
Evolutionary Modelling of Software Systems: its
Application to Agent-Based and Hypermedia Systems,

M.J. Rodriguez-Fortiz', P.Paderewski-Rodriguez', L.Garcia-Cabrera", J.Parets-Llorca"
*Dpto.Lenguajes y Sistemas Inform~ticos **Dpto.Lenguajes y Sistemas Inform~ticos

Granada University, Spain Ja6n University, Spain
mjfortiz, patficia, jparets@ugr.es lina@ujaen.es

ABSTRACT
Evolution of software systems can be conceived from the Theory
of Systems as a maturation process in which the developer have
an active participation. This paper presents a two levels
architecture: system and Meta-system. The developer interacts
with the high level, Meta-system, for evolving the structure of the
software system defined in the first level in which the user works.
This architecture can be used to model the structure, functioning
and evolution of any kind of software systems. In concrete, as the
paper describes, it is applied to agents-based systems and
hypermedia systems in a satisfactory way.

General Terms
Design, Theory.

Keywords
Software Evolution. Agent-Based Systems. Hypermedia
Systems. Software Specification.

1. INTRODUCTION
Evolution is a crucial problem in software development. Very
different views of this subject have been presented in the existent
literature, in which, both the definition of the evolution concept
and the approach to manage the evolutionary aspects are
considered.

In order to model evolution we propose an architecture based on
the Theory of Systems [20]. From this perspective, a Software
System (SS) consists of a structure which maturate over time. A
development team is in charge of modifying that structure in order
to modify its functioning.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission andlor a fee.
IWPSE 2001 Vienna Austria
Copyright ACM 2002 1-58113-508 -4/02/006...$5.00

Our proposal includes two abstraction levels: the first level
specifies the structure of a Software System; the second level,
called Meta-system (MS), contains operations to modify the
structure of the first level. Figure 1 shows the user working in the
first level, running the structure of the software system, and the
interaction of the developer with the Meta-system level.

MS SS

k_ze
Figure 1. Software System and Meta-System levels

In previous works [2][26] we have presented formalisms useful in
the specification and evolution of the structure of a software
system. In this paper, our aim is the application of the approach in
two kinds of systems: information systems based on agents and
hypermedia systems.

In the second section, a taxonomy of evolution approaches in the
literature will be shown. Third section will present the two levels
architecture. Application to agent-based systems and hypermedia
systems will be explained in the fourth, fifth and sixth sections.
Finally, we will finish with our conclusions and future works.

2. PERSPECTIVES OF SOFTWARE
EVOLUTION
The software evolution problem has been studied by different
authors. Their works can be grouped taking into account different
perspectives and objectives. The following six tendencies can be
identified.

I This research is supported by a project -MEIGAS- by the Spanish CICYT (TIC2000-1673-C06-04) which is a subproject of the
DOLMEN project (TIC2000-1673-C06).

6 2

1) Belady and Lehman [6] consider software evolution as the
dynamic of the program evolution, establishing quantitative rules
over the behaviour of a Software System and its development
process. In recent works, Lehman and Ramil [21] focus their work
in the what and why instead of the how of software evolution.
They propose the use of formal theories in order to model the
dynamics of systems.

2) During the eighties, new life cycle models tried to incorporate
iteration in the software development process. The prototyping
model, the spiral model o f Boehm [8], and the Henderson model
[18] are part o f that group. All of them establish some basis useful
in automating the software process, managing the workflow and
controlling versions.

3) Pattern design which allow an evolutionary design of systems
have been developed. Examples of it are the works of Aoyama
[3], Niertrasz et al [24], and Amano et al [1]. The components of
the architecture of a system can be modified. In order to guarantee
a safe evolution, change impact and constraint management
during evolution are studied.

4) Another considered perspective models the succession of
different states in a system and the actions which produce these
changes. The aim is to provide a model o f the functioning of the
system. State transition diagrams of UML [9] are an example of
this approach.

5) Programs can be transformed in order to generate new versions
which consider automatically the modifications in the
requirements specifications, Kozaczynski [19], or preserve the
original meaning but improve aspects as the efficiency of the
code, Berzins et al [7]. Many authors, as Said [31], carry out
automatic transactions based on quality factors.

6) The last perspective conceives that each Software System has a
structure which could evolve and maturate. Evolution imply
transitions of the structure by means of the activity of a
development team. In order to study evolution, models which
consider these structural transitions are elaborated. Banerjee [5]
and Casais [10] incorporate concepts as the history of the
evolution of an structure to describe the sequence of evolution
transitions. In the same sense, Heckel [17], Wermenlinger [35]
and Mens [23] propose to use graph rewriting as a formal tool
used in a meta-model level to modify the structure of the
programs, solving evolution problems.

Our work is centred in the last perspective because, as the
previous authors, we conceive the evolution process like a
maturation process. This maturation process begin when a system
is conceived and it is carried out during the whole life o f a system.
We consider that evolution is: "A transformation of the structure
over time, produced by the developer". Following this definition,
the evolution of the Software System is the main functional
capacity of the developer because it cannot evolve by itself. In
order to execute this task, the developer must work in a higher
level, that we call Meta-System level, using formalisms and tools
to model the Software System of a lower level.

Next section will explain the proposed two levels architecture in a
more detailed way.

3. TWO LEVEL ARCHITECTURE
In order to manage evolution, a two level architecture can be
considered:

1. The first level specifies the structure of a Software System. A
Software System runs over time. It has an structure which
may be able to change, evolving and maturating over time
and during its use. Based on the Theory of Systems, the
functioning of a System depends on its structure at each
moment. If the structure changes, the functioning changes.

2. The second level specifies the Meta-system. It is in charge of
changing the structure, and therefore the functioning, o f the
Software System. The developer interacts at this level
creating and modifying a Software System, specifying and
designing it.

When an user decides to modify the functioning of a Software
System, the developer will be informed about this and will change
the structure of the Software System by means of the Meta-
system.

The structure of a system determines which are its requirements.
A Software System consists o f components like agents or other
systems which carry out actions. Actions have associated
restrictions (pre or post conditions) which determine when they
can be carried out. Restrictions are based in the previous state of
the system. The objective of verifying the restrictions is
maintaining the integrity of the system at each moment, taking
into account its requirements.

Meta-system is also a software system but it does not changes its
structure and its functioning is always the same. The developer
uses it as a CASE tool which allows evolutionary actions creating
and modifying the structure of any Software System.

It is not possible to carry out all o f the desired changes in the
Software System because, as stated before, integrity must be
maintained during its evolution. In order to do this, a list o f
invariants must be established for the systems and a set o f meta-
restrictions must be specified and associated to the evolutionary
actions. In the next paragraphs evolutionary actions, restrictions
and meta-restrictions are better explained.

3.1 Evolutionary Actions
The objective of the evolutionary actions is the modification of
the structure of a Software System (components, actions and
restrictions). The set o f evolutionary actions which can be carried
out is:

• Adding, deleting or modifying the components of the
structure.

• Adding, deleting or modifying the functioning actions that
the Software System can carry out.

• Adding, deleting or modifying the restrictions associated to
the functional actions.

Evolutionary actions must satisfy the invariants of the Software
System a priori established. A list o f invariants must be
determined. This invariants depend on the general specification of
the system and the desired characteristics. For example, an
invariant could be: "the names o f the components o f the structure
must be different ".

Two mechanisms are in charge o f preserving these invariants:

6 3

• The meta-restrictions.

• The change propagation mechanism.

Meta-restrictions are pre or post conditions associated to the
evolutionary actions. Each meta-restriction guarantees one or
more invariants of the Software System definition. For example,
the evolutionary action "adding a new component" of the Meta-
system could have associated a meta-restriction, precondition,
which proves that "a component with the same name had not been
added previously".

Sometimes, an evolutionary action can modify a component of a
system related to another component. This second component can
be affected by the change in such way that another evolutionary
action have to be carried out to adapt it to the change. The
modification must be propagated to ensure the integrity of the
whole system. For example, an invariant of the system could be:
"each component must belong to a cluster". In this case, the
evolutionary action "deleting a component", which deletes one of
the components of a cluster of two components, should propagate
the evolutionary action "associating with a component". This last
action associates the remaining component to another component
of a cluster in order to maintain the invariant.

3.2 Restrictions and Meta-Restrictions
Actions of a Software System and evolutionary actions of a Meta-
system have associated restrictions and meta-restfictions,
respectively.

A system must be always in an state of integrity, satisfying its
invariants. The restrictions of the actions must be verified during
its functioning. The meta-restrictions of the evolutionary actions
must be verified during its evolution, i.e. before and after changes.

The state of a system at each moment depends on its previous
functioning and structure, that is to say, on the previous actions
and changes carried out. Consequently, the restrictions and meta-
restrictions must hold on the previous actions and previous
evolutionary actions, respectively. They must be modeled by
means of temporal formalisms which allow to specify and verify
the previous occurrences of actions and changes, and the order
relationships between them..In previous works [15][29] we have
proposed the use of Temporal Logic and Petri Nets to model
restrictions, and Predicate Temporal Logic and Coloured Petri
Nets to model meta-restrictions.

Figure 2 shows the steps followed to carry out a change in a
Software System.

4. APPLICATIONS
Our intention in this paper is applying the proposed architecture
of two levels to model the evolution of two kinds of systems:
Information Systems based on agents and hypermedia systems.

The structure of an Information System can be composed by agents
which interact carrying out actions. Sometimes agents must co-
operate in carrying out more complex actions or transactions. The
hierarchical relationship established between agents can determinate
the way of co-operation.

Agent-based systems can be applied in a lot of fields like workflow,
groupware and group decision support systems. The hierarchy of
agents, the co-operation patterns and the description of transactions
can be described with the proposed architecture. Besides, new

evolution actions, and their pre and post conditions, have to be
considered to establish how to modify the structure, respecting the
integrity of the system at each moment.

The preparation of hyperdocuments includes a lot of changes,
additions and updates. Hypermedia systems are dynamic or
evolutionary by nature Following the same systemic perspective,
their structure and functioning have to be specified and tools to be
changed must be provided. Semantics of the information that they
offer and the routes of navigation through this information are
part of their structure, determine their functioning and can be
changed. As other kinds of systems, invariants or restrictions must
be verified during evolution and changes must be propagated.

®
(

I I

1. Developer wants to change something
2. MS searches the associated recta-restriction
3. Previous structure and functioning of SS are queried

4. The recta-restriction hold, the change can be carried out

5. The SS structt~e have changed., and so its funcioning

Figure 2. Evolution process with meta-restrictions

5. AGENT-BASED SYSTEMS
A Software System can be conceived as a set of cooperating
components wich carry out actions, we will call these components
agents. An agent [12] is autonomous, independent and always is
able to work if the environemnt is fevourable. Because, these
agents should cooperate in order to carry out more complex tasks,
a model of coordination between them should be stablished.

During the life of a Software System a lot of circumstances exists
which produce changes. The environment of execution, the user
conditions or the functionality can change. This possibility require
an evolution of the system i.e, the addition of a new agent, the
deletion of an agent, a change in the cooperation mechanisms,....

[16] propose a separation of the individual functioning of an agent
and the cooperation mechanisms in order to increase the
autonomy of the agents. This separation of concerns can be
achieved using the previous two level architecture.

5.1 Structure of an Agent-Based System
An Agent-Based system is composed of a set of concurrent agents
which carry out actions. The set of actions determine the
functionality of the system.

6 4

I restricti°n$ ~ I i" ~;iiiiiii ~)

~ A g e n t s activation [\ I --~ I / ~NN~lvaluator answers I ~,,~.,,......~ I J
Figure 3. Structure of the Controller Agent

These actions can be classified as:

• Simple actions: actions carried out by one agent.

• Complex actions or transactions: a set o f ordered actions
carried out by a set of agents. A transaction should be
atomic, i.e. from the environment point of view a transaction
is a unique action.

Each action has a restriction (precondition) which determines the
conditions of activation. This restriction is expressed as a
condition over the state of the system, i.e. it holds when a
sequence of actions have previously been produced in the system.

In order to coordinate the activity of the agents, a blackboard
architecture provides a good design pattern. The blackboard
architecture [33] consists of a central data structure which
represents the state of the system and a collection of agents which
operate in this structure. The state of the system, i.e. the sequence
of previously executed actions, acts as a trigger for new actions.
Because the blackboard stores the occurrences of actions carried
out in the systems we will call it System Functional History
(SFH). Each agent can query the SFH in order to know if the
restrictions of its actions hold.

This architecture implies that the agents have no explicit
knowledge about other agents. This independence between agents
facilitates the evolution of the system.

5.1.1 A special agent." The Controller Agent
The previous structure presents three main problems:

1. The concurrent access for reading and writing to a central
structure, the SFH.

2. The activation of the agents. Because the agents have to test
the restrictions of their actions, they will be always testing
the restrictions. This implies a loss of efficiency

3. The evaluation of restrictions should be carried out without
interference of new actions. When a restriction is being
tested the SFH can be modified.

In order to solve these problems an special agent, called
Controller, is introduced. The Controller follows the design
pattern called PDN-Precondition Dynamic Notifier [27]. This
agent is in charge of providing services to the agents: evaluation
of restrictions and reception of new action occurrences. In
addition the Controller guarantees the consistency of the SFH and
provides an order to the agent requests.

The second problem stated above is specially important in the
+evolution of the system, i.e. when the restrictions of an action
changes. This problem is solved preventing that an agent tests its
restrictions when there are no possibilities of success. In order to
accomplish this task, the Controller is in charge of activating the
test of a restriction when certain possibility of success exists. This
implies that the Controller has knowledge about the agents, their
actions and restrictions, knowledge which change dynamically
when the system evolves.

Figure 3 shows the structure of the Controller, which functionally
is divided in the PDN and Evaluator agents. It contains also the
SFH which stores the occurrences of actions. PDN agent stores
occurrences of actions and activate agents. The Evaluator agent
check action restrictions and provides an answer to the agents.

5.1.2 Agent nesting." complex actions (transactions)
A complex action is composed of simple actions. When an agent
carry out a complex action it will be composed of simple agents
which carry out the individual actions. The temporal results of a

Agent 1.2.1

~ . 4 ~ ' ~ Aoent 1.1.1 I i ~ Agentl'2"2 I
Conboller " ~ . , ~ . t - ' - ' ~ ' ~ [Agent 1.2 ' '

A~.tl.1 "1 ,,,°t:13 I
Agent 1

Figure 4. Transactions and Agent Nesting

complex action are temporally stored in the Controller of the
nesting agent. Only when the transaction ends successfully the
final result will be stored in the SFH of the main agent. Figure 4
shows an example of hierarchy of agents.

5.2 Evolution of Agent-Based Systems
A system evolves when its structural elements change. As
previously stated, the Meta-system will allow us to change
dynamically the modeled system. During the evolution of the
System it stops its activity, but after the changes it will continue
its work using the new structure and functionality.

The developer defines the set of evolution actions and the meta-
restrictions needed for each type of system. The meta-restrictions
guarantees the set of the required invariants for the system. In
addition change propagation have to be defined for each
evolution action.

The application of the two levels architecture to these systems is
shown in the figure 5.

65

 .Ms I
i

Figure 5. The two levels architecture for Agents-Based System

In agent-based systems, evolution actions can be carried out for
the different elements of the system:

• Adding, deleting, nesting an agent.

• Adding, deleting actions. Changing the definition of a
complex action (transaction).

• Adding, deleting, modifying a restriction of an action.

When an evolution action is carried out, the meta-restriction
should be checked and the change propagation should be
conducted. For instance, when an action is removed the meta-
restriction is that "the action is not a part of a transaction". The
invariant which guarantees this meta-restrictions is: "each
transaction is always composed by actions previously defined in
the system". If the meta-restriction holds, the Meta-system will
propagate the changes in order to maintain the consistency of the
system. In the example of removing an action, the propagation of
change will consist in eliminating the references to this action in
the restrictions of other actions.

In order to guarantees coherence and consistency, the evolution
actions are communicated to the Controller which updates the
information that it maintains about the components of the system:
agents, actions and restrictions.

Obviously because the Controller is also an agent, its structure
can also be changed, establishing the adequate evolution actions
and meta-restrictions.

6. HYPERMEDIA SYSTEMS
All traditional models proposed for designing hypermedia systems
try to model the process of the final edition of hyperdocuments
and, sometimes, the process of the navigation performed by the
reader. Nevertheless, the design, construction and evolution
processes -the whole life-cycle- of hypermedia systems is not
sufficiently considered [32]. However, this development process
is very important because it implies a structuring process that is
implicit, diluted and unaffordable inside the documents [25].

In our opinion, Hyperrnedia Systems are a special kind of
Information Systems constructed over a conceptual domain. It
represents some aspects and relationships of a conceptual domain
explained by a set of authors. Because they include the knowledge
captured by their authors, they are continuously changing.
Changes can be carried out in the concepts offered by them, in the
relationships between concepts, in the way of presenting or

viewing the information and in the documents -information items-
which explain the concepts.

From this discussion, a more extensive view of the development
ofhypermedia systems must be adopted:

• The development process of the hyperrnedia systems
includes the memorisation and structuring of information
domain, the possibility of offering different views of the
same information domain and, finally, the possibility of
offering different routes of navigation. Therefore, a
hypermedia system can be conceived as a set of interacting
systems in continuous evolution: It's necessary a Systemic
perspective.

• In order to controi this development process, the following
elements should be provided: mechanisms for representing
the information system; a representation of the conceptual
domain or ontology [34] that information belongs to; useful
ways of browsing and remembering the memorized
knowledge. As a result, it is necessary to represent the
Semantic of the process of construction -a cognitive model
[14]-.

• Information systems, conceptual domains and navigation
routes are exposed to continuous changes and updates which
should be integrated in the development process:
Hypermedia Systems are Evolutionary.

To sump up, a hypermedia model must integrate different systems
which could be represented and evolved.

6.1 The structure of a hypermedia system
In order to specify the structure of a hypermedia system,
aproposal for a Systemic, SEMantic, Evolutionary Model for
Hypermedia Systems, SEM-HP, which maps the previous
objectives is presented in this section. One such approach allows
the construction, maintenance and navigation of information
systems in continuous evolution and makes these activities more
feasible, understandable and flexible.

A Hypermedia System can be conceived as being made up by two
systems: The Knowledge System and the Navigation System.

Knowledge System is in charge of storage, structuring and
maintenance of the different pieces of information. It memorises
the acquired knowledge about the information system that is
represented. This knowledge will guide the design and structuring
processes of the information system. It will determine the
possibilities for transformation and change of this structure
throughout its evolution. It is made up by a Memorisation
Subsystem and a Presentation Subsystem.

Navigation System helps the reader in his/her interaction with the
information system following navigation routes throw the
documents.

Consecutively, the characteristics of those systems are explained

6.1.1 The Memorisation Subsystem
The Memorisation Subsystem allows the storage of selected
knowledge for each Information Domain -pages or documents-. It
memorises information concerning the whole Conceptual
Domain, which is managed in a particular information system.
The conceptual domain is represented by means of a directed
graph, in which, nodes and links are labeled with semantic
meanings - a semantic net-. The graph represents the concepts and

66

relationships between concepts of the information system, named
Conceptual Structure (CS). The different information items -
documents- can be associated -labeled- with one or more
concepts of the CS. These items are also nodes of the CS. Figure 6
shows an abstract example where MS is an artificial node which is
the root of the represented information systems. Two conceptual
structures are included (CA and CK).

• x ,,RI

RE RB 18 R C

Figure 6. Examples of CSs of the Memofisation System.

The author can also include additional restrictions which
determine what associations between concepts are possible. In
order to represent these restrictions, formulas in temporal logic
are used. This formalism also allows to check if the CS is valid at
any moment. Some examples are:

• "Concept-A can be connected with concept-B by means of
the relationship-A ".

• "The relationship-B must be acyclic".

• "Concept-C can be connected with concept-G ifconcept-C is
reached from concept-B".

6.1.2 The Presenta t ion Subsys tem
The Presentation Subsystem determines the set of possible views
of a concrete Conceptual and Information Domain. To some
extent it establishes the possible views of the hypermedia
documents which can be built with the items of the Memorisation
Subsystem. The Presentation Subsystem, using as basis the
Conceptual Structure of the Memorisation System, allows a
selection of a subset of the concepts and associations included in
Conceptual Structure, creating a new graph CSp.

6.1.3 The Navigat ion System
The Navigation System helps the reader in his/her interaction with
the information system. Using the knowledge base and the
reader's activity over time in a dynamic way, this system
determines -firstly- the accessible information and -secondly- its
interaction possibilities. The Navigation System, using as basis
the CSv of the Presentation Subsystem, allows adding some
navigation restrictions in order to follow more restricted routes in
the subgraph. These restrictions or navigation rules are expressed
using temporal logic. Considering the CSp and temporal
restrictions, a Petri net is automatically constructed. Petri net is
used to follow the navigation routes.

6.2 The evolution in a hypermedia system.
In order to manage evolution, the SEM-HP follows the general
architecture described in section 3. Each one of the Systems of the
approach has the two levels of abstraction: a) the Meta-system
(MS) which is in charge of constructing and changing the
structure of its SS and b) the Sottware-system (SS) which offer
some special fimctionality.

The author (developer) creates or modify the SS, carrying out
evolutionary actions, so he/she interacts with the Meta-System.
Besides, at the same time, he/she can use the SS defined by each
of these Systems in order to consult or check the structure.
Therefore, the author interacts with all the Systems and can adopt
the role of developer or user.

The reader only interacts with the Navigation System and makes
only functional actions; he/she is a user of one of the Systems of
SEM-HP (figure 7).

[~ ~E ~ M e m ° r i s a U ° n ~ _ _ ~ _ ~ _ _ _ - ~

Figure 7. Architecture of SEM-HP

In order to drive and control the evolving construction process of
the hyperrnedia system, each of the Systems of the SEM-HP
support:

1. one or more components which represent the particular
vision of the conceptual and information domain,

2. a set of restrictions,

3. a set of evolutionary actions that allow to make and
propagate changes in the different Systems of the hypermedia
system and,

4. meta-restrictions for controlling the construction and
guaranteeing the consistency of the components and systems.

Three first types of elements-1,2 and 3- represent the structure of
the different systems. This structure determines its ~nctionality
and can be modified by means of the evolutionary actions -4-.
These actions must verify the meta-restrictions which can also be
changed by the author.

When an evolutionary action is carried out by the autor, three
types of tasks must be done by each of the systems in the Meta-
system level:

6 7

1. Checking if the changed structure conserves integrity. Meta-
restrictions, which maintains the invariants of the System,
must be verified in order to guarantee the consistency.

2. Propagating the changes to the rest of the components of the
system. In this case, the System propagates the change inside
the System itself and its consistency is guaranteed.

3. Propagating the changes in System outside the System, i.e.,
to the other Systems of the SEM-HP. In this way, the
integrity of the three Systems and, therefore of the
hypermedia system, is guaranteed.

The evolution of each of the systems of the SEM-HP is explained
in [15] and in next paragraphs.

6.2.1 The Memor i sa t i on Subsys tem
During the development process, two aspects of this system can
be changed, the CS -the graph- and the restrictions defined by the
author. The Memorisation Subsystem always must guarantee the
consistency of these changes - in the modified component, inside
of the Subsystem and outside of the Subsystem-. Graph Theory is
used to represent the evolutionary actions of the graph and their
associated meta-restrictions.

The author -the developer-, an expert in a domain, designs the
structure of the Subsystem. Its Meta-system provides the
necessary evolutionary actions to modify its components: adding a
concept, deleting an association, modifying an association, adding
an item, etc.

The evolutionary actions must verify a set of meta-restrictions in
order to maintain the invariants of the CS. Some examples of
these invariants are: "each association of the CS must connect two
concepts or a concept and an item", "each arc and node of the CS
must be labelled","two nodes in a CS cannot have the same
label".

Otherwise, changes in restrictions defined by the author (adding,
deleting or modifying restrictions) must be defined by means of
meta-restrictions written in temporal logic to refer to the previous
state of the system.

6.2.2 The Presen ta t ion Subsys tem
Using this system, the author can select a particular subgraph,
CSp, from one Conceptual Structure. In a similar way to the
Memorisation Subsystem, the consistency must be guaranteed
during the evolution of the Presentation Subsystem. In this system
changes can be produced in the subgraph selected, CSp. When the
CSp is changed - the author select another set of concepts and
associations- the Meta-system level must check:

1. The CSp verifies the restrictions defined by the system and
the associations satisfy the set of restrictions defined by the
author. These restrictions are the same of the Memofisation
Subsystem because the Presentation Subsystem inherits
them.

2. A new view or presentation is defined. In this case, the
author must define again the navigation restrictions.

3. Changes must be propagated outside of the Navigation
System.

6.2.3 The Navigation System
In this System, the structure is formed by a concrete presentation
offered by the Presentation System, a set of navigation restrictions

defined by the author and, finally, a Petri net constructed based on
the two earlier components.

The Meta-system level of the Navigation System must guarantee
the consistency again. When the author redefines -add, delete or
modify- a navigation restriction, the system must check:

1. The set of restrictions that establish the order of navigation is
consistent. Predicate temporal logic is used to specify the
evolution operations over the restrictions, and their
associated meta-Restrictions.

2. The navigation restrictions have changed. Changes in a
restriction can imply the modification of other restrictions.
The Petri net based on the navigation restrictions must
evolve, generating it again -internal propagation of changes-.

7. CONCLUSIONS AND FUTURE WORKS
A two level architecture to model evolution have been presented.
The higher abstraction level, the Meta-system, is used to specify
the invariants of a Software System and to carry out changes in it.
This approach allows to conceive the development and use of a
system as a maturation process. The advantage of this general
approach is that many different formalisms can be used in order to
describe and modify different kinds of systems.

We have applied it to model the evolution of to kind of different
systems: Information Systems based on agents and hypermedia
systems. We have shown how their structure can be specified, the
actions that they can carry out and the restrictions associated to
them. Some formalisms have been presented to describe and
evolve this structure. Besides we have proposed temporal
formalisms to specify the structure, evolutionary actions and
meta-restrictions of the Meta-system.

This architecture, which was implemented in a tool called HEDES
[28] for agent-based systems, is being extended now for
hypermedia systems following the same philosophy: evolutionary
actions and meta-restrictions which verify before carrying out
changes. The meta-restrictions are modelled using different
formalisms which allows us to model structure and time (Graphs,
Temporal logic and Petri Nets).

8. REFERENCES
[1] Amano, M; Wa.tanabe, T: An Approach for constructing

Component-base Software Systems with Dynamic
Adaptability using LEAD++. Principles of Software
Evolution. ISPSE 2000. IEEE Computer Society00) 118-127

[2] Anaya, A; Rodriguez, M.J.; Parets J.: Representation and
management of memory and decision in evolving software
systemsComputer Aided Systems Theory- EUROCAST'97.
LNCS 1333 Berlin: Spfinger-Verlag (1997). 71-82.

[3] Aoyama, M. : Evolutionary Patterns of Design and Design
Patterns. Principles of Software Evolution. ISPSE 2000.
IEEE Computer Society (2000) 110-117

[4] Bacon, J.: Concurrent Systems. Operating Systems, Database
and Distributed Systems: An Integrated Approach. Addison
Wesley, 1998.

[5] Baneoee, J., Kim, W., Kim, H.K., Korth, H.F.: Semantics
and implementation of schema evolution in object-oriented
databases, In Proc. Of ACM-SIGMOD International
Conference on Management of Data, San Francisco, 1987

6 8

[6] Belady L.A, Lehman, M.M.: A Model of Large Program
Development, IBM SYST.J. Vol. 15.3, 225-252. (1976).

[7] Berzins, V., Luqi, Yehudai, A:. Using Transformations in
Specification-Based Prototyping, IEEE Trans.S.E. Vol. 19.5,
436-452 (1993.)

[8] Boehm, B.W.: A Spiral Model of Software Development and
Enhancement, ACM SIGSOFT S.E.NOTES. AUGUST Vol.
11, 14-24 (1986)

[9] Booch, G. et al.: The Unified Modeling Language. Reference
Manual. Addison-Wesley (1999).

[10] Casais, E.: Managing Class Evolution in Object-Oriented
Systems. In: Object Management. Tsichritzis, D. GENEVE.
Centre Universitaire d'lnformatique. 133-195 (1990)

[1 I] Charlton, P.: Self-Configurable Software Agents. Advances
in Object-Oriented Metalevel Architectures and Reflection.
Chris Zimmermann (ed.). CRC Press. (1996) 103-127.

[12] Franklin, S; Graesser, A: Is it an Agent, or just a Program?:
A Taxonomy for Autonomous Agents. Proceedings of the
Third International Worksshop on Agent Theories,
Architectures, and Languages, Springer-Verlag, 1996.

[13] Gabbay, D.M.; Hodkinson, M., Reynolds, I.: Temporal
logic. Mathematical Foundations and Computational
Aspects, Volume 1. Oxford Science Publications. Oxford
Logic Guides:28, 1995.

[14] Garcia-Cabrera, L.; Parets-Llorca, J.: A Cognitive Model for
Adaptive Hypermedia Systems. The I st International
Conference on WISE, Workshop on World Wide Web
Semantincs. Hong-Kong, China, June 2000, 29-33.

[15] Garcia-Cabrera, L.; Rodfiguez-F6rtiz, M. J; Parets-Llorca, J.:
Formal Foundations for the Evolution of Hypermedia Systems.
5 th European Conference on Software Maintenance and
Reengineering, Workshop on FFSE. IEEE Press. Lisbon,
Portugal, March (2001) 5-12.

[16] Gelemter, D.; Carreiro, N.: Coordination Languages and
their Significance. Communication of ACM, vol. 35, no.2,
1992.

[17] Heckel, R; Engels, G: Graph Transformation as a Meta
Language for Dynamic Modelling and Model Evolution.
Formal Foundations for the Evolution of Hypermedia Systems.
5 th European Conference on Software Maintenance and
Reengineering, Workshop on FFSE. IEEE Press. Lisbon,
Portugal, March (2001) 42-47.

[18] Henderson-Sellers, B.; Edwards, J.L.: The Object-Oriented
Systems Life Cycle, CACM 33.9. p. 143-159. (1990)

[19] Kozaczynsky, W., Ning, J., Engberts, A.: Program Concept
Recognition and Transformation, 1EEE Trans.S.E. 18,12.
p. 1065-1075 (1992)

[20] Le Moigne, J-L: La throrie du syst~me grnrral. Throfie de la
modrlisation, PARIS, Presses Universitaires de France
(1977-1990)

[21] Lehman, M; Ramil, J: Towards a Theory of Software
Evolution- And its Practical Impact. Principles of Software
Evolution. ISPSE 2000. IEEE Computer Society (2000) 2-13

[22] Lin, C.; Chaudhury, A.; Whinston, A. B.; Marinescu, D. C.
"Logical Inference of Horn Clauses in Petri Net Models".
IEEE Transactions on Knowledge and Data Engineering, vol
5,3. pp: 416-425. 1993.

[23] Mens, T: Transformational Software Evolution by Assertions.
Formal Foundations for the Evolution of Hypermedia Systems.
5 th European Conference on Software Maintenance and
Reengineering, Workshop on FFSE. IEEE Press. Lisbon,
Portugal, March (2001) 67-74

[24] Niertrasz, O; Achermann , F Supporting Compositional
Styles for Software Evolution. Principles of Software
Evolution. ISPSE 2000. IEEE Computer Society 14-22

[25] Niimberg, P.J.; Leggett, J.J.; Schneider, E.R. As We Should
Have Thought, Hypertext'97 Proc., ACM Press: 96-101.

[26] Paderewski, P.; J. Parets-Llorca, Anaya A., Rodriguez M.J.,
G. Sanchez, J. Torres, M.V. Hurtado: A Software
Development Tool for Evolutionary Prototyping of
Information Systems. Computers and Computational
Engineering in Control. Electric and Computer Engineering
Series. World Scientific and Engineering Society Press
(1999) 347-352.

[27] Paderewski, P.; Parets, J.: Un patr6n de activaci6n de
objetos activos. Jomadas de Ingenieria del Softwaere y Bases
de Datos, JISBD'99 (1999) 257-268

[28]Rodriguez, M.J.; Parets, J.;Paderewski, P.; Anaya, A.;
Hurtado; M.V.: HEDES: A System Theory based tool to
support evolutionary Software Systems. Lectures Notes in
Computer Science, Vol. 1798, pp.450-464. Springer Verlag
(2000)

[29] Rodriguez-Fortiz, M.J, Parets Llorca, J. Using Predicate
Temporal Logic and Coloured Petri Nets to specifying
integrity restrictions in the structural evolution of temporal
active systems. Principles of Software Evolution. ISPSE
2000. IEEE Computer Society (2000) 83-89

[30] Roscoe, A.W.: The Theory and Practice of Concurrency.
Prentice Hall, 1998.

[31] Said, J; Steegmans, E: Transformations of Binary relations into
Associations and Nested Classes. Formal Foundations for the
Evolution of Hypermedia Systems. 5 ~h European Conference
on Software Maintenance and Reengineering, Workshop on
FFSE.]EEE Press. Lisbon, Portugal, March (2001) 75-82

[32] Schnase, J.L., Leggett, J.J, Hicks, D.L., Szabo, R.L.
Semantic Data Modelling of Hypermedia Associations, ACM
Trans. Information Systems, 11 (1):27-50, January 1993.

[33] Shaw, M., Garlan, D.: Software Architecture. Perspectives
and emergencing discipline. Prentice Hall. 1996.

[34] Uschold, M.: Ontologies: Principles, Methods and
Applications. Knowledge Engineering Review, vol. I l, n. 2,
June (1996).

[35] Wermelinger, M; Lopes, A; Fiadeiro, J. L.: A Graph
Transformation Approach to Architectural Run-Time
Reconfiguration. Formal Foundations for the Evolution of
Hypermedia Systems. 5 th European Conference on Software
Maintenance and Reengineering, Workshop on FFSE. IEEE
Press. Lisbon, Portugal, March (2001) 59-66.

6 9

