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A B S T R A C T

Research and education in machine learning requires diverse, representative, and open datasets that contain
sufficient samples to handle the necessary training, validation, and testing tasks. Currently, the Recommender
Systems area includes a large number of subfields in which accuracy and beyond-accuracy quality measures
are continuously being improved. To feed this research variety, it is both necessary and convenient to reinforce
the existing datasets with synthetic ones. This paper proposes a Generative Adversarial Network (GAN)-based
method to generate collaborative filtering datasets in a parameterized way by selecting their preferred number
of users, items, samples, and stochastic variability. This parameterization cannot be performed using regular
GANs. Our GAN model is fed with dense, short, and continuous embedding representations of items and users,
instead of sparse, large, and discrete vectors, to ensure fast and accurate learning, as compared to the traditional
approach based on large and sparse input vectors. The proposed architecture includes a DeepMF model to
extract the dense user and item embeddings and a clustering process to convert the dense GAN generated
samples to the discrete and sparse samples necessary to create each required synthetic dataset. The results
from three different source datasets show adequate distributions and expected quality values and evolutions
in the generated datasets compared to the source datasets. Synthetic datasets and source codes are available
to researchers.
1. Introduction

Recommender systems (RS) are a relevant area in artificial intel-
ligence due to the growing popularity of social networks. The big
companies that extensively use RSs are TripAdvisor, Netflix, Spotify,
YouTube Music, TikTok, YouTube and Amazon [1]. These companies
make use of the RS models to recommend to users similar items (music,
videos, trips, news) to those that they have already consumed; some
other companies, such as Facebook, work hard to collect customer
activity to provide personalized advertising rather than personalized
products or services. RSs are usually classified according to their filter-
ing approach [2]; content-based RSs select the recommended items by
looking for similar content [3]; since most item contents is text, natural
language processing models are used. Reviews [4] and tweets [5]
are two common types of content-based filtered data. Product images
can also be processed to make recommendations; convolutional neural
networks are the most commonly used models to perform this task [6].
Social filtering has been extensively used to improve social-based rec-
ommendations. This type of filtering uses data such as tags, followers,
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and being followed, and makes use of the concepts of reputation and
trust [7]. Geographic information, such as GPS coordinates and POI,
is mainly used to support context-aware filtering [8]. Demographic
filtering (age, gender, country, etc.) is commonly combined with other
types of filtering, implementing recommendation ensembles [9]. Be-
yond the previous filtering strategies, collaborative filtering (CF) [10] is the
most important approach for implementing RSs, since it provides superior
accuracy, particularly when combined with some other types of filtering.
Effective RS research makes use of innovative models, adequate quality
measures, and representative datasets.

The historical evolution of CF begins with the use of memory-based
models, mainly the K-Nearest Neighbors algorithm [11]. Memory-
based approaches were replaced by model-based machine learning
approaches due to their overall performance: they are superior in accu-
racy of results, also in time to obtain predictions (once the model has
learned); and their output is capable of being explained through post-
hoc techniques [12]. Matrix Factorization (MF) [13] is the most widely
used machine learning model to implement collaborative filtering; it
performs a dimensional reduction of users and items, capturing the
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main patterns that relate them to the votes cast. Additionally, by using
Non-Negative Matrix Factorization (NFM) [14], semantic meanings can
be assigned to latent factors. Bayesian NMF [15] allows clustering
users and making predictions simultaneously, which opens the door to
effective recommendations to user groups and social clustering appli-
cations [16]. Nowadays, CF research is mainly developed by deep learning
models, where DeepMF [17] is the basis for modern approaches. DeepMF is
the model that we use in this paper, in which users are coded in a latent
space by means of an embedding layer, whereas items are coded in a
different latent space by means of a second embedding layer; finally,
predictions are made by making the dot product of both, item and user
embeddings. DeepMF improves MF due to the inherent competence
of neural networks to capture the non-linear relations hips between
samples. Neural Collaborative Filtering (NCF) [18] is extensively used
to implement CF; this model replaces the DeepMF dot layer with a
Multi-Layer Perceptron (MLP) and outperforms DeepMF when applied
to large and complex datasets. Beyond accuracy, deep learning models
are emerging to perform some innovative tasks, such as improving
fairness, where the DeepFair model [19] achieves a trade-off between
equity and precision; green computing [20]; results explanation via
latent space visualization [21] and efficient neighborhood identifica-
tion [22]. The adversarial network-based recommendation has recently
been introduced in the RS area [23] and we will focus on it in the
’Related work’ section. Generative Adversarial Networks (GAN) [24]
are responsible for the popular fake faces and fake videos that flood
social networks. Their architecture has two separate neural networks
that compete against each other (’adversarial’), such as an art forger
competing against an art expert, ensuring that both improve their work.
The GAN ‘forger’ is a generator model that creates fake samples from
random noise vectors, while the GAN ‘expert’ is a discriminator model
implemented as a simple binary classifier: fake, non-fake. However,
while RS research is mainly focused on proposing novel recommendation
models, this paper tries to make progress in CF datasets.

In this respect, it is essential to identify quality measures as a
ey element to carry out adequate research, since they allow the
aselines of the state of the art to be compared with the proposed
lgorithms, methods and models. Beyond the usual prediction and
ecommendation quality measures (MAE, MSD, precision, recall, F1,
DCG, etc.), some other measures, such as novelty and diversity [25],
ave recently acquired growing importance. Of these, diversity is cur-
ently the main focus of researchers’ attention, due to the risks of
nappropriate recommendations in social networks, such as those that
xhibit a lack of variability and promote prefixed ideas and behaviors.
iversity and reliability in RS have been improved by introducing
iversity-enhancing constraints in the MF model [26]; additionally,
deep learning classification model [27] is proposed to obtain the

ecommendation reliability values from the softmax output layer of the
eural network. Quality values are obtained when a model or method is
ested on balanced CF datasets. To obtain balanced training and testing
ets, with respect to their user and item distributions, deterministic
trategies are proposed in [28]. Most of the RS research makes use
f popular CF datasets such as MovieLens, FilmTrust, MyAnimeList or
iteSeer; CF datasets include different domains such as music, movies,
OIs, tourism, news, research papers, tagged data, etc. Some of these
atasets have been filled with explicit votes from users, while others
ontain implicit interactions between users and systems. There are also
atasets filled with crawled Web pages or academic PDFs [29] and
ome others are enriched with social tags that researchers add to the ar-
icles [30]. A selection of relevant social CF datasets is provided in [31]
nd related to some articles using them. Recently, an educational news
ataset [32] was released; which included contextualized information:
ime and location. Finally, an RS dataset has also been provided that
ontains artificial intelligence research data [33] to obtain segmented
nformation, clustering, and geographical locations. Beyond these works,
t is particularly relevant that parameterized synthetic datasets have not
2

et been used, so consequently the CF research does not benefit from the
flexibility that parameterization provides in the experiment design: different
dataset sizes, number of users and items, and so on. This paper aims to
fill the gap by proposing a procedure, coined as GANRS, which focuses
on the use of GANs to generate collaborative filtering recommender
systems datasets in a parameterized way. Please note that current RS
GAN-based models cannot simultaneously set the number of generated
users, items, and rating distributions.

Regarding our contribution, two main overall approaches can be
identified in the state-of-art: statistical and generative. The main ad-
vantage of the statistical approach is that several relevant parameters
can be simultaneously set: number of users, number of items, dataset
size, etc. The main drawback of this approach is its poor accuracy. On
the other hand, current model-based generative approaches improve
accuracy compared to statistical frameworks, but they lack flexibility,
since parameterization is very limited. In fact, current GAN designs
are focused on user profiles, and they can generate as many new fake
users as required, but other relevant parameters cannot be set, such
as the number of items that is fixed in the source set of user vectors
and then, also, in the fake generated set of user vectors. This can be
explained with an example: when we run a regular GAN to generate
fake images, the synthetic images have the same shape (resolution
and number of channels) as the source images. In the RS field, the
synthetic user vectors contain the same number of items as the real user
vectors. Following the example, there are some specific GAN designs
that return ‘super-resolution’ images (they can increase resolution), but
to our knowledge there are no RS GANs designed to generate fake
users containing more items (or fewer items). Our proposed method
is designed to simultaneously set some CF relevant parameters, such as
the number of users and items.

The rest of the paper has been structured as follows: related work
is introduced in Section 2, focusing on the most recent uses of the GAN
models applied to RS. Section 3 explains the proposed model and its
formalization. Section 4 presents the design, result, and discussion of
the experiments. Finally, Section 5 contains the main conclusions of the
article and discusses future work.

2. Background

2.1. Basics on generative adversarial networks

GANs are designed to generate data from scratch [24]. They have
been commonly used to create fake images, although their use has been
spreading to many other domains: music, medicine, financial data, etc.
The GAN architecture composes of two deep network models: generator
and discriminator. The generator model learns to create samples as
similar as possible to those in a dataset (e.g., a dataset with human faces
images), whereas the discriminator model learns to detect fake samples
(those samples created by the generator). To better understand the
GANs we can consider the example of a painting forger and a forgery
expert: the more imitations the forger paints, the better their results,
and the better the expert’s ability to detect fake paintings. Both people
successively improve their abilities. When the learning begins, the GAN
discriminator (the forgery expert, in our example) has an easy job,
since the generator does not have the painting patterns. After thousands
of learning epochs, the generator has learnt the patterns well enough
to confuse the discriminator, who is forced to tune their weights. If
the learning loop iterates enough times, both the generator and the
discriminator models are well designed and the painting in the dataset
contains suitable patterns, the generator will be able to create synthetic
(fake) samples that are difficult to distinguish from the originals.

Fig. 1 shows the GAN architecture [24]; the discriminator model
makes a binary classification between fake and real samples. The
generator model updates its weights (learns) when the discriminator
correctly classifies a fake sample. The discriminator model updates its
weights when it incorrectly classifies a sample. Note that the generator

takes a random noise distribution as input to generate samples; then,
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Fig. 1. Generative Adversarial Networks architecture.
once it has learnt, for each input random noise vector that feeds the
generator a sample is created with the patterns of the dataset samples.
For this reason, by providing random noise vectors we can create as
many samples as required, which means that, in our context, we can
create fake CF datasets of any size by creating fake profiles.

To measure GAN loss, we use cross-entropy. The discriminator (𝐷)
loss can be expressed as the sum of the expectations:

𝑚𝑎𝑥𝐷𝑉 (𝐷) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧) [𝑙𝑜𝑔(1 −𝐷(𝐺(𝑧)))] (1)

Where the first term of the equation is used to recognize real images,
and the second term recognizes generated images. 𝑍 represents the
noisy vector, 𝐺 is the generator, and 𝐺(𝑍) is the generated sample.
𝐷(𝐺(𝑧)) is the classification result of the discriminator when its input
is a fake sample. 𝐷(𝑥) is the classification result of the discriminator
when its input is a real sample.

The generator loss is designed to learn when the discriminator
correctly classifies (the true label is 1, and the fake label is 0). Its
equation is:

𝑚𝑖𝑛𝐺𝑉 (𝐺) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [𝑙𝑜𝑔(1 −𝐷(𝐺(𝑧)))] (2)

The GAN is a minimax in which 𝐺 wants to minimize 𝑉 while 𝐷
wants to maximize it:

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉 (𝐷,𝐺) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧) [𝑙𝑜𝑔(1 −𝐷(𝐺(𝑧)))] (3)

As in the previous example, GAN models act on non sparse values
(e.g., pixels in a picture), but they are not designed to work with
sparse vectors or matrices. Our problem here is that CF datasets contain
extraordinarily sparse matrices of ratings (users only vote or consume
a very limited number of the available items). Using the regular GAN
architecture is not an adequate approach to addressing CF-based RS.
This paper proposes an extended GAN architecture where embeddings
are introduced to code the sparse and discrete vectors of votes to
dense and continuous vectors. This innovation makes it possible to use
a regular GAN to generate dense and continuous vectors efficiently
and accurately. This compression stage forces us to design the corre-
sponding stage to decompress the generated dense vectors. The adopted
solution makes it possible to set both the number of users and items in
the generated dataset, which is a relevant innovation in the state-of-art.

2.2. Related works

Generative deep learning is an innovative field in the CF RS area.
Although some variational autoencoder approaches have been pub-
lished [34,35], current research is mainly focused on GAN models [36].
A CF subfield where GANs are used is the attack/defense strate-
gies [37], where these models can reinforce security in RS. Neverthe-
less, the most extended uses of CF GANs are: (a) to solve the issue of
noisy data, and (b) to tackle the data sparsity problem, and implement
3

a data augmentation framework by capturing the distribution of real
data. CFGAN [38] is a model that generates purchase vectors rather
than the IDs of items and then uses the generated fake purchase vectors
to augment the real vectors. The Wasserstein version of CFGAN is
the unified GAN (UGAN) [39] and reports improvements compared
to CFGAN. To prioritize long and short-term RS information (inter-
actions between users and items that change quickly or slowly), the
PLASTIC [40] model trains a generator and uses it as a reinforcement
learning agent. The recurrent GAN: RecGAN [41], learns temporal
patterns in ratings; combining GAN and recurrent neural networks
(RNNs) models. To capture negative sampling information in the CF
datasets, IPGAN [42] implements two different generative models:
one for positive instances and another for negative instances. IPGAN
considers the relations between the positive ratings sampled and the
negative ones selected.

Currently, the DCGAN model [43] combines GAN and reinforcement
learning models to catch the information of the RS sessions, rather than
the traditional historical matrices of votes from users to items. Session
information includes the responses of users to current recommenda-
tions. The user’s immediate feedback is managed by the reinforcement
learning model combined with the GAN. The NCGAN [44] incorporates
a neural network to extract nonlinear features from users, and a GAN
to guide the recommendation training; the generator model makes user
recommendations, whereas the discriminator model measures distances
between real and generated distributions. An innovative method to
improve the information flow from generator to discriminator [45]
reduces the discrepancies between both models in the CF GAN. A
regularization Wasserstein GAN model is used in [46], combined with
an autoencoder acting as a generator, reporting accuracy improvement
when applied to high-dimensional and sparse CF matrices. A CGAN
(Conditional GAN) is used [47] to improve CF recommendations, and
the sizes of the rating vectors can be set, simplifying the generator
and discriminator tasks. Additionally, it allows conditional rating gen-
eration to be established. For datasets that do not follow standard
Gaussian distributions, a missing data imputation based on GAN [48] is
proposed; results show improved quality in several representative clas-
sification data sets. Trust information is used in [49] to make effective
recommendations. They propose a GAN where the discriminator is an
MLP model, and the generator is a long-short term memory network
(LSTM) model [50]. Finally, CF datasets are usually imbalanced due to
their social data collection (e.g: more young people than old people).
To address this limitation, [51] proposes a Wasserstein GAN model in
the generator, and the PacGAN concept in the discriminator [52], to
minimize the mode collapse problem.

A platform for multi-agent RS simulation is the probabilistic-based
RecSim [53], which generates synthetic profiles of users and items,
and uses Markov chains and recurrent neural networks. The Virtual-
Taobao [54] is a multiagent reinforcement learning system designed
to improve search in the social Taobao website; it makes use of a
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GAN to simulate internal distributions. A simple matrix factorization is
used [55] to inject topic diversification into the recommendation pro-
cess. The DataGenCars [56] is a Java-based generator of RS synthetic
data; it contains a statistical basement that provides flexibility, but it
returns low accuracy compared to deep learning generative models.
Finally, the SynEvaRec framework [57] provides the generation of
synthetic RS datasets using the Synthetic Data Vault (SVD) library.
This library models multivariate distributions using copula functions;
its CTGAN sub-library includes GAN models. The main advantage
of SynEvaRec, compared to previous frameworks, is that it can use
different RSs as a source; its main drawbacks are the poor quality of the
results in most of the cases, and the excessive time it takes to perform
the training stage.

Previous research mainly focuses on improving different objectives
such as noise reduction, recommendation quality, prediction values,
defense against attacks, or balancing data. To make this happen, many
different approaches and information sources have been combined:
the use of GAN, CGAN, Wasserstein GAN, etc. GAN models have
been combined with Recurrent Neural Networks [58] and LSTM net-
works [50], and reinforcement learning has been introduced in the
GAN-based architectures. Long and short data have been introduced
to the proposed models, in addition to trust information, session logs,
including responses of the users to previous recommendations, and
inferred negative votes. The pure generation of synthetic datasets does
not seem to be a goal in this novel field of GAN applied to CF RS, which
is currently focused on improving prediction and recommendation
quality results by means of data augmentation based on the inherent
ability of the GAN model to capture the complex nonlinear patterns
of high-dimensional and sparse CF datasets. The innovation of our
proposal is to generate representative and useful CF synthetic datasets,
rather than to improve the existing results that are of varying quality.
Additionally, it allows representative parameters to be set and a whole
‘family’ of synthetic datasets to be obtained, taking real datasets as a
source, such as Movielens, Netflix, or MyAnimeList. These parameters
are the number of users, the number of items, the number of samples
and the variability of the generated data. By varying the parameter
values, we can generate different versions of the same CF pattern, such
as a Movielens-based dataset containing 8000 users and 3000 items, or
another that contains 2000 users and 1000 items, among others. In this
way, we can test the accuracy and performance impact of the dataset
size, its sparsity, its number of users and items, as well as check the
improvement of the MAE when the number of users increases. As far
as we know, there are no published methods or models for creating, in
a parameterized deep learning model, accurate and scalable synthetic
datasets from diverse sources.

3. The generative adversarial networks-based approach for data-
sets building in collaborative filtering

As previously mentioned in the Introduction section, our research
problem is defined as obtaining a larger, scalable synthetic dataset
from an original RS dataset that synthesizes similar user behavior
and valuation patterns in relation to the original dataset. In addition,
it is desirable that such generation be parameterized, allowing the
number of users, items, samples and variability of the distribution to
be controlled.

Next, this section proposes the GANRS method, which uses a GAN
network to generate synthetic CF datasets; the GAN is fed with a real CF
dataset and the model learns its internal patterns. The most innovative
contribution is to feed the GAN with dense and small embedding
representations of users and items, instead of the traditional approach
where the GAN inputs are large and comprise sparse vectors containing
the votes cast for each user. The main advantage of the GANRS method
is that it greatly reduces the complexity of the GAN architecture, its
convergence speed, and its performance.
4

The traditional and sparse-based GAN architectures deal with very
large input vectors: as large as the number of items in the dataset,
which can be in the tens of thousands, and require a very large dense
layer in the model to hold this huge amount of data. What is more,
between 97% to 99% of the data is usually missing, since users only
vote for or consume a tiny proportion of the available products or
services, hence the extraordinary sparsity in the CF datasets. Following
the huge dense layer, in classical GAN architectures, it is necessary
to stack a large multilayer perceptron to reduce dimensionality. By
comparison, the proposed model replaces the large dense layer with
two embeddings, one to code users and the other to code items (bor-
rowed from the DeepMF model in the first stage of the proposed
method). Embedding layers are specifically designed to deal with sparse
data; they receive integer values (user and item IDs, in our case),
and they provide small embedding representations (typically 5 to 15
float values in the CF scenarios). Related users or items share similar
embedding representations, and this feature allows for extraordinarily
simplification of the model. Overall, the proposed architecture is much
smaller than traditional architectures, it contains far fewer parameters,
and consequently, learns faster. Additionally, it better captures the
complex nonlinear relations between items and users, in the same way
that non-GAN RS models do to improve predictions.

The formalization of the GANRS method is presented and structured
according to the following seven stages, also illustrated in Fig. 2:

• Stage 0. CF definitions

1 Let 𝑈 be the set of users who make use of a CF RS.
2 Let 𝐼 be the set of items available for voting in the CF RS.
3 Let 𝑉 be the range of allowed votes; usually 𝑉 = {1, 2, 3,

4, 5}.
4 Let 𝑆 be the set of samples contained in the CF dataset; in

which 𝑁 = |𝑆| = 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑡𝑒𝑠 𝑐𝑎𝑠𝑡.
5 𝑆 = {⟨𝑢, 𝑖, 𝑣⟩1, ⟨𝑢, 𝑖, 𝑣⟩2,… ., ⟨𝑢, 𝑖, 𝑣⟩𝑁}; where each 𝑢 ∈

{1,… , |𝑈 |}, each 𝑖 ∈ {1,… , |𝐼|}, and each 𝑣 ∈ {1,… , |𝑉 |}.

• Stage 1. DeepMF training

6 Let E be the size of two neural layer embeddings used to
vectorize each user and each item belonging to 𝑈 and 𝐼 ,
respectively.

7 Let 𝑓 𝑒𝑢(𝑢) = [𝑒𝑢0, 𝑒
𝑢
1,… , 𝑒𝑢𝐸 ], where 𝑓 𝑒𝑢 is the embedding

layer output of the users, where 𝑢 ∈ {1,… , |𝑈 |}.
8 Let 𝑓 𝑒𝑖(𝑖) = [𝑒𝑖0, 𝑒

𝑖
1,… , 𝑒𝑖𝐸 ], where 𝑓 𝑒𝑖 is the embedding

layer output of the items, where 𝑖 ∈ {1,… , |𝐼|}. By com-
bining both dense vectors of user and item embeddings:
([𝑒𝑢0, 𝑒

𝑢
1,… , 𝑒𝑢𝐸 ] and [𝑒𝑖0, 𝑒

𝑖
1,… , 𝑒𝑖𝐸 ]), we can make rating pre-

dictions in the DeepMF training stage. The dot product
of the user embedding and the item embedding in each
⟨𝑢, 𝑖, 𝑣⟩𝑗 ∈ 𝑆 provides its rating prediction:

9 �̂�𝑗 = 𝑓 𝑒𝑢(𝑢) ⋅ 𝑓 𝑒𝑖(𝑖) = [𝑒𝑢0, 𝑒
𝑢
1,… , 𝑒𝑢𝐸 ] ⋅ [𝑒

𝑖
0, 𝑒

𝑖
1,… , 𝑒𝑖𝐸 ]

10 1
2 (𝑦𝑗 − �̂�𝑗 )2 is the output error used in the DeepMF neural
network to start the backpropagation algorithm, where the
neural weights are iteratively improved from the 𝛿𝑗 values:
▵ 𝑤𝑗𝑖 = 𝛼𝑦𝑗𝑓 ′(𝑁𝑒𝑡𝑖)

∑

𝑘 𝑤𝑖𝑘𝛿𝑘, when 𝑘 is a hidden layer,
and ▵ 𝑤𝑗𝑖 = 𝛼𝑦𝑖𝑓 ′(𝑁𝑒𝑡𝑖)

1
2 (𝑦𝑘 − �̂�𝑘)2, if 𝑘 is the output

layer. i, j, and k are successive sequential layers. 𝑁𝑒𝑡𝑖
represents the cumulative input received for an artificial
neuron, 𝑁𝑒𝑡𝑖 =

∑

𝑗 𝑦𝑗 ∗ 𝑤𝑗 , where 𝑗 is the index of the
neurons in the layer preceding the current neuron.

• Stage 2. DeepFM feedforward
Once the DeepMF has learned, we can collect the embedding
representation of each user and each item in the CF RS.

11 Let 𝐸∗ = {⟨𝑢, [𝑒𝑢0, 𝑒
𝑢
1,… , 𝑒𝑢𝐸 ]⟩,∀𝑢 ∈ 𝑈}, be the set of

embeddings for all the RS users. (𝑢 ∈ [1...#𝑈 ], one to u)
12 Let 𝐸∗(𝑢) = [𝑒𝑢 , 𝑒𝑢 ,… , 𝑒𝑢 ]
0 1 𝐸
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Fig. 2. The stages of the proposed GANRS method.
13 Let 𝐸∗∗ = {⟨𝑖, [𝑒𝑖0, 𝑒
𝑖
1,… , 𝑒𝑖𝐸 ]⟩,∀𝑖 ∈ 𝐼}, be the set of embed-

dings for all the RS items. (𝑖 ∈ [1...#𝐼], one to i)
14 Let 𝐸∗∗(𝑖) = [𝑒𝑖0, 𝑒

𝑖
1,… , 𝑒𝑖𝐸 ]

• Stage 3. Setting the dataset of embeddings

15 Let 𝑅 = [⟨𝐸∗(𝑢), 𝐸∗∗(𝑖), 𝑣⟩],∀⟨𝑢, 𝑖, 𝑣⟩𝑗 ∈ 𝑆 be the embedding-
based dataset of real samples.

• Stage 4. GAN training

16 Let 𝑓𝐷 be the discriminator D model belonging to a GAN
model.

17 Let 𝑓𝐺 be the generator G model belonging to a GAN
model.

18 Let 𝑓𝐺𝐷 be the optimization function of the GAN model;
𝑓𝐺𝐷 = 𝑀𝑖𝑛𝐺𝑀𝑎𝑥𝐷𝑓 (𝐷,𝐺) = 𝐸𝑅[𝑙𝑜𝑔(𝐷(𝑅))] + 𝐸𝑧[𝑙𝑜𝑔(1 −
𝐷(𝐺(𝑧)))], where 𝐸𝑅 is the expected value for real samples,
𝑧 is the random noise that feeds the generator 𝐺, and 𝐸𝑧
is the expected value for the generated fake profiles 𝐺(𝑧).
Note that 𝑅 refers to [15].

• Stage 5. GAN generation

19 Let 𝐹 = 𝑓𝐺(𝑧) be the generated dataset of fake samples
from different random noise vectors 𝑧.

• Stage 6. Clustering of items and users.

20 Let 𝐾∗ be the number of clusters used to group the embed-
dings of the users.

21 Let 𝐾∗∗ be the number of clusters used to group the
embeddings of the items.

22 Let ℎ∗(𝑢) = 𝑐|𝑐 ∈ {1,… , 𝐾∗}, be the clustering operation
that assigns a centroid to each user.

23 Let ℎ∗∗(𝑖) = 𝑐|𝑐 ∈ {1,… , 𝐾∗∗}, be the clustering operation
that assigns a centroid to each item.
5

• Stage 7. Setting dataset of item IDs and user IDs

24 Let H be the item IDs and users IDs discrete dataset ob-
tained from the embedding-based dataset F of fake sam-
ples. 𝐻 = {⟨ℎ∗(𝑢), ℎ∗∗(𝑖), 𝑣⟩|∀⟨𝐸∗(𝑢), 𝐸∗∗(𝑖), 𝑣⟩ ∈ 𝐹 }

25 Let 𝑆 = {𝐻} be the synthetic generated dataset version of
H where duplicated samples are removed.

26 Let 𝐺′ = {⟨ℎ∗(𝑢), ℎ∗∗(𝑖), 𝑣⟩ ∈ 𝐻|∄⟨ℎ∗(𝑢′), ℎ∗∗(𝑖′), 𝑣′⟩ ∈ 𝐻
where ℎ∗(𝑢) = ℎ∗(𝑢′) ∧ ℎ∗(𝑖) = ℎ∗∗(𝑖) ∧ 𝑣 ≠ 𝑣′}

Fig. 2 shows the seven designed stages to generate different syn-
thetic datasets from real datasets (Movielens, Netflix, etc.). Stage 1 (top
left graph in Fig. 2) shows the training of a DeepMF model used to set
both the embedding layer of users and the embedding layer of items.
Basically, embedding layers in a neural network efficiently convert an
input from a sparse representation into an output dense representation.
For each input sample ⟨𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚, 𝑟𝑎𝑡𝑖𝑛𝑔⟩ in the training set, the output
dot layer combines the embedding layer values to predict the rating
value and to obtain the output error ‘‘(rating - prediction)’’ that will
we backpropagated to update the learning parameters. Steps 6 to 10
formalize these concepts. Once the DeepMF model has learned, Stage
2 (top right graph in Fig. 2) shows the DeepMF feedforward process
where each item ID (from one to the number of items in the dataset,
range [1...#𝐼]) feeds the item embedding, which outputs the item ID
dense representation; usually, CF embedding vectors have a size from
5 to 10. The same applies to user IDs as input and their output dense
representations. Please note that the number of items in the dataset
will be different from the number of users. Steps 11 to 14 explain this
second stage.

The purpose of the third stage is to convert the source sparse CF
dataset into its dense representation. To accomplish the task, for each
source ⟨𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚, 𝑟𝑎𝑡𝑖𝑛𝑔⟩ sample in the dataset (e.g.: ⟨8920, 345, 4⟩) we
replace the user ID (8920 in this example) with its related dense
representation; the same applies for the item ID. Using embeddings of
size 5, the result in the example could be such as:
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Table 1
Example of samples representation.

Sparse Dense

< 𝟖𝟗𝟎, 47, 5 > < [𝟎.𝟎𝟑, 𝟎.𝟗𝟒, 𝟏.𝟎𝟐, 𝟎.𝟖𝟕,−𝟎.𝟕𝟖], [−1.23, 0.99, 1.02, 0.65,−0.48], 5 >
< 𝟖𝟗𝟎, 𝟑𝟏, 4 > < [𝟎.𝟎𝟐, 𝟎.𝟗𝟓, 𝟎.𝟗𝟗, 𝟎.𝟖𝟏,−𝟎.𝟔𝟗], [𝟎.𝟒𝟓,−𝟎.𝟕𝟖, 𝟎.𝟖𝟑,−𝟎.𝟏𝟓, 𝟎.𝟎𝟗], 4 >
< 968, 𝟑𝟏, 4 > < [−1.04, 0.04, 0.66,−0.67, 0.11], [𝟎.𝟒𝟐,−𝟎.𝟕𝟏, 𝟎.𝟖𝟎,−𝟎.𝟏𝟎, 𝟎.𝟏𝟒], 4 >
< 123, 𝟑𝟏, 2 > < [1.56,−1.12, 0.33, 1.22,−0.87], [𝟎.𝟒𝟑,−𝟎.𝟕𝟓, 𝟎.𝟖𝟎,−𝟎.𝟏𝟏, 𝟎.𝟎𝟔], 2 >

⟨[0.03, 0.94, 1.02, 0.87,−0.78], [−1.23, 0.99, 1.02, 0.65,−0.48], 4⟩.

tage 3 in Fig. 2 shows an illustrative example. Step 15 formalizes
he operation. The dense dataset obtained will be used in Stage 4 to
rain a GAN capable of generating fake user and item profiles, as well
s their associated rating values, which will be, even at this stage,
he ratings that will be in the dataset generated at the end of the
roposal. Our GAN will use the Stage 3 dense dataset to train the
iscriminator by providing it with the necessary real samples. The GAN
enerator takes Gaussian random noise as input and iteratively learns
ow to generate increasingly good fake profiles capable of cheating the
iscriminator model. Once the generator and the discriminator have
earnt, the generator can convert input noise vectors into dense samples
hat mimic the patterns of the real dataset provided in stage 3. Stage 4
s formalized in steps 16 to 18.

The last stage in Fig. 2 (bottom left graph) uses the trained GAN
enerator model (Stage 4) to generate as many fake samples as desired.
e feed the generator with successive vectors of random noise values

ollowing a Gaussian distribution, and the generator outputs successive
ake dense samples following the patterns of the real dataset (obtained
n Stage 3). The higher the standard deviation of the Gaussian distribu-
ion, the higher the variety of individual values in the generated dense
ake samples. As an example, a low standard deviation value in the ran-
om noise Gaussian distribution leads to a higher proportion of votes ‘3’
ranging from 1 to 5), while choosing a high standard deviation value
ill produce a higher density of votes ‘5’ and ‘1’. Ratings are generated

n the same way as items and users: they are coded in the dense
mbedding generated by the GAN. Synthetic ratings are continuous
alues, whereas real ratings are discrete, usually in the range {1,… , 5}.
o make this conversion, a function assigns the maximum value in the
ange (usually ‘5’) to the synthetic continuous values greater than it;
nalogously the function assigns the minimum value (usually ‘1’) to the
ontinuous values lower than it. Finally, a round function is performed
o ensure discrete values. Step 19 formalizes the generation of fake
amples.

Although the GANRS method could be considered complete, this is
ot the case because our goal is to generate fake datasets of sparse
amples (such as Movielens or Netflix); it is then necessary to convert
rom the obtained dense representation in Stage 5 to the usual sparse
epresentation seen in Stage 1. The process is not straightforward, since
ll the dense representations of the fake samples are different from
ach other; this will be better explained using the example in Table 1:
t can be observed that user 890 (two first rows) has very similar
ense embedding values, but there are not identical, since the GAN
enerator is not able to create the same exact values from the noise
nput vectors. The same situation occurs in Table 1 for the item with ID
1. Consequently, the GANRS method provides a way to ‘group’ similar
ense embeddings into a unique ID; that is, to convert the dense bold
ectors of the user in Table 1 into a unique user ID (need not be 890),
nd the dense bold vectors of the item into a unique item ID (need not
e 31, either).

To group similar dense embeddings into a unique ID, a K-Means
lustering [59] has been chosen. This algorithm has the relevant feature
hat a number K of clusters must be chosen a priori, and it is very con-
enient in this context, since, in this way, we will have the opportunity
o establish the number of users and the number of items in the GANRS
6

ynthetic generated dataset. Stage 6 of Fig. 2 shows this concept, where t
Table 2
Main parameter values of the tested datasets.

Dataset #users #items #ratings Scores Sparsity

Movielens 100K 943 1682 99,831 1 to 5 93.71
Netflix* 23,012 1,750 535,421 1 to 5 98.68
MyAnimeList 19,179 2,692 548,967 1 to 10 98.94

𝐾∗ has been selected as number of users and 𝐾∗∗ has been selected as
number of items. Two separate K-Means processes are run: one to group
user embeddings, and the other to group item embeddings. Steps 20 to
23 formalize these two clustering processes. To better understand this
stage, we can consider an example where one million fake samples have
been generated and we want to create a synthetic dataset containing
two thousand fake users and one thousand fake items. To accomplish
this task, we should obtain two thousand groups collected from the one
million user vectors (the same for the one thousand item groups). On
average, five hundred user vectors could be assigned to each user group
(and, analogously, one thousand item vectors to each item group), but
we know that this depends on the user and item vector patterns. To
adequately accomplish the grouping task, machine learning provides
us with clustering algorithms, of which the k-means allow us to set the
number of desired groups (two thousand for users and one thousand
for items, in our example). Running both clustering processes (one for
users and the other for items) we can assign a fake user ID to all the
fake user vectors in each cluster. Please note that the ID number can
be assigned at random to each of the two thousand clusters (the same
for the one thousand item IDs).

Fig. 3 illustrates the concept where graphs at the top show the two
k-means clustering processing performed in the proposed model: one
to group item vectors (yellow circles), and the other one to group user
vectors (orange circles). Gray ellipses represent the k-means clustering
groups. All the fake user vectors in each cluster collapse into the same
user vector, which codes a sample representative of its group, and is
different from the samples in the rest of the clusters (same for items).
In this way, we obtain the selected representative K* users and K**
items. The graphs at the bottom in Fig. 3 show the final stages of the
proposed method; Stage 6 draws the K* clusters of users and the K**
clusters of items, from the previous clustering with blue circles. Each
of the K* clusters (of users) groups a set of user vectors (columns of
orange squares), and each of the K** clusters (of items) groups a set of
item vectors (columns of yellow squares). Each cluster of user vectors
collapses into a representative user: at the bottom of Stage 6 graph (the
same for items). Once the representative users and items are set, we can
generate the fake dataset of embeddings by translating each generated
embedding sample (bottom-right graph) to its equivalent representative
concatenated embedding of representative (collapsed) users and items
(at the bottom of the Stage 6 graph). Previously, we illustrated a case
where a generated sample collapses its item vector in the ‘‘item 3’’
representative code (vector of red squares), and it collapses its user
vector in the ‘‘user 1’’ representative code (vector of brown squares).
In stage 7 the complete embedding, and the translation to the ⟨1, 3, 5⟩
parse tuple codification can be seem. This is also true for the following
ake embedding, which collapses in the ‘‘item 1’’ (green) and ‘‘user
’’ (blue), generating the sparse tuple < 3,2,4>. Note that the GAN-
enerated profiles (bottom-right in Fig. 3) are not limited to a fixed
umber of users and items, whereas their Stage 7 version (bottom-left in
ig. 3) are limited to the ranges {1,… , 𝐾 ∗}, and {1,… , 𝐾 ∗∗}, making
t possible to preset the number of users and items of the synthetic
ataset.

The seventh stage in Fig. 2 converts dense fake samples (coming
rom Stage 5) into sparse samples ⟨𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚, 𝑟𝑎𝑡𝑖𝑛𝑔⟩. To accomplish this
ask, for each sample in the dense representation we replace its user
ector with its centroid number (from 1 to 𝐾∗) and its item vector
ith its centroid number (from 1 to 𝐾∗∗); the rating value remains
he same as that already generated by the framework in Stages 4–5.
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Fig. 3. Top graphs: clustering process to collapse user and item similar vectors into their representative user and item representations. Bottom graphs: translation from unlimited
fake limited profiles to profiles in the range ⟨{1…𝐾∗}, {1..𝐾∗∗}, 𝑟𝑎𝑡𝑖𝑛𝑔⟩.
Fig. 2 shows an example of this operation, formalized in Step 24. Please
note that repeated samples will appear in the previous discretization
process, since the GAN generator can create very similar dense samples
that will be converted to the same discrete encoding. There are several
factors that modulate the number of repeated samples, such as the
number of generated samples, the embedding size, the size of the noise
vector and the standard deviation of the Gaussian distribution, but the
most relevant factor is the number of chosen users or items (𝐾∗ and
𝐾∗∗): the lower the 𝐾, the higher the number of repeated samples.
When the number of users or items is low, the average number of
samples grouped in each cluster is high. Step 25 formalizes the process
of removing repeated discrete samples. Finally, the GANRS method can
generate a small proportion of samples in which different votes are cast
from the same user to the same item; e.g.: ⟨879, 56, 4⟩, ⟨879, 56, 5⟩. This
could be considered as a convenient behavior: code a higher range of
votes (4.5 in the example) or express a change in the user’s opinion.
These cases can be unchanged, changed, or removed. Step 26 formalizes
their removal operation.

Overall, it is important to keep in mind that new rating values are
initially calculated in the context of Stage 4 of the proposal, where
GAN is used for generating the fake samples of pairs ⟨𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚, 𝑟𝑎𝑡𝑖𝑛𝑔⟩,
using the user and item embeddings obtained in the previous stages as
a base. Afterward, our methodology refines the obtained data to assure
consistency (Stages 5–7).

Appendix A (Table 4) shows the main parameter and hyperparam-
eter values used to design both the models DeepMF and GAN involved
in the proposed GANRS method.

4. Experiments and results

Evaluating the quality of the generated datasets and comparing
them with state-of-art synthetic datasets is not straightforward, since
the traditional measures only cover distribution probabilities. This is
the case of the Kullback–Leibler (KL) divergence 𝐷𝐾𝐿 (𝑃 ∥ 𝑄), where
𝑃 and 𝑄 are two probability distributions. In our context, we face
two main drawbacks to applying the KL divergence or any similar
divergence measure: 1) 𝑃 and 𝑄 are not distribution probabilities; they
are datasets, and (2) a low 𝐷𝐾𝐿 value does not mean that 𝑄 (the
generated dataset) is a good synthetic dataset obtained from 𝑃 (the
source dataset). In fact, if 𝐷𝐾𝐿 = 0, usually 𝑃 = 𝑄, which is not a
useful result. Of course, each CF dataset contains a reduced number
7

of representative distribution probabilities, including: rating, user, and
item distributions (𝑄𝑢, 𝑄𝑖, 𝑄𝑟); but comparing each distribution of the
generated dataset with the corresponding distribution of the source
dataset has the same intrinsic problem as explained above: 𝐷𝐾𝐿(𝑃𝑢 ∥
𝑄𝑢) = 0, 𝐷𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = 0, 𝐷𝐾𝐿(𝑃𝑟 ∥ 𝑄𝑟) = 0, does not mean
that 𝑄 is a suitable synthetic dataset with regard to 𝑃 , indeed 𝑄 must
have a certain degree of variability regard to 𝑃 . A common alternative
approach that is used to deal with these situations is testing the quality
results in the specific domain; in our case MAE, precision, recall,
etc. Results should be interpreted according to graph trends rather
than absolute values, since better results just mean that 𝑄 patterns
are less complicated than 𝑃 ones, and worse results tell us that 𝑄
patterns are more complicated than 𝑃 ones. Which scenario is better?
It depends on the objectives of the scientist that generates the synthetic
datasets. Addressing the concerns explained, we provide a complete set
of comparative graphs between the source (𝑃 ) and generated datasets
(𝑄), including probability distributions of the user, item, rating, and
precision and recall trends. Designing specific quality measures that
maximize each scientist’s objectives (required distribution variability,
required complexity in the resulting patterns, etc.) is challenging re-
search, and would help compare state-of-art generative approaches, but
this is out of the scope of this paper.

In this paper we evaluate the suitability of the presented procedure
focused on building synthetic datasets. First, the traditional data sets to
be used as a starting point for the present procedure are presented, as
well as a description of the experiments to be performed. Subsequently,
the obtained results are presented and discussed.

4.1. Experiments

To test the behavior of the proposed GANRS method, we will use
three representative and open datasets in the CF field: Movielens [60],
Netflix and MyAnimeList. We have chosen the 100K version of Movie-
lens and a reduced version of the complete Netflix dataset: Netflix*,
available in [61]. Table 2 shows the main parameter values for these
datasets. A complete set of experiments has been run using Netflix*,
whereas only a subset of these experiments is shown for Movielens
and MyAnimeList, to reduce the size of the paper. Results from the
Movielens and MyAnimeList tests are summarized at the end of this
section. Each of the three source datasets is used to generate its corre-
sponding synthetic version: setting different numbers of users, items,
and samples, and changing the standard deviation of the Gaussian

random noise.
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Table 3
Parameter values of the synthetic datasets generated by GAN.
Source: Netflix*.
# std #users #items # std #users #items # std #users #items #samples

1 2.0 100 4000 6 2.5 100 4000 11 3.0 100 4000

1.5M

2 2.0 1000 4000 7 2.5 1000 4000 12 3.0 1000 4000
3 2.0 2000 4000 8 2.5 2000 4000 13 3.0 2000 4000
4 2.0 4000 4000 9 2.5 4000 4000 14 3.0 4000 4000
5 2.0 8000 4000 10 2.5 8000 4000 15 3.0 8000 4000
16 1.5 4000 2000 17 1.5 4000 8000

18 1.2 2000 4000 150K

19 1.2 2000 4000 500K

20 1.2 2000 4000 1M

21 1.2 2000 4000 3M
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Experiments have been carried out using the neural DeepMF model.
raining, validation, and testing sets have been obtained for all the
eal datasets (Netflix*, MyAnimeList, and Movielens 100K), and their
orresponding synthetic datasets. The source code to train the model
nd test the results is the same for both the real and generated datasets;
nsuring the consistency of the graphs in the comparative figures
Figs. 4a, 4b, 7b, 7e, 8b and 7e).

Table 3 shows the GAN generated synthetic datasets used to test
he proposed GANRS method, using Netflix* as source data. The ’#’
olumns show the number of the generated datasets; ‘std’ is the stan-
ard deviation used in the random noise Gaussian distribution; #users
nd #items are the total number of users and items chosen to generate
ach dataset; #samples is the number of fake samples created by the
AN generator. Please note that the final number of samples contained

n each of the datasets is lower than #samples, due to the removing
rocess of repeated samples. Cases 1 to 15 in Table 3 are used to test
he effect of changing standard deviation and number of users. Cases
6 and 17 test the consequences of increasing the number of items.
inally, cases 18, 19 and 20 test the behavior of the synthetic datasets
hen they have different sizes (number of samples). All generated
atasets and the source code of the proposed GANRS method are fully
vailable in http://suleiman.ujaen.es:8061/gitlab-instance-981c80cc/
anrs. Additionally, Appendix B (Fig. 9) shows an example of the dis-
ribution graphs obtained for each of the synthetic datasets. Following
he link provided, each generated dataset is located in its specific
irectory where a ’readme.txt’ file is provided along the synthetic
ataset distribution graphs.

Using the parameter values of Table 3, a variety of experiments have
een conducted. The classification of the experiments is as follows:

1. Number of users

(a) Distribution of users versus ratings
(b) Distribution of the user ratings
(c) Number of repeated samples
(d) Proportion of samples with the same user and item
(e) MAE and accuracy of the data set
(f) Users’ precision and recall

2. Number of items

(a) MAE and accuracy of the dataset
(b) Item’s precision and recall

3. Number of samples

(a) Number of samples generated
(b) Precision and Recall

These experiments refer to well-known metrics in collaborative
iltering.

Precision is focused on measuring the proportion of relevant rec-
8

mmendations (i.e. the user rated the item with a rating value equal or
greater than a threshold 𝜃) among the top 𝑁 items recommended to the
user 𝑢, collected in the list 𝑇𝑁

𝑢 (Eq. (4)). On the other hand, Recall mea-
sures the proportion of correctly predicted relevant recommendations
among the total number of relevant votes of each user; therefore, recall
is sensitive to the existing proportions of relevant ratings (Eq. (5)).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1
#𝑈

∑

𝑢∈𝑈

|{𝑖 ∈ 𝑇𝑁
𝑢 |𝑟𝑢𝑖 ≥ 𝜃}|
𝑁

(4)

𝑅𝑒𝑐𝑎𝑙𝑙 = 1
#𝑈

∑

𝑢∈𝑈

|{𝑖 ∈ 𝑇𝑁
𝑢 |𝑟𝑢𝑖 ≥ 𝜃}|

|{𝑖 ∈ 𝑇𝑁
𝑢 |𝑟𝑢𝑖 ≥ 𝜃}| + |{𝑖 ∉ 𝑇𝑁

𝑢 |𝑟𝑢𝑖 ≥ 𝜃}|
(5)

Where 𝑈 is the set of training users, 𝑟𝑢𝑖 is the rating of the training
ser 𝑢 for the item 𝑖, 𝑁 is the number of recommendations, and 𝑇𝑁

𝑢 is
he set of 𝑁 recommendations for the test user 𝑢: 𝑁 highest predictions
f the user 𝑢 above the relevancy threshold 𝜃.

Please note that Precision measures the proportion of recommenda-
ion hits (hits with respect to number of recommendations), whereas
ecall measures the proportion of recommendation hits with respect to

he total number of relevant items. Precision takes into consideration
he number of true positives, whereas Recall combines both the true
ositives and the false negatives. The importance of the precision
nd the recall quality measures largely depends on the scenario in
hich they are applied, e.g. Recall seems to be crucial in medicine,
here a false negative is a serious mistake (i.e. not detecting cancer).
evertheless, Recall is less important in RS since missing a relevant film

false negative) is not serious; the objective is to maximize a correctly
ecommended film (true positives). The F1 quality measure combines
oth Precision and Recall (Eq. (6)).

1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(6)

Finally, this paper also tests accuracy (Eq. (7)), where true negatives
are also considered. In this case both the positive and the negative hits
contribute to the results (to positively recommend relevant items and
to negatively recommend non relevant items).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|{𝑖 ∈ 𝑆𝑡|𝑝𝑢𝑖 ≥ 𝜃 ∧ 𝑟𝑢𝑖 ≥ 𝜃}| + |{𝑖 ∈ 𝑆𝑡|𝑝𝑢𝑖 < 𝜃 ∧ 𝑟𝑢𝑖 < 𝜃}|

|𝑆𝑡|
(7)

Where 𝑆𝑡 is the set of test samples, and each sample is the tuple
⟨𝑢, 𝑖, 𝑟⟩ containing the user ID, item ID and rating of the user u for the
tem 𝑖 (𝑟𝑢𝑖). The model prediction of the rating is 𝑝𝑢𝑖.

Two values of the threshold 𝜃 will be explored across the experimen-
tal scenario when precision, recall, F1, and accuracy quality measures
are tested

Note that the accuracy quality measure does not use the term
𝑇𝑁
𝑢 since the typical RS does not include negative recommendations.

Accordingly, this accuracy formulation does not average users’ results
and acts on the entire training data, such as we have done with the
Mean Absolute Error (Eq. (8)).

𝑀𝐴𝐸 = 1
|𝑆 |

∑

|𝑝𝑢𝑖 − 𝑟𝑢𝑖|, 𝑢, 𝑖 ∈ 𝑆 (8)

𝑡 𝑠∈𝑆𝑡

http://suleiman.ujaen.es:8061/gitlab-instance-981c80cc/ganrs
http://suleiman.ujaen.es:8061/gitlab-instance-981c80cc/ganrs
http://suleiman.ujaen.es:8061/gitlab-instance-981c80cc/ganrs
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Fig. 4. (a) Distribution of users versus ratings. Number of items: 4000. Datasets 8 and 10 in Table 3;(b) Distribution of user ratings. Number of users: 2000; number of items:
4000. Datasets 3, 8 and 13 in Table 3;(c) Number of samples remaining after removing the repeated ones. items: 4000. Datasets 6 to 10 in Table 3;(d) Proportion of samples in
which the same user has cast different votes for the same item. items: 4000. Datasets 6 to 10 in Table 3;(e) MAE and accuracy. Number of users: 2000; number of items: 4000;
‘std’ is the standard deviation of the Gaussian random noise distribution. Datasets 1 to 15 in Table 3;(f) Precision, recall, and F1. Standard deviation of the random noise Gaussian
distribution: 2.5. Number of recommendations 𝑁 = [2,4,6,8,10]. Datasets 6 to 10 in Table 3.
4.2. Results

This subsection shows the graphs obtained when the designed ex-
periments (previous subsection) are run. The synthetic datasets de-
scribed in Table 3 are used to obtain results that allow us: (1) to
compare the distributions of users, items and ratings belonging to
the source datasets, in relation to those obtained using the synthetic
datasets, (2) to measure the number of repeated samples returned in
the clustering stage, and (3) to test the prediction and recommendation
qualities and trends obtained by running the proposed RSGAN method
and comparing them to those shown by the source datasets.

4.2.1. Experiment 1a. Number of users: Distribution of users versus ratings
Fig. 4a shows the density of users (y-axis) that have cast different

numbers of votes (x-axis). (Selected datasets: 8 and 10 in Table 3). As
expected, for a fixed number of ratings in the dataset, we can observe
that the higher the number of users, the lower the number of ratings. If
the fixed number of samples in the dataset is distributed among a high
number of users, each user centroid in the clustering stage receives a
lower number of samples. Please, note that Netflix* contains around
23,000 users.

4.2.2. Experiment 1b. Distribution of the user ratings
Fig. 4b shows the proportion of each rating 1,. . . ,5 (x-axis) when

different random noise Gaussian distributions are applied. (Selected
datasets: 3, 8 and 13). It can be observed that the standard deviation 2.5
generates a more similar distribution of votes, compared to the Netflix*
original, than the adjacent standard distributions 2 and 2.5. Fig. 4b also
shows the impact of the Gaussian standard deviation in the layout of
the individual values of the GAN-generated samples.

4.2.3. Experiment 1c. Number of repeated samples
As explained in the ‘Method’ section, the trained GAN generator

predicts from random noise vectors as many dense samples as we want;
all these samples are then converted from continuous dense values to
discrete sparse ones. In the discretization process, repeated samples will
appear that must be removed (Table 1 contains an example). Fig. 4c
9

shows the number of samples remaining in the dataset after the removal
process. The lower the number of users, the higher the number of
samples assigned to each user (to its centroid in the clustering process),
and therefore the higher the probability of repeating discrete samples.
Overall, the smaller the number of users, the smaller the number of
remaining samples. Selected datasets: 6 to 10 in Table 3.

4.2.4. Experiment 1d. Proportion of samples with the same user and item
The GANRS generated datasets possess one attribute that does not

exist in the source datasets (Movielens, etc.): they contain a proportion
of samples where the same user has cast different votes for the same
item; e.g.: ⟨348, 90, 5⟩, ⟨348, 90, 4⟩, as explained in the ‘Method’ section.
This can be seen as a mechanism to allow intermediate votes (4.5 in
the example) or to allow users to change their minds. This makes sense
if, the number of repeated votes is two or three. The rare cases of four
or five repeated votes should be removed, just as we have done in all
the generated datasets.

From the standard quality metrics to measure the accuracy of
predictions: Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE), we have chosen the former since it is the most widely used
in RS state-of-art research. Some papers provide both measures, but
experimental research shows that in the CF field, results for RMSE and
MAE are very similar. This is because the distribution of the errors in
the CF field usually has little variance. The MAE returns the absolute
difference between the predicted values and the real values in the
testing set: 𝑀𝐴𝐸 = 1

𝑛
∑

𝑖 |𝑦𝑖 − 𝑦𝑖|. The lower the MAE, the better the
model fits a dataset. The RMSE uses the square of the error instead of
the absolute value: 𝑀𝐴𝐸 = 1

𝑛
∑

𝑖(𝑦𝑖 − 𝑦𝑖)2; therefore, the RMSE is more
sensitive to observations that are further from the mean, and this is not
the case in CF.

Fig. 4d shows that for regular CF RS (1000 or more users), the
proportion of four or five repetitions is not significant, and as the
number of users increases, the proportion of repetitions drops very fast.

4.2.5. Experiment 1e. MAE and accuracy of the dataset
Whereas the previous experiments analyze the internal composition

and distribution of the synthetic datasets, this experiment and the
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following experiment test the behavior of the generated datasets on
the prediction and recommendation tasks. Fig. 4e shows the prediction
quality (MAE) and the accuracy of the recommendation obtained from
each set of individual samples in Datasets 1 to 15 in Table 3. Please
note that these measures are not obtained by analyzing and averaging
the results of users. The graphs in Fig. 4e show an improvement in
accuracy (and its corresponding decrease in MAE error) as the number
of users increases. This behavior is expected in the CF RS, where a high
number of users leads to better predictions, and it tells us that the GAN-
generated samples follow a CF convenient pattern. The MAE values in
the top graph of Fig. 4e are closely related to the distribution of ratings
for each of the standard deviations 2.0, 2.5 and 3.0. MAE/accuracy
results can be used to select the most appropriate standard deviation;
in this case: std = 2.5.

4.2.6. Experiment 1f. Users’ precision and recall
This experiment provides the most significant results to test the

generated datasets: we extract the values and evolutions of two repre-
sentative recommendation quality measures: precision and recall. The
top graphs in Fig. 4f show the quality values obtained testing several
numbers of recommendations N: [2,4,6,8,10] (x-axis), two different
relevancy thresholds 𝜃: [4,5], and two number of users: 2000 (green
lines), and 8000 (blue lines). The standard deviation of the Gaussian
random noise has been set to 2.5. Selected datasets: 6 to 10 in Table 3.
The values and evolutions obtained from the synthetic datasets fit with
the source dataset: Netflix* (black lines). Additionally, as expected, the
overall results of the dataset generated by 8000 users outperform those
of the 2000 users and are closer to the Netflix* reference (please note
that Netflix* contains around 23,000 users). The two bottom graphs in
Fig. 4f represent the F1 combination of precision and recall; they clearly
show the similarity in the behavior of the generated datasets compared
to the source dataset.

4.2.7. Experiment 2a. MAE and accuracy when the number of items varies.
Experiment 1e tested MAE and accuracy quality measures on

datasets with different numbers of users. Now we will test both quality
measures on datasets with different numbers of items: [100, 1K, 2K,
4K, 8K]. The results in Fig. 5 show adequate values for both MAE and
accuracy, and consistent evolutions where accuracy increases and MAE
decreases as the number of items (x-axis) increases. Thus, the higher
the number of items, the better the accuracy: this shows that the GAN
generator can enrich the data. The Netflix * source dataset contains
1750 items and we can observe in Fig. 5a how the improvement
slows down around this value (x-axis). Selected datasets: 16 and 17 in
Table 3, and the 100, 1000, 4000 user versions not included in Table 3.

4.2.8. Experiment 2b. Items’ precision and recall
Experiment 2b is similar to Experiment 1f; now we will test the

behavior of datasets that contain different numbers of items (instead of
different numbers of users). Fig. 5b shows the performance of Netflix*
(1750 items), represented using black lines, and compares it with the
2000 item dataset (green lines) and the 8000 item dataset (blue lines).
We can observe that evolutions and values are consistent with the
source datasets (black lines); furthermore, both the 2K and 4K items
versions perform well: the first one conveniently captures the Neflix*
patterns of items, since both contain a similar number of items. The
dataset generated second (8K items) can enrich the data and show
better accuracy than the 2K items version. Selected datasets: 16 and
17 in Table 3, and the 100, 1000, 4000 user versions not included in
Table 3.

4.2.9. Experiment 3a. Number of samples generated in datasets with differ-
ent sizes

Here we will test the number of samples that the GANRS method
obtains when different numbers of generated samples and different
10
numbers of users have been set. For this purpose, we define four
different numbers of samples: 150K, 500K, 1M and 3M (Datasets 18
to 21 in Table 3, and their equivalent datasets for 100, 1000, 4000
and 8000 users) in the GAN generation process. The number of items
is fixed at 4K for all experiments. In Fig. 6a we can observe that
the smaller the number of users, the smaller the number of generated
samples; this is due to the fact that the smaller the number of users, the
higher the number of samples assigned to each user (to each centroid
in the clustering stage), and therefore the higher the probability of
repeated samples that will be removed. As an example, Fig. 6 shows
that the 8K user dataset preserves, approximately, 1M samples from
the GAN generated (version 3M), and 600K in version 1M.

4.2.10. Experiment 3b. Precision and recall on datasets with different sizes
This experiment shows the impact of increasing the number of

samples in datasets with fixed parameters, in this case: 2000 users,
4000 items, and a standard deviation of 1.2 ( Table 3; Datasets 18, 19
and 21). It is important to realize that we are using the same source
dataset Netflix* to generate the three cases shown in Fig. 6b: 150K
samples (yellow lines), 500K samples (magenta lines), and 3M samples
(red lines). Please note that 150K, 500K and 3M samples refer to the
dense and continuously generated samples, prior to the removal stage
to convert them into their sparse, discrete version. Fig. 6a shows the
final sizes of the datasets in the 2000 user data (x-axis).

Fig. 6b compares the precision and recall values obtained in the
Netflix* dataset (black lines) with the generated values. Overall: (1)
precision increases and recall decreases; (2) the bigger the generated
dataset, the better its precision; (3) the higher the dataset, the lower
its recall. Precision results improve when using large datasets, as there
are more relevant samples to choose from, and therefore it is easier to
succeed in the fixed number 𝑁 of recommended predictions. On the
other hand, recall gets worse using large datasets because they contain
more variability in the samples, particularly when large standard devi-
ations have been chosen for the random noise Gaussian distribution.
Unlike precision, whose denominator is the constant 𝑁 (number of
recommendations), the recall quality measure depends on the variable:
‘number of relevant votes’ in the set of test items for each user tested.
As the number of samples increases, the number of user votes also
increases (and, from them, the number of relevant votes); this is the
reason why recall is lower in the 3M synthetic dataset in Fig. 6b, and
higher in the 150K version.

Figs. 7 and 8 show, respectively, the results obtained from the
MyAnimeList and Movielens 100K test datasets. Graph ’(a)’ compares
the rating distribution of each source dataset (in blue) with the gen-
erated rating distributions obtained by setting different values of the
Gaussian random noise standard deviation. We have chosen the stan-
dard deviation value of 1.2 for MyAnimeList, and the standard devia-
tion value of 2.5 for Movielens 100K, since the obtained distributions
of ratings are closest to their respective baselines. Results ‘(b)’, ‘(c)’
and ‘(e)’ are obtained using the selected standard deviation values.
Graph ‘(b)’ shows the distribution of users according to their number
of casted ratings (x-axis). As expected, they follow the same pattern as
the one in Netflix*. To compare results, please note that MyAnimelist
dataset contains 19,179 users, and Movielens 100K contains 943 users.
Graph ‘(c)’ shows the number of samples left after removing repeated
instances. The higher the number of users, the lower the probability of
generating samples containing the same user ID, item ID, and rating. In
the MyAnimeList case, we started with 1.5 million generated samples,
whereas for Movielens we selected 1 million generated samples. Graph
‘(d)’ refers to MAE error and accuracy values obtained by processing
the individual samples contained in each dataset. As usual in the CF
context, the higher the number of users, the lower the error, and the
higher the accuracy. Finally, Graphs ‘(e)’ tests the recommendations
obtained by processing the users in each dataset. As is with Netflix*,

compared to baselines, precision improves and recall gets worse.



Knowledge-Based Systems 280 (2023) 111016J. Bobadilla et al.
Fig. 5. (a) MAE and accuracy obtained from the dataset samples when the number of items varies. Number of users: 4000. Standard deviation of the Gaussian random noise:
1.5. Datasets 16 and 17 in Table 3;(b) Precision, recall, and F1 when the number of items varies. Standard deviation of the random noise Gaussian distribution: 1.5. Number of
recommendations 𝑁 = [2, 4, 6, 8, 10]. Datasets 16 and 17 in Table 3.
Fig. 6. (a) Number of generated samples using different number of users (x axis) and different number of GAN generated samples (legend). Standard deviation of the random
noise Gaussian distribution: 1.2. Number of items: 4000. Datasets 18 to 21 in Table 3;(b) Precision and recall using a different number of recommendations (x axis) and a different
number of GAN generated samples (legend). Standard deviation of the random noise Gaussian distribution: 1.2. Datasets 18, 19 and 21 in Table 3.
The results obtained in this section highlight the importance of
those that test the performance of the synthetic datasets against the
11
source datasets, particularly when specific RS metrics are used. To
check the consistency between synthetic and real data, two types of
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Fig. 7. MyAnimeList. 1.5 million generated samples, (a) distribution of the MyAnimeList ratings 1 to 10, (b) distribution of users according to their number of casted ratings, (c)
number of samples after the removing process of the repeated ones, (d) error and accuracy by processing the samples of the dataset, (e) CF precision and recall (by testing the
dataset users). The GANRS std = 1.2 value has been set to test experiments (b) to (e).
experiments have been conducted: direct and indirect. In direct com-
parisons, rating distributions have been obtained and compared from
both source datasets and their synthetic versions. Figs. 4b and 4c show
the Netflix* results by varying the number of generated users and the
standard deviation of the random Gaussian distribution used to feed the
proposed GAN. Figs. 7b and 8b show, respectively, comparison of the
MyAnimeList and the Movielens 100K datasets, in this case by varying
the number of users in the synthetic datasets versus their equivalent
source counterparts. Indirect experiments tested and compared the
recommendation performance on both the synthetic and the source
datasets. We have chosen the recommendation quality measures of pre-
cision, recall and F1, obtained using the classical neural model DeepMF.
Results can be found in Fig. 4f (Netflix* vs. its synthetic version), Fig. 7e
(MyAnimeList vs. its synthetic version), and Fig. 8e (Movielens 100K
vs. its synthetic version). Overall, as expected, the results show that
synthetic datasets behave like their source datasets. The more similar
the results are, the more suitable the generated datasets will be, as this
means that the original datasets can be effectively replaced by synthetic
ones.

4.3. Comparison of the proposed framework with previous work

The Related Works section identifies some previous work focused on
data generation methods for recommender systems. In this subsection, a
brief analysis will be performed, which will focus on showing how this
previous work is not truly comparable with our current proposal in a
fair way, since it is focused on different objectives and also generates
data of a different nature.
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• Mladenov et al. [53] presented RecSim NG, an architecture cen-
tered on the generation of synthetic profiles of users and items
as part of the recommendation environment. Overall, the goal
of the work is the development of a configurable platform for
both authoring and learning RS simulation environments. The
aim of this simulation is to evaluate existing RS policies, or
generate data to train new policies (in either a tightly coupled
online fashion, or in batch mode). Furthermore, this paper lacks
information about the presented method, and therefore does not
allow reproducibility.

• Shi et al. [54] introduce a multi-agent reinforcement learning
architecture tailored to Taobao-specific website search improve-
ment, and uses a GAN to simulate the internal rating distribu-
tion. Therefore, considering that it is focused on data generation
for a specific context, it is not comparable with the framework
proposed in the current paper.

• Del Carmen et al. [56] introduce DataGenCars, a Java-based
generator of RS synthetic data. Here it is important to remark
that this work is specifically focused on the context-aware recom-
mendation scenario. In this sense, even though the proposed tool
supports the generation of synthetic datasets of users, items, con-
texts, and ratings; this generation always relies on context-related
characteristics through criteria introduced throughout the work,
such as the uncertainty of the content, the user’s expectations or
the item’s attributes. As result, this work is not comparable with
the methodology presented in our current paper, which mainly
uses rating values as input and does not consider datasets with
contextual information.
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Fig. 8. Movielens 100K results. 1 million generated samples, (a) Distribution of the Movielens 100K ratings 1 to 5, (b) Distribution of users according to their number of casted
ratings, (c) Number of samples after the removal process of the repeated ones, (d) error and accuracy by processing the samples of the dataset, (e) CF precision and recall (by
testing the dataset users). The GANRS std = 2.5 value has been set to test experiments (b) to (e).
• Provalov et al. [57] introduce the SynEvaRec framework, focused
on the presentation of a novel paradigm for evaluating recom-
mendations based on the generation of synthetic RS datasets. In
contrast to our current paper, this approach is mainly focused
on generating synthetic user and item profiles that are internally
used by SynEvaRec to guarantee user privacy protection, mitigate
the data insufficiency problem, and measure the effect of the
no-free-lunch problem. Regarding the aim of the architecture
proposed in Provalov et al. [57] is not the proper retrieval of the
whole synthetic rating datasets to be used in further evaluations
(i.e. an evaluation protocol is presented rather than a dataset
generation method), a major transformation of their work is
needed to make it comparable with this paper. A fair comparison
is then not possible at this stage.

4.4. Overall discussion

A large number of synthetic datasets have been generated to test the
performance of the proposed GANRS method. These datasets have been
created setting different values for the main parameters of the method:
number of users, number of items, Gaussian random noise variation,
and number of generated samples. To generalize the conclusions of this
paper, three open and representative CF datasets have been used as
sources for the generative process. Finally, a variety of quality measures
13
have been tested on the generated datasets; of these, precision and
recall are the most relevant. A key issue is that we are not able to
visually test the quality of the generated samples, as can be done, for
example, with the popular fake faces; in fact, in the CF context, we
only can adequately test the generated datasets by comparing their CF
quality results with those typically obtained in real CF datasets. For
this reason, we have focused on the designed experiments in which
the quality measures of precision and recall are tested: using datasets
containing different numbers of users, different numbers of items, and
different numbers of samples (sizes). In all cases, comparatively, we
obtain excellent precision results and moderate recall values. Overall, it
can be considered positive in the CF context, where precision errors are
serious and recall errors are less important: it is worse to recommend a
trip you will not like (sorry, no refunds!) than not to recommend a trip
that you probably would enjoy. Please note that it is the opposite for
a deep learning model detecting malignant tumors: it is worse to make
precision errors (no early detection of the tumor) than making recall
errors (to erroneously detect a tumor).

Additionally, experiments show the relevant impact of the standard
deviation on the quality of the results. The GAN network learning has
been based on a vector containing noise values that serves as a seed
to generate the different samples in the synthetic dataset. Each ‘fake’
sample is generated from the list of random values in the ‘noise’ vector.
As usual in the GAN context, random values have been created from
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a Gaussian distribution with a mean of 0 and a standard deviation
of 1. Each generated sample contains a dense item representation,
a dense user representation, and an individual value that codes the
user’s rating of the item. Once the GAN has learned, its generative
model can be used, in a feedforward process, to generate as many
samples as we want, starting from a different random noise vector
for each sample generated. Experimental results show that using a
Gaussian distribution with a standard deviation of 1 leads to many
ratings in the middle of the voting range: rating 3 and closest in the
1 to 5 voting range (Movielens and Netflix), and rating 5 and closests
in 1 to 10 voting range (MyAnimeList). Several experiments in this
section demonstrate that we can modulate the standard deviation of
the Gaussian distribution of random noise to generate a wider range of
ratings using feedforward. As expected, when the standard deviation
increases, the range of ratings also increases proportionally.

Finally, the experiments presented include the existing relationship
between the number of fake samples generated for the GAN and
the number of samples that the dataset will eventually contain. As
explained in the ‘Method’ section, the conversion from dense and
continuous values to sparse and discrete values leads to a probability
of sample repetitions. Results show that, as expected, the larger the
number of users and items in the synthetic dataset, the lower the
number of repeated samples. It has also been shown that for a typical
number of users, say 4000 or more, the probability of more than two
different ratings from one user for the same item can be considered
negligible.

5. Conclusions

This paper provides an innovative method for generating synthetic
parameterized collaborative filtering datasets from real datasets. Syn-
thetic datasets can be generated by selecting different numbers of
users, items, samples, and distribution variability. This means that
comparative experiments can be designed on the basis of a whole
‘family’ of generated datasets, for example, to test the accuracy of a new
matrix factorization model when the number of users increases. A GAN
is used to obtain ‘fake’ samples from real samples, benefitting from the
inherent capacity of GAN networks to capture complex patterns in the
source datasets. The GAN learns from dense and continuous embedding
representations of items and users, rather than the sparse and discrete
representations of the collaborative filtering datasets. The effect is a
fast and accurate learning process.

The proposed GANRS method contains a clustering stage to convert
from the dense generated ‘fake’ samples to the sparse and discrete
values necessary to fill the generated dataset. This clustering stage
implements a k-means algorithm to group items and another k-means to
group users. In a natural way, both ‘k’ parameters set the chosen num-
ber of users and items in the dataset. A drawback of the discretization
process is the generation of identical samples that our method merely
removes. A complete set of experiments have been made using three
representative source datasets. We have tested the distribution values
and evolutions of the results, as well as prediction and recommendation
qualities. Although precision tends to improve, while recall tends to
worsen, overall accuracy can be considered correct, since precision is
more relevant than recall in the RS context. The results show that
the generated datasets conveniently mimic the behavior of the source
datasets Movielens, MyAnimeList, etc.

The source code for the proposed GANRS method is available to
ensure the reproducibility of the experiments. Similarly, a complete set
of generated datasets has been made available for research. This paper
and its related documentation open the door to address some future
work, such as designing alternative options to the clustering stage,
implementing the PacGAN concept in the GAN discriminator, testing
generated datasets using a complete range of machine learning and
deep learning collaborative filtering models, replacing the GAN model
with a CGAN one, generating demographically balanced datasets, and
performing an in-depth study of the impact of the random noise vector
14

variations in the generated set of samples.
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Appendix A

See Table 4.

Table 4
Main parameter and hyperparameter values set for the neural models involved in the
RSGAN method.
DeepMF values

Embedding size (both for
users an items)

5

Optimizer Adam
Loss function Mean squared error
Epochs 20

GAN generator

Input shape, noise vector size 100
Block 1 dense layer #neurons 10
Block 1 activation function LeakyRelu, alpha 0.2
Block 1 normalization BatchNormalization, momentum 0.8
Block 2 dense layer #neurons 20
Block 2 activation function LeakyRelu, alpha 0.2
Block 2 regularization Dropout 0.2
Block 3 dense layer #neurons 2 ∗ 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑠𝑖𝑧𝑒 + 1
Block 3 activation function linear

GAN discriminator

Input: shape 2 ∗ 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑠𝑖𝑧𝑒 + 1
Block 1 dense layer #neurons 6
Block 1 activation function LeakyRelu, alpha 0.2
Block 2 dense layer 1
Block 2 activation function Sigmoid

GAN train

Epochs 20
Batch size 64
Stochastic noise Gaussian (0,1)
Loss function (𝑟𝑒𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑙𝑜𝑠𝑠 + 𝑓𝑎𝑘𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑙𝑜𝑠𝑠)∕2
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Appendix B

See Fig. 9.

Fig. 9. Main distributions of the data in the synthetic dataset generated from Movielens
100K compared to the distributions of the data in the source dataset. Number of users:
8000, number of items: 4000, initial number of samples: 800,000, standard deviation
of the Gaussian noise: 2.5. Graph (a) shows the distribution of the fake users (y axis)
versus the number of ratings belonging to each of the users (x axis). Graph (b) shows
the distribution of the fake items (y axis) versus the number of ratings belonging to
each of the items (x axis). Graph (c) shows the percentage of ratings (y axis) for each
of the available vote values 1, 2, 3, 4, 5 (x axis) in the dataset.
15
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