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Abstract

Decision making is a common process for human beings. The uncertainty
and fuzziness of problems demand the use of the fuzzy linguistic approach
to model qualitative aspects of the decision problems. The recent proposal
of hesitant fuzzy linguistic term sets supports the elicitation of comparative
linguistic expressions in hesitant situations when experts hesitate among dif-
ferent linguistic terms to provide their assessments. To facilitate the com-
puting with words processes with such expressions was introduced the use
of linguistic intervals whose results lose the initial fuzzy representation. The
aim of this paper is to present a new representation of the hesitant fuzzy
linguistic term sets by means of a fuzzy envelope to carry out the computing
with words processes. This new fuzzy envelope can be straightly applied in
fuzzy multicriteria decision making models. An illustrative example of its
application by using fuzzy TOPSIS in a supplier selection problem is pre-
sented.

Keywords: Hesitant fuzzy linguistic term set, fuzzy envelope, comparative
linguistic expression, OWA operator, multicriteria decision making.

1. Introduction

Decision making is a universal process in human beings’ life, which can
be the final outcome of some mental and reasoning processes that lead to
the selection of the best alternative or set of alternatives. Decision making
problems [18] are usually defined under uncertain and imprecise situations.
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In such cases, it is suitable for experts to provide their preferences or assess-
ments by using linguistic information rather than quantitative values. This
fact has led to the use of different approaches, such as, fuzzy logic [33] and
fuzzy linguistic approach [34], to model this type of uncertainty and vague-
ness in decision making problems. The use of linguistic information implies
the need of computing with words (CWW) processes [15, 35] that can be ac-
complished by different linguistic computational models [15]. These models
follow the computational scheme depicted in Figure 1 in which Yager [32]
highlights the translation and retranslation phases in the CWW processes.
The former involves taking linguistic information and translating it into a
machine manipulative format, and the latter consists of taking the results
from the machine manipulative format and transforming them into linguistic
information to facilitate the understanding by human beings, that is one of
the main objectives of CWW [16].

Figure 1: Computing with words scheme

The complexity of real world decision problems is often induced by the
uncertainty of the alternatives, and for managing it, the use of linguistic in-
formation has provided successful results. However, sometimes it is limited
because of the linguistic models use just one linguistic term and experts may
not reflect exactly what they mean. Usually, in decision problems defined in
a linguistic context with a high degree of uncertainty, experts might hesitate
among different linguistic terms and need richer linguistic expressions to ex-
press their assessments. Different linguistic proposals have been introduced
in the literature to provide richer linguistic expressions than single linguistic
terms. Wang and Hao [25] proposed the use of proportional 2-tuple based on
the proportion of two consecutive linguistic terms. Ma et al. [14] presented a
linguistic model to increase the flexibility of the linguistic expressions merg-
ing different single linguistic terms into a new synthesized term. Tang and
Zheng [23] introduced another linguistic model that manages linguistic ex-
pressions built by logical connectives. Nevertheless, these proposals generate
expressions far away from the natural language used by experts in decision
problems and do not have any defined formalization.

A recent proposal was introduced by Rodŕıguez et al. [21] to improve the
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elicitation of linguistic information in decision making by using hesitant fuzzy
linguistic term sets (HFLTS) when experts hesitate among several linguistic
terms to express their assessments. This approach provides experts a greater
flexibility to elicit comparative linguistic expressions close to human beings’
cognitive model by using context-free grammars that formalize the generation
of flexible linguistic expressions.

The use of comparative linguistic expressions based on context-free gram-
mars and HFLTS has been applied in different decision making problems
[20, 21] in which the computational linguistic model deals with linguistic in-
tervals obtained by the envelope of HFLTS [21] and operates on them by
a symbolic model that finally obtains crisp values losing the initial fuzzy
representation. Keeping in mind the fuzzy linguistic approach in which the
linguistic terms are represented by a syntax and fuzzy semantics, it seems
reasonable that the semantics of the comparative linguistic expressions based
on a context-free grammar and HFLTS would be represented by fuzzy mem-
bership functions that model the uncertainty and vagueness expressed in such
comparative linguistic expressions.

The aim of this paper is to introduce a fuzzy representation for compar-
ative linguistic expressions that will be based on a new fuzzy envelope for
HFLTS that will represent the expressions by a fuzzy membership function
obtained from the multiple linguistic terms that compound the HFLTS, and
aggregated by using the OWA operator [27]. Such a fuzzy representation will
facilitate the CWW processes in fuzzy multicriteria decision making models
[11, 17] that deal with HFLTS. To show the performance of the proposed
fuzzy envelope, a supplier selection multicriteria decision making problem
is presented and solved by a fuzzy TOPSIS model [2, 5, 26] dealing with
comparative linguistic expressions.

The remaining of the paper is structured as follows: Section 2 reviews the
fuzzy linguistic approach basis of the HFLTS, the elicitation of comparative
linguistic expressions based on context-free grammars and HFLTS, and the
OWA operator used to compute the novel fuzzy envelope. Section 3 proposes
a fuzzy envelope for HFLTS based on fuzzy membership functions. Section
4 shows the application of the fuzzy envelope in a supplier selection mul-
ticriteria decision making problem. And finally, section 5 points out some
concluding remarks.
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2. Preliminaries

This section reviews the fuzzy linguistic approach basis of the HFLTS,
the elicitation of comparative linguistic expressions and some basic concepts
about the OWA operator, which is used to obtain the proposed fuzzy envelope
for HFLTS.

2.1. Fuzzy linguistic approach

In many real decision situations is straightforward the use of linguistic in-
formation rather than numerical information due to the imprecise framework
in which are defined such problems. In such situations, the fuzzy linguistic
approach [34] represents the linguistic information by means of linguistic
variables.

Zadeh introduced the concept of “linguistic variable” as a variable whose
values are not numbers but words or sentences in a natural or artificial lan-
guage. It is not so precise as a number but it is closer to human beings’
cognitive processes. It is defined as follows:

Definition 1. [34] A linguistic variable is characterized by a quintuple (H,
T (H), U,G,M) in which H is the name of the variable; T (H) is the term set
of H, i.e., the collection of its linguistic values; U is a universe of discourse;
G is a syntactic rule which generates the terms in T (H); and M is a semantic
rule which associates with each linguistic value X its meaning, M(X) denotes
a fuzzy subset of U .

To deal with linguistic variables, it is necessary to choose appropriate
linguistic descriptors of the linguistic terms and their semantics. There are
different approaches [19] for such selection. To choose the linguistic descrip-
tors we will use an approach that consists of applying directly the term set by
considering all the terms distributed on a scale that has a defined order [30].
In such cases, it is required that a linguistic term set S = {s0, s1, . . . , sg}
satisfies the following conditions:

1. An order of the terms of S: si ≤ sj if i ≤ j;

2. A negation operator Neg(si) = sj such that j = g − i (g + 1 is the
granularity of S);

3. A maximization operator and a minimization operator: max(si, sj) =
si,min(si, sj) = sj if i ≥ j.
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The usual approach to define the semantics of the linguistic descriptors is
based on membership functions [3, 6, 24]. This approach defines the seman-
tics of the linguistic term set by using fuzzy numbers defined in the interval
[0, 1], described by membership functions [24].

An efficient method from a computational point of view to obtain a fuzzy
number is to use a representation based on parameters of its membership
function [1, 6]. Because of the linguistic values provided by experts are
approximate assessments, several authors [7, 8] consider that the trapezoidal
fuzzy membership functions are good enough to capture and represent the
uncertainty and vagueness of such linguistic assessments.

Definition 2. [34] A fuzzy number A = T (a, b, c, d) is said to be a trapezoidal
fuzzy number if its membership function is given by

µA(x) =





0, x < a
x−a
b−a

, a ≤ x ≤ b

1, b < x < c
d−x
d−c

, c ≤ x ≤ d

0, x > d

(1)

where the left middle point b and the right middle point c indicate between
which the membership degree is 1, with a and d indicating the left and right
limits of the definition domain of the trapezoidal membership function.

A special case of this type of membership function is the triangular mem-
bership function in which b = c.

2.2. Elicitation of comparative linguistic expressions in decision making

Most of linguistic models in decision making [4, 6] provide experts a vo-
cabulary to express their preferences by using single linguistic terms. Never-
theless in the literature, different authors [14, 23, 25] point out the necessity
of richer expressions, mainly in decision making problems with high degree of
uncertainty in which experts might hesitate among different linguistic terms
to express their preferences. Despite these proposals [14, 23, 25] provide
higher flexibility to express linguistic expressions in hesitate decision situa-
tions, none of them is close to human beings’ cognitive model and does not
provide rules to generate the linguistic expressions.

Recently, Rodŕıguez et al. have introduced an approach [21] to improve
the elicitation of linguistic information in decision making by using context-
free grammars which provide a formal way to build comparative linguistic
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expressions. A context-free grammar G is a 4-tuple (VN , VT , I, P ), where VN

is the set of non-terminal symbols, VT is the set of terminals’ symbols, I
is the starting symbol, and P the production rules defined in an extended
Backus Naur Form [3].

The definition of the context-free grammar G, depends on the decision
making problem. Therefore, it is very important to define suitably each
element.

In [21] is presented a context-free grammar GH , that generates compar-
ative linguistic expressions similar to common language used by experts in
real world decision making problems. Such comparative linguistic expres-
sions cannot be directly used to carry out the CWW processes, thus in [21]
it was defined a transformation function to transform them into HFLTS.

Definition 3. [21] A HFLTS HS, is an ordered finite subset of consecutive
linguistic terms of S = {s0, . . . , sg}.

Example 1. Let S be a linguistic term set such as S = {s0 : nothing, s1 :
very bad, s2 : bad, s3 : medium, s4 : good, s5 : very good, s6 : perfect}
and ϑ be a linguistic variable, a HFLTS might be:

HS(ϑ) = {very bad, bad,medium}.

The transformation function is defined as follows,,

EGH
: Sll → HS (2)

where Sll is the expression domain generated by GH .
This function depends on the comparative linguistic expressions generated

by means of the context-free grammar GH .
To facilitate the computations with HFLTS, it was introduced the concept

of envelope of a HFLTS.

Definition 4. [21] The envelope of a HFLTS, env(HS), is a linguistic inter-
val whose limits are obtained by means of its upper bound and lower bound:

env(HS) = [HS− , HS+ ], HS− ≤ HS+ , (3)

where the upper bound and lower bound are defined as:

HS+ = max{si} = sj, si ≤ sj and si ∈ HS, ∀i,
HS− = min{si} = sj, si ≥ sj and si ∈ HS, ∀i.

6



Following the previous example, the envelope of the HFLTS HS(ϑ)=
{very bad, bad,medium}, is

env(HS(ϑ)) = [very bad,medium].

Different operators and models [20, 21] have been defined to compute on
such linguistic intervals by a symbolic model that finally obtains crisp values
losing the initial fuzzy representation. Therefore, in this paper, we propose
a fuzzy representation for comparative linguistic expressions based on a new
fuzzy envelope for HFLTS.

2.3. The OWA operator

Taking into account the basis on the fuzzy linguistic approach in which the
linguistic terms have defined a syntax and fuzzy semantics, it seems suitable
that the semantics of the comparative linguistic expressions are represented
by fuzzy membership functions. Hence, to build the new fuzzy envelope for
HFLTS, the fuzzy membership functions of the linguistic terms of the HFLTS
are aggregated by using the OWA operator [28] to obtain a fuzzy membership
function that represents the HFLTS. This operator has been chosen in our
proposal because its fundamental aspect of re-ordering adapts to our aim.

Definition 5. [28] An OWA operator of dimension n is a mapping OWA :
Rn → R, such that

OWA(a1, a2, . . . , an) =
n∑

j=1

wjbj (4)

where bj is the jth largest of the aggregated arguments a1, a2, . . . , an, and
W = (w1, w2, . . . , wn)

T is the associated weighting vector satisfying wi ∈
[0, 1], i = 1, 2, . . . , n and

∑n
i=1 wi = 1.

There are different approaches to compute the OWA weights [9, 13, 29,
31]. We will use one of them [9] that will be defined in Section 3.

A key concept for our proposal is the optimism degree of the OWA op-
erator that can be assessed by means of the orness measure. According to
the definition of HFLTS, it is a compound of different linguistic terms, and
the hesitation among different linguistic terms might imply different impor-
tance of such terms. Thus, the orness measure will be used to compute the
importance of the linguistic terms of the HFLTS. It is defined as follows:
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Definition 6. [28] The orness measure associated with a weighting vector
W = (w1, w2, . . . , wn)

T of an OWA operator is defined as

orness(W ) =
n∑

i=1

wi

(
n− i

n− 1

)
. (5)

It is noted that 0 ≤ orness(W ) ≤ 1.
Optimistic (OR-like) OWA operators are those whose orness (W) > 0.5

whereas pessimistic (AND-like) operators have orness (W) < 0.5 [29].

3. A New Fuzzy Envelope for HFLTS

The use of HFLTS provides a flexible and formal way to deal with com-
parative linguistic expressions in linguistic decision making. To facilitate the
CWW processes based on comparative linguistic expressions, we propose a
new fuzzy representation. One possible way to represent such expressions is
to use a fuzzy membership function, which is similar to the way of represent-
ing the linguistic terms by fuzzy membership functions. To achieve such a
fuzzy representation, we take into account the following,

1. The hesitation among different linguistic terms usually implies different
importance of such terms.

2. The use of a trapezoidal fuzzy membership function is good enough to
capture the vagueness of the comparative linguistic expressions [7, 8].

3. The parameters of the trapezoidal fuzzy membership function are com-
puted by using an aggregation operator that aggregate the fuzzy mem-
bership functions of the linguistic terms that compound the HFLTS.
Meanwhile, the different importance of the linguistic terms of the HFLTS
will be reflected by the aggregation operator.

Therefore, here it is introduced a proposal to obtain a fuzzy envelope
for HFLTS, which is a trapezoidal fuzzy membership function obtained by
aggregating the fuzzy membership functions of the linguistic terms of the
HFLTS according to their relevance. To do so, the OWA aggregation operator
[28] is used.

Following it is introduced a general process to compute the fuzzy enve-
lope for HFLTS and later on it is further detailed its application to specific
comparative linguistic expressions generated from the context-free grammar
GH .
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3.1. Fuzzy envelope for HFLTS: General Process

LetHS = {si, si+1, . . . , sj} be a HFLTS, where si, sj ∈ S = {s0, s1, . . . , sg}
and si < sj. To compute the fuzzy envelope of the HFLTS a four-step process
is carried out (see Figure 2).

OWA weights 
Parameters of

A=T(a,b,c,d)

Fuzzy 

envelope
HFLTS

General process to obtain the fuzzy envelope

Elements to 

aggregate 

Figure 2: The process to obtain the fuzzy envelope

1. Obtain the elements to aggregate.

To obtain the trapezoidal fuzzy membership function, we need to com-
pute its parameters. In the computational processes, it is reasonable
to use all the information contained in the HFLTS, therefore all the
linguistic terms in the HFLTS should be considered. We assume that
all linguistic terms sk ∈ S are defined by trapezoidal (triangular) mem-
bership functions Ak = T (akL, a

k
M , akM , akR), k = 0, 1, . . . , g. Hence it is

straightforward to regard the set of points of all membership functions
of the linguistic terms in the HFLTS HS = {si, si+1, . . . , sj},

T = {aiL, a
i
M , ai+1

L , aiR, a
i+1
M , ai+2

L , ai+1
R , . . . , ajL, a

j−1
R , ajM , ajR}, (6)

as the set of elements to aggregate.

But for the sake of simplicity, we consider a special case. According to
the fuzzy partitions [22], it obtains ak−1

R = akM = ak+1
L , k = 1, 2, . . . , g−

1. In this case, the elements to aggregate are given as

T = {aiL, a
i
M , ai+1

M , . . . , ajM , ajR}. (7)

2. Compute the parameters of the trapezoidal fuzzy membership function.

Once obtained the elements to aggregate, we are going to explain how
the parameters of the fuzzy membership function are computed.

Keeping in mind that a trapezoidal fuzzy membership function A =
T (a, b, c, d) is used as the representation of the comparative linguistic
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expressions based on HFLTS HS, the definition domain of A should
be the same as the linguistic terms si, . . . , sj ∈ HS. Therefore, we can
obtain the left and right limits of A from the left limit of si and the
right limit of sj (since si = minHS and sj = maxHS). Noting T (see
Eq. (6) and (7)) is an ordered set, we use the min and the max operator
to compute a and d, i.e.,

• a = min{aiL, a
i
M , ai+1

M , . . . , ajM , ajR} = aiL,

• d = max{aiL, a
i
M , ai+1

M , . . . , ajM , ajR} = ajR.

The remaining elements aiM , ai+1
M , . . . , ajM ∈ T should contribute to the

computation of the parameters b and c. One possible way is to use an
aggregation operator to aggregate them. The OWA operator is used
because of its aspect of re-ordering and it obtains

• b = OWAW s(aiM , ai+1
M , . . . , ajM),

• c = OWAW t(aiM , ai+1
M , . . . , ajM).

Remark 1. The OWA weighting vectors for computing b and c are in
the form of W s and W t respectively, with s, t = 1, 2, s 6= t or s = t.
The latter case implies the same form of the weighting vector but the
values of the parameter in the two weighting vectors are different, thus
the associated weights are different.

3. Obtain the OWA weights.

As aforementioned, because of the hesitation among the linguistic terms
that compound a HFLTS, such terms might have different importance
that will be reflected by means of the OWA weights. There are different
approaches to compute the OWA weights. We will use the approach
presented in [9].

Definition 7. [9] Let α be a parameter belongs to the unit interval [0, 1].
The first kind of OWA weights W 1 = (w1

1, w
1
2, . . . , w

1
n)

T is defined as

w1
1 = α,w1

2 = α(1− α), w1
3 = α(1− α)2, . . . , w1

n−1 = α(1− α)n−2,
w1

n = (1− α)n−1.
(8)
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The second type of OWA weights W 2 = (w2
1, w

2
2, . . . , w

2
n)

T is defined as

w2
1 = αn−1, w2

2 = (1− α)αn−2, w2
3 = (1− α)αn−3, . . . , w2

n−1 = (1− α)α,
w2

n = 1− α.
(9)

There are two reasons that W 1 and W 2 are chosen as the associated
weights. One reason is that W 1 and W 2 provide two general classes of
OWA weights. Such weights facilitate the computations of the OWA
weights with respect to different numbers n if the value of α is known
for each n. Thus to determine the OWA weights W 1 and W 2 the value
of the parameter α must be determined. The other reason can be seen
in Figure 3, in which W 1 and W 2 have the following properties:

n=2

n=3

 n=10

o
rn

e
s
s

1

α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9

.

.

.

0.1

0.2

0.3

0.4
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0.6

0.7

0.7

0.8

0.9

1
n=2

n=3

n=10o
rn

e
s
s

0

α

0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1

w
1

w
20.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.7

.

.

.

.

.

Figure 3: Functional relationship between the orness measure and parameter α of
W 1 and W 2 for n = 2, 3, . . . , 10 (adapted from [9]).

(a) For a fixed n, the orness measures of W 1 and W 2 increase when
α increases;

(b) For a fixed α, the orness measure of W 1 is monotonically increas-
ing with respect to n, while the orness measure of W 2 is mono-
tonically decreasing with respect to n;

(c) For n = 2, the orness measures of W 1 and W 2 are equal to α;

(d) For W 1 and W 2, the orness measures approach 0 when α ap-
proaches 0, and the orness measures approach 1 when α approaches
1.
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Since both of the parameters b and c of the trapezoidal membership
function are computed by using the OWA operator, the selection of the
weighting vector W 1 or W 2 is also an important aspect. Considering
the only difference between W 1 and W 2 is the monotonicity of the
orness measure with respect to n, it can be seen that this property will
serve as the basis to select the associated weighting vectors for b and c.

4. Obtain the fuzzy envelope.

For a HFLTS HS, its fuzzy envelope envF (HS) can be defined as the
trapezoidal fuzzy membership function T (a, b, c, d), i.e.,

envF (HS) = T (a, b, c, d),

where the parameters of the fuzzy membership function are computed
by using the previous steps.

3.2. Fuzzy envelope for comparative linguistic expressions

The general process introduced previously to obtain a fuzzy envelope for
HFLTS might be applied to any context-free grammar G, that generates
linguistic expressions based on HFLTS. Here we will apply the general pro-
cess to the comparative linguistic expressions generated by the context-free
grammar GH which are close to common language used by experts in decision
making problems.

Definition 8. Let GH be a context-free grammar and S = {s0, . . . , sg} be
a linguistic term set. The elements of GH = (VN , VT , I, P ) are defined as
follows:

VN = {〈primary term〉 , 〈composite term〉 , 〈unary relation〉 ,
〈binary relation〉 , 〈conjunction〉},

VT = {at most, at least, between, and, s0, . . . , sg},
I ∈ VN .
The production rules are defined in an extended Backus-Naur Form so

that the brackets enclose optimal elements and the symbol “ | ” indicates
alternative elements. For the context-free grammar, GH , the production rules
are the following:

P = {I ::= 〈primary term〉|〈composite term〉
〈composite term〉 ::= 〈unary relation〉〈primary term〉| 〈binary relation〉

〈primary term〉〈conjunction〉 〈primary term〉
〈primary term〉 ::= s0|s1| . . . |sg
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〈unary relation〉 ::= at most|at least
〈binary relation〉 ::= between
〈conjunction〉 ::= and}

The comparative linguistic expressions generated by GH are transformed
into HFLTS by means of the transformation function EGH

as follows,
EGH

(si) = {si|si ∈ S},
EGH

(at most si) = {sj|sj ≤ si and sj ∈ S},
EGH

(at least si) = {sj|sj ≥ si and sj ∈ S},
EGH

(between si and sj) = {sk|si ≤ sk ≤ sj and sk ∈ S}.

3.2.1. Fuzzy envelope for the comparative linguistic expression “at least si”

This expression is used by an expert when he/she hesitates among dif-
ferent linguistic terms but he/she is clear about the worst assessment. By
using the transformation function, we can obtain the HFLTS as

EGH
(at least si) = {si, si+1, . . . , sg}.

In the following, the general process is applied to obtain the fuzzy enve-
lope envF (EGH

) of the HFLTS, and some properties are then discussed.

1. Computation of the fuzzy envelope.

The fuzzy envelope is computed by using the following steps:

(a) Obtain the elements to aggregate.

The set of elements to aggregate is

T = {aiL, a
i
M , ai+1

L , aiR, a
i+1
M , ai+2

L , ai+1
R , . . . , agL, a

g−1
R , agM , agR}.

Considering ak−1
R = akM = ak+1

L , k = 1, 2, . . . , g − 1, the elements
to aggregate are obtained as

T = {aiL, a
i
M , ai+1

M , . . . , agM , agR}.

(b) Compute the parameters of the trapezoidal fuzzy membership func-
tion.

In this step, the parameters of the trapezoidal fuzzy membership
function A = T (a, b, c, d) are computed as follows.
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a = min{aiL, a
i
M , ai+1

M , . . . , agM , agR} = aiL,

d = max{aiL, a
i
M , ai+1

M , . . . , agM , agR} = agR,

b = OWAW 2(aiM , ai+1
M , . . . , agM), (10)

c = OWAW 2(aiM , ai+1
M , . . . , agM), (11)

being the weights W 2 computed in the next step.

The trapezoidal fuzzy membership function is shown in Figure 4.

si sg

aiL aiM agM=a
g
Rb aiR

si sg

b

(i) (ii)

aiL aiM aiR agM=a
g
R

Figure 4: The membership function of EGH
= {si, si+1, . . . , sg}

(c) The OWA weights.

The importance of the linguistic terms of the HFLTS obtained
from the comparative linguistic expression at least si will be re-
flected by the computation of the OWA weights.

The weights used to compute b are in the form of W 2 with n =
g − i+ 1, that is, W 2 = (w2

1, w
2
2, . . . , w

2
g−i+1)

T , where

w2
1 = αg−i, w2

2 = (1− α)αg−i−1, w2
3 = (1− α)αg−i−2, . . . ,

w2
g−i = (1− α)α,w2

g−i+1 = 1− α.
(12)

On the one hand, the orness measure orness(W 2) > 0.5 implies
the closeness of b to the maximum value, thus the more impor-
tance of the maximum linguistic term sg in the HFLTS. On the
other hand, the orness measure orness(W 2) < 0.5 implies the
closeness of b to the minimum value, thus the more importance of
the minimum linguistic term si in the HFLTS.

The weights used to compute c are also in the form of W 2 defined
by Eq. (12) with α = 1. Therefore c = agM .
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(d) The fuzzy envelope.

For the HFLTS obtained from the comparative linguistic expres-
sion at least si, its fuzzy envelope is defined as the trapezoidal
fuzzy membership function T (aiL, b, a

g
M , agR), where b is computed

by using Eq. (10) with the associated weights W 2 given by Eq.
(12).

2. Discussion of the properties.

Firstly, it is discussed the properties of the parameter b in the fuzzy
envelope T (aiL, b, a

g
M , agR), and afterwards it is explained the reason of

using W 2 as the associated weighting vector.

Theorem 1. The parameter b defined by Eq. (10) in the fuzzy envelope
T (aiL, b, a

g
M , agR), has the following properties:

(a) 0 ≤ aiM ≤ b ≤ agM = 1;

(b) For a fixed si in the linguistic expression at least si, if α → 0,
then b → aiM ; if α ≫ 0, then b ≫ aiM ; if α → 1, then b → agM .

Proof. (a) Since min{aiM , . . . , agM} = aiM ≥ 0, max{aiM , . . . , agM} =
agM = 1 and the aggregation result of the OWA operator is between
the minimum and the maximum of the aggregated values, the result
holds.

(b) If α → 0, then w2
1 → 0, . . . , w2

g−i → 0, w2
g−i+1 → 1, and then

b → aiM .

If α ≫ 0, then w2
1, w

2
2, . . . , w

2
g−i ≫ 0, w2

g−i+1 ≪ 1 and we have
b ≫ aiM .

If α → 1, then w2
1 → 1, w2

2 → 0, . . . , w2
g−i+1 → 0, and then b →

agM .

Remark 2. If si → s0, then α → 0 and b → a0M = 0. If si → sg,
then α → 1 and b → agM = 1. If s0 < si < sg, then 0 < α < 1 and
aiM < b < agM . The value α increases from 0 to 1 as si increases from
s0 to sg.

According to Remark 2, the value α depends on the linguistic term si,
thus it depends on the value i = index(si). In order to compute α, we
define a function

f1 : [0, g] → [0, 1], such that α = f1(i),
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which satisfies the boundary conditions

f1(0) = 0, f1(g) = 1.

For simplicity, we assume that f1 is a linear function, that is

f1(i) = βi+ γ,

where β, γ are unknown parameters. Considering the boundary con-
ditions, we can obtain the form of f1 as:

f1(i) =
i

g
.

Thus,

α =
i

g
=

i

(g + 1)− 1
, (13)

where i = index(si), and g + 1 is the granularity of the linguistic term
set S = {s0, s1, . . . , sg}.

Let us analyse the reason that W 2 is used as the associated weighting
vector. To avoid too much uncertainty, the linguistic term si in the com-
parative linguistic term at least si should satisfy s0 ≪ si < sg. From
Eq. (13), we see that for a fixed linguistic term set S = {s0, . . . , sg},
the value of α is determined by i. Considering s0 ≪ si < sg and
thus 0 ≪ i < g, it is obtained that 0 ≪ α < 1. From Figure 3, we
see that for W 2, when α ≫ 0, the difference of the orness measure
among different values of n is greater than for W 1. Thus, if W 2 is
used as the associated weighting vector to compute the points b1 and
b2 of two trapezoidal fuzzy membership functions A = T (a1, b1, c1, d1)
and B = T (a2, b2, c2, d2) of two HFLTS, which are generated from two
different linguistic expressions at least si1 and at least si2 (i1 6= i2) re-
spectively, the difference between b1 and b2, |b1−b2|, will be greater than
the difference between them if W 1 is used as the associated weighting
vector.

3.2.2. Fuzzy envelope for the comparative linguistic expression “at most si”

This expression is used when a decision maker hesitates among several
linguistic terms but he/she is clear about the best assessment. The HFLTS
generated from this linguistic expression is

EGH
(at most si) = {s0, s1, . . . , si}.
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1. Computation of the fuzzy envelope.

To obtain the fuzzy envelope, it is applied the general process.

(a) Obtain the elements to aggregate.

The set of elements to aggregate is

T = {a0L, a
0
M , a1L, a

0
R, a

1
M , a2L, a

1
R, . . . , a

i
L, a

i−1
R , aiM , aiR}.

Considering ak−1
R = akM = ak+1

L , k = 1, 2, . . . , g, the elements to
aggregate are obtained as

T = {a0L, a
0
M , a1M , . . . , aiM , aiR}.

(b) Parameters of the trapezoidal fuzzy membership function.

The parameters of the trapezoidal fuzzy membership function A =
T (a, b, c, d) are computed as

a = min{a0L, a
0
M , a1M , . . . , aiM , aiR} = a0L,

d = max{a0L, a
0
M , a1M , . . . , aiM , aiR} = aiR,

b = OWAW 1(a0M , a1M , . . . , aiM), (14)

c = OWAW 1(a0M , a1M , . . . , aiM), (15)

being the weights W 1 in Eq. (14) and Eq. (15) computed by using
different parameters in the next step.

The trapezoidal fuzzy membership function is shown in Figure 5.

a0L=a
0
M

aiRc aiM

si

=a0Ma0L c aiM aiR

(i) (ii)

s0 s0 si

Figure 5: The membership function of EGH
= {s0, s1, . . . , si}
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(c) The OWA weights.

The linguistic terms of the HFLTS obtained from the comparative
linguistic expression at most si might have different importance
which will be reflected by the OWA weights.

The weights used to compute b is W 1 with n = i + 1 and α = 0,
that is, W 1 = (w1

1, w
1
2, . . . , w

1
i+1)

T , where

w1
1 = α,w1

2 = α(1− α), w1
3 = α(1− α)2, . . . , w1

i = α(1− α)i−1,
w1

i+1 = (1− α)i.
(16)

Therefore, b = a0M .

The weighting vector to compute c is also in the form of W 1 given
by Eq. (16).

On the one hand, the orness measure orness(W 1) > 0.5 implies
the closeness of c to the maximum value, thus the more impor-
tance of the maximum linguistic term si in the HFLTS. On the
other hand, the orness measure orness(W 1) < 0.5 implies the
closeness of c to the minimum value, thus the more importance of
the minimum linguistic term s0 in the HFLTS.

(d) The fuzzy envelope.

For the HFLTS obtained from the comparative linguistic expres-
sion at most si, the fuzzy envelope envF (EGH

) is defined as the
trapezoidal fuzzy membership function T (a0L, a

0
M , c, aiR), where c

is computed by using Eq. (15) with the associated weights W 1

given by Eq. (16).

2. Discussion of the properties.

Here, it is discussed some properties of the parameter c in the fuzzy
envelope T (a0L, a

0
M , c, aiR), the connection between the comparative lin-

guistic expressions at least and at most, and the reason to choose W 1

as the associated weights.

Theorem 2. The parameter c defined by Eq. (15), in the fuzzy envelope
T (a0L, a

0
M , c, aiR), has the following properties:

(a) 0 = a0M ≤ c ≤ aiM ≤ 1;

(b) For a fixed si, if α → 0, then c → a0M , if α ≫ 0, then c ≫ a0M , if
α → 1, then c → aiM .
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The proof of the theorem is similar to Theorem 1.

Remark 3. If si → s0, then α → 0 and c → a0M = 0. If si → sg,
then α → 1 and c → agM = 1. If s0 < si < sg, then 0 < α < 1 and
a0M < c < agM . The value α increases from 0 to 1 as si increases from
s0 to sg.

Considering the Remark 3, we can obtain the value of α in the same
way as the comparative linguistic expression at least, i.e.,

α =
i

g
=

i

(g + 1)− 1
. (17)

where i = index(si), and g + 1 is the granularity of the linguistic term
set S = {s0, . . . , sg}.

Let us analyze the reason that W 1 is chosen as the associated weight-
ing vector. In order to avoid too much uncertainty, the linguistic
term si in the comparative linguistic term at most si should satisfy
s0 < si ≪ sg. From Eq. (17), we see that for a fixed linguistic term set
S = {s0, . . . , sg}, the value of α is determined by i = index(si). Consid-
ering s0 < si ≪ sg and 0 < i ≪ g, it is obtained that 0 < α ≪ 1. From
Figure 3, we see that for α ≪ 1 and W 1, the difference of the orness
measure among different values of n is greater than W 2. Thus, if W 1 is
used as the associated weighting vector to compute the points c1 and
c2 of two trapezoidal fuzzy membership functions A = T (a1, b1, c1, d1)
and B = T (a2, b2, c2, d2) of two HFLTS, which are generated from two
linguistic expressions at most si1 and at most si2 (i1 6= i2) respec-
tively, the difference between c1 and c2, |c1 − c2|, will be greater than
the difference between them if W 2 is used as the associated weighting
vector.

The connection between the comparative linguistic expression at least
and at most is shown in the following theorem.

Theorem 3. Let S = {s0, . . . , sg} be a linguistic term set, and A =
T (aiL, b, a

g
M , agR) be the fuzzy envelope of the HFLTS based on at least si,

and B = T (a0L, a
0
M , c, aiR) be the fuzzy envelope of the HFLTS based on

at most sg−i, where b and c are computed by Eq. (10) and Eq. (15)
respectively. Then b and c satisfy b+ c = 1.
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Proof. The associated weighting vector of the OWA aggregation oper-
ator to compute b is

W 2 =
(
αg−i
1 , (1− α1)α

g−i−1
1 , (1− α1)α

g−i−2
1 , . . . , (1− α1)α1, 1− α1

)T

with α1 = i/g.

The associated weighting vector of the OWA aggregation operator to
compute c is

W 1 =
(
α2, α2(1− α2), α2(1− α2)

2, . . . , α2(1− α2)
g−i−1, (1− α2)

g−i
)T

with α2 = (g − i)/g.

Thus α1 + α2 = 1 and

b = αg−i
1 agM + (1− α1)α

g−i−1
1 ag−1

M + · · ·+ (1− α1)α1a
i+1
M + (1− α1)a

i
M ,

c = α2a
g−i
M + α2(1− α2)a

g−i−1
M + · · ·+ α2(1− α2)

g−i−1a1M + (1− α2)
g−ia0M .

Since ajM + ag−j
M = 1, j = 0, 1, . . . , i, then

b+ c = αg−i
1 +(1−α1)α

g−i−1
1 + · · ·+(1−α1) = 1.

3.2.3. Fuzzy envelope for the comparative linguistic expression “between si and sj”

By using the transformation function, we can obtain the HFLTS based
on the comparative linguistic expression “between si and sj” as

EGH
(between si and sj) = {si, si+1, . . . , sj}.

Remark 4. When si < sj = sg, the expression coincides with at least si.
When s0 = si < sj, the expression coincides with at most sj. To avoid these
cases, a constraint is given as s0 < si < sj < sg.

Firstly, the general process is applied to obtain the fuzzy envelope envF (EGH
)

of the HFLTS, and then some properties are discussed.

1. Computation of the fuzzy envelope.

The fuzzy envelope is computed by using the following steps:

20



(a) Obtain the elements to aggregate.

The set of elements to aggregate is

T = {aiL, a
i
M , ai+1

L , aiR, a
i+1
M , ai+2

L , ai+1
R , . . . , agL, a

g−1
R , agM , agR}.

Considering ak−1
R = akM = ak+1

L , k = 1, 2, . . . , g − 1, the elements
to aggregate are obtained as

T = {aiL, a
i
M , ai+1

M , . . . , ajM , ajR}.

(b) Compute the parameters of the trapezoidal fuzzy membership func-
tion.

In this phase, the parameters a and d of the trapezoidal fuzzy
membership function A = T (a, b, c, d) are computed as follows:

a = min{aiL, a
i
M , ai+1

M , . . . , ajM , ajR} = aiL,

d = max{aiL, a
i
M , ai+1

M , . . . , ajM , ajR} = ajR.

Meanwhile, the points b and c (see Figure 6) are computed by
using the OWA operator and taking into account the number of
the linguistic terms in the HFLTS generated by the comparative
linguistic expression.

aiL aiM b c ajM ajR

si sj

(i)

si sj

aiL aiM b ajM ajR

(ii)

c

Figure 6: The membership function of EGH
= {si, si+1, . . . , sj}

i. If i+ j is odd, then

A. If i + 1 = j, then we need not to use the OWA operator
to compute b and c. We can obtain b = aiM , c = ai+1

M

directly. In this case, the linguistic terms si and sj are
equally important;
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B. If i+ 1 < j, then

b = OWAW 2

(
aiM , ai+1

M , . . . , a
i+j−1

2

M

)
, (18)

c = OWAW 1

(
ajM , aj−1

M , . . . , a
i+j+1

2

M

)
, (19)

being the associated weights further detailed later on.

ii. If i+ j is even, then

b = OWAW 2

(
aiM , ai+1

M , . . . , a
i+j

2

M

)
, (20)

c = OWAW 1

(
ajM , aj−1

M , . . . , a
i+j

2

M

)
, (21)

being the associated weights introduced later on.

(c) The OWA weights.

In this comparative linguistic expression the importance of the
linguistic terms of the HFLTS will be reflected by the computa-
tion of the OWA weights by using W 1 and W 2. The weights are
computed according to the following two cases:

i. If i + j is odd, then the OWA weights in Eq. (18) are W 2 =
(w2

1, w
2
2, . . . , w

2
(j−i+1)/2)

T , being

w2
1 = α

j−i−1

2

1 , w2
2 = (1− α1)α

j−i−3

2

1 , . . . , w2
j−i−1

2

= (1− α1)α1,

w2
j−i+1

2

= 1− α1.

(22)
The OWAweights in Eq. (19) areW 1 = (w1

1, w
1
2, . . . , w

1
(j−i+1)/2)

T :

w1
1 = α2, w1

2 = α2(1− α2), . . . , w2
j−i−1

2

= α2(1− α2)
j−i−3

2 ,

w2
j−i+1

2

= (1− α2)
j−i−1

2 .

(23)

ii. If i+ j is even, then the OWA weights in Eq. (20) are W 2 =(
w2

1, w
2
2, . . . , w

2
(j−i+2)/2

)T
, where
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w2
1 = α

j−i

2

1 , w2
2 = (1− α1)α

j−i−2

2

1 , . . . , w2
j−i

2

= (1− α1)α1,

w2
j−i+2

2

= 1− α1.

(24)

The OWAweights in Eq. (21) areW 1 =
(
w1, w

1
2, . . . , w

1
(j−i+2)/2

)T
,

where

w1
1 = α2, w

1
2 = α2(1− α2), . . . , w

2
j−i

2

= α2(1− α2)
j−i−2

2 ,

w2
j−i+2

2

= (1− α2)
j−i

2 .

(25)

(d) The fuzzy envelope.

For the HFLTS obtained from the comparative linguistic expres-
sion between si and sj, its fuzzy envelope envF (EGH

) is defined
as the trapezoidal fuzzy membership function A = T (aiL, b, c, a

j
R),

where b and c are computed by using Eq. (18) and (19), or Eq.
(20) and (21).

2. Discussion of the properties.

First we discuss the properties of the parameters b and c.

Theorem 4. The parameters b given by Eq. (18) or Eq. (20), and
the parameter c given by Eq. (19) or Eq. (21), have the following
properties:

(a) If i+ j is odd, then

i. if α1 → 0, then b → aiM , if α1 → 1, then b → a
(i+j−1)/2
M , if

0 < α1 < 1, then aiM < α1 < a
(i+j−1)/2
M ;

ii. if α2 → 0, then b → a
(i+j+1)/2
M , if α2 → 1, then b → ajM , if

0 < α2 < 1, then a
(i+j+1)/2
M < α1 < ajM .

(b) If i+ j is even, then

i. if α1 → 0, then b → aiM , if α1 → 1, then b → a
(i+j)/2
M , if

0 < α1 < 1, then aiM < α1 < a
(i+j)/2
M ;
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ii. if α2 → 0, then b → a
(i+j)/2
M , if α2 → 1, then b → ajM , if

0 < α2 < 1, then a
(i+j)/2
M < α1 < ajM .

The proof of this theorem is similar to Theorem 1 and Theorem 2.

Remark 5. If i + j is odd, i + 1 < j, and 0 < α1, α2 < 1, then the
linguistic terms s(i+j−1)/2 and s(i+j+1)/2 are the most important terms.
If i + j is even and 0 < α1, α2 < 1, then the linguistic term s(i+j)/2 is
the most important term. Thus, the linguistic terms between si and sj
(i+1 < j) are the most important in the linguistic expression between
si and sj.

The parameters b and c have a relation shown by the following theorem.

Theorem 5. If α1 + α2 = 1, then b and c computed by Eq. (18) and

(19) respectively, are symmetric to the middle point of a
(i+j−1)/2
M and

a
(i+j+1)/2
M , i.e.,

b+ c = a
i+j−1

2

M + a
i+j+1

2

M . (26)

Proof. Since α1+α2 = 1, then α2 = 1−α1. For simplicity, let δ = 1/g,
then aiM = iδ. Thus

b+ c = α
j−i−1

2

1 a
i+j−1

2

M + (1− α1)α
j−i−3

2

1 a
i+j−3

2

M + · · ·

+(1− α1)α1a
i+1
M + (1− α1)a

i
M + α2a

j
M + α2(1− α2)a

j−1
M

+ · · ·+ α2(1− α2)
j−i−3

2 a
i+j+3

2

M + (1− α2)
j−i−1

2 a
i+j+1

2

M

= α
j−i−1

2

1

(
a

i+j−1

2

M + a
i+j+1

2

M

)
+ (1− α1)α

j−i−3

2

1

(
a

i+j−3

2

M + a
i+j+3

2

M

)

+ · · ·+ (1− α1)α1

(
ai+1
M + aj−1

M

)
+ (1− α1)

(
aiM + ajM

)

=
[
α

j−i−1

2

1 + (1− α1)α
j−i−3

2

1 + · · ·+ (1− α1)
]
(i+ j)δ

= (i+ j)δ = a
i+j−1

2

M + a
i+j+1

2

M .

Remark 6. This theorem indicates that if α1+α2 = 1, then one value
of b and c can be computed from the other one.

If ∆ = a
(i+j−1)/2
M − b, then c = a

(i+j+1)/2
M +∆.

If ∆ = c− a
(i+j+1)/2
M , then b = a

(i+j−1)/2
M −∆.
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Similarly, we have the following property:

Theorem 6. If α1 + α2 = 1, then b and c computed by Eq. (20) and

Eq. (21) respectively, are symmetric to the point a
(i+j)/2
M , i.e.,

b+ c = 2a
i+j

2

M . (27)

The proof of this theorem is similar to Theorem 4.

Remark 7. From this theorem it obtains c = 2a
(i+j)/2
M − b and b =

2a
(i+j)/2
M − c.

Here we introduce the method to compute the values α1 and α2 in the
OWA weightsW 2 andW 1. From Theorem 4 and Theorem 5, we require
that α1 + α2 = 1. Thus we can only discuss α1 and the value α2 can
be obtained easily. Noting s0 < si < sj < sg, we have 0 < i < j < g
and thus 1 ≤ j − i < g. Let us consider two extreme cases.

(a) The first extreme case is that sj = si+1, i.e., j − i = 1. In this
case, the OWA weights W 2 are not used because there is only
one value to aggregate. But for convenience, it is set α1 = 1 and
W 2 = (α1)

T = (1)T . This assumption does not affect the result
as we can see that b = α1 × aiM = aiM .

(b) The second extreme case is that si → s0 and sj → sg, we have
j − i → g and α1 → 0.

Thus there exists a function

f2 : [1, g) → (0, 1], such that α1 = f2(j − i),

which satisfies the boundary conditions f2(1) = 1, f2(g) = 0. Here we
also assume that f2 is a linear function, that is

f2(j − i) = β(j − i) + γ,

where β, γ are unknown parameters. The form of f2 can be obtained
by using the boundary conditions as

f2(j − i) =
g − (j − i)

g − 1
,
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where i = index(si), j = index(sj), and g + 1 is the granularity of the
linguistic term set S = {s0, . . . , sg}. Therefore, α1 is defined as

α1 =
g − (j − i)

g − 1
(28)

and α2 is defined as

α2 = 1− α1 =
(j − i)− 1

g − 1
. (29)

3.3. Computing the fuzzy envelopes

An example to understand the process of obtaining the fuzzy envelope for
the comparative linguistic expressions generated by the context-free grammar
GH (see Def. 8) is introduced below.

Let S = {s0 : nothing, s1 : very bad, s2 : bad, s3 : medium, s4 : good, s5 :
very good, s6 : perfect} be a linguistic term set shown in Figure 7. Several
fuzzy envelopes for different comparative linguistic expressions are computed
as follows.

Figure 7: The linguistic term set S = {s0, s1, . . . , s6}.

• Fuzzy envelope for HFLTS Hs1 = {s4, s5, s6} based on ll1 = at least s4.

The elements to aggregate are

T = {a4L, a
4
M , a5L, a

4
R, a

5
M , a6L, a

5
R, a

6
M , a6R}.

Since a4M = a5L, a
4
R = a5M = a6L, and a5R = a6M , we obtain the elements

to aggregate as
T = {a4L, a

4
M , a5M , a6M , a6R}.
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The points a1, d1 of the fuzzy envelope envF (HS1
) = T (a1, b1, c1, d1)

can be obtained as:

a1 = min{a4L, a
4
M , a5M , a6M , a6R} = a4L = 0.5,

d1 = max{a4L, a
4
M , a5M , a6M , a6R} = a6R = 1.

And the parameter c1 is c1 = a6M = 1.

Since i = 4, g = 6, it obtains α = 4/6 and the associated OWA
weighting vector

W 2 =

((
4

6

)2

,

(
1−

4

6

)
·
4

6
,

(
1−

4

6

))T

.

We use the OWA operator to compute b1 as:

b1 =

(
4

6

)2

· a6M +

(
1−

4

6

)
·
4

6
· a5M +

(
1−

4

6

)
· a4M

=

(
4

6

)2

· 1 +

(
1−

4

6

)
·
4

6
· 0.83 +

(
1−

4

6

)
· 0.67 ≈ 0.85.

Therefore, the fuzzy envelope for Hs1 is envF (Hs1) = T (0.5, 0.85, 1, 1).

• Fuzzy envelope for the HFLTSHs2 = {s0, s1, s2} based on ll2 = at most s2.

The elements to aggregate are

T = {a0L, a
0
M , a1L, a

0
R, a

1
M , a2L, a

1
R, a

2
M , a2R}.

Since a0M = a1L, a
0
R = a1M = a2L, and a1R = a2M , we obtain the elements

to aggregate as
T = {a0L, a

0
M , a1M , a2M , a2R}.

The points a2, d2 of the fuzzy envelope envF (HS2
) = T (a2, b2, c2, d2)

can be obtained as:

a2 = min{a0L, a
0
M , a1M , a2M , a2R} = a0L = 0,

d2 = max{a0L, a
0
M , a1M , a2M , a2R} = a2R = 0.5.
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And the parameter b2 is b2 = a0M = 0.

Since i = 2, g = 6, it obtains α = 2/6, and the OWA weights to
compute c2 as

W 1 =

(
2

6
,
2

6
·

(
1−

2

6

)
,

(
1−

2

6

)2
)T

.

The value c2 is computed as

c2 =
2

6
· a2M +

2

6
·

(
1−

2

6

)
· a1M +

(
1−

2

6

)2

· a0M

=
2

6
· 0.33 +

2

6
·

(
1−

2

6

)
· 0.17 +

(
1−

2

6

)2

· 0 ≈ 0.15.

Therefore, the fuzzy envelope envF (Hs2) = T (0, 0, 0.15, 0.5). If we
use the result of the Theorem 3, the computation can be significantly
simplified.

• Fuzzy envelope for the HFLTSHs3 = {s3, s4, s5} based on ll3 = between
s3 and s5.

The elements to aggregate are

T = {a3L, a
3
M , a4L, a

3
R, a

4
M , a5L, a

4
R, a

5
M , a5R}.

Since a3M = a4L, a
3
R = a4M = a5L, and a4R = a5M , we obtain the elements

to aggregate as
T = {a3L, a

3
M , a4M , a5M , a5R}.

The points a3 and d3 of the fuzzy envelope envF (HS3
) = T (a3, b3, c3, d3)

can be directly obtained,

a3 = min{a3L, a
3
M , a4M , a5M , a5R} = a3L = 0.33,

d3 = max{a3L, a
3
M , a4M , a5M , a5R} = a5R = 1.
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The point b3 is computed by the OWA operator with α1 = (6 − (5 −
3))/(6 − 1) = 4/5. Note 3 + 5 is even, the associated OWA weighting
vector is W 2 = ((4/5), (1− (4/5)))T and thus

b3 =
4

5
· a4M +

(
1−

4

5

)
· a3M =

4

5
· 0.67 +

(
1−

4

5

)
· 0.5 ≈ 0.64.

And the point c3 is computed by means of the point b3 (see Theorem
5), c3 = 2a4M − b3 = 0.70.

Therefore, the fuzzy envelope envF (Hs3) = T (0.33, 0.64, 0.70, 1).

The obtained fuzzy envelopes are plotted in Figure 8.

at least s4

at most s2

between s3 and s5

s0 s1 s2 s3 s4 s5 s6

0 0.17 0.33 0.5 0.67 0.83 1

Figure 8: The obtained fuzzy envelopes.

4. Fuzzy TOPSIS Using Comparative Linguistic Expressions

To show the usefulness of the fuzzy envelope proposed for HFLTS, in this
section a supplier selection multicriteria decision making problem is solved
by using a fuzzy TOPSIS model [2, 5, 26] and follows the scheme depicted
in the Figure 9.

Let us suppose that the manager of a company wants to select a material
supplier to purchase some key components of a new product. After prelim-
inary screening, four alternatives X = {x1, x2, x3, x4} have remained in the
candidate list. The considered criteria are C = {c1 = quality, c2 = price,
c3 = business reputation, c4 = delivery speed}, and the weights of the
criteria are W = (w1, w2, w3, w4)

T = (0.3, 0.25, 0.15, 0.3)T .

29



Figure 9: Scheme of the multicriteria decision making model

Sometimes, it is difficult for the manager of the company to provide all the
assessments by means of single linguistic terms because of the lack of informa-
tion and knowledge about the decision making problem. Thus, the manager
might hesitate among several linguistic terms and prefer using comparative
linguistic expressions close to the natural language used by human beings in
decision making problems. To do so, it is used the context-free grammar GH

and the linguistic term set S = {s0 : nothing(N), s1 : very bad(V B), s2 :
bad(B), s3 : medium(M), s4 : good(G), s5 : very good(V G), s6 : perfect(P )}.

The assessments provided for this problem are shown in Table 1.

Table 1: Assessments of the problem

c1 c2 c3 c4
x1 between M and V G M at least G at least V G

x2 at least G at least V G between M and G between B and M

x3 at least V G between B and M between G and V G at least G

x4 between M and G at least V G between G and V G at most B

To solve the decision problem, we follow the scheme shown in Figure 9.

1. Transform the comparative linguistic expressions into HFLTS and their
fuzzy envelopes.

The corresponding HFLTS HSij
, i, j ∈ {1, 2, 3, 4} of the comparative

linguistic expressions are shown in Table 2.

By using the general process proposed in section 3 the fuzzy envelopes
of the HFLTS, envF (HSij

) = p̃ij, i, j ∈ {1, 2, 3, 4}. The fuzzy envelopes
are the following ones:
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Table 2: HFLTS generated from the comparative linguistic expressions

c1 c2 c3 c4
x1 {M,G, V G} {M} {G,V G, P} {V G,P}
x2 {G,V G, P} {V G,P} {M,G} {B,M}
x3 {V G,P} {B,M} {G, V G} {G,V G,P}
x4 {M,G} {V G,P} {G, V G} {N,V B,B}

p̃11 = T (0.33, 0.64, 0.7, 1), p̃12 = T (0.33, 0.5, 0.5, 0.67),
p̃13 = T (0.5, 0.85, 1, 1), p̃14 = T(0.67,0.97,1,1),
p̃21 = T (0.5, 0.85, 1, 1), p̃22 = T (0.67, 0.97, 1, 1),
p̃23 = T(0.33,0.5,0.67,0.83), p̃24 = T (0.17, 0.33, 0.5, 0.67),
p̃31 = T (0.67, 0.97, 1, 1), p̃32 = T (0.17, 0.33, 0.5, 0.67),
p̃33 = T (0.5, 0.67, 0.83, 1), p̃34 = T (0.5, 0.85, 1, 1),
p̃41 = T (0.33, 0.5, 0.67, 0.83), p̃42 = T (0.67, 0.97, 1, 1),
p̃43 = T (0.5, 0.67, 0.83, 1), p̃44 = T(0,0,0.15,0.5).

In order to clarify the computational processes, we compute several
fuzzy envelopes. For example, the comparative linguistic expression
ll14 : at least V G can be transformed into the HFLTSHS14

= {V G, P}.
Firstly, the elements to aggregate are

T = {a5L, a
5
M , a6M , a6R}.

The points a14, d14 of its fuzzy envelope T (a14, b14, c14, d14) can be ob-
tained as:

a14 = min{a5L, a
5
M , a6M , a6R} = a5L = 0.67,

d14 = max{a5L, a
5
M , a6M , a6R} = a6R = 1.

And the parameter c14 is c14 = a6M = 1.

Since i = 5, g = 6, it obtains α = 5/6 and the associated OWA weights
W 2 = (5/6, 1/6)T . The point b14 is computed as

b14 =

(
5

6

)
· a6M +

(
1

6

)
· a5M =

(
5

6

)
· 1 +

(
1

6

)
· 0.83 ≈ 0.97.

Thus the fuzzy envelope is envF (HS14
) = p̃14 = T (0.67, 0.97, 1, 1).
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For the comparative linguistic expression ll23 : between M and G, it
can be transformed into the HFLTS HS23

= {M,G}.

Firstly, the elements to aggregate are

T = {a3L, a
3
M , a4M , a4R}.

The points a23, d23 of its fuzzy envelope T (a23, b23, c23, d23) can be ob-
tained as:

a23 = min{a3L, a
3
M , a4M , a4R} = a3L = 0.33,

d23 = max{a3L, a
3
M , a4M , a4R} = a5R = 0.83.

Since i = index(M) = 3, j = index(G) = 4 and j − i = 1, the
parameters b23, c23 can be obtained directly, a23 = a3M = 0.5, d23 =
a4M = 0.67.

Then its fuzzy envelope is envF (HS23
) = p̃23 = T (0.33, 0.5, 0.67, 0.83).

For the comparative linguistic expression ll44 : at most B, it can be
transformed into the HFLTS HS44

= {N, V B,B}.

Firstly, the elements to aggregate are

T = {a0L, a
0
M , a1M , a2M , a2R}.

The points a44, d44 of its fuzzy envelope T (a44, b44, c44, d44) can be ob-
tained as:

a44 = min{a0L, a
0
M , a1M , a2M , a2R} = a0L = 0,

d44 = max{a0L, a
0
M , a1M , a2M , a2R} = a2R = 0.5.

And the parameter b44 is b44 = a0M = 0.

From i = 2, g = 6, it obtains α = 2/6 and the associated OWA weights
W 1 = (2/6, (2/6) · (4/6), (1− (2/6)2))T . The point c44 is computed as

c44 =

(
2

6

)
· a2M +

(
2

6

)
·

(
1−

2

6

)
· a1M +

(
1−

2

6

)2

· a0M ≈ 0.15.

Therefore, the fuzzy envelope is envF (HS44
) = p̃44 = T (0, 0, 0.15, 0.5).
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2. Aggregate the assessments represented by fuzzy envelopes.

In this phase, we use fuzzy TOPSIS method and carry out the following
steps:

(a) Obtain the normalized fuzzy matrix P̃ ′ = (p̃′ij)4×4. Since c1, c3, c4 ∈
B (benefit criteria) and c+1 = c+3 = c+4 = 1, we have p̃′ij = p̃ij,
i = 1, 2, 3, 4, j = 1, 3, 4. For c2 ∈ C (cost criteria), c−2 = 0.17, we
have

p̃′12 = T (0.25, 0.34, 0.34, 0.52), p̃′22 = T (0.17, 0.17, 0.18, 0.25),
p̃′32 = T (0.25, 0.34, 0.52, 1), p̃′42 = T (0.17, 0.17, 0.18, 0.25).

(b) Calculate the weighted normalized fuzzy matrix Ṽ = (ṽij)4×4. The
results are shown as follows

ṽ11 = T (0.10, 0.19, 0.21, 0.30), ṽ12 = T (0.06, 0.09, 0.09, 0.13),
ṽ13 = T (0.08, 0.13, 0.15, 0.15), ṽ14 = T (0.20, 0.29, 0.30, 0.30),
ṽ21 = T (0.15, 0.26, 0.30, 0.30), ṽ22 = T (0.04, 0.04, 0.05, 0.06),
ṽ23 = T (0.05, 0.08, 0.10, 0.12), ṽ24 = T (0.05, 0.10, 0.15, 0.20),
ṽ31 = T (0.20, 0.29, 0.30, 0.30), ṽ32 = T (0.06, 0.09, 0.13, 0.25),
ṽ33 = T (0.08, 0.10, 0.12, 0.15), ṽ34 = T (0.15, 0.26, 0.30, 0.30),
ṽ41 = T (0.10, 0.15, 0.20, 0.25), ṽ42 = T (0.04, 0.04, 0.05, 0.06),
ṽ43 = T (0.08, 0.10, 0.12, 0.15), ṽ44 = T (0, 0, 0.05, 0.15).

(c) Identify the fuzzy positive ideal solution and the fuzzy negative
ideal solution as

Ã+ = (T (1, 1, 1, 1), T (1, 1, 1, 1), T (1, 1, 1, 1), T (1, 1, 1, 1)),

Ã− = (T (0, 0, 0, 0), T (0, 0, 0, 0), T (0, 0, 0, 0), T (0, 0, 0, 0)).

(d) Obtain the distance of each alternative from Ã+ and Ã−. To do
so, we use the geometrical distance [10].

Definition 9. Let A = T (a1, b1, c1, d1) and B = T (a2, b2, c2, d2)
be two trapezoidal fuzzy numbers, the distance between them is
defined as

d(A,B) =

{
1

4

(
|a1 − a2|

λ + |b1 − b2|
λ + |c1 − c2|

λ + |d1 − d2|
λ
) 1

λ , if 1 ≤ λ < ∞
max(|a1 − a2|, |b1 − b2|, |c1 − c2|, |d1 − d2|), if λ = ∞

(30)
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This distance is actually a kind of Minkowski distance [12].

By using Eq. (30) with λ = 1, the distances are the following
ones:

D+
1 = 3.31, D−

1 = 0.69, D+
2 = 3.49, D−

2 = 0.51,

D+
3 = 3.23, D−

3 = 0.77, D+
4 = 3.62, D−

4 = 0.38.

(e) Finally, it is calculated the closeness coefficient of each alternative.

CC1 = 0.17, CC2 = 0.13, CC3 = 0.19, CC4 = 0.10.

3. Ranking phase.

In this phase, the alternatives are ranked according to the closeness
coefficients:

x3 ≻ x1 ≻ x2 ≻ x4.

Therefore, the best alternative of this decision problem is {x3}.

5. Concluding Remarks

The use of linguistic terms implies processes of CWW. Usually, experts
provide their assessments by using just one linguistic term. However, some-
times experts hesitate among several linguistic terms and need richer linguis-
tic expressions to provide their assessments. Recently it has been introduced
the proposal of HFLTS that provides a greater flexibility to elicit compar-
ative linguistic expressions in hesitate situations. To facilitate the CWW
processes with HFLTS was introduced the envelope of HFLTS, which is a
linguistic interval. The final result of computing with such an envelope loses
the initial fuzzy representation.

In this paper has been introduced a fuzzy envelope for HFLTS whose
representation is a fuzzy membership function obtained of aggregating the
fuzzy membership functions of the linguistic terms of the HFLTS. Such a
fuzzy representation facilitates the CWW processes in fuzzy multicriteria
decision models. A supplier selection multicriteria decision making problem
has been solved with a fuzzy TOPSIS model that deals with comparative
linguistic expressions.
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