group SLRS20, SLRS17, SLRS3, SLRS4, SLRS16, SLRS19, SLRS2,
SLRS5, SLRS1, SLRS6

3.654197531

Ten-point Likert Scale

First Group SLRS10, SLRS14, SLRS29, SLRS26, SLRS9, SLRS7, SLRS25,
SLRS12, SLRS28, SLRS23

4.301111111

Second Group SLRS18, SLRS24, SLRS13, SLRS22, SLRS8, SLRS21, SLRS27,
SLRS11, SLRS20, SLRS15

5.248888889

Third Group SLRS16, SLRS30, SLRS3, SLRS17, SLRS4, SLRS2, SLRS1, SLRS5,
SLRS19, SLRS6

6.067777778
iii. The SLRS alternatives were divided into three equal groups.
Notably, the validation was not influenced by the number
of groups or alternatives within each group [58,59].

iv. The mean of each group was calculated using Eq. (13), as
reported in Table 9.

x =
1
n

n∑
i=1

xi. (13)

he validation was based on each group’s mean. The group with
he lowest mean reflected the most desired real-time SLRS be-
ause a lower numerical scale indicates a better alternative (ideal
olution), whereas a higher numerical scale indicates a worse
lternative. Thus, the mean of the first group across the three
ikert scales should be the lowest, which was then compared
ith the means of the second and third groups to determine the
alidity of the outcome. The second group’s mean should be less
han or equal to that of the third group but larger than or equal to
hat of the first group. Similarly, the third group’s mean should be
arger than that of the first group and larger than or equal to that
f the second group. The results are valid if the estimates support
he claim. Table 9 presents the validation of the real-time SLRS
roup benchmarking results based on the proposed PFDOSM-PBM
hen p = 0 and q = 1.
Table 9 presents the validation of real-time SLRS benchmark-

ng results obtained by the proposed PFDOSM-PBM. The first
roups across all Likert scales had the lowest mean (five-point
2.085556], seven-point [2.804526749] and ten-point
4.301111111]), whereas the second group had a higher mean
five-point [2.395556], seven-point [3.19037037] and ten-point
5.248888889]) than the first group. The third group had a higher
ean (five-point [2.681111], seven-point [3.654197531] and ten-
oint [6.067777778]) than the second and first groups. This re-

ult demonstrates that groups derived from the PFDOSM-PBM

12
employing all Likert scale results for evaluating and benchmark-
ing SLRS-based wearable sensory devices were valid and ranked
systematically.

5.2. Comparative analysis

Following [60–63], this section compares the proposed study
with four benchmark studies, [41,44,45,47]. The comparisons
were conducted based on seven points, as given in Table 10. The
first point compares the proposed study with four benchmark
studies in terms of the fuzzy set utilized in each. The second
point compares the studies in terms of the benchmarking method
utilized in each. The third point compares the studies in terms
of the aggregation operator utilized in each to find the individ-
ual ranking. The fourth point compares the studies in terms of
the real-time SLRS alternatives utilized in each. The fifth point
compares the studies in terms of the SLRS criteria utilized in
each. The sixth point compares the studies in terms of the Likert
scale utilized in each. The seventh and last points compare the
differences between the utilized multi-Likert scales.

First, PFSs, interval-valued PFSs, cubic PFSs and Pythagorean
m-polar fuzzy sets were used by [41,44,45,47], respectively, as
given in Table 10. PFS was the base of the four benchmark studies;
therefore, it was selected in the present paper. Second, FDOSM
was used to rank real-time SLRS alternatives in all benchmark
studies. Thus, it was selected in the present paper for the same
purpose. Third, the fuzzy numbers were aggregated using several
aggregation operators (IHAM, IPFWA, CPFWA and PMPFWA oper-
ators) in the FDOSM individual benchmarking of the benchmark
studies [41,44,45,47], respectively. Owing to the benefit of PBM,
the PFIPBM operator was selected to aggregate the fuzzy num-
bers in the individual benchmarking. Fourth, 30 real-time SLRS
alternatives were ranked in the benchmark studies. The same
systems were selected for benchmarking in the present paper.
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Table 10
Comparison of the proposed and benchmark studies.

Comparisons points Proposed method [41] [44] [45] [47]

Fuzzy sets PFSs PFSs Interval-valued PFSs Cubic PFSs Pythagorean m-polar
fuzzy sets

Benchmarking method FDOSM FDOSM FDOSM FDOSM FDOSM

Aggregation operator PFIPBM operator IHAM operator IPFWA operator CPFWA operator PMPFWA operator

SLRS Alternatives 30 alternatives 30 alternatives 30 alternatives 30 alternatives 30 alternatives

SLRS criteria Two perspectives One perspective Two perspectives Two perspectives Two perspectives

Likert scale five-, seven-, and ten-point five-point seven-point ten-point ten-point

Multi-Likert scales Achieved Not addressed Not addressed Not addressed Not addressed
Fifth, six criteria under the hand gesture recognition perspective
were used by [41] to evaluate the 30 real-time SLRS alternatives,
but the remaining benchmark studies [44,45,47] used the 11
criteria under the hand gesture recognition and sensor glove
system perspectives. Hence, the present paper selected the same
11 criteria to evaluate the 30 real-time SLRS alternatives. Sixth,
each benchmark study utilized a single Likert scale to generate
the opinion matrix and fuzzy opinion matrix. For instance, [41,
44] employed five- and seven-point Likert scales, respectively.
However, a ten-point Likert scale was employed by [45,47]. In
the literature, the influence of utilizing a single Likert scale with
multiple fuzzy sets was explored, as given in Table 10, but the
influence of using several Likert scales with single fuzzy sets was
not discussed. Consequently, this was one of the objectives of the
present paper. Seventh, the present paper examined perspectives
associated with the employment of a multi-Likert scale, whereas
this aspect was not addressed in the benchmark studies. More-
over, the focus of the present work was on data collection based
on the three Likert scales. On this basis, collecting data using a
five-point Likert scale was favored by experts, as this scale does
not present as many difficulties and complexity of comparison
as higher scales (seven- and ten-point Likert scales). The wider
space of these higher scales is the source of their difficulty and
complexity. In light of this, the uncertainty generated using a five-
point scale is limited to the variation in expert opinion. While
the uncertainty caused by a seven- or ten-point scale is displayed
in two shots, they are the diversity in expert opinion and the
difficulty in differentiating linguistic expressions.

The aforementioned points reflect the consensus and differ-
nces between results based on the three adopted Likert scales. As
iven in Tables 6 and 8 the kind of Likert scale influenced the final
enchmarking outcomes for individuals and groups, respectively.
herefore, based on the multiple scales utilized by the experts,
ach scale yielded different results.
The five-point Likert scale is superior to other scales because

t is flexible, easy to use by experts based on the provided answer
n the data collection phase and generates more accurate findings
n the basis of uncertainty generated compared to other scales.
n other words, we experimentally demonstrate that utilizing the
ive-point Likert scale to prove the reality states will facilitate and
mprove the management of uncertainty.

. Conclusion

The methodology of this comparative study was illustrated
ased on two sequential phases: real-time SLRS decision ma-
rix adaptation and real-time SLRS benchmarking using PFDOSM-
BM. Thirty American SL alternatives were used as a case study
13
and evaluated based on two perspectives of criteria: hand gesture
recognition and sensor glove system. The proposed PFDOSM-PBM
method aimed to compare the evaluation and benchmarking of
real-time SLRS-based wearable sensory devices using multiple
Likert scales (five-, seven- and ten-point) with a single fuzzy set
(i.e., PFS) and measure the best scale.

The results revealed the following: (i) The individual bench-
marking results of the real-time SLRS varied based on the opinion
of the evaluator and the Likert scales employed. (ii) The results of
group benchmarking revealed that SLRS10 was the best across all
scales, whereas the worst real-time SLRS differed among Likert
scales. (iii) The results reveal that the five-point Likert scale is
superior to other scales (i.e., seven- and ten-point) as it is flexible,
easy to use by experts and generates more accurate findings
on the basis of uncertainty compared to other scales. (iv) Sta-
tistical test-based objective validation indicated that the ranked
SLRS-based wearable sensory devices resulting from PFDOSM-
PBM with the use of all Likert scales underwent systematic rank-
ing. (v) The proposed study was evaluated and compared with
four benchmark studies based on seven points.

The following interesting areas of research are worth explor-
ing in the future: (i) Different SLRS (e.g., Arabic, Chinese, Thai,
Bangle, French, Polish and Japanese) can be evaluated and bench-
marked following the proposed methodology. (ii) Several fuzzy
types, such as the spherical fuzzy set, linear Diophantine fuzzy
rough set or probabilistic hesitant fuzzy set, can be adopted in the
FDOSM to compare and determine whether these types can solve
the vagueness issue. (iii) Other aggregation operators and score
functions can be used with FDOSM to explore the influence on
the benchmarking results. (iv) The rank reversal decision-making
problem based on FDOSM can be elaborated and focused.
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