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Parte I

M E M O R I A D E T E S I S D O C T O R A L





1
I N T R O D U C C I Ó N

En el primer capítulo de esta memoria, se proporciona una introduc-
ción que tiene como objetivo contextualizar la investigación realizada
en esta tesis doctoral. Primero, se aborda el área de investigación so-
bre la que se enfoca la tesis, las motivaciones y las hipótesis que han
impulsado su realización. Posteriormente, se presentan los objetivos
que se pretenden alcanzar y, finalmente, se describe la estructura
general de la tesis.

1.1 contexto inicial de la investigación

La Toma de Decisiones (TD) suele entenderse como un proceso cog-
nitivo que involucra diversos procesos mentales y de razonamiento
para elegir la opción más apropiada entre varias posibles soluciones
en una situación determinada [23]. La TD se vuelve más compleja en
situaciones de incertidumbre que requieren considerar diversos tipos
de costes, conflictos y grandes volúmenes de datos [36]. Para abordar
problemas de esta complejidad, se desarrollan técnicas inteligentes
de decisión adaptados específicamente al problema en cuestión [5].
De forma general, se puede decir que los procesos de TD tienen
ciertas fases comunes [18], tales como las siguientes (ver Fig. 1.1).

Fig. 1.1: Esquema de un proceso de TD

inteligencia . Observar el mundo real para identificar el prob-
lema.

3



4 introducción

recopilación de información. Obtener datos, conocimiento
y preferencias relacionados con el problema.

modelado. Definir un marco de trabajo que establezca la estruc-
tura del problema, las preferencias y la incertidumbre.

análisis . Estudiar y combinar la información según los objetivos,
restricciones y resultados considerados en la fase de selección.

selección. Explotar los resultados del análisis para seleccionar
una alternativa/solución al problema.

En la actualidad, cada vez es más común utilizar procesos de TD di-
rigidos por datos (data-driven) y modelos cuantitativos que pueden
limitar la participación de expertos humanos que habitualmente
toman parte en los procesos de decisión utilizando información
cualitativa [1]. A pesar de esto, en muchos campos que requieren
decisiones inteligentes, eficientes y eficaces en condiciones de in-
certidumbre, la participación de decisores humanos sigue siendo
esencial [37]. De hecho, para abordar situaciones de decisión en las
que no hay datos o información objetiva disponible sobre el problema
en cuestión, los enfoques de TD guiados por expertos (expert-driven)
siguen siendo indispensables [41]. Sin embargo, para integrar de
forma eficiente el conocimiento experto en la TD es necesario tener
en cuenta ciertas limitaciones asociadas a la condición humana.

En primer lugar, para garantizar una TD eficaz conviene atender
al modelado de las preferencias de los expertos. A diferencia de
cuando se utilizan datos numéricos, usar opiniones dadas por exper-
tos requiere considerar tanto aspectos psicológicos involucrados en
el proceso de obtención de las preferencias como el modelado de la
incertidumbre asociada a las mismas [14, 22].

En segundo lugar, es necesario considerar que, al contrario de lo
que ocurre cuando se utilizan modelos dirigidos por datos, cuando a
los expertos se les pide que expresen sus preferencias acerca de las
posibles soluciones al problema de TD, éstos tendrán una visión par-
cial sobre el mismo atendiendo no sólo a su formación y experiencia,
sino también a sus propios intereses [24]. Para eliminar los posibles
sesgos en el proceso de TD originados por estos factores es recomend-
able el uso de técnicas de Toma de Decisiones en Grupo (TDG), que
tienen en cuenta simultáneamente las opiniones de varios expertos
[32].
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Finalmente, cuando varios expertos participan en un problema
de TDG es de esperar que, en cierto sentido, todos ellos busquen
ver reflejadas sus opiniones particulares en la decisión final, lo que
puede llevar a situaciones de conflicto entre los miembros del grupo
[9]. Los Procesos para Alcanzar el Consenso (PAC) tienen como ob-
jetivo garantizar un nivel de acuerdo en las decisiones obtenidas
en problemas de TDG [40]. Generalmente, se dice que un PAC es
un proceso iterativo, habitualmente coordinado por un moderador
humano, cuyo objetivo es aumentar el grado de acuerdo entre los
miembros del grupo durante múltiples rondas de discusión si es
necesario.

En los problemas de TDG clásicamente participaban un número
reducido de expertos. Sin embargo, los avances tecnológicos de los
últimos tiempos permiten involucrar a muchos más decisores en
la resolución de los problemas de TDG [25]. En este contexto, ha
surgido recientemente un gran interés en los denominados problemas
de Toma de Decisiones en Grupo a Gran Escala (TDGGE), así como
sus Procesos para Alcanzar el Consenso en Gran Escala (PACGE),
cuyo objetivo inicial es resolver problemas de TDG en los que inter-
vienen un gran número de decisores. Considerar muchos decisores
en los procesos de TD permite tener en cuenta más experiencias,
conocimiento y perspectivas, lo cual puede conducir a una decisión
más completa que tenga en cuenta una mayor variedad de factores y
posibles resultados. Consecuentemente, los grandes grupos pueden
tomar decisiones con una mayor diversidad y mejor documentadas
que las decisiones tomadas por un único individuo o un pequeño
grupo.

1.2 motivación

La TDGGE ofrece una capacidad mayor para resolver problemas
reales de TDG en los que participan un gran número de decisores,
frente la TDG clásica en los que el número se limita a un conjunto
reducido de los mismos. Sin embargo, aumentar el número de de-
cisores involucrados supone también un aumento de la complejidad
del proceso de TD, lo cual requiere el desarrollo de nuevos modelos,
métodos y herramientas para mejorar y analizar estos problemas bajo
las nuevas premisas. Esto es especialmente importante para garan-
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tizar la efectividad de los procesos de TDGGE y abordar nuevos
desafíos emergentes como los siguientes:

1. Modelado no lineal de preferencias. Tradicionalmente, se ha
considerado que los expertos proporcionan sus opiniones de
forma lineal [10]. Sin embargo, estudios psicológicos recientes
sostienen que usar deformaciones no lineales de sus preferen-
cias podría mejorar los resultados de la TD [6].

2. Procesos de TDGGE que pueden y/o deben involucrar cientos
o miles de expertos. En la literatura especializada, la TDGGE se
ha definido como un problema de TDG en el que intervienen
más de una veintena de expertos [5]. Sin embargo, la filosofía
de este tipo de problemas, por los avances tecnológicos actuales
y la demanda social, debe enfocarse a problemas en los que
puedan tomar parte cientos, miles e incluso más decisores
[37]. Por tanto, es necesario mejorar los procesos de TDGGE
para poder manejar eficientemente las opiniones en grupos
realmente grandes, como los usuarios de un marketplace o de
una red social.

3. Métricas para PACGE. En la literatura relacionada existen múlti-
ples propuestas para PACGE, pero es difícil discriminar de
manera objetiva cuál es la más adecuado para resolver un
problema de TDGGE concreto. Consecuentemente, es necesario
desarrollar métricas capaces de determinar el rendimiento de
los PACGE de forma objetiva [15].

Estas limitaciones y desafíos en el ámbito de la TDGGE bajo incer-
tidumbre nos llevaron a formular las siguientes hipótesis al inicio de
esta investigación:

1. El uso de modelos de representación no lineal de las opin-
iones de los expertos permitirá mejorar los resultados de los
problemas de TDG y sus PAC.

2. La optimización de los procesos de TDGGE actuales permitirá
abordar de forma eficiente problemas con un gran número de
decisores, mejorando los resultados y campos de aplicación
actuales.
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3. La definición de métricas para los PACGE permitirá una evalu-
ación más eficaz del rendimiento tanto de los PAC existentes
como de las nuevas propuestas.

1.3 objetivos

Teniendo en cuenta las motivaciones derivadas de las limitaciones en
la literatura actual de TDGGE y partiendo de las hipótesis iniciales,
el propósito central de esta tesis doctoral consiste en mejorar los
procesos de TDGGE en presencia de incertidumbre y sus PACGE
mediante el empleo de herramientas y modelos matemáticos. Con
ello se busca superar las deficiencias metodológicas actuales y con-
tribuir a una mayor precisión y robustez en la TD en este campo. En
consecuencia, se proponen los siguientes objetivos:

1. Definir un marco metodológico para modelar el comportamiento
no lineal de los expertos al proporcionar sus opiniones que
permita corregir las desviaciones derivadas de la psicología
humana.

2. Optimizar procesos de TDGGE para abordar problemas de
TD que requieran de la participación de un gran número de
decisores (cientos, miles, ...).

3. Crear métricas para PACGE que establezcan estándares de
rendimiento para el alcance de consenso.

1.4 estructura

De acuerdo a lo establecido en el artículo 25 punto 2 de la norma-
tiva actual de los Estudios de Doctorado en la Universidad de Jaén
(RD. 99/2011), esta tesis doctoral consistirá en una compilación de
artículos publicados por el estudiante de doctorado. El objetivo de
esta compilación es alcanzar los objetivos previamente establecidos
en la sección anterior. Específicamente, esta memoria se compone de
seis artículos, publicados o aceptados, en revistas internacionales Q1

indexadas en la base de datos Journal Citation Reports (JCR).
El resto de la memoria consta de los siguientes capítulos:

capítulo 2 . Se presentan los conceptos fundamentales relaciona-
dos con la temática de la tesis doctoral. Se describen los prob-
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lemas de TDG, prestando especial atención a la TDGGE, y se
analizan las ventajas y limitaciones de los modelos de decisión
existentes. También, se expone la necesidad de los PACGE para
alcanzar soluciones consensuadas.

capítulo 3 . Se describen los seis artículos que conforman esta
memoria, resaltando los resultados logrados y las conclusiones
obtenidas en cada uno de ellos.

capítulo 4 . Está integrado por las seis propuestas mencionadas
anteriormente.

capítulo 5 . Se identifican las principales conclusiones la tesis doc-
toral y se sugieren posibles campos de investigación para fu-
turos trabajos.

De forma adicional se ha incluido un Apéndice (Apéndice A) que
presenta un resumen en inglés de la investigación realizada, con el
fin de cumplir con los requisitos necesarios para obtener la Mención
Internacional de Doctorado. Para finalizar, se ha incluido una recopi-
lación bibliográfica de los artículos más relevantes relacionados con
esta memoria.



2
C O N C E P T O S T E Ó R I C O S Y A N T E C E D E N T E S

En este capítulo se presenta un resumen breve de los conceptos
teóricos y antecedentes relevantes para la investigación presentada
en esta memoria. Concretamente, se abordan los conceptos básicos
sobre la TDG y sus PAC, así cómo un resumen del estado del arte de
la TDGGE, revisando las principales propuestas en la literatura, así
como las limitaciones existentes en TDGGE tanto desde el punto de
vista de la TDG como de los PAC. Los contenidos de este capítulo
se desarrollan con mayor profundidad en la Sección 4.1, que se
corresponde con una revisión sistemática sobre TDGGE realizada y
publicada durante mi investigación y en la que dichos conceptos y
cuestiones relacionadas con ellos se muestran en mayor detalle.

2.1 toma de decisiones en grupo y procesos de alcance

de consenso

Un problema de TDG se presenta cuando se necesita que varios
individuos elijan la mejor de entre varias alternativas para solucionar
un problema determinado [10]. Formalmente, los problemas de TDG
se modelan como un par (D, A) en el que D es un conjunto finito de
m decisores

D = {dm1, dm2, . . . , dmm},

a los que se les pide evaluar n alternativas

A = {a1, a2, . . . , an},

con el objetivo de seleccionar la mejor solución para el problema de
TD. Por lo general, la resolución de este tipo de problemas consta de
dos pasos principales [28] (ver Fig. 2.1).

agregación. Para representar la opinión global del grupo, las pref-
erencias de los decisores se combinan mediante un operador
de agregación en una única preferencia colectiva.

explotación. Se elige una o varias alternativas como solución al
problema.

9
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Fig. 2.1: Esquema de un problema TDG

En el pasado, Butler y Rothstein [4] propusieron varias reglas para
resolver el proceso de TDG, como la regla de la mayoría, la regla
de la minoría o el recuento de Borda. No obstante, al emplear estas
reglas, es posible que algunos decisores no estén completamente
satisfechos con la solución elegida ya que sus opiniones pueden no
haber sido debidamente consideradas en la elección colectiva final.
Con el fin de abordar las posibles discrepancias entre las opiniones
de los decisores, se suele incorporar un PAC en la resolución de los
problemas de TDG. Un PAC es un proceso dinámico e iterativo en el
que los decisores discuten entre sí y ajustan sus opiniones iniciales
para lograr una mayor consenso dentro del grupo. Por lo general,
estos procesos son supervisados por un moderador que se encarga
de proporcionar a los decisores la información necesaria sobre el
estado de las negociaciones para eliminar conflictos. En términos
generales, un PAC se compone de cuatro pasos principales, según se
ha descrito en la literatura [24] (ver Fig. 2.2).

recopilación de preferencias . Los decisores proporcionan sus
evaluaciones sobre las alternativas utilizando estructuras de
preferencia.

cómputo del nivel de consenso . Se utilizan medidas de con-
senso para obtener el nivel actual de acuerdo en el grupo.

control del consenso. Se compara el nivel actual de acuerdo
en el grupo con un nivel de consenso deseado previamente
establecido. Si el grupo logra alcanzar el nivel deseado, el PAC
finaliza y se procede con el proceso de selección para elegir la
mejor alternativa. En caso contrario, se lleva a cabo otra ronda.
Para evitar que el proceso se prolongue indefinidamente, se
establece un límite en el número de rondas permitidas.
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Fig. 2.2: Esquema de un PAC

generación de recomendaciones . El moderador identifica a
los decisores y a las opiniones que causan mayor conflicto en
el grupo y les sugiere la forma de modificarlas para eliminar
dicho conflicto.

2.2 toma de decisiones en grupo a gran escala

Históricamente, los problemas de TDG y sus PAC han involucrado
solo a un número reducido de decisores. No obstante, los avances
tecnológicos recientes, como el Big Data [21] y el comercio electrónico
[35], junto con las demandas de la sociedad moderna para abordar
problemas críticos como situaciones de emergencia [34] o sosteni-
bilidad [17], han dado lugar a nuevas situaciones de decisión que
requieren la participación de un mayor número de decisores en los
procesos de TD. En este contexto, surge la denominada TDGGE,
que, de acuerdo a la definición clásica, se refiere a los problemas de
TDG en los que participan un gran número de decisores (habitual-
mente se ha definido en la literatura especializada como veinte o más
decisores) [7].
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Fig. 2.3: Esquema de un problema de TDGGE

Tang et al. [33] y Labella et al. [12] señalan que la participación
de un gran número de decisores con diferentes puntos de vista
y preferencias requiere considerar nuevos aspectos en el proceso
general de resolución de problemas de TDG (ver Fig. 2.3):

reducción de la dimensión. Para manejar la gran cantidad de
información involucrada en los modelos de TDGGE, se utilizan
mecanismos para reducir la dimensionalidad de los datos.

ponderación y agregación de información. Están relacionadas
con la tarea de determinar adecuadamente la importancia de
cada uno de los decisores que participan en el proceso de
decisión y fusionar sus opiniones de manera efectiva.

gestión de comportamientos Se refiere a la necesidad de in-
cluir mecanismos para detectar y manejar a los decisores que
no colaboran en el proceso de TD, con el fin de evitar que estos
decisores afecten negativamente el resultado final.

gestión de costes . Es necesario considerar los recursos humanos,
económicos y de tiempo requeridos para desarrollar modelos
que tengan como objetivo gestionar la participación de cientos,
miles o incluso millones de decisores en el proceso de decisión.

análisis de redes sociales . En grupos grandes, es hay que
considerar cómo las relaciones entre los decisores (como la
confianza o la reputación) influyen en el proceso de decisión.

consenso. A medida que aumenta el número de personas involu-
cradas en una decisión, la probabilidad de desacuerdo también
aumenta. Por lo tanto, es esencial desarrollar PACGE para
grandes grupos con el fin de llegar a soluciones acordadas.
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La TDGGE se basa en el esquema clásico de TDG (ver Fig. 2.1), que
consta de dos fases: agregación y explotación. Sin embargo, la fase
de agregación en TDGGE es mucho más compleja ya que se tienen
en cuenta varios aspectos para fusionar los valores originales de las
opiniones de los decisores. Gracias a esta combinación de técnicas, es
posible proponer una amplia variedad de esquemas TDGGE. Algunas
de las más importantes se describen a continuación.

1. Palomares et al. [25] y Dong et al. [8] introducen modelos de
consenso que consideran la gestión de comportamientos no co-
operativos y la reducción de la dimensión para la ponderación
y agregación de información.

2. En su trabajo, Zhang et al. [42] utilizan un proceso de agre-
gación lingüística para abordar problemas de TDGGE multi-
atributo bajo incertidumbre.

3. Liu et al. [16] proponen un modelo de consenso que integra
mecanismos para controlar el coste de cambio de opinión de los
decisores y utilizan análisis de redes sociales para determinar
la importancia de los mismos.

4. Lu et al. [19] introducen un proceso de consenso que combina
técnicas de análisis de redes sociales y clustering para realizar
la reducción de dimensiones y determinar la influencia de los
decisores en un proceso de decisión. Este proceso también tiene
en cuenta el costo asociado con el cambio de preferencias de
los decisores.

5. Shi et al. [29] utilizan técnicas de gestión de comportamiento
y costos en su modelo de consenso, el cual también incorpora
una reducción de dimensión con pesos adaptativos.

2.3 principales limitaciones de la literatura en tdgge

Actualmente, la TDGGE es un tema candente entre los investigadores
de diversas áreas (investigación operativa, decisiones políticas, infor-
mática, gestión, ingeniería, marketing, etc. [15, 25, 37]) . Sin embargo,
los cimientos de la TDGGE se basan en supuestos heredados de
su uso extendido, y no en fundamentos sólidos de carácter teórico
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o práctico. Para abordar los nuevos desafíos que enfrenta la inves-
tigación en el área, esta sección tiene como objetivo discutir las
principales deficiencias de la TDGGE.

En líneas generales, las principales limitaciones de la TDGGE
parten de su propia definición. La definición extendida en la liter-
atura especializada considera que la TDGGE consiste en “problemas
de TDG con más veinte expertos”. Esta definición parece estar com-
pletamente obsoleta, especialmente teniendo en cuenta que con las
nuevas tecnologías permiten considerar situaciones de decisión que
involucren cientos o miles de decisores. Por tanto, es necesario revisar
esta definición para garantizar no sólo la aplicabilidad en la práctica
de los modelos, sino también para poder comparar los procesos de
manera justa.

Además, en la literatura especializada es habitual encontrar téc-
nicas de TDG aplicadas directamente en TDGGE sin estudiar su
viabilidad y rendimiento [27]. En lo que respecta al desempeño de
los modelos revisados en la Sección 4.1, una crítica importante es
la falta de estudios que demuestren el buen rendimiento de las téc-
nicas clásicas de TDG en contextos a gran escala que involucren
cientos o miles de decisores. Aunque estos métodos se han aplicado
exitosamente en contextos con cincuenta o menos decisores, no hay
evidencia de que sean igualmente efectivos en situaciones de decisión
con un mayor número de decisores. Se necesitan estudios rigurosos
para evaluar la viabilidad de estas técnicas en contextos a gran escala,
y en caso necesario, adaptar las propuestas existentes para abordar
problemas TDGGE.

Otra consecuencia de la definición de TDGGE como "TDG con
veinte o más expertos" es su abuso en publicaciones sobre el tema
que no están dirigidos a resolver problemas del mundo real. La gran
mayoría de las propuestas revisadas en la sección 4.1 se limitan a
probar la validez de los correspondientes modelos sobre ejemplos que
consideran menos de cincuenta expertos, sin dar estudios objetivos ni
verificables de su rendimiento a la hora de manejar miles de decisores
(ver Fig. 2.4). En este sentido, es necesario tener un nivel de exigencia
y calidad mucho mayor en cuanto a las condiciones en las que se
prueba la validez de un método.

Además, es práctica habitual utilizar un sesgo en las medidas de
desempeño y usar aquellas más convenientes para destacar las venta-
jas de los modelos propuestos al compararlos con otros, pero no hay
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Fig. 2.4: Trabajos revisados en la Sección 4.1 según el número de decisores.

métricas objetivas que permitan presentar de manera justa tanto los
aspectos positivos como los negativos de tales modelos. Un nuevo
enfoque con esta capacidad ha sido propuesto recientemente para
los modelos de consenso en TDG [15], pero no existen propuestas
para TDGGE. Es importante desarrollar nuevas métricas para abor-
dar otros problemas que permitan analizar objetivamente diferentes
características de los métodos TDGGE.

En lo que respecta a las estructuras de preferencia, conviene
destacar el elevado número de éstas que se pueden encontrar en
la literatura (ver Sección 4.1). Sin embargo, considerar estructuras de
preferencia excesivamente complejas aumenta significativamente el
número de variables del problema de TDGGE, lo que conlleva un
mayor consumo de recursos [27]. Por tanto, en TDGGE, las mejoras en
el modelado de preferencias no deberían de implicar un incremento
de las variables del problema, sino que deberían enfocarse a un mejor
modelado de la psicología humana. En este sentido, también indicar
que las propuestas existentes para la representación de preferencias
suelen asumir que los decisores proporcionan sus preferencias de
forma lineal. Sin embargo, estudios recientes sugieren que al utilizar
escalas no lineales para reasignar las preferencias de los decisores, se
obtienen soluciones colectivas más realistas desde un punto de vista
psicológico [6, 20]. Por lo tanto, es necesario llevar a cabo estudios
más profundos sobre el impacto de las escalas no lineales en TDGGE.





3
D I S C U S I Ó N D E L O S R E S U LTA D O S

En este capítulo, se presentará un resumen de las propuestas que
conforman esta memoria de investigación, así como los resultados y
conclusiones derivados de ellas.

3.1 análisis crítico sobre la temática

El objetivo del primer trabajo de esta memoria, incluido en la Sec-
ción 4.1, es servir como estado del arte actualizado para que los
investigadores comprendan mejor el concepto de TDGGE, presenten
propuestas orientadas a abordar nuevos retos en el área relacionados
con nuevos desarrollos tecnológicos como Big Data o redes sociales, y
presten más atención a la validez de sus modelos en estos contextos.

En tal trabajo se ha llevado a cabo una revisión sistemática de la
literatura existente sobre TDGGE, siguiendo las indicaciones prop-
uestas por Kitchenham et al. [11] para el desarrollo de análisis bib-
liográficos en Ingeniería del Software. Utilizando esta metodología,
se han revisado las propuestas existentes desde cuatro perspectivas
diferentes: Estructura de Preferencias, Reglas de Decisión de Grupo,
Evaluación de la Calidad y Aplicaciones. Estos puntos de vista con-
tienen las palabras clave más relevantes en la literatura sobre TDGGE
y representan los diferentes pasos a considerar al proponer modelos.
Dado que el análisis realizado ha revelado varias limitaciones im-
portantes en la investigación actual en el área, este artículo también
proporciona un análisis crítico detallado de estas malas prácticas
encontradas en la literatura, así como algunas indicaciones sobre
cómo reorientar la investigación futura hacia una TDGGE más re-
alista, relacionada con proponer metodologías para hacer frente a
situaciones de decisión que implican un gran número de decisores.

En líneas generales, es importante destacar que la definición de
modelos teóricos y la comprobación de su rendimiento en ejem-
plos muy simples (toy examples), en los que se consideran entre
veinte y cincuenta decisores, que difícilmente se podrían aplicar
en situaciones prácticas reales si no especifican explícitamente el
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número de decisores que son capaces de gestionar y demuestran su
buen rendimiento en estos contextos. En un ámbito aplicado como
la TDGGE, los investigadores deberían centrar los estudios futuros
en abordar problemas del mundo real que involucren a un gran
grupo de decisores (por ejemplo, Netflix gestiona 209 millones de
suscripciones de pago) en lugar de proponer modelos “a gran escala”
que funcionan con veinte decisores y no clarifican cómo sería su
desempeño si se aumentase esa cifra.

Con el objetivo de aportar mayor transparencia a los procesos de
TDGGE, en este trabajo también se propone la definición de mode-
los de m−TDGGE como aquellas propuestas que pueden manejar
eficientemente al menos m decisores. Esto no sólo ofrece una visión
más justa del rendimiento de cada propuesta, sino que además per-
mite diferenciar a modelos orientados a manejar pocos cientos de
decisores de modelos diseñados para manejar millones.

3.2 preferencias no lineales

En la actualidad, los PAC son un pilar fundamental de la investi-
gación en TDG. Aunque existen diversas propuestas de PAC en la
literatura, éstos suelen asumir escalas lineales para las preferencias
de los expertos [10]. Sin embargo, estudios recientes sugieren que el
uso de escalas no lineales pueden mejorar los resultados de la TDG
[6, 20].

En el trabajo presentado en la Sección 4.2 se explora el uso de
escalas no lineales para definir modelos de preferencia más realistas
a partir de las preferencias originales de los expertos, incluso en
situaciones a gran escala. En ese trabajo se ha realizado un estudio
exhaustivo de las propiedades analíticas de tales escalas no lineales
y se han obtenido las principales características matemáticas de las
funciones que pueden ser adecuadas para adaptar las preferencias de
los expertos de acuerdo a este factor psicológico. A estas funciones
las hemos llamado Amplificaciones de Valores Extremos (EVAs, de
Extreme Values Amplifications) y permiten reasignar relaciones de
preferencia difusas dadas en una escala lineal a una escala no lineal,
aumentando la distancia entre los valores extremos y disminuyendo
la distancia entre los valores intermedios. Además, se ha enunciado
la definición dual de las Reducciones de Valores Extremos (EVR, de
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Extreme Values Reductions), que reducen la distancia entre valores
extremos y amplifican la distancia entre los intermedios.

Se ha introducido un método general para construir EVAs y EVRs
y se han propuesto varias familias de EVAs. Se ha comprobado que
el uso de las escalas no lineales proporcionadas por los EVAs mejora
el rendimiento de los modelos de consenso utilizados en el estudio.
Concretamente, además de obtener resultados más realistas desde el
punto de vista psicológico, las simulaciones muestran que el enfoque
EVA reduce el número medio de rondas necesarias para alcanzar el
consenso en ambos modelos y aumenta el nivel de consenso.

3.3 agregación de valores extremos en pac

En TDG, es necesario combinar las preferencias de los expertos en
una fase de agregación para obtener una opinión colectiva antes de
pasar a la fase de explotación [28]. En la literatura de operadores de
agregación, los operadores OWA (de Ordered Weighed Average, en
inglés) destacan porque permiten fusionar información de acuerdo a
la magnitud de los valores que se quieren agregar [38]. Para calcular
los pesos correspondientes, se han propuesto varias alternativas,
incluyendo el método propuesto por Yager, que se basa en el uso
de una familia biparamétrica de cuantificadores lingüísticos difusos
lineales [39].

En el trabajo desarrollado en la Sección 4.3 se prueba que, aunque
el método propuesto por Yager [39] es sencillo y efectivo, presenta
importantes inconvenientes en cuanto a la elección de los parámetros.
Por ejemplo, las agregaciones podrían producir resultados sesgados
(medida de orness [2] no igual a 0.5) o incluso no agregar suficiente
información (medida de entropía [2] baja). Además, el operador OWA
construido a partir de estos cuantificadores ignora completamente
los valores más extremos en el proceso de agregación, lo que podría
resultar en agregaciones no realistas.

Estas agregaciones sesgadas son un gran inconveniente en apli-
caciones del mundo real como los PAC [10, 23], pues un operador
OWA cuya orness es mayor que 0.5 tendería a priorizar los valores
extremos cercanos a 1 respecto a los cercanos a 0, lo cual no es
razonable ya que estos valores deberían ser igual de importantes.
Además, un consenso teórico que ignore por completo los valores
más extremos no sería realista. Puesto que también se ha demostrado
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que la información menos extrema tiene un efecto cohesionador y
facilita el acuerdo entre expertos [30, 31], en el trabajo de la Sección
4.3 se exploran nuevas formas de generar pesos OWA que prioricen
la información intermedia por delante de los datos extremos, como lo
hacen los cuantificadores lingüísticos difusos lineales, pero teniendo
en cuenta más información en el proceso de agregación y evitando
agregaciones sesgadas en los resultados.

Para superar estas limitaciones, se ha propuesto el operador EVR-
OWA que utiliza EVR como cuantificadores lingüísticos difusos.
Este operador OWA tiene en cuenta los valores más extremos pero
da más importancia a los intermedios. Además, las agregaciones
realizadas por los operadores EVR-OWA son mejores para ciertas
aplicaciones del mundo real como los modelos de consenso para
TDG [10], puesto que estos operadores agregan las preferencias de
forma no sesgada y permiten tener en cuenta más información en el
proceso de agregación.

La propuesta del operador EVR-OWA no solo proporciona un
método sencillo y general para obtener ponderaciones OWA, sino
que también proporciona una caracterización que relaciona aquellas
familias de pesos para OWA simétricas, positivas y que priorizan
valores intermedios, con los EVRs.

3.4 optimización de procesos de tdgge

Los modelos de Consenso de Coste Mínimo (CCM), basados en la res-
olución de problemas de optimización convexa, son PAC automáticos
que no necesitan de un mecanismo de recomendación, por lo que
son especialmente interesantes para TDGGE [3, 27]. Estos modelos
minimizan el coste de modificar las preferencias de los expertos para
alcanzar un consenso mutuo y establecen que la distancia entre las
preferencias individuales modificadas y la opinión colectiva debe
estar limitada por un umbral ε > 0. Recientemente, se han propuesto
los modelos de CCM integrales, que añaden una restricción adicional
relacionada con un umbral de consenso γ ∈ [0, 1] asociado a una
medida de consenso.

El trabajo presentado en la Sección 4.4 analiza la relación entre
las restricciones mencionadas en los modelos CCM integrales desde
dos perspectivas diferentes. La primera se basa en desigualdades y
permite determinar cotas simples para relacionar los parámetros ε y
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γ. La segunda perspectiva se basa en la Teoría de Politopos Convexos
y proporciona algoritmos que calculan cotas más precisas y complejas
para relacionar estos parámetros.

Puesto que en los modelos CCM integrales los valores de los
parámetros se fijan a priori, el método propuesto permite identificar
las configuraciones de parámetros que pueden simplificar el modelo
de optimización, eliminando aquellas restricciones que son redun-
dantes y, consecuentemente, mejorando notablemente la eficiencia
de estos modelos en TDGGE.

3.5 modelos ccm generalizados para tdgge

Los modelos CCM han sido ampliamente utilizados para obtener
consenso en problemas de TDG. Sin embargo, la relación entre las
extensiones previas de estos modelos aun no ha sido estudiada, lo
que limita su aplicación práctica. En el artículo presentado en la
sección 4.5, se presenta una reformulación de los modelos CCM
utilizando la Teoría de Conjuntos Difusos para abordar problemas
de TDG. El enfoque propuesto, llamado FZZ-MCC, ofrece una com-
prensión más clara de los modelos CCM y sus extensiones, así como
una metodología rigurosa y flexible para abordar diversos tipos de
problemas de TDG. Además, se demuestra la aplicabilidad del en-
foque FZZ-MCC a través de tres ejemplos prácticos relacionados con
la democracia electrónica, la selección de personal y la selección de
proveedores ecológicos.

El enfoque FZZ-MCC introduce tres ventajas principales:

• Notación rigurosa y unificada basada en Conjuntos Difusos
que permite generalizar estudios previos sobre CCM.

• Generalización de nociones clásicas relativas a TDG tales como
estructura de preferencias, medida de consenso o función de
coste.

• Flexibilidad para adaptar el esquema FZZ-MCC para abordar
diversas situaciones de decisión.

Esta propuesta explota la flexibilidad del enfoque FZZ-MCC para
proponer varios modelos totalmente nuevos basados en CCM:

• Se define un modelo FZZ-MCC para hacer frente a un escenario
de democracia electrónica que implica la planificación urbana
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mediante la gestión de miles de preferencias a través de mode-
los FZZ-MCC y Relaciones de Preferencias Multiplicativas.

• Un modelo FZZ-MCC se utiliza para persuadir eficientemente
a un comité de contratación para seleccionar a un gerente en
particular. Para ello, se analiza el coste asociado y se conduce
a los decisores hacia un acuerdo sobre la solución objetivo
predefinida.

• Se propone un modelo híbrido FZZ-MCC que combina valo-
raciones en una base de datos con las comparaciones por pares
de los directivos, integrando conocimiento experto y datos en
un problema de selección de proveedores ecológicos.

Además, todos estos modelos se han propuesto en términos de
funciones objetivo y restricciones lineales y basadas en valores abso-
lutos, lo que facilita su linealización para mejorar tanto su precisión
como los aspectos de eficiencia computacional, que son esenciales
para hacer frente a problemas de TDGGE.

3.6 métrica para modelos de consenso lingüísticos a

gran escala

Aunque los PAC basados en información lingüística han sido objeto
de una amplia investigación y se han propuesto numerosas solu-
ciones en la literatura especializada, no existe una métrica objetiva
para comparar estos modelos y decidir cuál es el mejor para cada
problema de decisión.

En el trabajo desarrollado en la Sección 4.6 introducimos una
métrica para evaluar el rendimiento de los PAC lingüísticos que tiene
en cuenta tanto el grado de consenso resultante como el costo de
modificar las opiniones iniciales de los participantes.

Esta métrica se basa en un modelo lingüístico de CCM que utiliza
información ELICIT (Extended Comparative Linguistic Expressions
with Symbolic Translation) [14] para modelar la indecisión de los
participantes y garantizar procesos de computación con palabras
precisos. Además, esta métrica está definida en base a un modelo de
optimización lineal para acelerar el modelo computacional y mejorar
su precisión, pudiendo así ser aplicada en procesos de TDGGE con
varios miles de expertos en pocos segundos.
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La métrica propuesta para evaluar PAC lingüísticos compara el
coste óptimo necesario para lograr el nivel de consenso deseado con
los cambios realizados por el PAC. Si el grado de consenso logrado
por el PAC es inferior al umbral deseado, la métrica calificará el PAC
como poco efectivo. En el caso de que el PAC supere el umbral de
consenso, la métrica le dará mayor o menor puntuación atendiendo
a la magnitud de las modificaciones innecesarias en las preferencias
realizadas por el PAC.

Esta métrica también se ha utilizado para evaluar el rendimiento
de dos modelos de consenso lingüístico definidos en la literatura
especializada [13, 26] y demostrar así su aplicabilidad en la práctica.
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   Abstract—The  society  in  the  digital  transformation  era
demands new decision schemes such as e-democracy or based on
social  media.  Such  novel  decision  schemes  require  the
participation of many experts/decision makers/stakeholders in the
decision processes. As a result, large-scale group decision making
(LSGDM) has attracted the attention of many researchers in the
last  decade  and  many  studies  have  been  conducted  in  order  to
face the challenges associated with the topic. Therefore, this paper
aims  at  reviewing  the  most  relevant  studies  about  LSGDM,
identifying  the  most  profitable  research  trends  and  analyzing
them from a critical point of view. To do so, the Web of Science
database  has  been  consulted  by  using  different  searches.  From
these  results  a  total  of  241  contributions  were  found  and  a
selection  process  regarding  language,  type  of  contribution  and
actual relation with the studied topic was then carried out. The 87
contributions  finally  selected  for  this  review  have  been  analyzed
from four points  of  view that  have  been highly  remarked in  the
topic, such as the preference structure in which decision-makers’
opinions are modeled, the group decision rules used to define the
decision  making  process,  the  techniques  applied  to  verify  the
quality  of  these  models  and  their  applications  to  real  world
problems  solving.  Afterwards,  a  critical  analysis  of  the  main
limitations  of  the  existing  proposals  is  developed.  Finally,  taking
into account these limitations, new research lines for LSGDM are
proposed and the main challenges are stressed out.
    Index Terms— Challenges, large-scale consensus models, large-scale
group decision making (LSGDM), systematic review.
  

I.  Introduction

THESE days, decision-making processes entirely guided by
data and quantitative modeling are being widely used, and

the  participation  of  human  experts  who  usually  manage
qualitative information is either ignored or relegated to second
place [1], [2]. However, considering the commitment, cost and
relevance  of  human  stakeholders  in  economic,  social  or
learning  research,  the  use  of  expert-guided  decision-making
methods,  also  known  as  group  decision  making  (GDM)
models  in  specialized  literature,  is  still  essential  in  several
areas  [3],  [4],  especially  when  agreed  solutions  are  required
[5], [6].

On  the  other  hand,  the  digitization  era  and  application  of
novel  technologies  to  all  human-beings  tasks  have  implied  a
transition towards new ways to solve real-world problems. In
the  decision  making  field,  the  GDM  problems  have  evolved
from  a  few  decision-makers  (DMs)  involved  in  the  solving
process to numerous of them, emerging the large-scale group
decision  making  (LSGDM)  [7],  [8].  E-democracy  technolo-
gies  [9],  [10],  e-marketplaces  [11],  [12],  social  media  [13],
earthquake  shelter  selection  [14]  or  water  resource  manage-
ment  [15],  [16]  are  just  a  few  examples  of  new  decision
making  situations  involving  an  increasing  number  of  DMs,
making  of  LSGDM  an  important  topic  in  recent  years  [17].
This  emergence  has  caused  multiple  changes  and  challenges
in  the  approach  for  solving  these  new  types  of  GDM
problems. Initially, four research trends were pointed out and
mainly developed in LSGDM [18]:

1) Clustering Methods in LSGDM: Dimension reduction has
a  key  role  in  the  resolution  of  LSGDM  problems,  since
managing  large  decision  groups  may  be  tough  or  even
impossible  because  of  resources  limitations.  Clustering  large
groups into smaller and more manageable subgroups, usually
based  on  the  similarity  between  DMs’ preferences,  has  been
used  as  a  satisfactory  solution  to  overcome  this  dimension
reduction issue [18], [19].

2)  Large-Scale  Consensus  Reaching  Processes  (LSCRPs):
Conflicting and polarized opinions are even more common in
LSGDM  than  in  classical  GDM  due  to  the  participation  of
many  DMs.  If  the  conflicts  are  not  addressed,  the  decision
process may fail and affect negatively on the society. LSCRPs
are applied to smooth out disagreements and increase the level
of accordance in the group [18], [20], [21].

3) LSGDM Methods: The resolution of decision problems is
usually carried out  by ad hoc decision methods.  These meth-
ods aim, in general terms, at obtaining a ranking of the alter-
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natives  of  the  problem by  applying  a  set  of  algorithmic/opti-
mization steps. LSGDM methods introduce new features regar-
ding the classical decision methods for GDM in order to meet
the new challenges posed by large-scale problems [22], [23].

4)  LSGDM  Support  Systems: The  enormous  complexity
associated with the LSGDM problems makes their  resolution
difficult  by  the  DMs.  The  LSGDM  support  systems  are
software  tools  that  aim  at  helping  DMs  along  the  decision
process  by  providing  additional  information  and  reducing
uncertainty related to LSGDM problems [24], [25].

The  recent  impact  of  LSGDM  in  the  specialized  literature
has given place to many proposals, which have been reviewed
by  several  authors.  For  instance,  Labella et  al.  [20]  analyze
the  performance  of  classical  consensus  models  focused  on
solving  GDM  process  with  a  few  experts  in  LSGDM
problems,  concluding  that  these  models  are  not  able  to  deal
with  the  challenges  related  to  the  large-scale  context.  Zhang
et  al.  [26]  review  the  consensus  models  with  feedback
mechanism  based  on  minimum  adjustments  proposed  in  the
literature  from  two  different  contexts,  classical  GDM
problems  and  complex  GDM  problems  which  include  large-
scale  contexts.  Ding et  al.  [17]  develop  a  taxonomy  for  the
existing literature and discuss future research directions under
a  perspective  based  on  Artificial  Intelligence,  whereas  Tang
and Liao [27] analyze the state of the art in order to provide an
analysis from Big Data point of view.

However,  although  these  reviews  propose  some  classifica-
tions  for  the  existing literature  from different  points  of  view,
the  necessary  critical  analysis  of  the  existing  literature  is
usually  neglected,  which  has  implied  a  deviation  of  the
original purpose of the topic related to apply decision models
in  groups  with  a  huge  number  of  stakeholders.  For  instance,
the  classical  definition  of  LSGDM  itself  (GDM  with  more
than  20  DMs  [27])  may  be  inadequate  for  current  society
demands  because  it  assumes  that  just  20  DMs  are  a  large
group,  whereas  nowadays  real-world  decision  situations  may
require  much bigger  groups  (Netflix  recommendation system
deals  with  more  than 200 million users).  To this  regard,  it  is
usual to find lots of LSGDM proposals in the literature which
test the performances of their methods by using toy examples
in which just 20–50 DMs are considered. Undoubtedly, this is
a prominent source of papers, but it  is far away from solving
real-world  problems,  which  should  be  the  main  goal  of  the
research in a purely applied area like this.

Hence, the main motivation of this survey is to analyze the
current state of the art about the existing trends obtained from
our  literature  analysis,  but  also  to  provide  a  comprehensive
view about  LSGDM and a  critical  discussion about  the  main
limitations  of  present  proposals,  in  order  to  redirect  current
research towards new trends which face the real  world needs
demanded by large-scale contexts.

Therefore,  this  contribution  is  devoted  to  answer  the
following research questions:

Q1:  What  are  the  most  relevant  studies  addressing
LSGDM?

Q2: What is the current state-of-the-art regarding LSGDM?
Q3: What are the limitations of the current contributions?
Q4: What are the most promising new trends in LSGDM for

future research?
Consequently, the four major contributions of this proposal

are summarized as follows: first a systematic review about the
current  state  of  the  art  of  LSGDM  is  performed  in  order  to
point  out  the  most  relevant  papers  and  trends  in  the  area,
which  are  then  studied  from  different  points  of  view,
according  to  the  different  steps  that  conform  a  classical
LSGDM  process,  namely  i)  the  preference  structure  used  to
model  DMs’ opinions,  ii)  the  internal  group  decision  rules
used  to  model  the  decision  process,  iii)  the  mechanisms  to
evaluate the quality of the proposed model and, finally, iv) the
application  of  the  models  to  solve  real  world  LSGDM
problems. Subsequently, it is provided a deep critical analysis
based  on  these  four  perspectives  regarding  the  way  that
researches have developed so far their methods, and faced the
different  challenges  demanded  by  LSGDM  problems.
Eventually, future research lines about LSGDM are discussed
keeping  in  mind  this  critique  and  pointing  out  how  to
overcome it.

The  remaining  of  this  contribution  is  set  up  as  follows.  In
Section  II,  the  main  concepts  related  to  LSGDM  are
introduced. Section III describes the search process adopted to
identify  relevant  studies  on  the  topic.  Section  IV  introduces
the  results  obtained  from  the  search  process  related  to
LSGDM.  Afterwards,  Section  V  exposes  a  critique  vision
about the current researches based on LSGDM. Additionally,
Section  VI  provides  a  discussion  about  the  future  challenges
and  trends  on  LSGDM.  Finally,  Section  VII  draws  some
conclusions.  

II.  Background

(D,X)

A  GDM  problem  is  a  decision  situation  in  which  several
DMs  are  required  to  decide  one  or  several  alternatives  as
solution  for  the  given  problem  [28],  [29].  Formally,  such
problems are modeled by a pair  in  which D is  a  finite
set of DMs
 

D = {dm1,dm2, . . . ,dmm}
which are asked to judge a finite set of alternatives
 

X = {x1, x2, . . . , xn}
with  the  aim  of  choosing  the  best  solution  for  the  problem.
Traditionally, the resolution process of these problems mainly
consists of two steps [30] (see Fig. 1):

1)  Aggregation: The  DMs’ preferences  are  grouped,  by
using  an  aggregation  operator,  into  a  single  collective
preference that represents the overall group’s opinion.

2)  Exploitation: One  or  several  alternatives  are  selected  as
solution of the problem.

Formerly, Butler and Rothstein [31] introduced several rules
to guide the resolution process such as majority,  minority,  or
Borda count. However, when using these kinds of rules, some
DMs may not  feel  satisfied with the chosen solution because
their  opinions  may  not  have  been  sufficiently  considered  in
the  final  collective  choice.  To  deal  with  these  discrepancies
among  DMs’ opinions,  CRPs  were  added  as  an  additional
phase in the resolution process of a GDM problem. A CRP is
a  dynamic  and  iterative  process  in  which  DMs  discuss  each
other and change their initial opinions in order to bring closer
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their  views  and  increase  the  agreement  within  the  group.
These processes are usually supervised by a moderator, who is
responsible for providing DMs with the proper feedback about
the state of the negotiation. In broad terms, a CRP consists of
four steps [32] (see Fig. 2):

1)  Gathering  Preferences: DMs  provide  their  assessments
over the alternatives by using preference structures.

2) Consensus Measuring: The current level of agreement in
the group is derived by using consensus measures [33].

3)  Consensus  Control: The  current  level  of  agreement  is
compared with a predefined desired level of consensus for the
group.  If  the  group  achieves  such  a  desired  level,  the  CRP
finishes  and  the  process  to  select  the  best  alternative  starts,
otherwise  another  consensus  round is  accomplished.  In  order
to avoid endless processes, the number of rounds is limited.

4) Feedback Generation: The moderator identifies the DMs
whose  opinions  are  the  furthest  away  from  the  group  and
recommends that they change them.

Classically, GDM problems and their CRPs have considered
just  a  small  numbers  of  DMs,  however,  new  technological
advances  such  as  Big  Data  [34]  or  e-commerce  [35]  and  the
emergent  society  demands  to  deal  with  problems  like

emergency  situations  [36]  or  sustainability  [37]  have  given
place to new large-scale contexts requiring the participation of
more  DMs  in  the  decision  process,  which  has  attracted  the
attention  of  many  researchers.  In  this  context,  LSGDM  has
arisen as those GDM problems in which 20 or more DMs take
part in the decision process [17].

According to Tang and Liao [27] and Labella et al. [20] the
involvement  of  numerous  DMs  with  different  views  and
preferences  inevitably  implies  to  consider  new aspects  in  the
general resolution scheme of GDM problems (see Fig. 3):

1)  Dimension  Reduction: These  models  usually  include
mechanisms to manage the large amount of information.

2)  Weighting  and  Aggregation  of  Information: Related  to
properly determine the importance of the DMs participating in
the process and fuse their opinions,

3)  Behavior  Management: A  mechanism  to  detect  and
manage  uncooperative  DMs  should  be  considered  to  avoid
these DMs harm the decision process,

4)  Cost  Management: The  human,  economic  and  time
resources  required  for  developing  models  which  aim  at
managing hundreds, thousands, or millions of DMs,

5)  Social  Network  Analysis  (SNA): When  large  groups  are
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considered  it  is  necessary  to  take  into  account  how  the
relationships  among  DMs  (trust  or  reputation)  influence  the
decision process.

6)  Consensus: The  larger  the  number  of  DMs,  the  greater
the  probability  of  disagreement.  Therefore,  new  consensus
models  dealing  with  large  groups  are  key  to  reach  agreed
solutions.

Consequently,  LSGDM  inherits  two  phases  of  the  classic
scheme  of  GDM  (see Fig. 1),  namely  the  gathering  of
preferences  and  the  exploitation  phase,  but  the  aggregation
phase  becomes  much  more  complex  because  several  of  the
aforementioned  aspects  may  be  taken  into  account  in  the
fusion  of  the  original  values  of  DMs’ opinions.  The
combination  of  these  techniques  allows  proposing  a  huge
variety of LSGDM schemes. Some of the most relevant ones
are listed as follows:

●  Palomares et  al.  [7]  and  Dong et  al.  [38]  propose
consensus models which take into account the management of
the  uncooperative  behaviors  and  the  dimension  reduction  to
weight and aggregate the information.

●  Zhang et  al.  [8]  deal  with  multi-attribute  LSGDM
problems by using a linguistic aggregation process.

● Xu et al.  [14],  and Wu and Xu [39] introduce consensus
models  which  also  develop  a  dimension  reduction  to  weight
and aggregate the original preferences.

● Liu et al. [40] develop a consensus model which includes
mechanisms to control the cost of moving DMs’ opinions and
use SNA to derive the importance of the DMs.

●  Lu et  al.  [41]  present  a  CRP  which  combines  SNA  and
clustering  to  perform the  dimension  reduction  and  determine
the  influence  of  DMs in  a  decision  process  which  also  takes
into account the cost of moving DM’s preferences.

●  Shi et  al.  [42]  apply  behavior  and  cost  management
techniques  in  a  consensus  model,  which  also  performs  a
dimension reduction with adaptive weights.  

III.  Methodology

This  study  aims  at  reviewing  the  main  concepts  regarding
LSGDM,  by  showing  the  relations  among  them  and  their
future  perspectives.  To  do  so,  the  guidelines  proposed  by
Kitchenham and Charters [43] to develop a systematic review
in  Software  Engineering  have  been  taken  into  consideration
and adapted to our topic.

To obtain the documents that conform the state of the art of
LSGDM,  we  have  selected  as  data  source  the  WoS database
because  maybe  it  is  the  most  prestigious  scientific
bibliographic  database.  Even  though  others  like  Scopus  are
also  relevant,  in  our  case  we  make  decision  about  WoS
because, when comparing the results between both databases,
the extra results obtained by Scopus were marginal regarding
our  aim.  Our  search  strategy  consisted  of  performing  two
different  queries.  In the first  one,  the keywords “Large-scale”
and “Group  Decision  Making” were  used  as  topic,  whereas
the  second one used the  keywords “Group Decision Making”
as topic and also asked for the words “Large-scale” to appear
in the title of the papers. As a result of these searches, which
were done on 29th April 2021, a collection of 241 papers was
found.

After that, a study selection process (see Fig. 4) was carried
out  in  order  to  discard  non-relevant  proposals.  The  contribu-
tions  which  either  were  written  in  a  language  different  from
English  or  not  published  in  peer-reviewed  indexed  journals
were excluded. In addition, we also discarded those contribu-
tions  non-related  to  the  topic  or  which  developed  the  quality
evaluation  of  the  proposed  models  by  using  examples
involving problems that are not LSGDM at all because of the
number  of  DMs.  The  number  of  papers  which  passed  this
filter was 87.

These 87 contributions have been published on 33 different
journals, most of them belonging to the Computer Science &
Artificial  Intelligence  category.  The  journals  in  which  more
contributions  have  been  published  are Knowledge-Based
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Systems (12), Information Fusion (11), IEEE Transactions on
Fuzzy  Systems (8)  and Information  Sciences (7). Fig. 5
illustrates  the  complete  journals’ distribution of  the  reviewed
papers. Table I shows the 5 most highly cited papers found in
our search. The temporal distribution of the reviewed papers is
shown in Fig. 6.  The first  proposal  in  our  database related to
LSGDM,  from  the  interpretation  of  this  review  paper,  was
published in 2011. In such a contribution, Carvalho et al. [24]
proposed a decision support system for LSGDM contexts and
defined “large  groups” as  those  groups  with  10–20
individuals.  In  the  subsequent  years,  just  a  few contributions
were  published  until  2017  and  the  majority  of  papers  have
been  published  between  2018  and  2021,  making  LSGDM  a
hot topic in recent years.
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Fig. 5.     Journal distribution of the reviewed contributions.
 

In order to identify the most relevant keywords in the topic
for  the  data  extraction  process,  a  bibliography  visualization
tool has been applied to our database. On the one hand, Fig. 7
shows  the  main  keywords  used  in  the  selected  LSGDM
literature  and  their  connections  so  that  the  size  of  each  node
represents its occurrence.

These  keywords  are  also  classified  into  several  colored
categories  so  that  those  with  a  closer  connection  are
represented  with  the  same color.  This  figure  allows  to  easily
identify  the  most  prolific  trends  related  to  LSGDM.  For
instance,  it  can  be  appreciated  that consensus is  one  of  the
most important research lines within LSGDM but also as one
of  the  trends  with  more  links  to  other  keywords  such  as
feedback  mechanism or consensus  level.  In  addition,  this
figure  also  shows  some  keywords  involving  weighting  and
reduction  dimension  techniques  such  as cluster or clustering
method and social  networks.  It  should  be  highlighted  the
distinction among expert and DM terms because the former is
related to GDM, whereas the latter is more related to LSGDM.
The proper use of these terms may be key to make differences
between  GDM  and  LSGDM,  though  many  researches  use
both interchangeably.

On the  other  hand, Fig. 8 shows the  publications  mean per
year regarding several key topics. According to this figure, the
most recent interest in LSGDM seems to be the validness and
quality  of  the  proposed  models  related  to  terms  such  as
comparative analysis, feasibility or validity.

In  addition  to  this  automatized  review  of  keywords,  a
manual abstract analysis was performed in order to provide a
more comprehensive view of the current state of the art. From
this manual research, we have identified some other keywords
which have been used as complement to the ones obtained in
the  automatized  search.  Finally,  to  synthesize  all  the
information, the resulting list of keywords has been organized
in four blocks (see Fig. 9) according to the step of the model
resolution process that these keywords belong to:

1) Preference Structures: This block includes the keywords
related  to  the  modelling  of  DMs’ preferences  and  their
characteristics.

2)  Group  Decision  Rules: This  block  is  related  to  the
different  formal  processes  applied  to  solve  an  LSGDM
problem.

3)  Evaluation  of  Quality: This  block  is  devoted  to  group
those  keywords  regarding  the  measure  of  quality  and
validness  of  the  proposed  LSGDM  approaches  by  means  of
metrics, comparative analysis or use of datasets.

4)  Application  to  Real-World  Contexts: The  keywords  in
this block deal with the applicability of the proposed LSGDM
approaches  to  real-world  LSGDM  situations  and  the  use  of
LSGDM support systems.  

IV.  Main Results

This  section  analyzes  the  main  research  trends  related  to
LSGDM to  provide  a  clear  view of  the  topic  by  providing  a
taxonomy  of  the  studied  contributions  according  to  the
aforementioned  four  points  of  view,  namely Preference
Structure, Group  Decision  Rules, Evaluation  of  Quality and
Real World Problems (see Fig. 9). To do so, first each block is
introduced  by  providing  a  detailed  description  of  its  main
specificities  and  then  the  87  contributions  obtained  from our
search  in  the  WoS  database  are  classified  according  to  such
four  points  of  view.  By  using  the  results  obtained  in  this
section,  a  critical  analysis  of  the  studied  contributions  and
several  possible  new  research  trends  will  be,  respectively,
provided in Sections V and VI.  

A.  Preference Structure
This  block  is  devoted  to  classify  the  studied  contributions

according to the way in which the information is elicited from
DMs  [44].  The  concept  of Preference  Structure in  decision
making in general  and in LSGDM in particular  is  referred to
the  format  in  which  DMs give  their  opinions.  DMs could  be
asked to provide their  opinions by following different formal
rules  which,  in  turn,  give  place  to  several  preference
structures.  Since  the  chosen  preference  structure  will
determine the nature of the input of any GDM model, it is key
to  properly  select  these  structures  according  to  the  faced
decision situation.

There  are  several  relevant  features  related  to  preference
structures to keep in mind:

1) Type of Information: One of the most relevant features in
preference structures is the type of information in which DMs
are allowed to give their opinions, which may be of different
natures. The analyzed proposals from the 87 papers essentially
use  three  types  of  information  when  modelling  DMs’
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preferences, namely, numeric, linguistic and heterogeneous:
i) Numeric: Some proposals consider that the information is

given  numerically  by  using  preference  structures  such  as
fuzzy  preference  relations  (FPRs)  [45],  multiplicative  prefer-
ence relations (MPRs) [46], hesitant fuzzy preference relations
(HFPRs) and so on. Apart from these, there are other numeric
structures  such  as  preference  orderings  [47]  or  utility
functions [48].

ii)  Linguistic: Other  contributions  allow  DMs  to  express
their  preferences  by  using  linguistic  information,  which  is
very  useful  to  model  the  uncertainty  inherent  in  LSGDM

problems  due  to  their  complexity.  In  this  sense,  there  are
many  types  of  linguistic  preference  structures  such  as
linguistic  preference  relations  (LPRs)  or  hesitant  fuzzy
linguistic preference relations (HFLPRs), whose elements are
represented  by  linguistic  terms  belonging  to  a  predefined
linguistic term set.

iii) Heterogeneous: Finally, some papers consider situations
in  which  DMs may provide  their  opinions  by  using  different
types of preference structures, numeric or linguistic. By using
heterogeneous  information,  each  DM  may  use  the  most
suitable  preference  structure  according  to  her/his  necessity,
which provides more flexibility to the elicitation task.

2) Personalized Semantics: On the other hand, especially in
large-scale  contexts,  the  DMs  participating  in  the  decision
may  possess  different  backgrounds  or  use  different  scales  to
express  their  preferences.  Therefore,  an  interesting  research
area  related  to  preference  structures  is  the  management  of
DMs’ personalized individual semantics,  which is devoted to
deal with the different knowledges and subjectivities of DMs

 

TABLE I 

Highly Cited Papers

Title Reference Journal Year Citations

A consensus model to detect and manage noncooperative behaviors
in large-scale group decision making Palomares et al. [7] IEEE Transactions on Fuzzy

Systems 2014 265

Managing multigranular linguistic distribution assessments in large-
scale multiattribute group decision making Zhang et al. [8]

IEEE Transactions on Fuzzy
Systems Man Cybernetic-

Systems
2017 218

A consensus model for large-scale group decision making with
hesitant fuzzy information and changeable clusters Wu and Xu [39] Information Fusion 2018 181

A self-management mechanism for noncooperative behaviors in
large-scale group consensus reaching processes Dong et al. [38] IEEE Transactions on Fuzzy

Systems 2018 129

A two-stage consensus method for large-scale multi-attribute group
decision making with an application to earthquake shelter selection Xu et al. [14] Computer & Industrial

Engineering 2018 123
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Fig. 6.     Temporal distribution of the reviewed contributions (April 2021).
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when expressing their opinions [49]–[51].
3)  Consistency: Other  research line  is  devoted to  study the

consistency of  the  DMs’ preferences  [22],  [52]–[54],  since
sometimes  the  information  provided  by  these  DMs  may  be
contradictory and lead to unreliable results.

4) Incomplete Information: The last identified research line
focuses  on  dealing  with incomplete preference  structures,
since limitation of knowledge over the alternatives or the time
pressure  could  lead  to  circumstances  in  which  DMs may not
provide all the necessary preference values [53], [55]–[57].

Table II classifies the revised contributions according to the
type  of  preference  structures  used  to  model  the  DMs’
preferences and their type of information, and Table III shows
the acronyms of such preference structures.  

B.  Group Decision Rules
Group  Decision  Rules block  analyses  the  contributions

according to the internal performance of the models. Initially,
GDM was based on using certain classic rules [31] such as the
Majority Rule, Borda Count, or Unanimity in order to fuse the
individual  preferences  of  the  respective  DMs  into  one  single
collective  opinion.  Nowadays,  these  few  methods  have
evolved into many rules, which provide several frameworks to
achieve the same goal.  These rules cover a wide spectrum of
possibilities,  such  as  methods  to  reach  agreed  solutions
obtained  by  simulating  a  discussion  process  or  proposals
which evaluate alternatives taking into consideration different

conflicting  criteria.  Therefore,  when  designing  an  LSGDM
model,  it  is  essential  to  carefully  select  these  rules  according
to the needs of the faced problem.

1) Aggregation Operators: The importance of selecting the
adequate aggregation operator cannot be neglected [105] since
the  main  differences  among  the  GDM  models  are  usually
related  to  the  way  in  which  the  information  is  combined.  In
spite  of  this,  just  a  few  articles  in  our  database  [44],  [106]
focus exclusively on proposing new aggregation operators for
large-scale contexts.

2)  Multi-Criterion  Decision  Making: The  analysis  of  the
proposals in our database reveals that the use of classic multi-
criterion  group  decision  methods  to  solve  LSGDM problems
is widely extended. Among these approaches, one of the most
common is the technique for order of preference by similarity
to  ideal  solution (TOPSIS)  [51],  [57]  based  on  the  idea  that
the best chosen alternative for a decision problem should have
the  shortest  geometric  distance  regarding  the  ideal  solution
and the largest geometric distance regarding the negative anti-
ideal solution, being the ideal solution the one that maximizes
benefit  criteria  and  minimizes  cost  criteria  and  the  anti-ideal
solution  the  one  that  maximizes  cost  criteria  and  minimizes
benefit  criteria.  There  are  also approaches  that  use  the multi-
objective optimization on the basis of a ratio analysis plus the
full multiplicative form (MULTIMOORA) [37], which obtains
a  final  ranking  by  aggregating  the  results  of  the  ternary
ranking methods Ratio systems, Reference Point approach and
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Full  Multiplicative  Form  or  the ELimination  Et  Choix
Traduisant  la  REalité (ELECTRE)  III  [89],  an  outranking

method  based  on  pairwise  comparisons  (every  option  is
compared  to  all  other  options)  which  is  able  to  provide  a
total/partial  order  of  the  alternatives  by  using  pseudo-criteria
and outranking degrees.

3)  Weighting  and  Dimension  Reduction  Techniques: In
large-scale contexts, it is essential to be able to manage at the
same time thousands of DMs’ opinions to achieve a solution.
Therefore,  it  is  necessary  to  use  dimension  reduction
techniques  to  reduce  the  resource  consumption  or  specific
weighting processes to determine the importance of each DM.
Several  dimension  reduction  techniques  have  been  identified
in the analyzed contributions:

i) Clustering: This technique consists of reducing the dimen-
sion  of  DMs  by  grouping  those  with  a  similar  performance
into the same subgroups/clusters. In the literature, we can find
well-known  clustering  methods  such  as  fuzzy  C-means  [7],
[15]  or  K-means  [39],  [41]  but  also  other  novel  clustering
methods such as grey clustering, fuzzy equivalence and others
techniques.

ii) SNA: Another widely accepted method is the use of tools
to  reduce  the  data  sparsity  related  to  DMs’ preferences
through SNA techniques [40], [60]. These kinds of proposals
are  based  on  the  graph  theory  and  allow  weighting  DMs  by
taking  into  account  human  factors  such  as  the  trust  relations
among them.

iii) Clustering and SNA: Some proposals combine clustering
and SNA to produce several independent subnetworks of DMs
according to the relations among them [86], [93].

iv) Others: Besides clustering and SNA, it is possible to find
other  weighting  and  dimension  reduction  techniques  in  the
literature, which are usually based on mathematical program-
ming [57], [73].

The main contributions related to weighting and dimension
reduction techniques are shown in Table IV.

4) Consensus Models: Some real world situations require an
agreement  among  a  large  number  of  DMs.  Traditionally,
researchers  have  faced  these  situations  by  proposing
consensus  models  for  a  few  DMs  in  GDM.  However,  these
models have proven to be inappropriate to deal with LSGDM
problems  [20]  because  of  the  peculiarities  of  these  contexts.
The  main  consensus  models  identified  in  the  analyzed
proposals are shown in Table V.

i)  Feedback: Even  though  classical  consensus  models
assume  the  role  of  a  moderator  to  analyze  the  state  of  the
consensus process and provide recommendations to the DMs,
in contexts in which hundreds or thousands of DMs take part
both  the  moderator  figure  and feedback mechanisms  [16],
[18],  [39],  [42]  are  obsolete  due  to  the  fact  that  they  are  too
time-consuming and not feasible in practice. Therefore, large-
scale  consensus  proposals  are  devoted  to  replace  both  with
automatic  mechanisms  to  provide  recommendations  and
analyze  the  level  of  consensus  achieved.  The  use  of
mathematical  optimization  techniques  is  widely  extended  in
the literature related to this regard.

ii)  Behavior  management: The  large  number  of  DMs  in
large-scale  contexts  increases  the  probability  of  dealing  with
DMs  who  refuse  to  adjust  or  make  changes  in  their
preferences.  For  this  reason,  it  is  necessary  to  include

 

TABLE II 

Proposals Classified According to the Preference
Structure Used in LSGDM

Type of
Information Nature Preference

structure References

Numeric

Discrete

Utility vector [41], [58]
Numerical

vector [19], [42], [59], [60]

Decision
matrix

[14], [23], [52], [55],
[61]–[65]

FPR [7], [18], [20], [25], [38],
[39], [56], [66]–[72]

MPR [22], [73]

IFS [40]

Continuous

HFPR [74]

QRIVOFN [37]

IVIFS [75], [76]

Probabilistic BPA [77]–[79]

Linguistic

Discrete

2-tuple [36]
Decision
matrix [21], [35], [57], [80]–[83]

LDA [8], [15]

LDPR [49]

LPR [50], [53], [54]

DHLPR [84]

Continuous

HFLPR [16], [85], [86]

HFLTs [87]–[91]

CIVLTS [92]

IT2FS [51], [93]–[95]

Probabilistic PLTS [96]–[99]

Heterogeneous - Two or more [24], [44], [100]–[104]
 

 

TABLE III 

Acronym for the Identified Preference
Structures Used in LSGDM

Preference structure Acronym

Fuzzy preference relation FPR

Multiplicative preference relation MPR

Linguistic preference relation LPR

Linguistic distribution preference relation LDPR

Linguistic distribution assessments LDA

Double hierarchy linguistic preference relation DHLPR

Hesitant fuzzy preference relation HFPR

Hesitant fuzzy linguistic preference relation HFLPR

Hesitant fuzzy linguistic terms sets HFLTS

Intuitionistic fuzzy set IFS

Interval-valued intuitionistic fuzzy sets IVIFS

Interval type-2 fuzzy sets IT2FS

Probabilistic linguistic terms sets PLTS

Continuous interval-valued linguistic terms sets CIVLTS

Q-rung interval-valued orthopair fuzzy numbers QRIVOFN

Basic probability assignments BPA
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mechanisms to face these uncooperative behaviors in order to
prevent the failure of the consensus process.

iii) Cost: Cost refers to the price (economical or attitudinal)
of  changing  DMs’ opinions  [40]–[42].  For  instance,  some
widely used consensus models are the so-called minimum cost
consensus  models  [26]  whose  aim  is  to  provide  a  feasible
consensual solution by changing the initial DMs’ opinions as
few as possible.

iv)  Minority  opinions: The  coalition  of  large  groups  in
large-scale  contexts  may  cause  ignoring  minority  group
opinions  that  are  just  as  valid  as  the  first.  Even though these
differing  opinions  are  often  referred  to  as  obstacles  to
decision-making,  several  proposals  study  how  to  properly
manage the importance given to these minority opinions [21],
[84], [86].

5) Optimization Models: Due to their  flexibility,  the use of

mathematical  programming techniques  is  also  pretty  popular
among researchers. Therefore, it is usual to find models which
rely on optimization models to complete missing information
[53],  managing  individual  semantics  [49],  translating  prefer-
ence  structures  [15],  for  weighting  determination  [52],  [54],
[57]  defining  groups  [73],  in  SNA  [97],  or  in  consensus
models [22], [36], [41].  

C.  Evaluation of Quality
After designing the rules which define an LSGDM method,

it  is  necessary  to  test  the  feasibility  of  the  proposal  when
dealing  with  a  specific  decision  problem.  Consequently,  the
block Evaluation  of  quality is  devoted  to  study  the  reviewed
papers  according  to  the  mechanisms  used  by  researchers  in
order  to  show  the  feasibility  of  their  models.  In  the  studied
literature, there are essentially three kinds of methods to show

 

TABLE IV 

Main Proposals According to Their Weighting and Dimension Reduction Techniques

Reference Technique Details Citations

Palomares et al. [7] Fuzzy C-means A consensus model which implements a clustering framework to manage
non cooperative behaviors 252

Wu and Xu [39] K-means
Consensus model in which the clusters are allowed to change and uses a

possibility distribution based hesitant fuzzy element to represent each
cluster’s opinion

172

Wu and Liu [95] Fuzzy equivalence An interval type-2 fuzzy equivalence clustering analysis is used in a multi-
criterion large-scale decision making problem 54

Dong et al. [38] Grey clustering Consensus framework to manage non cooperative behaviors in which the
weights are dynamically generated 123

Liu et al. [40] SNA Trust relationship-based conflict detection and elimination decision making
model applicable for LSGDM problems in social network contexts 92

Wu et al. [60] SNA Two-stage trust network partition algorithm is proposed to reduce the
complex of LGDM problems 51

Tian et al. [93] Clustering and SNA A SNA based decision framework for addressing problems with incomplete
interval type-2 fuzzy information 54

Ren et al. [86] Clustering and SNA A consensus model to manage minority opinions with SNA for micro-grid
planning 25

Song and Li [57] Others LGDM model to handle incomplete multi-granular linguistic information
and which ranks alternatives by an extended TOPSIS method 49

 

 

TABLE V 

Main Consensus Models

Reference Consensus measure Feedback Behavior
management

Minority
opinions Citations

Palomares et al. [7] Similarity between DMs Parametric change directions √ × 252

Wu and Xu [39] Similarity between centroids Parametric change directions × × 172

Dong et al. [38] Similarity between DMs Random change directions √ × 123

Li et al. [50] Similarity between DMs and
collective Parametric change directions × × 119

Xu et al. [14] Similarity between DMs and
collective Automatic-formula × × 118

Quesada et al. [71] Similarity between DMs Parametric change directions √ × 100

Liu et al. [40] Similarity between DMs Automatic-optimization × × 92

Xiao et al. [49] Similarity between DMs and
collective Automatic optimization × × 51

Ren et al. [86] Similarity between groups and
collective Parametric change directions × √ 25

Gou et al. [84] Similarity between DMs and
collective Parametric change directions √ √ 23
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the good performance of the proposed models (see Table VI).
1)  Experimental  Comparisons: The  majority  of  the

consulted references use experimental comparisons, consisting
of  testing  the  performance  of  the  proposed  models  by
comparing  them  with  other  techniques  through  different
simulations  [14],  [39],  [51].  However,  there  are  not  widely
extended metrics to compare these models, on the contrary, a
huge  number  of  different  measures  can  be  found  in  the
reviewed  literature,  such  as  the  final  ranking  of  the
alternatives, the cost incurred to achieve a solution, consensus
degree, number of discussion rounds, and so on.

2) Theoretical Comparisons: Other authors propose theore-
tical  comparisons  in  which  the  advantages  of  their  models
over others are discussed [8], [38], [50].

3) Datasets: Finally, other proposals just provide the results
of  testing  their  models  in  a  certain  dataset,  which  may  be
obtained  from  real  DMs  or  created  manually  by  the  authors
[68], [79], [103].  

D.  Applications
Decision making is a natural activity of human beings’ life

and  covers  multiple  disciplines  in  society  related  to
management, education, or healthcare. Therefore, Application
block is focused on analyzing the proposals from the point of
view  of  their  implementation  to  solve  concrete  problems.
Consequently,  this  subsection  reviews  how  the  different
LSGDM proposals in the specialized literature are enforced by
taking into account two main groups of applications:

1)  Real-World  Problems: This  group  resembles  those
applications  related  to  using  LSGDM  models  in  real-world
situations.  The flexibility of LSGDM techniques to deal with
all  kinds  of  situations  has  allowed  researchers  to  provide
solutions  for  many problems (see Table VII).  For  instance,  it
has been applied to solve health-related problems [90] such as
COVID-19  pandemic  [96],  [100]  and  other  emergency
situations  [14],  [36],  [54].  In  addition,  the  recent  interests  of
society in sustainability problems have led to studies related to
green  suppliers  selection  [37],  [57],  energy  [86],  [107]  or
water  management  [15],  [16],  [89].  Furthermore,  it  is  also
possible  to  find  applications  of  LSGDM  in  technological
environments [34], [79], [108].

2)  Decision  Support  Systems: Decision  support  system

 

TABLE VI 

Main Evaluation Techniques

Reference Method Details Citations

Zhang et al. [8] Theoretical
comparisons

Due to the impossibility of carrying out computational experiments, the
authors show the advantages of their proposal before other existing models. 209

Wu and Xu [39] Experimental
comparisons

Evaluates the model by comparing it with a similar proposal which used the
same illustrative example by studying the weighting of clusters and the

consensus level.
172

Dong et al. [38] Theoretical
comparisons

Compares the proposal with other previous methods by highlighting its
advantages and limitations. 123

Li et al. [50] Theoretical
comparisons

Provides a brief taxonomy of the existing large-scale consensus models and
develops a discussion related to frame the model in this taxonomy. 119

Xu et al. [14] Experimental
comparisons

Compares the proposal with a similar method by analysing the weighting of
the attributes and the consensus level. 118

Wu et al. [51] Experimental
comparisons

Compare the proposal with another model by using the same illustrative
example by showing the similarities and differences of both proposals from

the ranking and rating of the alternatives point of view.
107

Liu et al. [103] Dataset Evaluates the model regarding the consensus level and number of rounds by
using an illustrative example. 72

 

 

TABLE VII 

Main Applications to Real-World Problems

Reference Area Details DMs Citations

Zhang et al. [15] Water
management

Framework with linguistic information based on optimization which is
applied to the selection of the best sustainable disinfection technique for

wastewater reuse projects.
20 164

Xu et al. [14] Emergency
situation

Two-stage method to support the consensus reaching process for large-scale
multi-attribute group decision making problems applied to earthquake

shelter selection.
25 118

Gou et al. [16] Water
management

Consensus model with double hierarchy hesitant fuzzy linguistic preference
relations applied to evaluate Sichuan water resource management. 20 103

Song and Li [57] Suppliers
selection

Model to handle incomplete multi-granular linguistic information applied to
a sustainable supplier selection problem. 30 49

Chao et al. [101] Finances Method with non-cooperative behaviors and heterogeneous preferences
applied to financial inclusion. 52 43

Wu et al. [35] E-commerce Linguistic model for multi-attribute LSGDM applied to the customer
decision for e-commerce service. 50 33

Ren et al. [86] Energy Consensus model to manage minority opinions with SNA applied to micro-
grid planning in Ali district in Tibet. 25 25
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refers  to  those  software  applications  whose  aim  is  to  assist
DMs to make proper choices when facing decision situations.
Several  LSGDM  support  systems  have  been  found  in  the
review  such  as  LaSca  [24],  which  stands  out  because  of  the
flexibility  in  which  DMs  can “decide  how  to  decide”,
MENTOR  [25]  which  is  a  graphical  tool  to  study  the
evolution  of  the  preferences  during  an  LSGDM  process  and
DeciTrustNET  [109]  which  takes  into  account  trust  and
reputation in social networks.  

V.  Critical Analysis of the LSGDM State Of ART

Once we have a clear view of the current state of the art of
LSGDM,  it  is  necessary  to  devote  one  section  to  provide  a
critical analysis of it in LSGDM. First, it is provided a general
critique regarding the vagueness  of  several  notions related to
LSGDM.  Afterwards,  the  main  trends  related  to  LSGDM
identified in the bibliographic analysis are discussed from the
four blocks considered in Section IV.  

A.  General Critique: LSGDM Foundations
Undoubtedly,  LSGDM  is  today  a  hot  topic  among

researchers  in  Computer  Science  area.  In  spite  of  this,  the
main notions regarding this topic do not have any theoretical
or practical support, but they are based on assumptions which
have  been  inherited  through  years  because  of  their  wide
extended use, which, in the end, has implied a deviation from
the initial  purpose of LSGDM. Consequently,  this  subsection
is devoted to discuss all of these definitions and redirect them
to face the new challenges demanded by society.

1)  Definition  of  LSGDM: Even  though  LSGDM should  be
devoted to deal with decision situations in which thousands or
millions  of  DMs  take  part,  the  analysis  of  the  existing
literature  shows  that  researchers  have  abused  of  the “20  or
more  experts” definition  [17]  to  publish  papers  in  the  topic
which  are  not  necessarily  focused  on  solving  any  real-world
problem nor society demand.

According to Carvalho et al. [24], the oldest reference found
in our search, this definition seems to be motivated by the fact
that  finding  20  experts  in  a  certain  area  who  want  to
participate  in  the  decision  process  is  a  difficult  task  to  carry
out  in  practice,  especially  if  they are  expected to meet  in  the
same room. However, the origin of this boundary of 20 DMs
is  not  clear.  When  justifying  the  number  of  DMs  which
bounds  the  notion  of  LSGDM,  some  proposals  refer  to  even
older  works  from the  early  2000s,  which  are  usually  hard  to
retrieve  because  they  have  been  published  on  nonindexed
research  journals,  and  others  do  not  provide  any  justification
or  cite.  As  a  consequence,  the  vast  majority  of  the  reviewed
papers validate their approaches by using examples with 50 or
fewer experts referring to this definition (see Fig. 10).

However,  new technological advances allow us to consider
the  preferences  of  a  huge  number  of  DMs  and  this  former
definition for LSGDM seems to be inadequate for the current
situation.  Furthermore,  this  definition  introduces  a  certain
ambiguity  when  considering  a  model  whose  performance  is
limited to 50 DMs and another proposal which can deal with
500 DMs to be the same. On the one hand, the formal aspects
of  both  problems  do  not  have  necessarily  to  be  similar,  and

neither  the  methods  and  techniques  used  to  properly  model
these  decision  situations.  On  the  other  hand,  this  ambiguity
may result in redundant proposals in which a GDM model in
which  19  DMs  are  considered,  could  be  easily  transformed
into  an LSGDM  model by  using  the  same  proposal  in  a
problem which requires of 20 DMs.

In  order  to  overcome  this  problem,  we  propose  the  use  of
the following definition:

Definition 1 (m-Large-Scale Group Decision Making Model):
An m-large-scale  group decision making (m-LSGDM) model
is a method which has proven to be able to efficiently manage
LSGDM situations involving m DMs.

Remark 1: It should be noted that to consider a model as an
m-LSGDM,  the  respective  authors  must  provide  a  sustained
proof of its good performance when dealing with these kinds
of problems.

This nomenclature not only provides a clear vision of what
authors  intend  with  their  proposals,  but  also  a  taxonomy
regarding  the  performance  threshold  of  each  contribution.  In
addition,  this  allows  to  easily  identify  the  most  suitable
models to solve a specific LSGDM problem.

2) Ambiguity in the Notion of Expert: Another controversial
terminology  is  the  use  of  the  term expert to  name  the
participants of an LSGDM problem, because it does not seem
to be  reasonable  to  ask  a  million  people  to  be  an  expert  in  a
concrete  area.  In  spite  of  this,  many  contributions  use  the
terms  expert/decision  maker/stakeholders  interchangeably.
Therefore,  the  term “expert” should  be  replaced  by  other
terms  such  as stakeholder or DM when  dealing  with  large-
scale  decision  situations,  especially  those  in  which  hundreds
or thousands of DMs are required.

3) Consensus in LSGDM: The notion of consensus in large-
scale contexts regarding millions of DMs seems to be unclear.
Classic  literature  states  that  a  fundamental  assumption  for
CRPs  is  the  fact  that  all  the  DMs  agree  to  change  their
preferences  in  order  to  get  a  collective  agreement  [110].
However, this collective agreement may not be the goal of the
DMs  which  participate  in  large-scale  decision  situations  and
considering  the  same  assumption  could  be  too  optimistic.
Therefore, in large-scale situations, the philosophy behind the

 

30

35

25

20

15

10

5

0

A
m

o
u

n
t 

o
f 

p
ap

er
s

NUMBER OF DMs

[2, 20] [20, 50] [50, 100] [100, 1000] [1000, ∞]
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idea of consensus should not assume a will for agreement, but
a  personal  interest  in  achieving  a  collective  solution  which
harms  each  DM  as  little  as  possible:  when  millions  of  DMs
take part in a decision situation in which consensus is desired
(for example,  e-democracy),  this  will  of  consensus should be
understood  as  a  will  of  maximizing  the  personal  satisfaction
of  each  individual  with  respect  to  the  desired  consensual
solution.  

B.  Preference Structure
1)  Elevate  Number  of  Preference  Structures: The  most

remarkable  feature  is  the  fact  that  there  are  too  many
preference structures proposed in the literature. For the sake of
providing  more  flexibility  for  DMs,  researchers  have
developed  different  types  of  preference  structures.  However,
even  though  this  purpose  is  noble,  we  have  found  no
proposals related to the comparison of the performance of the
different  preference  structures  in  LSGDM  contexts,  which
could  lead  to  imprecise  results  or  redundant  proposals  in
which  only  variation  is  given  by  changing  the  type  of
preference  structure  used.  To  overcome  this  drawback,
rigorous  studies  are  necessary  to  decide  which  preference
structure is most suitable for a certain problem.

2) Heterogeneous Knowledge: It should also be highlighted
the fact that in problems in which thousands of DMs take part,
the  differences  in  their  knowledge  could  be  considerable.
However,  due  to  the  majority  of  the  reviewed  proposals
consider toy  examples (less  than  50  experts)  to  validate  the
proposed  model,  this  issue  is  often  neglected,  and  these
differences  are  not  considered.  When  dealing  with  LSGDM
problems in which a larger number of DMs are involved, they
should  be  allowed  to  express  their  preferences  by  using
flexible expression domains and their influence in the decision
process must be related to their degree of knowledge about the
topic.

3)  Inconsistency: Another  key  aspect  related  to  the
preference  structures  is  the  consistency  of  the  information
given by DMs. However,  this  issue is  usually not  considered
in  the  reviewed  proposals,  which  could  lead  to  contradictory
results.  To  avoid  this  issue,  it  is  necessary  to  evaluate  the
consistency from DMs’ opinions (before and after the decision
process)  to  guarantee  reliable  solutions,  especially  in  real
LSGDM  problems  in  which  the  high  complexity  and
uncertainty may increase the probability of the occurrence of
this phenomenon.

4) Incompleteness: Finally, it is possible that because of the
lack of  knowledge,  time limitations,  or  simply human errors,
some  values  of  the  preferences  are  missing,  especially  in
LSGDM problems in which complexity is high and hundreds
of  DMs,  usually  not  experts  in  the  topic,  take  part  in  the
decision  process.  Although  this  fact  is  rarely  taken  into
account by researchers, new nontrivial mechanisms to manage
these missing values should be proposed to generate complete
preferences as complete as possible.  

C.  Group Decision Rules
1) Extension of Classic GDM Techniques to LSGDM: In the

revised proposals no reviews about the performance of classic

multi-criterion GDM methods (TOPSIS, AHP, PCA,...), weigh-
ting mechanisms, or dimension reduction techniques in large-
scale  contexts  in  which  hundreds  or  thousands  of  DMs  take
part  have  been  found.  Even  though  they  have  proved  to  be
effective when dealing with 20−50 DMs, there is no guarantee
of their good performance for larger groups [27] and it seems
that these methods have been directly imported into LSGDM
contexts  without  any  proof  of  their  feasibility.  It  has  been
already  proved  that  classic  CRPs  are  not  suitable  for  dealing
with LSGDM problems [20], because these techniques do not
perform  a  reduction  of  the  dimension  and  neglect  the
consideration of DMs’ behaviors.  Therefore, to guarantee the
good performance of  other  classic  GDM techniques in  large-
scale  contexts,  it  is  necessary  to  previously  develop  a  depth
study  regarding  the  feasibility  of  these  models  in  several
scenarios  in  which  different  numbers  of  DMs are  considered
and,  in  case  they  are  not  suitable  for  dealing  with,  study  the
possibility of extending these methods to LSGDM.

2)  Feedback  and  Moderator  in  Large-Scale  Consensus:
Regarding  consensus  models,  the  use  of  the  terminology
process when  referring  to  consensus  models  seems  to  be
obsolete. On the one hand, the role of the human moderator is
unfeasible  to  develop in  large-scale  contexts  due to  time and
resource  limitations.  On  the  other  hand,  simulating  different
discussion rounds in  which feedback is  provided to  the  DMs
to  influence  their  opinions  could  lead  to  endless  situations.
However,  some  reviewed  contributions  inherit  the  original
concept  of  CRP  and  apply  these  ideas  to  propose  consensus
models  which  consider  either  the  moderator  figure  or
feedback  mechanisms.  This  could  be  feasible  when  dealing
with  20–50  DMs,  but  it  is  a  nonsense  when  considering
thousands  of  them.  Therefore,  the  classic  idea  of  consensus
model as an iterative discussion process should be replaced by
automatic  algorithms  which  do  not  necessarily  involve
discussion  rounds,  human  moderators,  nor  the  approval  of
DMs to change their opinions.

3)  Non-Cooperative  Behaviors  in  Consensus  Models: In
addition,  when  thousands  or  millions  of  DMs  take  part  in  a
decision  problem,  it  should  not  be  supposed  that  all  of  them
agree to reach a collective agreement because they may have
different  interests  and,  consequently,  form  groups  according
to  their  personal  profits.  According  to  our  bibliography
analysis,  some proposals already include techniques to detect
and manage these uncooperative behaviors, but their use is not
extended  and  those  authors  who  take  into  account  such
mechanisms  usually  apply  them  to  solve  simple  problems
involving 50 or fewer DMs.  

D.  Evaluation of Quality
1)  Toy  Examples: The  main  critique  in  this  subsection  is

related to the widely spread use of toy examples to  study the
performance  of  the  proposed  models  (see Fig. 11).  The
majority  of  the  reviewed  papers  claim  to  propose  LSGDM
models,  but  just  solve  cases  in  which  less  than  50  DMs  are
considered and there is no information about the performance
of  these  models  when  thousands  of  DMs  are  required  (see
Fig. 10). In this regard, it is necessary to be more demanding
with the conditions in which the validity of a method is tested.
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Solving  a  problem  from  a  concrete  dataset  is  not  enough  to
guarantee  the  good  performance  of  the  proposals  in  any
context. Since models dealing with 20–50 DMs do not have to
be  similar  to  those  which  deal  with  several  millions,
researchers  should  clarify  from  the  beginning  the  volume  of
DMs which their proposal is able to manage (see Definition 1)
and also make sure that the models are stable by carrying out
several simulations with different values of the preferences.

2)  Global  Metrics: Regarding  the  simulations  from  the
previous  paragraph,  there  is  no  universal  way  to  develop
them.  Usually,  researchers  use  a  convenient  measure  to
highlight  the  best  properties  of  their  models  when  making
comparisons  with  others,  but  there  are  no  global  metrics
which  allow  researchers  to  do  a  fair  balancing  by  showing
both positive and negative aspects of the models.  Recently, a
metric  with  this  property  was  proposed  [111]  for  consensus
models, but it is key to introduce new ones for other problems
to analyze different features of the LSGDM methods such as
the  proper  selection  of  the  preference  structures  according to
the problem to solve and the DMs, the robustness of the final
alternatives ranking or the understanding degree of the results.

3)  Accessibility  to  the  Existing  Models: Currently,  there  is
no  easy  way  to  get  access  to  the  models  proposed  by  other
authors,  since  there  are  no  common  repositories  in  which
authors can upload their proposals, making it quite complex to
make  comparisons  among  several  approaches.  To  facilitate
comparisons  among  different  models,  a  common  platform
should  be  developed  to  allow  researchers  to  test  and  upload
their proposals.  

E.  Applications
1) Real World Problems: The majority of the revised studies

are  oriented  to  introduce  abstract  methods  and  the  proposed
models are used to solve simple toy examples with no interest
to  society.  Especially  in  a  purely  applied  area  like  LSGDM,
the  main  purpose  of  research  should  be  facing  real  world
problems instead of being deviated towards publication goals.

2)  LSGDM Support  Systems: Finally,  the  inherent  comple-
xity  in  real  world  LSGDM  problems  makes  it  difficult  to
approach their  resolution by users  who are not  experts  in the
area.  Under  these  circumstances,  the  use  of  LSGDM support
systems is mandatory to facilitate the entire decision process.

However, there is an evident lack of LSGDM support systems
to  facilitate  the  resolution  of  LSGDM  problems  and
appropriate user-friendly software should be developed.  

VI.  New Trends on LSGDM

Section IV was devoted to analyzing the current state of the
art  of  LSGDM  and  in  Section  V  we  developed  a  critical
analysis  of  the  main  drawbacks  in  the  area.  In  this  critique,
several limitations regarding the researching in the topic have
been highlighted, which must be addressed for the sake of the
quality  of  current  and  future  researches  in  the  topic.
Therefore,  this  section provides a discussion about  the future
challenges  and  trends  on  LSGDM  according  to  our
bibliographic  and  critical  analysis.  The  remaining  of  this
section  will  be  based  on  the  four  block  scheme  shown  in
Section IV.  

A.  Preference Structure
Regarding  preference  structures,  the  main  issue  which  is

usually neglected in the literature is the fact that there are too
many preference structures. It is required a deep analysis of if
some of  them are  redundant  and about  which ones  are  better
for representing DMs opinions in a certain LSGDM problem,
especially taking into account that some preference structures,
such  as  FPRs,  add  more  variables  to  the  LSGDM  problem,
which implies more complexity and resource consumption.

Besides,  the  reviewed  proposals  consider  preferences
modeled by using linear preferences. However, a recent study
[112] has shown that when using nonlinear scales to remap the
DMs’ preferences  the  consensus  models  improve  and  the
obtained  collective  solution  for  the  decision  problem  is  also
more realistic from a psychological point of view. Therefore,
further  studies  regarding the impact  of  these nonlinear  scales
in LSGDM would be desirable.  

B.  Group Decision Rules
When dealing with the internal performance of the reviewed

models,  the  most  remarkable  critique  is  related  to  the
nonexistence of studies to guarantee the good performance of
classic  GDM  techniques  in  large-scale  contexts  in  which
hundreds or thousands of DMs are involved [27]. Researchers
have  been  directly  applying  these  methods  in  contexts  in
which 50 or fewer DMs are considered, but there is no proof
about if they will also present a good performance when more
DMs are  involved  in  the  decision  situation.  Rigorous  studies
about the feasibility of these techniques in large-scale contexts
are  required  and,  if  necessary,  these  proposals  should  be
extended to deal with LSGDM problems.

Additionally,  an  interesting  research  line  for  this  block
could be proposing hybrid models in which it  is necessary to
combine  the  knowledge  of  a  group  of  DMs  and  the
information  obtained  from  a  large  database  of  users’
preferences,  Internet  of  Things  (IoT)  devices  and  so  on  in
order to provide realistic solutions for real world problems.  

C.  Evaluation of Quality
In  order  to  prove  the  validity  of  the  reviewed  techniques,

authors usually test their models by using toy examples which
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Fig. 11.     Contributions  are  classified  according  to  their  evaluation
technique.
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consider  less  than  50  DMs.  Although  it  matches  the  original
definition  of  LSGDM  [17],  this  way  of  evaluating  the
performance of a proposal does not seem to be appropriate for
nowadays  society  in  which  some  problems  require  of  taking
into  account  the  preferences  of  millions  of  users.  In  this
contribution,  we  have  proposed  the  definition  of m-LSGDM
addressing  those  models  which  are  able  to  manage  decision
situations in which m DMs are required. This notion allows to
easily classify both the existing and new proposals according
to the number of DMs which are designed to deal with. In this
regard,  it  is  necessary  to  test  classical  models  in  more
demanding  contexts  which  require  of  standard  datasets  with
hundreds  or  thousands  of  DMs  in  order  to  avoid  ambiguous
proposals  whose  performance  in  contexts  with  more  than  50
experts  is  unclear.  In  addition,  global  metrics  (none  of  them
were  found  in  our  search)  which  allow  comparing  models
should  be  proposed  and  used  by  researchers  to  show  the
quality of their models. Furthermore, it would be interesting to
develop  a  universal  research  platform  composed  by  the
different  existing  LSGDM  models  in  order  to  facilitate  the
accessibility  of  these  proposals  and  the  comparisons  among
them.  Therefore,  a  new  research  line  focuses  on  the
performance  analysis  of  the  LSGDM  models  and  their
validness  from  an  objective  point  of  view  seems  to  be
primordial.  

D.  Applications
Finally,  even  though  GDM  is  a  purely  applied  topic,  the

reviewed  proposals  usually  consist  of  providing  theoretical
models  which  are  applied  to  solve  easy  examples.  The  main
interest  of  the  area  should  be  devoted  to  solving  real  world
problems,  instead of  proposing more models  whose perform-
ance  is  just  studied  for  50  or  fewer  DMs.  Using  LSGDM
models  in  Big Data environments  or  designing new LSGDM
Support Systems devoted to e-democracy could be prominent
research  lines  regarding  this  issue.  In  addition,  it  would  be
interesting  to  consider  the  application  of  other  Artificial
Intelligence  tools  to  LSGDM.  For  instance,  how  to  apply
Natural  Language  Processing  methods  to  improve  the  model
of  DMs’ preferences  when  they  are  obtained  from  social
networks  in  which  millions  of  users  take  part  or  developing
Group  Recommendation  Systems  for  managing  millions  of
users which provide recommendations by taking into account
a  certain  consensus  degree  when  fusing  the  preferences  of
other users with similar profiles.  

VII.  Conclusions

The main aim of this review is to become a turning point for
researchers  to  better  understand  the  concept  of  LSGDM  and
introduce  proposals  that  explore  new  challenges  in  the  area
related  to  new  technological  developments  such  as  Big  Data
or  social  media  and  pay  more  attention  to  the  validness  of
their models under these contexts.

This contribution has performed a systematic review of the
existing  literature  regarding  LSGDM.  To  do  so,  we  have
followed the indications for developing bibliographic analysis
in  Software  Engineering  proposed  by  Kitchenham  and
Charters  [43].  By  using  this  methodology,  the  existing

proposals  have  been  reviewed  from  four  different  points  of
view,  namely  Preference  Structure,  Group  Decision  Rules,
Evaluation  of  Quality  and  Applications,  which  contain  the
most  relevant  keywords  in  the  LSGDM  literature  and
represent  the  different  steps  to  consider  when  proposing
LSGDM  models.  Since  the  developed  analysis  has  revealed
several major drawbacks regarding the current research in the
topic, this contribution also provides a deep critical analysis of
these  bad  habits  found  in  the  literature  and  some  indications
about how to redirect future investigation towards the original
purpose  of  LSGDM,  which  was  related  to  propose
frameworks  to  face  decision  situations  involving  an  elevated
number of DMs.

It should be highlighted that defining theoretical models and
testing  their  performance  in  toy  examples,  in  which  20–50
DMs  are  considered,  may  be  a  profitable  source  of  content
from the point of view of publishing interests, but they would
be  hard  to  be  applied  in  practical  situations  if  they  do  not
explicitly specify the number of DMs that are able to manage
and  prove  their  good  performance  in  these  contexts.  In  a
purely  applied  area  like  this,  researchers  should  focus  future
studies on dealing with real world problems involving a large
group of DMs (for instance, Netflix manages 209 million paid
memberships) instead of proposing more “large-scale” models
which work just with 20 DMs.  
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Abstract

Consensus Reaching Processes (CRPs) deal with those

group decision‐making situations in which conflicts

among experts' opinions make difficult the reaching of

an agreed solution. This situation, worsens in large‐
scale group decision situations, in which opinions tend

to be more polarized, because in problems with ex-

treme opinions it is harder to reach an agreement.

Several studies have shown that experts' preferences

may not always follow a linear scale, as it has com-

monly been assumed in previous CRP. Therefore, the

main aim of this paper is to study the effect of mod-

eling this nonlinear behavior of experts' preferences

(expressed by fuzzy preference relations) in CRPs. To

do that, the experts' preferences will be remapped by

using nonlinear deformations which amplify or reduce

the distance between the extreme values. We introduce

such automorphisms to remap the preferences as Ex-

treme Values Amplifications (EVAs) and Extreme Va-

lues Reductions (EVRs), study their main properties

and propose several families of these EVA and EVR

functions. An analysis about the behavior of EVAs and

EVRs when are implemented in a generic consensus
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model is then developed. Finally, an illustrative ex-

periment to study the performance of different families

of EVAs in CRPs is provided.
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1 | INTRODUCTION

Group decision‐making (GDM) problems are those situations in which several individuals or
experts have to choose a solution for a given problem which consists of two or more possible
solutions or alternatives.1

Butler and Rothstein2 proposed several rules to guide the decision process in real‐world
problems, like, the majority rule, the minority rule, or unanimity. The main issue around these
general rules is the fact that some individuals or experts may not agree with the solution chosen
by the group because they could consider that their opinions have not been sufficiently taken
into account for achieving the solution.

Even though classic GDM problems have been proposed by considering a few number of
experts, current technological advances, such as e‐democracy3 or social networks,4 have led to
situations in which many experts can be required. Large‐scale GDM (LSGDM) problems are
defined as those GDM problems in which there are more than 20 experts involved in the
problem.5 This increment in the number of experts implies more conflicts and polarized
opinions,6 and thus to obtain agreed solutions that become much more complex.

Consensus Reaching Processes (CRPs)2,7 emerge for those GDM situations which demand
an agreement among experts about the chosen solution.

According to Reference [8] the most widely used approach to deal with CRPs may be the
idea of soft consensus proposed by Kacprzyk.1 Soft consensus that is based on the notion of
fuzzy linguistic majority provides a measure to compute the consensus among experts.9

Several CRPs based on the notion of soft consensus have been developed,10–13 all of them
assume the use of linear scales for the preferences elicited from experts. However, recent studies
have shown that, in certain situations, better decisions can be obtained by using nonlinear scales for
representing users' preferences.14,15 Masthoff14 studied people's behavior when they rate their
opinions on a numerical scale and concluded that the ratings did not follow a linear scale because
the same differences between two values at different levels of the scale represent different differ-
ences in people's minds. Therefore, it was concluded that a quadratic scale was a better measure
than a linear one. Meanwhile, Delic et al.15 pointed out that by using polynomial remappings of
individual preferences (under both ranking and rating conditions in group decision schemes) the
results of the decision‐making processes are improved.

Paying attention to previous results, this paper aims at studying the effect of modeling
nonlinear behaviors in CRPs for LSGDM. Therefore, we raise the following research questions
that stem from our goal:

• RQ1: How are nonlinear scales modeled in CRPs for managing polarization in (LS)GDM?
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• RQ2: Does the nonlinear approach improve the CRPs in comparison with linear approach?

Without loss of generality,16 we assume that the preferences will be elicited by fuzzy
preference relations (FPRs) and nonlinear deformations will be applied to each value of the
preference relation, to adjust the initial experts' preferences to a more realistic nonlinear scale
when the (LS)GDM problem faces a situation in which such scales are needed. The impact of
the nonlinear remapping procedure in CRPs will be evaluated by comparing its convergence
and degree of consensus achieved.

Consequently, we will introduce Extreme Values Amplifications (EVAs) as those functions
that increase in a nonlinear way the distance between extreme values of the FPRs. Additionally,
Extreme Values Reductions (EVRs) will be defined as those nonlinear deformations which
reduce the distance between the extreme values of the FPRs.

Several families of these EVAs and EVRs are proposed. EVAs will be then applied in
different CRPs to LSGDM problems to show the effectiveness of this nonlinear preference
modeling by using the software AFRYCA.10

Such EVAs (resp., EVRs) will act as:

1. They remap the original linear‐scaled FPRs into nonlinear‐scaled FPRs.
2. They amplify (resp., reduce) the distance between the extreme values, and reduce (resp.,

amplify) the distance between the intermediate ones.
3. They have a concrete geometrical pattern.
4. The amplification (resp., reduction) of distances is greater when preferences are close to the

extremes.

Finally, we analyze the performance of EVAs and EVRs in CRPs for LSGDM problems
evaluating if EVA/EVR approaches outperform the classic linear approach in CRPs.

The remaining of this paper is set up as follows: In Section 2, a brief review of GDM problems
and CRPs is presented. Section 3 introduces an exhaustive study of the properties of those auto-
morphisms on the interval [0, 1] which remaps linear‐scaled FPRs into nonlinear‐scaled FPRs by
increasing or reducing distances between extreme preferences. Section 4 defines the main concepts
of this contribution, namely, EVA and EVR, and presents its fundamental characteristics. Section 5
proposes a general method to construct EVAs and introduces several families of EVAs and EVRs.
In Section 6 we will discuss the performance of EVAs and EVRs when applied in a generic
consensus model. In Section 7, we simulate the performance of EVAs when they are applied in
CRPs for LSGDM problems. Finally, Section 8 will conclude the contribution.

2 | PRELIMINARIES

This section revises some essential concepts about GDM and CRP to easily understand the
proposal.

2.1 | Group decision‐making

A GDM problem1,2 is a situation in which two or more individuals have to choose a collective
solution for a certain problem. Formally, the main elements in a GDM problem are:
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• A set X X X X= { , , …, }n1 2 , n2 ≤ ∈ , of alternatives or possible solutions to the given problem.
• A set E e e e= { , , …, }m1 2 , where m2 ≤ ∈ , of experts who express their opinions about the
alternatives in X throughout certain preference structure.

In this study, without loss of generality,16 we will assume that experts elicit their
preferences by using an FPR, which has been proved to be effective in managing the
uncertainty.16,17 To obtain these FPRs, each expert e k m, = 1, …,k will elicit the degree to
which she/he prefers the alternative Xi over the alternative Xj, which will be denoted by
pi j
k
, . The FPR associated with the expert ek will be the matrix P ([0, 1])k n n×∈

whose items are the values p [0, 1]ij
k ∈ which must satisfy the symmetry condi-

tion p p i j n k m+ = 1 , {1, 2, …, }, {1, 2, …, }ij
k

ji
k ∀ ∈ ∈ .

Nowadays, technological developments have led to GDM situations3,4 which demand a
large number of experts. LSGDM problems are defined as those decision situations in which 20
or more experts are required to solve the GDM problems.5

2.2 | Consensus reaching processes

GDM solving processes may fail when using classical GDM rules, like, the majority rule, since
experts may feel unsatisfied with the solution and think that their opinions have not been
sufficiently considered.10,18 To avoid such disagreements, it is necessary to include in the GDM
solving process a CRP to obtain agreed solutions that reflect the opinion of all the experts
involved in the GDM problem.11,19

A CRP is an iterative discussion process7 usually coordinated by a moderator whose main
responsibilities are to evaluate the level of agreement achieved in each round of discussion (and
if it is enough), identify those experts' opinions that are far away from the collective opinion
and provide some feedback/recommendations to such experts to increase the consensus degree
in the next round.8

A general scheme of a CRP (see Figure 1) is briefly summarized as follows:

• Gathering preferences: Each expert elicits her/his preferences through a certain preference
structure.16

• Determining the level of consensus: The moderator computes the level of agreement
throughout a certain consensus measure.10

• Consensus control: The consensus level is compared with a threshold level previously
established as acceptable. If either this consensus threshold is reached or the maximum
number of rounds is surpassed, the process finishes. Otherwise the consensus progress keeps
going.

• Consensus progress: To increase the level of consensus, experts should change their
preferences according to the moderator's recommendations.

When large‐scale contexts are considered, CRPs become more complex10,18 because there
are usually more conflicts and the opinions are more polarized.6 Additionally, new challenges
emerge to deal with a large number of experts in CRPs and several proposals have been
presented to cope with them19–22 in recent years.
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3 | AMPLIFYING DISTANCES BETWEEN EXTREME
PREFERENCES

Our main aim is to study the performance of CRPs when the experts' preferences are modeled
by a nonlinear scale. To do this, the preferences elicited from experts with FPRs will be
transformed by a nonlinear deformation to obtain more realistic FPRs in which extreme values
are deformed so that the distances between them are increased or decreased.

To remap the experts' preferences by using a function D: [0, 1] [0, 1]→ it is necessary to
consider two different factors:

(i) The function D: [0, 1] [0, 1]→ must remap FPRs into FPRs. This implies not only that the
codomain of D must be the interval [0, 1], but also that the nonlinear preferences keep the
symmetry condition of an FPR P ([0, 1])n n×∈ , that is, p p+ = 1ij ji ,

(ii) The function D: [0, 1] [0, 1]→ must transform the unit interval [0, 1] such that the distance
between the extreme values increases (or decreases) with respect to their original distance. In
this section we will focus on those functions which deform the preferences by increasing the
distance between extreme values and decreasing it between the intermediate ones, but similar
arguments could be developed to describe those functions which increase the distance between
the intermediate values and decrease it between the more extreme values.

For the sake of clarity, the description of these nonlinear deformations will be developed
heuristically, by progressively adding requirements to a function D: [0, 1] [0, 1]→ . Therefore,
some mathematical properties will be imposed to the function D due to their practical appli-
cation and, in other cases, the mathematical properties will lead to useful features of these
functions. In the following section all of these properties will be then compiled in the main
definitions of our proposal, namely, EVAs and EVRs.

FIGURE 1 General scheme of consensus reaching process [Color figure can be viewed at
wileyonlinelibrary.com]
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3.1 | Regularity

To obtain a proper deformation of the interval [0, 1] the function D: [0, 1] [0, 1]→ , it must be a
bijection. Otherwise, different values of the preferences would be mapped into the same value,
which is not reasonable if we want to compare how different the preferences are.

In this context, both the strictly increasing character of D and the values D (0) = 0 and
D (1) = 1 are mandatory.

Property 1. D: [0, 1] [0, 1]→ is a strictly increasing bijection which satisfies the
boundary conditions D (0) = 0 and D (1) = 1; that is, D is an automorphism on the
interval [0, 1].

The following well‐known result will assure that a function satisfying this property is also a
continuous function.

Proposition 1. Let f a b c d: [ , ] [ , ]→ be a bijection. Then f is strictly monotonous if and
only if f is continuous.

Proof. Let us prove first the sufficiency. Suppose f is strictly increasing (the decreasing
case is similar) and pick x a b[ , ]0 ∈ and ϵ > 0. Since f is a bijection we can find
A a b[ , ]⊂ such that f A f x f x c d( ) = [ ( ) − ϵ, ( ) + ϵ] [ , ]0 0 ∩ . Now, if we pick x y A, ∈ such
that x y< , because of the monotoniticity of f , we obtain

f x c f x f z f y f x dmax{ ( ) − ϵ, } < ( ) < ( ) < ( ) < min{ ( ) + ϵ, }0 0

for every z x y] , [∈ . In such a case A is an interval containing x0 and we can find
δ > 0 such that f z f x z a b z x δ( ) − ( ) < ϵ [ , ]: − <0 0∣ ∣ ∀ ∈ ∣ ∣ , that is, f is continuous
in x0.

To prove the necessary condition pick x y z, , [0, 1]∈ such that x y z< < . Suppose
f x f y( ) < ( ) and f y f z( ) > ( ). In that case, by using the Intermediate Value Theorem, we
obtain f x y f y z(] , [) (] , [)∩ ≠ ∅, which is impossible because of the bijectivity of f . We
can apply the same reasoning to the remaining case (i.e., f x f y( ) > ( ) and f y f z( ) < ( ))
and conclude it must be either f x f y f z( ) < ( ) < ( ) or f x f y f z( ) > ( ) > ( ). □

Since a function satisfying Property 1 is continuous, small changes on the original
preferences are mapped into small changes of the deformed values.

As we will see, we will need some extra regularity on D to characterize the amplification of
the distances between extreme values according to the value of D′, so we impose now some
additional smoothness:

Property 2. D : [0, 1] [0, 1]→ is a differentiable function whose derivative D′: [0, 1] →
[0, 1] is continuous, that is, D is a 1 function.

Note that if D: [0, 1] [0, 1]→ is a function satisfying Properties 1 and 2, then D also satisfies
D x x′( ) 0 [0, 1]≥ ∀ ∈ .
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3.2 | Symmetry

When using an FPR to represent expert's preferences, it is usual to make the calculations only
in the superior triangle due to that triangle and the inferior one are related by the standard
negation N: [0, 1] [0, 1]→ defined by N x x x( ) = 1 − [0, 1]∀ ∈ .

We have to translate this symmetry into an equivalent property for our function D, that is,
the modified distance from 0.8 to 0.85 should be the same that the modified distance from 0.2 to
0.15. This kind of symmetry around the value x = 1

2
will be imposed by the following property.

Property 3. D: [0, 1] [0, 1]→ must be a symmetric function in the sense that
D x D x x( ) = 1 − (1 − ) [0, 1]∀ ∈ . In particular, D ( ) =

1

2

1

2
.

In other words, this property guarantees that D remaps FPRs into FPRs. Furthermore, this
property has a clear practical purpose since it allows us to construct these nonlinear deformations

by only focusing on one half of the interval [0, 1]: if we manage to obtain D : , 1 , 11
1

2

1

2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦→ we

can define D : 0, 0,2
1

2

1

2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦→ by D x D x x( ) 1 − (1 − ) 0,2 1
1

2

⎡⎣ ⎤⎦≔ ∀ ∈ and construct

D: [0, 1] [0, 1]→ as a piecewise function. Note that, when D1 is a differentiable function, D2 is also

differentiable and its derivative satisfies D x D x x′( ) = ′(1 − ) [0, 1]2 1 ∀ ∈ , so D D′( ) = ′( )2
1

2 1
1

2
and

D will be a differentiable function such that D D′(0) = ′(1). Furthermore, if D ′1 is continuous, D′
will be also continuous.

It should be highlighted that a function D: [0, 1] [0, 1]→ satisfying these three properties
induces the restricted dissimilarity d : [0, 1] × [0, 1] [0, 1]D → 23 given by

d x y D x D y x y( , ) = ( ) − ( ) , [0, 1],D ∣ ∣ ∀ ∈

and the Restricted Equivalence Function23 S : [0, 1] × [0, 1] [0, 1]D → defined by

S x y D x D y x y( , ) = 1 − ( ) − ( ) , [0, 1].D ∣ ∣ ∀ ∈

These tools allow one to compare how similar are the preferences taking into account the
nonlinear approach.

3.3 | Distance amplification and derivatives

Here it is studied the relation between the first derivative of an arbitrary automorphism defined
in [0, 1] and the modification of the distances between elements that it will produce.

First, a theorem that characterizes those functions which amplify the distance between the
elements of their domain is proposed.

Theorem 1. Let f a b: [ , ] → be a 1 function defined on the interval a b[ , ] ⊂ . Then
the following statements are equivalent:

1. f is an increasing function satisfying f y f x y x x y a b( ) − ( ) − , [ , ]∣ ∣ ≥ ∣ ∣ ∀ ∈ ,
2. f z z a b′( ) 1 [ , ]≥ ∀ ∈ .
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Proof. (1) (2)→ Suppose first that f y f x y x x y a b( ) − ( ) − , [ , ]∣ ∣ ≥ ∣ ∣ ∀ ∈ and pick
z a b[ , [∈ . Let us choose h > 0 such that z h b+ < . In that case the auxiliary function

g h: ]0, [ → defined by g t t h( ) = ]0, [
f z t f z

t

( + ) − ( )
∀ ∈ is a continuous function such

that g t t h( ) 1 ]0, [≥ ∀ ∈ and therefore f z g t′( ) = lim ( ) 1
t 0

≥
→

. On the other hand, when

z b= , we can consider h > 0 such that b a h− > and use the analogue reasoning for the

function g h: ]0, [ → defined by g t t h( ) = ]0, [
f b f b t

t

( ) − ( − )
∀ ∈ .

(2) (1)→ Since f z z a b′( ) 1 [ , ]≥ ∀ ∈ , f is increasing. To show the inequality pick
x y a b, [ , ]∈ such that x y< . We can use the Mean Value Theorem to obtain ξ x y] , [∈ such
that f y f x f ξ y x( ) − ( ) = ′( )( − ) and therefore it must be f y f x y x( ) − ( ) −∣ ∣ ≥ ∣ ∣. □

Remark 1. Note that if the derivative of D is between 0 and 1 in some subinterval, as
it may occur on the intermediate values of [0, 1], then the distance between the
deformations of those elements will be lower than the distance between the
original ones.

In the following proposition we will use the idea of Theorem 1 to describe the amplification
of distances between values close to 1 when we are deforming the interval [0, 1]. The key is to
ask for the derivative in x = 1 to be higher than 1 and use the continuity of the derivative to
obtain a neighborhood of 1 wherein the derivative is greater or equal than 1.

Proposition 2. Let f r: [1 − , 1] [0, 1]→ be a 1 function defined on r[1 − , 1] for some
r ]0, 1[∈ . Then,

• If f ′(1) > 1, there exists r r′ ]0, [∈ such that f y f x y x x y( ) − ( ) > − ,∣ ∣ ∣ ∣ ∀ ∈

r x y[1 − ′, 1]: ≠ ,
• f is an increasing function satisfying f y f x y x x y r( ) − ( ) − , [1 − , 1]∣ ∣ ≥ ∣ ∣ ∀ ∈ , if
and only if f z z r′( ) 1 [1 − , 1]≥ ∀ ∈ .

Proof. To prove the first assumption let us use the continuity of f ′ around 1 to get r′ ∈
r]0, [ such that f z z r′( ) > 1 [1 − ′, 1]∀ ∈ . Then, for every x y< , x y r, [1 − ′, 1]∈ ,

we can use the Mean Value Theorem to obtain ξ x y] , [∈ such that f y f x( ) − ( ) =

f ξ y x′( )( − ). Since f ξ′( ) > 1 and, in particular, f is strictly increasing we have
f y f x( ) − ( ) =∣ ∣ f y f x f ξ y x y x( ) − ( ) = ′( )( − ) > −∣ ∣. To show the second statement
we just have to use Theorem 1. □

Using a similar argument we can show the analogous result for distance amplification in
values close to 0:

Proposition 3. Let f r: [0, ] [0, 1]→ be a 1 function defined on r[0, ] for some r ∈

]0, 1[. Then:

• If f ′(0) > 1, there exists r r′ ]0, [∈ such that f y f x y x x y( ) − ( ) > − ,∣ ∣ ∣ ∣ ∀ ∈

r x y[0, ′], ≠ ,
• f is an increasing function satisfying f y f x y x x y r( ) − ( ) − , [0, ]∣ ∣ ≥ ∣ ∣ ∀ ∈ , if and
only if f z z r′( ) 1 [0, ]≥ ∀ ∈ .
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The practical interpretation of these results is simple: to amplify distances close to the
extremes we need that the derivative of D is greater than 1 in the extremes. Since D is asked to
be a 1 function, the continuity of D′ will give us two neighborhoods (one around 0 and the
other around 1) where D′ is always greater than 1 and thus the distance between two values
which are inside one of these neighborhoods will increase when we apply D.

Property 4. D must be a 1 function satisfying D′(0) > 1 and D′(1) > 1.

3.4 | Distance amplification and convexity

Finally, we study the relation between the convexity and the distance amplification on
extreme values. First, we compare the deformations D with the identity function on the
interval [0, 1].

Proposition 4. Let f : [0, 1] [0, 1]→ be a 1 increasing function such that f (0) =

f f0, (1) = 1, ′(0) > 1, and f ′(1) > 1. Then we can find r ]0, [
1

2
∈ such that f x( ) >

x x r]0, ]∀ ∈ and f x x x r( ) < [1 − , 1[∀ ∈ .

Proof. Due to f ′(0) > 1 and f ′(1) > 1, the function g: [0, 1] [0, 1]→ given by g x( ) =

f x x x( ) − [0, 1]∀ ∈ satisfies g′(0) > 0 and g′(1) > 0 and we can find r ]0, [
1

2
∈ such

that g is strictly increasing in both r[0, ] and r[1 − , 1].
In that case g g x x r(0) < ( ) ]0, ]∀ ∈ and therefore f f x x x(0) − 0 < ( ) − ∀ ∈

r x f x x r[0, ] < ( ) ]0, ]⇔ ∀ ∈ and g x( ) <g x r(1) [1 − , 1[∀ ∈ ⇔ f x x( ) − <

f (1) − 1 which means f x x x r( ) < [1 − , 1[∀ ∈ □

FIGURE 2 A function D satisfying Proposition 4 ( )r =
1

2
[Color figure can be viewed at

wileyonlinelibrary.com]
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This result provides a clear geometrical interpretation: the graph of D is over the diagonal of
the square [0, 1] × [0, 1] for values close enough to 0 and it is under the same diagonal for those
values close enough to 1 (see Figure 2).

We have already shown that the derivative of D must be greater than 1 close to the
extremes. The following proposition, which is an immediate consequence of the previous one,
will prove that D′ must also be under 1 in some subinterval of [0, 1] and thus the distances
decrease between the values in such subinterval. Additionally, we will obtain that D cannot be
convex nor concave on its full domain.

Proposition 5. Let f : [0, 1] [0, 1]→ be a 1 increasing function such that
f f f(0) = 0, (1) = 1, ′(0) > 1, and f ′(1) > 1. Then

• There exists an interval I [0, 1]⊂ such that f x x I0 ′( ) < 1≤ ∀ ∈ ,
• f ′ cannot be increasing nor decreasing on the full domain [0, 1].

Proof. Let us define g: [0, 1] → by g x f x x x( ) = ( ) − [0, 1]∀ ∈ as before. On the
one hand, suppose that f x x′( ) 1 [0, 1]≥ ∀ ∈ . In that case, g′ 0≥ and g is strictly
increasing, which is a contradiction due to g g(0) = (1). That means we can find some
x [0, 1]∈ where f x′( ) < 1 and the continuity of f ′ will give us the interval we are
looking for.

On the other hand, if f ′ is increasing then g′ is also increasing and due to g′(0) > 0 we
obtain g x x′( ) > 0 [0, 1]∀ ∈ . Then g is strictly increasing and g g(0) < (1), which is
impossible. □

Propositions 6 and 7 provide a characterization of those functions which amplify the dif-
ference between nearby elements when we approach extreme values (0 or 1).

Proposition 6. Let f a b: [ , ] → be a 1 increasing function. The following statements
are equivalent:

1. f is a convex function,
2. For each x y x y a b< , , ] , ]∈ the inequality

f x f x t f y f y t( ) − ( − ) ( ) − ( − )∣ ∣ ≤ ∣ ∣

holds for any t h[0, ]∈ , where h x a y x= min{ − , − }.

Proof. (1) (2)→ If f is convex, f ′ is an increasing function in a b[ , ]. On the other hand,
the Mean Value Theorem gives us ξ x t x] − , [1 ∈ and ξ y t y] − , [2 ∈ such that

f x f x t f x f x t f ξ t f ξ t f y f y t

f y f y t

( ) − ( − ) = ( ) − ( − ) = ′( ) ′( ) = ( ) − ( − )

= ( ) − ( − ) ,

1 2∣ ∣ ≤

∣ ∣

where we have used that f ′ is increasing and therefore f ξ f ξ′( ) ′( )1 2≤ .
(2) (1)→ Let us fix x y x y a b< , , ] , ]∈ and define g h: [0, ] → by
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g t
f y f y t f x f x t

t
t h( ) =

( ) − ( − ) − ( ( ) − ( − ))
[0, ].∀ ∈

Since f is increasing g 0≥ . In addition

g t f y f xlim ( ) = ′( ) − ′( )
t 0→

and the continuity of g leads to f y f x′( ) ′( )≥ , which is the convexity of f . □

Using a similar proof, we obtain:

Proposition 7. Let f a b: [ , ] → be a 1 increasing function. The following statements
are then equivalent:

1. f is a concave function,
2. For each x y x y a b< , , ] , ]∈ the inequality

f x f x t f y f y t( ) − ( − ) ( ) − ( − )∣ ∣ ≥ ∣ ∣

holds for any t h[0, ]∈ , where h x a y x= min{ − , − }.

These propositions show that the convexity is related to an increment of the distances
between consecutive values of the preferences when we approach the extremes of the interval
[0, 1]. We summarize this in Property 5:

Property 5. D: [0, 1] [0, 1]→ should be concave in a neighborhood of 0 and convex in
a neighborhood of 1.

4 | EXTREME VALUES AMPLIFICATIONS AND EXTREME
VALUES REDUCTIONS

This section introduces the concept of EVA and its dual concept EVR. First, we present the
definition of EVAs as those functions satisfying the properties stated in Section 3.

Definition 1 (Extreme Values Amplification). Let D: [0, 1] [0, 1]→ be a function satisfying:

1. D is an automorphism on the interval [0, 1],
2. D is a 1 function,
3. D satisfies D x D x x( ) = 1 − (1 − ) [0, 1]∀ ∈ ,
4. D′(0) > 1 and D′(1) > 1,
5. D is concave in a neighborhood of 0 and convex in a neighborhood of 1.D will be called

then an EVA on the interval [0, 1].

This notation reminds that the main purpose of D is to remap FPRs of a GDM problem in a
nonlinear way by amplifying the distance between the extreme values. So the new preferences show
a larger distance between extreme elements and a smaller distance between elements close to 1

2
.
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The following theorem, which compiles the main properties of the EVAs, is obtained by
using the results discussed in Section 3:

Theorem 2. Let D: [0, 1] [0, 1]→ be an EVA on [0, 1]. Then,

1. The function d : [0, 1] × [0, 1] [0, 1]D → given by

d x y D x D y x y( , ) = ( ) − ( ) , [0, 1]D ∣ ∣ ∀ ∈

is a restricted dissimilarity23 and the function S : [0, 1] × [0, 1] [0, 1]D → defined by

S x y D x D y x y( , ) = 1 − ( ) − ( ) , [0, 1].D ∣ ∣ ∀ ∈

is a Restricted Equivalence Function.23

2. We can find three intervals I I I, , [0, 1]1 2 3 ⊂ such that I I0 , 11 3∈ ∈ , and I I I< <1 2 3

satisfying that

D y D x y x x y I x y

D y D x y x x y I x y

D y D x y x x y I x y

( ) − ( ) > − , : ,

( ) − ( ) < − , : ,

( ) − ( ) > − , : .

1

2

3

∣ ∣ ∣ ∣ ∀ ∈ ≠

∣ ∣ ∣ ∣ ∀ ∈ ≠

∣ ∣ ∣ ∣ ∀ ∈ ≠

3. The graph of D is over the diagonal of the square [0, 1] × [0, 1] for values close enough to
0 and it is under the same diagonal for those values close enough to 1,

4. There exist a neighborhoodU0 containing 0 and a neighborhoodU1 containing 1 such that for
every x y U x y, , <0∈ ∘ , there exists h > 00 such that the inequality D x( ) −∣ D x t( − )∣

D y D y t( ) − ( − )≥ ∣ ∣ holds for any t h[0, ]0∈ and for every x y U x y, , <1∈ ∘ , there exists
h > 01 such that the inequality D x t D x D y t D y( − ) − ( ) ( − ) − ( )∣ ∣ ≤ ∣ ∣ holds for
any t h[0, ]1∈ .

Therefore, EVAs behave exactly as we aimed at:

1. They remap the original linear‐scaled FPRs into nonlinear‐scaled FPRs.
2. They amplify the distance between the extreme values, and reduce the distance between the

intermediate ones.
3. They have a concrete geometrical pattern (see Figure 3A).
4. The amplification of distances is greater close to the extremes.

We can also consider the analogous notion of EVR:

Definition 2 (Extreme Values Reduction). Let D: [0, 1] [0, 1]→ be a function satisfying:

1. D is an automorphism on the interval [0, 1],
2. D is a 1 function,
3. D satisfies D x D x x( ) = 1 − (1 − ) [0, 1]∀ ∈ ,
4. D′(0) < 1 and D′(1) < 1,
5. D is convex in a neighborhood 0 and concave in a neighborhood of 1.

Then D will be called an EVR on the interval [0, 1].

12 | GARCÍA‐ZAMORA ET AL.



In this case, we obtain:

Theorem 3. Let D: [0, 1] [0, 1]→ be an EVR on [0, 1]. Then:

1. The function d : [0, 1] × [0, 1] [0, 1]D → given by

d x y D x D y x y( , ) = ( ) − ( ) , [0, 1]D ∣ ∣ ∀ ∈

is a restricted dissimilarity23 and the function S : [0, 1] × [0, 1] [0, 1]D → defined by

S x y D x D y x y( , ) = 1 − ( ) − ( ) , [0, 1]D ∣ ∣ ∀ ∈

is a Restricted Equivalence Function.23

2. We can find three intervals I I I, , [0, 1]1 2 3 ⊂ such that I I0 , 11 3∈ ∈ , and I I I< <1 2 3

satisfying that

D y D x y x x y I x y

D y D x y x x y I x y

D y D x y x x y I x y

( ) − ( ) < − , : ,

( ) − ( ) > − , : ,

( ) − ( ) < − , : .

1

2

3

∣ ∣ ∣ ∣ ∀ ∈ ≠

∣ ∣ ∣ ∣ ∀ ∈ ≠

∣ ∣ ∣ ∣ ∀ ∈ ≠

3. The graph of D is under the diagonal of the square [0, 1] × [0, 1] for values close enough
to 0 and it is over the same diagonal for those values close enough to 1,

4. There exist a neighborhoodU0 containing 0 and a neighborhoodU1 containing 1 such that
for every x y U x y, , <0∈ ∘ , there exists h > 00 such that the inequality D x( ) −∣

D x t D y D y t( − ) ( ) − ( − )∣ ≤ ∣ ∣ holds for any t h[0, ]0∈ and for every x y U x y, , <1∈ ∘ ,
there exists h > 01 such that the inequality D x t D x D y t D y( − ) − ( ) ( − ) − ( )∣ ∣ ≥ ∣ ∣ holds
for any t h[0, ]1∈ .

The behavior of EVRs is dual to the EVAs as can be seen below:

1. They remap the original linear‐scaled FPRs into nonlinear‐scaled FPRs.
2. They reduce the distance between the extreme values, and amplify the distance between the

intermediate ones.

FIGURE 3 Comparing the shapes of EVAs and EVRs. EVA, Extreme Values Amplification; EVR, Extreme
Values Reduction [Color figure can be viewed at wileyonlinelibrary.com]
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3. They have a concrete geometrical pattern (see Figure 3B).
4. The reduction of distances is greater close to the extremes.

Both EVAs and EVRs are valid approaches to model nonlinear preferences, which gives an
answer to the first research question.

5 | GENERATING EVAS AND EVRS

In this section several examples of EVAs and EVRs are provided. First, a generic method to
construct EVAs is developed.

Let h α β a b: [ , ] [ , ]→ be the standard affine transformation given by

h x
b a

β α
x α a x α β( ) =

−

−
( − ) + [ , ]

⎛
⎝⎜

⎞
⎠⎟ ⋅ ∀ ∈

and let us consider the special cases h : , 1 [0, 1]1
1

2

⎡⎣ ⎤⎦ → and h : [0, 1] , 12
1

2

⎡⎣ ⎤⎦→ .

Proposition 8. Let f : [0, 1] [0, 1]→ be a 1 convex automorphism on the interval [0, 1]
such that f ′(0) < 1 and f ′(1) > 1. Then the mapping D: [0, 1] [0, 1]→ given by

D x
h f h x x

h f h x x
( ) =

1 − (1 − ), 0 < ,

( ), 1

2 1
1

2

2 1
1

2

⎧
⎨⎪
⎩⎪

∘ ∘ ≤

∘ ∘ ≤ ≤

is an EVA.

Remark 2. The previous result could be adapted for EVRs by requiring concavity
instead of convexity and changing the direction of the inequalities, that is, f ′(0) > 1

and f ′(1) < 1.

In the following we will show several families of EVAs and EVRs and study their properties.

5.1 | Sin‐based EVAs and EVRs

Let α 0,
π

1

2

⎡⎣ ⎤⎦∈ . Then the ∞ function s : [0, 1] [0, 1]α → given by

s x x α πx π x( ) = − sin(2 − ) [0, 1]α ⋅ ∀ ∈ (1)

is an EVA (see Figure 4). Note that

s x α π πx π x

s x α π πx π x

′ ( ) = 1 − 2 cos(2 − ) [0, 1],

( ) = (2 ) sin(2 − ) [0, 1],

α

α
″ 2

⋅ ∀ ∈

⋅ ∀ ∈

so sα is strictly increasing, concave in 0,
1

2

⎡⎣ ⎤⎦ and convex in , 1
1

2

⎡⎣ ⎤⎦. In addition s s′ (1) = ′ (0) > 1α α

and s′ ( ) < 1α
1

2
.
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Some interesting values are those where s x′ ( ) = 1α . The solutions to this trigonometric
equation are x =1

1

4
and x =2

3

4
(they do not depend on α), which are a kind of threshold for the

distance amplification/reduction in the sense of

s x s y x y x y

s x s y x y x y

s x s y x y x y

( ) − ( ) − , 0, ,

( ) − ( ) − , , ,

( ) − ( ) − , , 1 .

α α

α α

α α

1

4

1

4

3

4

3

4

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

∣ ∣ ≥ ∣ ∣ ∀ ∈

∣ ∣ ≤ ∣ ∣ ∀ ∈

∣ ∣ ≥ ∣ ∣ ∀ ∈

Note that by defining ŝ : [0, 1] [0, 1]α → by

s x x α πx π xˆ ( ) = + sin(2 − ) [0, 1]α ⋅ ∀ ∈

for α 0,
π

1

2

⎡⎣ ⎤⎦∈ we obtain a family of EVRs.

5.2 | Polynomial EVAs and EVRs

By applying Proposition 8 to the automorphism f : [0, 1] [0, 1]α → given by

f x x x( ) = [0, 1],α
α ∀ ∈

where α > 1, we obtain

m x
x x

x x
( ) =

− (1 − 2 ) , 0 < ,

+ (2 − 1) , 1
α

α

α

1

2

1

2

1

2

1

2

1

2

1

2

⎧
⎨⎪
⎩⎪

≤

≤ ≤
(2)

(see Figure 5), whose derivatives are

FIGURE 4 Extreme Values Amplification s0.09 [Color figure can be viewed at wileyonlinelibrary.com]
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m x
α x x

α x x
′ ( ) =

(1 − 2 ) , 0 < ,

(2 − 1) , 1,
α

α

α

−1 1

2

−1 1

2

⎧
⎨⎪
⎩⎪

≤

≤ ≤

m x
α α x x

α α x x
( ) =

−2 ( − 1)(1 − 2 ) , 0 < ,

2 ( − 1)(2 − 1) , 1.
α

α

α

″

−2 1

2

−2 1

2

⎧
⎨⎪
⎩⎪

≤

≤ ≤

So mα is strictly increasing, concave in 0,
1

2

⎡⎣ ⎤⎦ and convex in , 1
1

2

⎡⎣ ⎤⎦. In addition m ′ (1) =α

m α′ (0) = > 1α and ( )m ′ = 0α
1

2
.

In this case the calculation for the amplification/reduction threshold values is not as easy as
before, but we can compute a numeric approximation. For α = 2, we obtain that ( )m ′ = 12

3

4
,

and for α = 3.39, m ′ (0.8) 13.39 ≈ .
Note that for α0 < < 1, the functions m̂ : [0, 1] [0, 1]α → given by

m x
x x

x x
ˆ ( ) =

− (1 − 2 ) , 0 < ,

+ (2 − 1) , 1
α

α

α

1

2

1

2

1

2

1

2

1

2

1

2

⎧
⎨⎪
⎩⎪

≤

≤ ≤

behave like an EVR. Although they are not differentiable functions in x =
1

2
, this family

satisfies f x f xlim ′( ) = lim ′( ) = +
x x− +1

2
1
2

∞
→ →

. Therefore these functions can be used in almost any

situation in which a proper EVR can be applied.

5.3 | Piecewise polynomial‐based EVAs

Let us consider again the automorphism f : [0, 1] [0, 1]α → given by

f x x x( ) = [0, 1],α
α ∀ ∈

where α > 1.

FIGURE 5 Graphs of the EVAs mα: (A) EVA m2and (B) EVA m3.39. EVA, Extreme Values
Amplification; EVR, Extreme Values Reduction [Color figure can be viewed at wileyonlinelibrary.com]
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For r s, , 1
1

2
⎤⎦ ⎡⎣∈ such that r s> and ϵ ]0, 1[∈ , the following standard affine transformations

are considered:

h r s

h r

h s

: , , ,

: [ , 1] [ϵ, 1],

: [ϵ , 1] [ , 1].

a

b

c
α

1

2

1

2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦→

→

→

We aim to use these affine transformations to construct a parametric EVA from the function
b : , 1 , 11

1

2

1

2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦→ given by

b x
h x x r

h f h x r x
( ) =

( ), ,

( ), < 1

a

c α b

1

1

2
⎪

⎪⎧⎨
⎩

≤ ≤

∘ ∘ ≤

by defining b : [0, 1] [0, 1]α
r s, → by

b x
b x x

b x x
( ) =

1 − (1 − ), 0 < ,

( ), 1.
α
r s,

1
1

2

1
1

2

⎧
⎨⎪
⎩⎪

≤

≤ ≤

Since

h x
s

r
′( ) =

−

−
,

1

2
1

2

the parameters r and s allow us to control where and how much the differences between
intermediate values are decreased. For instance, if we want the derivative of the EVA around

r r[1 − , ] be equals to some λ ]0, 1[∈ we just need to fix s λ r+ ( − )
1

2

1

2
≔ . The parameter

α > 1 controls how faster the distances between extreme values are amplified.
It is clear that the function b1 is not 1 for any combination of the parameters α r s, , . The

parameter ϵ has been introduced to solve this issue. Note that

h f h x
s

r
αh x

s

r
α

x r

r
( )′( ) =

1 −

1 −

1 − ϵ

1 − ϵ
( ) =

1 −

1 −

1 − ϵ

1 − ϵ

−

1 −
(1 − ϵ) + ϵ .c α b α b

α
α

α
−1

−1
⎜ ⎟
⎛
⎝

⎞
⎠∘ ∘

Therefore, for fixed r s1 > > >
1

2
and α > 1 we need to find ϵ ]0, 1[∈ such that the

equality h f h r h r( )′( ) = ′( )c α b∘ ∘ holds, that is,

s

r

s

r
α

−

−
=
1 −

1 −

1 − ϵ

1 − ϵ
ϵ .

α
α

1

2
1

2

−1

Proposition 9. Consider r s, ] , 1[
1

2
∈ such that r s> and ϵ ]0, 1[∈ and the standard

affine transformations:

h r s

h r

h s

: , , ,

: [ , 1] [ϵ, 1],

: [ϵ , 1] [ , 1].

a

b

c
α

1

2

1

2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦→

→

→

Then the function b : [0, 1] [0, 1]α
r s, → given by
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b x
b x x

b x x
( ) =

1 − (1 − ), 0 < ,

( ), 1,
α
r s,

1
1

2

1
1

2

⎧
⎨⎪
⎩⎪

≤

≤ ≤
(3)

where b : , 1 , 11
1

2

1

2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦→ is defined by

b x
h x x r

h f h x r x
( ) =

( ), ,

( ), < 1

a

c α b

1

1

2
⎪

⎪⎧⎨
⎩

≤ ≤

∘ ∘ ≤

is an EVA if and only if the following equality holds

λ
s

r

s

r
α=

−

−
=
1 −

1 −

1 − ϵ

1 − ϵ
ϵ ,

α
α

1

2
1

2

−1

where λ is the derivative of ha and indicates how much the intermediate values become closer.

Some useful combinations of these parameters are shown in Table 1 and the respective
graphs are included in Figure 6.

Two limit cases are considered below.

5.3.1 | Special case r s= > 1 2∕

Let us first consider the limit case r s= >
1

2
. We would need

TABLE 1 Useful combinations of parameters for the EVA b

r s λ α ϵ

0.6 0.55 0.5 2 0.28571

0.6 0.533 0.333 3 0.38

Abbreviation: EVA, Extreme Values Amplification.

FIGURE 6 Graphs of the EVAs bα
r s, : (A) The EVA b2

0.6,0.55and (B) The EVA b3
0.6,0.533. EVA, Extreme Values

Amplification [Color figure can be viewed at wileyonlinelibrary.com]
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α α1 =
1 − ϵ

1 − ϵ
ϵ 1 =

ϵ − ϵ

1 − ϵ
.

α
α

α α

α
−1

−1

⇔

Consider the function g: ]0, 1[ → defined by

g α(ϵ) = (ϵ − ϵ ) − 1 + ϵ ϵ [0, 1].α α α−1 ∀ ∈

Note that

g α α α α

α α α α

α α

α α

′(ϵ) = (( − 1)ϵ − ϵ ) + ϵ

= ( − 1)ϵ + ϵ (1 − )

= ( − 1)(ϵ − ϵ )

= ( − 1)ϵ (1 − ϵ) > 0 ϵ [0, 1].

α α α

α α

α α

α

−2 −1 −1

−2 −1

−2 −1

−2 ∀ ∈

Since glim (ϵ) = −
ϵ 0

∞
→

, and g′ > 0 the equation g (ϵ) = 0 has the unique solution ϵ = 1, which is

not admissible in this problem.

5.3.2 | Special case r s= = 1 2∕

Note that this assumption implies that the affine transformation ha disappears and
b x h f h x x( ) = ( ) [ , 1]c α b1

1

2
∘ ∘ ∀ ∈ .

Define g: ]0, 1[ → by

g α(ϵ) =
ϵ − ϵ

1 − ϵ
ϵ ]0, 1[.

α α

α

−1

∀ ∈

Note that glim (ϵ) = 0
ϵ 0→

and

g αlim (ϵ) = lim ϵ
1 − ϵ

1 − ϵ
= 1.α

αϵ 1 ϵ 1

−1

→ →

In addition

(
)

g α α

α

α α α

α α

α

′(ϵ) = (( − 1)ϵ − ϵ )(1 − ϵ )

+ (ϵ − ϵ ) ϵ

= (( − 1 − ϵ)(1 − ϵ ) + (ϵ − ϵ ))

= ( (1 − ϵ)(1 − ϵ ) − (1 − ϵ ) + ϵ (1 − ϵ))

= ( (1 − ϵ) − (1 − ϵ ))

ϵ [0, 1].

α α α α

α α α

α α α α

α α α α

α α

(1− ϵ )
−2 −1

−1 −1

ϵ

(1− ϵ )
+1

ϵ

(1− ϵ )

ϵ

(1− ϵ )

α

α

α

α

α

α

α

2

−2

2

−2

2

−2

2

∀ ∈

To study the sign of g′ let us consider h: [0, 1] → defined by

h α(ϵ) = (1 − ϵ) − (1 − ϵ ) ϵ ]0, 1[.α ∀ ∈
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Since h α′(ϵ) = (ϵ − 1) < 0 ϵ ]0, 1[α−1 ∀ ∈ and h αlim (ϵ) = − 1
ϵ 0→

, hlim (ϵ) = 0
ϵ 1→

we can con-

clude that h > 0 in its domain and therefore g′(ϵ) > 0 ϵ ]0, 1[∀ ∈ In that case g is increasing

and such that glim (ϵ) = 0
ϵ 0→

, glim (ϵ) = 1
ϵ 1→

. This fact allows one to state the following result.

Proposition 10. Let ϵ ]0, 1[∈ and consider the standard affine transformations

h : , 1 [ϵ, 1]b
1

2

⎡⎣ ⎤⎦ → and h : [ϵ , 1] , 1c
α 1

2

⎡⎣ ⎤⎦→ and the function b̂ : , 1 , 11
1

2

1

2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦→ defined

by b x h f h x xˆ ( ) = ( ) , 1c α b1
1

2
⎡⎣ ⎤⎦∘ ∘ ∀ ∈ .

Then, for every λ ]0, 1[∈ we can find ϵ ]0, 1[∈ (i.e., the unique one which satisfies
λ α=

ϵ − ϵ

1− ϵ

α α

α

−1

) such that the function b̂: [0, 1] [0, 1]→ defined by

b x
b x x

b x x
ˆ ( ) =

ˆ ( ), 1,

1 − ˆ (1 − ), 0

1
1

2

1
1

2

⎧
⎨⎪
⎩⎪

≤ ≤

≤ ≤

is an EVA such that ( )b λˆ′ =
1

2
.

Note that by taking ϵ = 0 we would obtain the mα family of EVAs.

5.4 | Comparing sin‐based EVAs, polynomial EVAs, and piecewise
polynomial EVAs

The main difference between these families of EVAs is the value of their derivative in 1

2
. Note

that in all cases the derivative function reaches its minimum value at this point.
For sin‐based EVAs, the derivative at x = 1

2
is ( )s α π′ = 1 − 2α

1

2
and the derivative of the

polynomial‐based EVAs is zero. For piecewise polynomial EVAs, this derivative is a va-
lue λ [0, 1]∈

In the first case, by choosing a proper α ]0, [
π

1

2
∈ , we can adjust how much the intermediate

values will move closer. For example, for the intermediate parameters α = 0.08 and 0.09 one
obtains ( )s π′ = 1 − 0.08 2 0.497350.08

1

2
⋅ ≈ and ( )s π′ = 1 − 0.09 2 0.434510.09

1

2
⋅ ≈ .

On the other hand, the main advantage of polynomial‐based EVAs is the fact that we can
decide where the values are going to start to move away by fixing x >0

1

2
and solving (nu-

merically) the equation m x′ ( ) = 1α 0 for the variable α > 1.
The piecewise polynomial EVA allows both to choose how much the intermediate values will

become closer, by adjusting λ, and howmuch the extreme values will become distant, by choosing α.
However, this family of EVAs is more complex and loses the regularity of the other two families.

6 | A THEORETIC DISCUSSION ABOUT THE
PERFORMANCE OF EVAS AND EVRS IN CRPS FOR LSGDM

In Section 4 the EVA approach and the EVR approach have been introduced as models for
nonlinear preferences. However, the strategy to deal with polarized opinions is totally different
in EVA and EVR. According to References [24,25], the less extreme values have a more
cohesive effect and greater success to reach an agreement. Therefore, this section is devoted to
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provide a sustained proof about why EVRs are not a good strategy to remap FPRs in CRPs
meanwhile EVAs tend to improve the performance of the consensus models.

6.1 | EVAs and order of alternatives in CRPs

First a study of how much EVAs deform the original preferences is provided.

Proposition 11. Let D: [0, 1] [0, 1]→ be an EVA whose first derivative is strictly
increasing in , 1

1

2

⎡⎣ ⎤⎦. Then, the equation
D x′( ) = 1

has an unique solution x , 10
1

2
⎤⎦ ⎡⎣∈ which satisfies

x D x x D x− ( ) − ( )0 0∣ ∣ ≤ ∣ ∣

for every x [0, 1]∈ .

Proof. The existence and the uniqueness of x0 are given by the bijectivity of D′.
Now consider the function g: , 1

1

2
⎡⎣ ⎤⎦ → given by

g x x D x x( ) = − ( )
1

2
, 1 .

⎡
⎣⎢

⎤
⎦⎥∀ ∈

Since g x D x x′( ) = 1 − ′( ) , 1
1

2

⎡⎣ ⎤⎦∀ ∈ the candidates to be relative extremes for the

function g are ( ), 0 , (1, 0)
1

2
and (x g x, ( )0 0 ). Due to the continuity of D′, g′ is a continuous

function which also satisfies that ( )g′ > 0
1

2
and g′(1) < 0. In that case (x g x, ( )0 0 ) is a

relative maximum for g and both ( ), 0
1

2
and (1, 0) are minimums, which proves the

inequality of the proposition. □

Note that we do not need that D′ is strictly increasing in , 1
1

2

⎡⎣ ⎤⎦. It suffices to consider an
EVA D whose first derivative is strictly increasing in a neighborhood of 1 which contains a
value r > 1

2
such that D r′( ) < 1. The general version, whose proof is analogous, is stated:

Proposition 12. Let D: [0, 1] [0, 1]→ be an EVA whose first derivative is strictly
increasing in r[ , 1] for some r > 1

2
such that D r′( ) < 1. If D′ is monotonous in , 1

1

2

⎡⎣ ⎤⎦ then,
the equation

D x′( ) = 1

has an unique solution x r] , 1[0 ∈ which satisfies

x D x x D x− ( ) − ( )0 0∣ ∣ ≤ ∣ ∣

for every x [0, 1]∈ .

Remark 3. Note that the symmetry of D around 1

2
would provide another x̂ 0,0

1

2

⎡⎣ ⎤⎦∈

satisfying the same inequality.
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Remark 4. The three families of EVAs introduced in this contribution satisfy the
hypotheses of this proposition.

Suppose now that we have obtained the FPR P p= ( ) ([0, 1])ij n n×∈ from a certain ex-
pert. We want to analyze how different the order of the alternatives chosen by that expert will
be after applying an EVA.

To compute the order of the alternatives we just assign each alternative a score depending
on the value of the preferences:

sc x
n

p i n( ) =
1

− 1
, {1, 2, …, }.i

j j i

n

ij

=1,

∑ ∈
≠

Then we order the alternatives according to the score they have received.
We cannot prove that the order of the alternatives will not change after applying any EVA,

but we can show that there exists a threshold which enables us to control the distance between
the score obtained for the deformed preferences and the original score.

Proposition 13. Let D: [0, 1] [0, 1]→ be an EVA whose first derivative is monotonous in
, 1

1

2

⎡⎣ ⎤⎦ and strictly increasing in r[ , 1] for some r > 1

2
such that D r′( ) < 1. Consider an FPR

P p= ( ) ([0, 1])ij n n×∈ given for the alternatives x x x, , …, n1 2 . Then

sc x sc D x x D x i n( ) − ( ( )) − ( ) {1, 2, … },i i 0 0∣ ∣ ≤ ∣ ∣ ∀ ∈

where x , 10
1

2
⎤⎦ ⎡⎣∈ is the unique solution for the equation D x′( ) = 1.

Proof. Note that for any alternative xi we obtain

sc x sc D x p D p

p D p x D x

x D x

( ) − ( ( )) = ( − ( ))

− ( ) − ( )

1 = − ( ) .

i i n j j i

n
ij ij

n j j i

n
ij ij n j j i

n

x D x

n j j i

n

1

− 1 =1,

1

− 1 =1,

1

− 1 =1, 0 0

− ( )

− 1 =1, 0 0
0 0

∣ ∣ ∣ ∑ ∣

≤ ∑ ∣ ∣ ≤ ∑ ∣ ∣

≤ ∑ ∣ ∣

≠

≠ ≠

∣ ∣

≠

□

Remark 5. Note that we would have obtained the same result if we had used any other
aggregation operator based on weights to compute the score.

It should be highlighted that x , 10
1

2

⎤⎦ ⎡⎣∈ such that D x′( ) = 10 is not only a threshold for the
amplification of the distances, but also provides a bound to study how similar is the order
alternatives after applying the EVA with respect to the original order. Therefore, the value x0
will receive the name of amplification threshold, and the value R x D x− ( )0 0 0≔ ∣ ∣will be called
maximum deformation.

Let us study these quantities for different families of EVAs.

6.1.1 | Sin‐based EVAs

Let α ]0, ]
π

1

2
∈ and consider the ∞ function s : [0, 1] [0, 1]α → given by
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s x x α πx π x( ) = − sin(2 − ) [0, 1].α ⋅ ∀ ∈

Note that s x x′( ) = 1, >
1

2
satisfies if and only if

α π πx π2 cos(2 − ) = 0⋅

and therefore x =0
3

4
and

( ) ( )R g x s α π π α= ( ) = − = sin 2 − = .α0 0
3

4

3

4

3

4
⋅

6.1.2 | Polynomial‐based EVAs

Consider the automorphism f : [0, 1] [0, 1]α → given by

f x x x( ) = [0, 1],α
α ∀ ∈

where α > 1. We obtain the EVA

m x
x x

x x
( ) =

− (1 − 2 ) , 0 < ,

+ (2 − 1) , 1.
α

α

α

1

2

1

2

1

2

1

2

1

2

1

2

⎧
⎨⎪
⎩⎪

≤

≤ ≤

In this case m x x′( ) = 1, >
1

2
satisfies if and only if

α x(2 − 1) = 1,α−1

thus the amplification threshold is ( )x = + 1
α

0
1

2

1
α − 1 and the maximum deformation is

( )
( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

R x m x

α α

α α α α α

= − ( )

= + 1 − + 2 ( + 1 − 1)

= + 1 − +

= − = −

= − = −

= 1 − .

α

α α

α

α α

α

α α

α

α α

0 0 0

1

2

1 1

2

1

2

1

2

1

1

2

1 1

2

1

2

1

1

2

1 1 1

2
− −

1

2
− − 1

2
− − −1

1

2

1

α α

α α

α α α
α
α

α
α
α α α

α

− 1 − 1

− 1 − 1

− 1 − 1
1
−1 −1

1
−1

+1−1
−1

1
−1

1
−1

− 1

⎜ ⎟⎛
⎝

⎞
⎠

For α = 2 we obtain R =0
1

8
and for α = 3 it is R 0.20 ≈ .

6.1.3 | Piecewise polynomial‐based EVA

Consider r s, , 1
1

2

⎡⎣ ⎤⎦∈ such that r s> and ϵ [0, 1]∈ . Consider the standard affine
transformations:
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h r s

h r

h s

: , , ,

: [ , 1] [ϵ, 1],

: [ϵ , 1] [ , 1],

a

b

c
α

1

2

1

2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦→

→

→

and the function b : , 1 , 11
1

2

1

2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦→

b x
h x x r

h f h x r x
( ) =

( ), ,

( ), < 1.

a

c α b

1

1

2
⎪

⎪⎧⎨
⎩

≤ ≤

∘ ∘ ≤

Then the EVA b : [0, 1] [0, 1]α
r s, → defined, for some proper ϵ such that b is 1 , by

b x
b x x

b x x
( ) =

( ), 1,

1 − (1 − ), 0
α
r s,

1
1

2

1
1

2

⎧
⎨⎪
⎩⎪

≤ ≤

≤ ≤

has its amplification threshold at

x
r

s α

r
r=

(1 − )(1 − ϵ )

(1 − )(1 − ϵ)
− ϵ

1 −

1 − ϵ
+ ,

α

0 α − 1

⎛
⎝⎜

⎞
⎠⎟

since this value satisfies h f h x( )′( ) = 1c α b 0∘ ∘ , that is,

s

r
h x α

1 −

1 −

1 − ϵ

1 − ϵ
( ( )) = 1.

α b
α

0
−1

In this case, the explicit formula for the amplification radius is complex and offers no ad-
vantage, so we can obtain that value by computing the numeric value of x0 and then con-
sidering R x b x= − ( )α

r s
0 0

,
0 . We show some values in Table 2.

6.2 | Why EVAs do work for improving CRPs for LSGDM and why
EVRs do not

In Section 6.1 it has been proved that the impact of EVAs in the order of the alternatives is
pretty low.

On the other hand, it has been shown in References [24,25] that the less extreme values
have a more cohesive effect and make easier the reaching of an agreement whereas the more

TABLE 2 Useful combinations of parameters for bα
r s,

r s λ α ϵ R0

0.6 0.55 0.5 2 0.28571 0.09

0.6 0.533 0.333 3 0.38 0.13

24 | GARCÍA‐ZAMORA ET AL.



extreme values of the preferences tend to polarize situations, so any worthy CRP model should
prioritize intermediate values of the preferences in its aggregations.

Let us consider all of these together: when the EVA approach is used on a consensus
model which aggregates the preferences by prioritizing intermediate values, the model will
ignore the extreme values and the intermediate ones will become closer because of the
properties of the EVA function. In this case, the model will need a lower amount of rounds
to reach the consensus, since the EVA has done part of the work by making the inter-
mediate values closer. Since the order of the alternatives has not been changed too much, a
consensus model which uses the EVA approach will choose a similar alternative faster
than the original one.

This also explains why we are not using EVRs to model the nonlinear approach in CRPs.
Although EVRs also modify the preferences in a nonlinear way, in this case the distances
between extreme preferences are reduced and the distance between intermediate preferences is
amplified. When EVRs are implemented in a consensus model, which usually prioritizes in-
termediate preferences to facilitate the consensus, the model will probably need more rounds to
reach the consensus, since intermediate elements are less similar.

Both EVAs and EVRs are valid approaches to model nonlinear scales in CRPs (RQ1), but to
improve classic models the EVA approach outperforms both the linear approach and the EVR
approach (RQ2).

7 | EXTREME VALUES AMPLIFICATIONS IN GDM

This section aims at verifying, validating, and showing the better performance of EVA func-
tions in LSGDM problems with respect to lineal preference modeling. Therefore, an illustrative
LSGDM problem is solved by using the specialized CRP software AFRYCA10 and comparing
the performance of two widely used consensus models (see Remark 7) when they use linear
and nonlinear preference scales.

Therefore, we have implemented the EVA families sα (Equation 1) andmα (Equation 2) into
the CRPs introduced in References [16,26] (both included in AFRYCA) and then carried out
several simulations to compare their performance by using EVAs and linear preferences.

Remark 6. In Section 6 it was pointed out that extreme values make more difficult the
achievement of agreements.24,25 Therefore, due to the fact that EVRs amplify the distances
between less extreme values, we will only consider the study in further detail of EVAs for
CRPs in LSGDM because EVRs are not suitable for smoothing the achievement of agreements.

Remark 7. The consensus model proposed by Herrera‐Viedma et al.16 has been selected
since it has been widely used in the literature and several consensus models are based on
its performance.18 Quesada et al.'s proposal26 has been chosen since it deals with GDM
problems with a large number of experts and considers important aspects, such as the
experts' behavior.

Unlike, most of the proposals about LSGDM in the specialized literature whose examples
are based on 20 experts, we assume an LSGDM problem in which there are 100 experts who
elicit their FPRs over four alternatives X X X X X= { , , , }1 2 3 4 . To accomplish the CRPs proposed in
our example, several simulations have been run by using the default values of the parameters
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established in AFRYCA for such consensus models, by setting the consensus level at 0.85 and
the maximum number of rounds at 15.

This section is divided into two subsections. In both, the performance of the classical
models Herrera‐Viedma et al.16 and Quesada et al.26 is compared with the EVA‐modified
models. To do so, for each consensus model five different scenarios are considered: the classical
model (no EVA is used), the EVAs s0.08 and s0.09 (defined by Equation 1), and the EVAsm2 and
m3.39 (defined by Equation 2).

In Section 7.1, 500 simulations are developed for each one of these scenarios. In all of them,
100 randomly defined FPRs are used to model experts' preferences. For these 500 simulations,
both the average number of rounds required to obtain the consensus and the average degree of
consensus are computed. In Section 7.2, the simulations are developed by using concrete values
for the experts' FPRs27 to be able to compare graphically the evolution of the experts' opinions
through the different rounds of the CRPs.

7.1 | Average performance of EVAs

To validate the EVA approach, the average performance of EVA‐modified models has been
compared with the average performance of the classic models. To do so, 500 simulations with
100 randomly defined FPRs have been developed for each EVA in both Herrera‐Viedma
et al.16 and Quesada et al.26 models.

The obtained results, which are summarized in Tables 3 and 4, show that the EVA approach
always outperforms the classic approach in terms of convergence, by keeping a similar average

TABLE 3 Average results on Herrera‐Viedma et al.16 (500 simulations)

EVA Average rounds Average consensus

Classical 5.158 0.8807

s0.08 4.482 0.8835

s0.09 4.384 0.8816

m2 4.08 0.8805

m3.39 3.606 0.8851

Abbreviation: EVA, Extreme Values Amplification.

TABLE 4 Average results on Quesada et al.26 (500 simulations)

EVA Average rounds Average consensus

Classical 9.256 0.8579

s0.08 7.532 0.8575

s0.09 7.188 0.8592

m2 6.074 0.8581

m3.39 2.842 0.8598

Abbreviation: EVA, Extreme Values Amplification.
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consensus. This fact provides a clear answer to the second research question: the classic
consensus models improve on average when the nonlinear approach is modeled by an EVA.

7.2 | Performance of EVAs in a concrete example

To clarify the performance of EVAs in CRPs for LSGDM, we have chosen an individual
simulation with the FPRs values provided in Reference [27] and then show the results obtained
in Tables 4 and 5 together a graphical evolution of the consensus progress. The results obtained
are summarized in Tables 5 and 6.

To facilitate the understanding of the simulation results, AFRYCA provides a visualization of the
different CRP simulations based on the multidimensional scaling technique28 (see Figures 7 and 8).
This representation shows the collective opinion of the experts' group in the center of the plot.
Around the collective opinion, the experts' preferences are represented. The closer the experts'
preferences to the collective opinion, the greater the consensus reached. In this way, we can ap-
preciate the state of the experts' preferences for each round and the evolution of the CRPs in the
simulations. Furthermore, we have also shown the results obtained from AFRYCA in Tables 5 and 6.

The classical model16 reached a consensus level of 0.87 in six rounds. For this model the
EVAs s0.08 and s0.09 have not reduced the number of rounds required to reach the consensus,
but have improved the consensus level reached. The latter can be appreciated in Figure 7, since
in the last round (round 6) the experts are closer each other than with linear preferences. In
addition, the polynomial‐based EVAm2 has reduced the amount of rounds required to reach a
similar consensus level, whereas the EVAm3.39 has improved both aspects by needing just five

TABLE 5 Results on Herrera‐Viedma et al.16 with and without EVA

EVA Order of alternatives Rounds Consensus

Classical x x x x1 2 4 3≻ ≻ ≻ 6 0.87

s0.08 x x x x1 2 4 3≻ ≻ ≻ 6 0.89

s0.09 x x x x1 2 4 3≻ ≻ ≻ 6 0.92

m2 x x x x1 2 4 3≻ ≻ ≻ 5 0.86

m3.39 x x x x1 2 4 3≻ ≻ ≻ 5 0.91

Abbreviation: EVA, Extreme Values Amplification.

TABLE 6 Results on Quesada et al.26 with and without EVA

EVA Order of alternatives Rounds Consensus

Classical x x x x4 1 ~ 2 ~ 3≻ 10 0.85

s0.08 x x x x4 1 2 ~ 3≻ ≻ 7 0.86

s0.09 x x x x4 1 2 ~ 3≻ ≻ 7 0.87

m2 x x x x4 1 2 ~ 3≻ ≻ 7 0.86

m3.39 x x x x4 1 2 ~ 3≻ ≻ 5 0.87

Abbreviation: EVA, Extreme Values Amplification.

GARCÍA‐ZAMORA ET AL. | 27



FIGURE 7 Herrera Viedma et al.16 simulations [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Quesada et al.26 simulations [Color figure can be viewed at wileyonlinelibrary.com]
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rounds to reach a consensus level greater than the obtained in the original model. Again, the
latter can be visualized in Figure 7.

On the other hand, the classical model26 obtained a consensus level of 0.85 in 10 rounds (see
Table 6). In this case, both families of EVAs have obtained significantly better performance
than the original model (see Figure 8). The EVAs s s,0.08 0.09, and m2 have slightly improved
the consensus level in just seven rounds. In this case, the EVAm3.39 has performed surprisingly
well by increasing the level of consensus reached in only five rounds.

The simulation has shown that the implemented EVAs improve the performance of both
models. By keeping the same order for the alternatives, after using the EVAs either the number of
rounds has been reduced or the consensus level is increased. These simulations clarify and reinforce
the positive answer to the second research question when the nonlinear approach used is an EVA.

8 | CONCLUSIONS

Nowadays, CRPs are a prominent line of research in GDM. Several models have been proposed
in the literature, but usually these models assume linear scales for experts' preferences.16,26 This
contribution has studied and proposed the use of nonlinear scales to obtain more realistic
preference modeling from the original experts' preferences, even in large‐scale contexts.

We have exhaustively studied the analytical properties of these nonlinear scales, obtaining the
main mathematical characteristics of those functions which are good candidates to become a proper
nonlinear deformation for the original preferences. These particular deformations of the preferences
have received the name of EVAs. These EVA functions remap linear‐scaled FPRs into nonlinear‐
scaled FPRs and deform the preferences in the way that the distances between extreme values are
increased and the distances between intermediate values are decreased. In addition, we have stated
the dual definition of EVRs, that is, those functions that reduce the distance between extreme values
by amplifying the distance between the intermediate ones.

After introducing a general method to construct EVAs and EVRs, we have proposed several
families of EVAs: sα (Equation 1),mα (Equation 2), and bα

r s, (Equation 3). The first one is based
on the sin function, the second one is constructed from a polynomial and the last one is
obtained from a piecewise polynomial function. Finally, we have simulated the performance of
some of these EVAs in two classical consensus models by using the software AFRYCA.10

The use of the nonlinear scales provided by the EVAs improves the performance of both classical
models used in this study. The simulations with random FPRs showed that the EVA approach
reduces the average number of rounds required to reach the consensus in both models. In addition,
when using the same FPRs for the comparisons, the novel EVA‐modified models either reach the
consensus in a faster way or increase the level of consensus when we use the proper EVA.

Further studies should focus on either suggesting new EVAs or optimizing the parameters of
the existing EVAs for concrete CRPs. In addition, a deeper study of the performance of EVAs in
different consensus models should be developed. Additionally, since every EVA (resp., EVR)
induces a similarity measure, it is also interesting to study the effects of using these proximity
measures when comparing FPRs by moving closer (resp., bringing near) extreme values and
bringing near (resp., moving closer) the intermediate ones. Another possible research work would
be finding a concrete GDM problem adequate to the properties of EVRs. Furthermore, future
works could be related to the application of the proposed framework to real‐world problems, such
as the high‐speed rail passenger satisfaction and bid evaluation with LSGDM.29,30
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a b s t r a c t

One of the most widely adopted approaches to define weights for Ordered Weighting
Averaging (OWA) operators consists of using biparametric linear increasing fuzzy linguistic
quantifiers. However, several shortcomings appear when using these quantifiers because
depending on the values of these parameters, the aggregations could be biased or the
extreme values might be completely ignored. In this contribution, the use of Extreme
Values Reductions (EVRs) as fuzzy linguistic quantifiers is proposed to define weights for
OWA operators in order to provide more realistic aggregations. First, the impact of the
parameters of these linear fuzzy linguistic quantifiers in the OWA aggregations is studied.
After that, EVR-OWA operators are introduced as those OWA operators whose weights are
computed by using an EVR as fuzzy linguistic quantifier. It will be shown that when using
EVR-OWA operators to fuse information, the aggregations are non-biased, take into
account more information and the intermediate values are prioritized before the extreme
ones. After proposing several families of EVRs, the generalising potential of the EVR-OWA
operators is shown by proving that every family of symmetric weights for OWA operators
that prioritize the intermediate information are the weights obtained from a certain EVR.
Finally, an illustrative example is provided.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Several real world problems demand the fusion of information or expert knowledge which might be fuzzy or imprecise.
For instance, according to [13], Group Decision Making (GDM) problems require of an aggregation phase which combines the
experts’ preferences to obtain a collective opinion before carrying the exploitation phase out, in which the ranking of the
alternatives to select the best one as solution of the decision problem is established. Even though lots of aggregation oper-
ators have been proposed in the literature [1,2], one of the most widely used is the Ordered Weighted Averaging (OWA)
operator, which assigns weights to the input values according to their order [18,20,21]. In order to compute these weights,
among other proposals [7,11,17], it is common to use the method proposed by Yager [21], which is based on the use of a
biparametric family of linear fuzzy linguistic quantifiers [20] which assigns zero to the values that are close to zero and
one to the values that are close to one.

This approach is simple and effective but it presents important drawbacks regarding the selection of necessary parame-
ters. For instance, the aggregations could produce biased results (orness measure [2] not equal to 0:5) or even do not aggre-
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gate enough information (low entropy measure [2]). In addition, the OWA operator constructed from these linear fuzzy lin-
guistic quantifiers completely ignores the most extreme values in the aggregation process which could lead to non realistic
aggregations. These biased or non realistic aggregations could be a major inconvenient in many real-world applications. For
instance, in consensus processes for GDM [6,9], an OWA operator whose orness is greater than 0.5 tends to prioritize extreme
values close to 1 regarding those close to 0, which is not reasonable because all of them are equally important. Furthermore,
a theoretical consensus reached by completely ignoring the most extreme values would not be realistic. However, it has been
proved that the less extreme information has a cohesive effect and facilitates the agreement among experts [14,15]. There-
fore it seems reasonable to provide new ways of generating OWA weights which prioritize the intermediate information
before the extreme data, as linear fuzzy linguistic quantifiers do, but taking into account more information in the aggregation
process and avoiding biased aggregations in the results.

This work aims at solving three different problems.

i) First, it is necessary to clarify the relation between the biparametric family of linear fuzzy linguistic quantifiers [20] and
the way that these quantifiers fuse the information.
ii) A new proposal is then required to deal with the limitations of these linear fuzzy linguistic quantifiers by keeping their
simplicity and applicability [7] but allowing to generate weights which prioritize the intermediate information in a non
biased way.
iii) Finally, the abstract conditions required to generate the aforementioned weights are discussed.

Therefore, we raise the following research questions:

� RQ1: How do the parameters of the linear fuzzy linguistic quantifiers impact the aggregation of information?
� RQ2: How to fuse information in a more realistic way than by using the linear fuzzy linguistic quantifier?
� RQ3: What properties share those linguistic quantifiers whose associated OWA weights allow to fuse information sym-
metrically by prioritizing the intermediate values?

Consequently, this proposal analyzes the impact in the aggregation of information of the parameters of these widely
extended linear fuzzy linguistic quantifiers [20] and shows their main shortcomings. We then propose an abstract novel
extension of OWA operators which uses an Extreme Values Reduction (EVR) [4] as a fuzzy linguistic quantifier instead of
the traditional linear fuzzy linguistic quantifier. The resulting operator is characterized for assigning weights to information
depending on its degree of polarization, such that the most important values are the intermediate ones and their importance
(weight) progressively decreases for the most extreme values. In addition, this novel EVR-OWA operator provides a non
biased way to fuse information which takes into account almost as much information as the arithmetic mean operator,
which is the one with higher entropy measure [2]. Furthermore, the generalizing potential of this EVR approach is high-
lighted by showing that any family of positive symmetric weights which prioritize the intermediate information, like the
ones studied in [17], are actually EVR-OWA weights.

The structure of this contribution is as follows: Section 2 is a brief review about OWA operators and fuzzy linguistic quan-
tifiers. In Section 3 the impact of the parameters of linear fuzzy linguistic quantifier in the aggregation of information is ana-
lyzed and the main shortcomings of this approach are exposed. Section 4 introduces the main proposal of this contribution,
the EVR-OWA operator, and studies some of its main properties. Section 5 completes this proposal by providing several fam-
ilies of EVRs. In Section 6, the relation between symmetric weights for OWA operators and EVRs is studied. In Section 7, an
illustrative example of aggregations by using this EVR-OWA operator is developed. Section 8 summarizes the main contri-
butions of this work. Finally, Section 9 concludes this contribution.

2. Preliminaries

This section provides a brief review about OWA operators [20] and Yager’s method [21] to compute their weights with a
fuzzy linguistic quantifier, which is the starting point of our proposal. Finally, the notion of EVR [4] is introduced.

2.1. Ordered weighted averaging operators

The Ordered Weighted Averaging (OWA) operators [20] are a family of aggregation functions which generalizes the
notion of arithmetic mean.

Definition 1 (OWA Operator). Let x 2 0;1½ �m be a weighting vector (x 2 0;1½ �m;Pm
i¼1xi ¼ 1). The OWA Operator

Ux : 0;1½ �m ! 0;1½ � associated to x is given by:

Ux x!
� �

¼
Xm
i¼1

xixr ið Þ8 x!2 0;1½ �m

where r is a permutation of the m-tuple 1;2; . . . ;mð Þ which satisfies xr 1ð Þ P xr 2ð Þ P . . . P xr mð Þ.
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Remark 1. If x ¼ 1;0; . . . ;0ð Þ 2 0;1½ �m, the corresponding OWA Operator is the maximum operator, whereas when
x ¼ 0;0; . . . ;1ð Þ 2 0;1½ �m the respective OWA Operator is the minimum operator. For x ¼ 1

m ; 1m ; . . . ; 1m
� � 2 0;1½ �m, the OWA

Operator associated to x is the arithmetic mean.
OWA operators have several remarkable properties such as the facts that they are idempotent non decreasing functions

which are continuous, symmetric, homogeneous and shift-invariant [2].
There are different measures to study the behavior of an OWA Operator. Among the most extended measures are the

arithmetic mean and the standard deviation of the weights. Other useful measures are the Orness and the entropy measures
[2].

The orness measure of an OWA Operator quantifies the similarity between this OWA Operator and the maximum oper-
ator. It is given by

orness Uxð Þ ¼
Xm
i¼1

xi
m� i
m� 1

:

And, when m is large enough [10]:

orness Uxð Þ �
Z 1

0
Q tð Þdt

When the coordinates of the weighting vector are increasing, i.e. w1 6 w2 6 . . . 6 wm; orness Uxð Þ 2 1
2 ;1
� �

whereas when
these coordinates are decreasing, i.e. w1 P w2 P . . . P wm; orness Uxð Þ 2 0; 12

� �
[2]. In addition, it is known that the orness

measure equals to 0:5 if and only if the weights are symmetric, i.e. wk ¼ wm�kþ18k ¼ 1;2; . . . ;m [2]. In particular, the orness
measure for the arithmetic mean operator, in which all the weights are the same, is equal to 1

2.
The entropy measure, or simply entropy, quantifies how much information is taken into account during the aggregation

process. It is given by

Entropy Uxð Þ ¼ �
Xm
i¼1

xi logxi;

If no orness measure is specified, the weighting vector which maximizes the Entropy is the associated with the arithmetic
mean operator [2].

2.2. Using fuzzy linguistic quantifiers to compute weights

Among others proposals [5] to compute OWA weights, Yager proposed the use of fuzzy linguistic quantifiers [22] to
obtain the weights for OWA Operators [21].

Fuzzy linguistic quantifiers are fuzzy subsets Q : 0;1½ � ! 0;1½ � of the unit interval 0;1½ � and they were classified by Yager
as follows [19]:

� Regular Increasing Monotone (RIM) quantifiers, i.e. Q 0ð Þ ¼ 0;Q 1ð Þ ¼ 1;Q xð Þ 6 Q yð Þ8x 6 y,
� Regular Decreasing Monotone (RDM) quantifiers, i.e. Q 0ð Þ ¼ 1;Q 1ð Þ ¼ 0;Q xð Þ P Q yð Þ8x 6 y,
� Regular UniModal (RUM) quantifiers, i.e. Q 0ð Þ ¼ 0;Q 1ð Þ ¼ 0;Q xð Þ 6 Q yð Þ8x 6 y; y < a;Q xð Þ ¼ 18x 2 a; b½ �, and
Q xð Þ P Q yð Þ8x 6 y; x > b for some a; b 2 0;1½ � such that a < b.

Yager introduced the use of RIM quantifiers for generating the weights [21] according to the following formula:

wk ¼ Q
k
m

� 	
� Q

k� 1
m

� 	
for k ¼ 1;2; . . . ;m

The OWA operators based on linear fuzzy linguistic quantifiers have been widely used in the literature [12]. One of the
most common approaches consists of using the linear RIM quantifier Qa;b : 0;1½ � ! 0;1½ � given by:

Qa;b xð Þ ¼
0 0 6 x < a
x�a
b�a a 6 x 6 b

1 x > b

8><>: ;

where a < b are two parameters in the interval 0;1½ �. Several consensus models for GDM problems [6,10] have used this
method to compute the weights of their aggregations since they allow to adjust the importance of the intermediate infor-
mation by adjusting the value of a and b.
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2.3. Extreme values reductions

García-Zamora et al. [4] studied the effect of remapping experts’ preferences by using non linear scales in consensus mod-
els for GDM. To do that, the notion of EVR was introduced as those automorphisms on the interval 0;1½ �, i.e. strictly increas-
ing bijections which satisfy the boundary conditions D 0ð Þ ¼ 0 and D 1ð Þ ¼ 1. These functions are characterized by reducing
the distance between the values which are close to 0 and 1. Formally:

Definition 2 (Extreme Values Reduction [4]). Let bD : 0;1½ � ! 0;1½ � be a function satisfying:

1. bD is an automorphism on the interval 0;1½ �,
2. bD is a function of class C1, i.e. it is differentiable and its derivative is continuous,

3. bD satisfies bD xð Þ ¼ 1� bD 1� xð Þ8x 2 0;1½ �,
4. bD0 0ð Þ < 1 and bD0 1ð Þ < 1,

5. bD is convex in a neighborhood of 0 and concave in a neighborhood of 1,

Then bD is called an Extreme Values Reduction (or EVR) on the interval 0;1½ �.
It was shown [4] that these EVR functions satisfy the following properties.

Theorem 1. Let bD : 0;1½ � ! 0;1½ � be an EVR on 0;1½ �. Then:

1. The function dbD : 0;1½ � � 0;1½ � ! 0;1½ � given by

dbD x; yð Þ ¼ jbD xð Þ � bD yð Þj8x; y 2 0;1½ �;

is a Restricted dissimilarity [3] and the function SbD : 0;1½ � � 0;1½ � ! 0;1½ � defined by

SbD x; yð Þ ¼ 1� jbD xð Þ � bD yð Þj8x; y 2 0;1½ �:

is a Restricted Equivalence Function [3].
2. We can find three intervals I1; I2; I3 � 0;1½ � such that 0 2 I1;1 2 I3, and I1 < I2 < I3 satisfying that

jbD yð Þ � bD xð Þj < jy� xj8x; y 2 I1 : x – y;

jbD yð Þ � bD xð Þj > jy� xj8x; y 2 I2 : x – y;

jbD yð Þ � bD xð Þj < jy� xj8x; y 2 I3 : x – y:

3. The graph of bD is under the diagonal of the square 0;1½ � � 0;1½ � for values close enough to 0 and it is over the same diagonal for
those values close enough to 1,

4. There exist a neighborhood U0 containing 0 and a neighborhood U1 containing 1 such that for every x; y 2 U�
0; x < y, there exists

h0 > 0 such that the inequality jbD xð Þ � bD x� tð Þj 6 jbD yð Þ � bD y� tð Þj holds for any t 2 0;h0½ � and for every x; y 2 U�
1; x < y,

there exists h1 > 0 such that the inequality jbD x� tð Þ � bD xð Þj P jbD y� tð Þ � bD yð Þj holds for any t 2 0;h1½ �.

Note that EVRs deform the unit interval in a very particular way. According to the second thesis of the previous Theorem,
when using an EVR the distances between extreme values (those which are close to 0 or 1) are decreased, whereas the dis-
tances between certain intermediate values are increased. In addition, the forth thesis of that result guarantees that the dis-
tances among extreme values are progressively reduced when the values become closer to 0 or 1.

3. On the drawbacks of the linear RIM quantifier for computing OWA weights

In this section, it is analyzed the implications of choosing the weighting vector by using the linear RIM quantifier defined
in the previous section.

Suppose 0 < a < b < 1. Then for any k 6 am we obtain xk ¼ 0. When k P mbþ 1, we also get wk ¼ 0. If ma > k but
k� 1 6 ma we obtain

wk ¼ k�ma
m b� að Þ :

In the case mb 6 k and k� 1 < mb:
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wk ¼ 1� k� 1ð Þ �ma
m b� að Þ ¼ mb� kþ 1

m b� að Þ :

The remaining case amþ 1 < k < mb is reduced to:

wk ¼ k�ma
m b� að Þ �

k� 1�ma
m b� að Þ ¼ 1

m b� að Þ :

The previous discussion is summarized in the following result.

Proposition 1. The weights for the m-dimensional OWA operator obtained from the linear RIM quantifier Qa;b are given by

wk ¼

0 1 6 k 6 am
k�ma
m b�að Þ ma < k 6 amþ 1

1
m b�að Þ amþ 1 < k < mb

mbþ1�k
m b�að Þ mb 6 k < mbþ 1

0 bmþ 1 6 k 6 m

8>>>>>>><>>>>>>>:
; ð1Þ

where k ¼ 1;2; . . . ;m.
Note that for any k 6 ma, all the weightswk are zero and the same occurs when k P bmþ 1. In terms of the OWA operator

associated to these weights, this fact means that the operator ignores the first ma values and the last m� bmþ 1ð Þ values. In
other words, the greater a, the less top ranked values are considered for the OWA aggregation. In the same way, the less
value of b, the less bottom ranked values are considered for OWA aggregation. Depending on the choice of a and b, the
ignored values could be high enough to declare non realistic any aggregation which is based in this linear RIM quantifier.
Keep in mind, that OWA operators order the values to aggregate before applying the weights. So, the ignored information
is the corresponding to the most extreme values (polarized, if polarization exist in such a set of values) among the elements
to be aggregated.

In addition, if non biased aggregations are required, the orness measure of the corresponding OWA operator must be
equal to 0:5. For instance, if the orness measure is greater than this value, the aggregation would swing towards the max-
imum, giving more importance to the values greater than the median value of the elements which are being aggregated. The
following result provides a relation between the parameters a and b which characterizes non biased aggregations.

Proposition 2. The orness measure for the OWA operator associated with the linear RIM quantifier Qa;b equals to 0:5 if and
only if aþ b ¼ 1.

Proof. According to [2], the orness measure of an OWA operator equals to 0:5 if and only if the associated weights are sym-
metric. It is clear that if aþ b ¼ 1, the weights provided by the linear RIM quantifier Qa;b are symmetric and consequently the
orness measure equals to 0:5.

To prove the reciprocal assumption, fix m 2 N and 0 6 a < b 	 1 fixed and consider

k1 :¼ Eþ ma½ � ¼ min
k¼1;2;...;m

k : wk – 0f g
k2 :¼ Eþ mb½ � ¼ max

k¼1;2;...;m
k : wk – 0f g;

where Eþ : R ! Z denotes the ceiling function. Note that Proposition 1 allows to study the symmetry of the weights
w1;w2; . . . ;wm by just looking at wk1 andwk2 . Therefore, if the weights are symmetric, the following chain of equalities holds:

wk1 ¼ wk2 ¼ wm�k2þ1:

From the first one, the constrain k1 �ma ¼ mbþ 1� k2 is obtained, whereas comparing the first term and the last one leads
to k1 þ k2 ¼ mþ 1. If these constraints are combined, aþ b ¼ 1 is obtained.

This fact induces a constraint for a and b. If they are not chosen in a symmetric way, i.e. b ¼ 1� a, the aggregation gives
more importance to certain extreme values, and this may have no sense when applied in some real world problems like con-
sensus models for GDM.

Example 1. Consider a problem in which five experts express their preferences through the vector
P ¼ P1; P2; P3; P4; P5ð Þ ¼ 1;1;0:75;0:5;0:5ð Þ on how much they prefer the alternative X1 to the alternative X2. When using
the linear RIM quantifier Qa;b for a ¼ 0:4 and b ¼ 0:8, the obtained weights are w ¼ w1;w2;w3;w4;w5ð Þ ¼ 0;0;0:5;0:5;0ð Þ.

Note that the orness of the corresponding OWA operator is 1� 0:4þ 0:8ð Þ=2 ¼ 0:4. In practice, this means that the fusion
of information does not prioritize the most intermediate values, i.e. the ones which are around the median value of the
preferences. On the contrary, the aggregations made by this OWA operator prioritize the values which are slightly deviated
to the lower values of the preferences.

D. García-Zamora, Á. Labella, R.M. Rodríguez et al. Information Sciences 584 (2022) 583–602

587



For instance, when fusing the preferences in the previous problem, the aggregation of these preferences is
0:5 
 0:75þ 0:5 
 0:5 ¼ 0:625, which is deviated from the median value of preferences, i.e. 0:75. Note that this deviation
implies introducing a bias in the computations because equally extreme values of the preferences are not weighted in the
same way: the distance between the median value and both P2 and P4 are the same, but this is not reflected in the
aggregations made by this operator, which prioritize the value P4 because it is lower than the median value.

In addition, note that we have just three possibilities for the value of wk:

� wk ¼ 0, for the most extreme values,
� 1

m b�að Þ, which is much higher than 1
m, for most of the intermediate values,

� k�ma
m b�að Þ or

mbþ1�k
m b�að Þ , which are lower than 1

m b�að Þ, for at most two of the possible values of k.

The fact that there are just a few possible values for the weights is somehow against the fuzzy logic view. It should be
convenient that the values of the weights change smoothly from the minimum possible value to the maximum one, instead
of changing drastically from zero to 1

m b�að Þ as it occurs with the weights associated to the linear RIM quantifier Qa;b.

To summarize, the main shortcomings of the linear RIM quantifier (see Fig. 1) are:

� If a is too high or b is too low, the aggregations are non realistic because we are ignoring too many extreme values,
� If aþ b – 1 the results of the aggregations are biased,
� The obtained weights are against the fuzzy logic philosophy.

Therefore, we propose an alternative method to select such OWA weights which guarantees not only to take into account
the more extreme values, but also allows the user to control the relevance given to these values. Our aim is to aggregate
elements in a more realistic non biased way.

4. An OWA operator based on Extreme Values Reductions

This section presents the main novelty of this contribution, namely EVR-OWA operator. This operator is based in the
notion of Extreme Values Reduction, detailed in SubSection 2.3. The properties of EVRs are applied to construct an OWA
Operator which has similar measures to the arithmetic mean but giving more importance to the intermediate values and
less importance to the more extreme values to smooth out the importance of polarized opinions in GDM, but taking them
into account instead of ignoring them.

Let us start by analysing the fourth thesis of Theorem 1. Consider an EVR bD : 0;1½ � ! 0;1½ � which is convex in 0;0:5½ � and
concave in 0:5;1½ �. Suppose we have a partition of the interval 0;1½ �. For instance, we can take m 2 N and define

xk ¼ k
m

;8k 2 1;2; . . . ;mf g

Since bD is convex in 0;0:5½ �, for any k1 6 k2 such that xk1 ; xk2 2 1
m ; 12
� �

we obtain

Fig. 1. Flowchart summarizing drawbacks of linear RIM quantifiers when used in OWA operators.
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jbD xk1
� �� bD xk1 �

1
m

� 	
j 6 jbD xk2

� �� bD xk2 �
1
m

� 	
j:

In other words, the more closer xk is to 0, the smaller the difference jbD xkð Þ � bD xk � 1
m

� �j. A similar reasoning leads us to the

concave counterpart of this: the more closer xk is to 1, the smaller the difference jbD xkð Þ � bD xk � 1
m

� �j.
This reasoning and the fact that EVRs are RIM quantifiers allow to define the weights of an OWA operator by using the

general scheme introduced by Yager [21].

Definition 3. [EVR-OWA Operator] Let bD be an Extreme Values Reduction and consider m 2 N. We define

wk ¼ bD k
m

� 	
� bD k� 1

m

� 	
8k 2 1;2; . . . ;mf g:

The familyW ¼ w1;w2; . . . ;wmf g receives the name of ordermweights associated with the EVR bD, and the OWA- operator
given by UbD : 0;1½ �m ! 0;1½ � defined by

UbD x1; x2; . . . ; xmð Þ ¼
Xm
k¼1

wkxr kð Þ;

8 x1; x2; . . . ; xmð Þ 2 0;1½ �m;
where r is a permutation of the m-tuple 1;2; . . . ;mð Þ which satisfies xr 1ð Þ P xr 2ð Þ P . . . P xr mð Þ.

We highlight the philosophy behind this operator. As any OWA operator, UW starts by ordering the values x1; x2; . . . ; xm
from the largest one, to the smallest one. When we use these weights, those values of x which are closer to extremes, i.e.
the largest ones, and the smallest ones, are matched with the smallest weights while the intermediate values of x are
matched with the highest wk’s. Hence, this operator aggregates elements by assigning more relevance to the intermediate
values of the elements which aggregates, and giving less importance to the more extreme elements, but taking them into

account since bD is strictly increasing and therefore those weights can not be zero.

Let us analyze some properties of these weights. First note that since bD is strictly increasing, all of these weights are
greater than zero. In addition,Xm

k¼1

wk ¼
Xm
k¼1

bD k
m

� �� bD k�1
m

� � ¼
¼ bD 1ð Þ � bD 0ð Þ ¼ 1;

and they are properly defined.

By using the third condition of the EVR definition, i.e. bD xð Þ ¼ 1� bD 1� xð Þ8x 2 0;1½ �, we get:bD k
m

� � ¼ 1� bD 1� k
m

� � ¼ 1� bD m�k
m

� �
;bD k�1

m

� � ¼ 1� bD 1� k�1
m

� � ¼ 1� bD m�kþ1
m

� �
;

therefore

wk ¼ bD k
m

� �� bD k�1
m

� � ¼
¼ bD m�kþ1

m

� �� bD m�k
m

� � ¼ wm�kþ1:

This symmetry and the fifth property of EVRs, used as we have explained before, give us an idea of the distribution of
these weights. On the one hand, the smallest values of wk are always located at k ¼ 1 and k ¼ m, i.e.

wmin ¼ w1 ¼ D
1
m

� 	
¼ 1� D 1� 1

m

� 	
¼ wm:

We know that these weights are matched by pairs. So there is a minimum value at w1 and the values of the weights
strictly increase until a certain maximum value wmax and then, because of the symmetry wk ¼ wm�kþ1, the values of the
weights start to decrease towards the value wm ¼ w1. The maximum value for wk depends on the parity of m. When m is
even, the maximum value is at k ¼ m

2 due to wm
2
¼ wm�m

2þ1 ¼ wmþ2
2
. When m is odd, the maximum value is at k ¼ mþ1

2 :

wmax ¼
wm

2
if m is even

wmþ1
2

if m is odd

(
;

Let us remark here that wmax is a kind of median value for the weights.
Note that the arithmetic mean of these weights is
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w ¼ 1
m

Xm
k¼1

wk ¼ 1
m

:

and the orness measure of the corresponding OWA operator must be equal to 0:5 because the weights are symmetric [1]. So

orness UbD� �
¼ 0:5 for any EVR bD and any m 2 N.

To conclude this section, the main advantages of EVR-OWA operators are summarized (see Fig. 2). First, since their orness
measure is equal to 0:5, the weights are symmetrically distributed and the aggregations give equal importance to the
extreme values. In addition, all the weights are positive and the most extreme values are always considered in the aggrega-
tion process. Finally, they are simple to compute and the corresponding EVR can be used as RIM Quantifier in any scenario in
which weights are required to prioritize intermediate values.

5. Examples of EVR-OWA operators

In this section several families of EVRs are introduced, complementing the examples of EVAs proposed in [4]. For the EVR-
OWA operator associated to these families, their main measures, namely the arithmetic mean, the orness measure, the stan-
dard deviation and the entropy measure, are studied.

5.1. The EVR-OWA associated to ŝa

Let a 2�0; 1
2p ½ and consider the EVR sa : 0;1½ � ! 0;1½ � given by

ŝa xð Þ ¼ xþ a 
 sin 2px� pð Þ8x 2 0;1½ �:
The following result summarizes the performance of the EVR-OWA operator associated to ŝa regarding its main measures:

Proposition 3. Let a 2�0; 1
2p ½ and m 2 N;m > 1 and consider the EVR-OWA operator of order m U : 0;1½ �m ! 0;1½ � associated

to the EVR ŝa and the respective weighting vector w ¼ w1;w2; . . . ;wmð Þ. Then

� The arithmetic mean of the weights is given by w ¼ Pm
k¼1

wk
m ¼ 1

m,
� The orness measure of the OWA operator is orness Uð Þ ¼ 0:5,
� The standard deviation of the weights is bounded by rw 6 a 2p

m 2�0;1=m�.

Proof. The two first items are consequence of the discussion made in the previous section. In order to show the third one, let
us study the difference jwk �wj:

Fig. 2. Flowchart summarizing the main advantages of the EVR-OWA operator.
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jwk �wj ¼ ĵsa k
m

� �� ŝa k�1
m

� �� 1
m j ¼

ĵsa k
m

� �� ŝa k�1
m

� �� k�kþ1
m j ¼

ĵsa k
m

� �� k
m þ k�1

m þ ŝa k�1
m

� �j ¼
aj sin 2pk=m� pð Þ � sin 2p k� 1ð Þ=m� pð Þj ¼
ajcos nð Þj 2pð Þ=m

where n is given by the Mean Value Theorem. Therefore:

jwk �wj 6 a
2p
m

8k 2 1;2; . . . ;mf g

and therefore the standard deviation of the wk’s is bounded by

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
k¼1

wk � �wð Þ2
vuut 6 a

2p
m

which is a small value for m highly enough and a 2�0; 1
2p ½.

For m ¼ 100, Table 1 shows the calculations of the most standard measures for the weights obtained for different values
of a (keep in mind that for a ¼ 0 we get the weights associated to the arithmetic mean operator). In Fig. 3 we show the com-
parison between values of the weights obtained for several values of a.

In order to analyze the behavior of the entropy measure for this EVR-OWA operator, we provide the plot in Fig. 4. For each
fuzzy linguistic quantifier, namely the identity function (arithmetic mean), ŝ0:08; ŝ0:15 and Q0:2;0:8, the values of the entropy
measure of the corresponding OWA operator have been computed for m ¼ 2;3; . . . ;1000. The graph shows that the OWA
operators constructed from these EVRs present higher entropy than the linear RIM quantifier Q0:2;0:8.

5.2. The EVR-OWA associated to m̂a

Let a > 1 and consider the EVR m̂a : 0;1½ � ! 0;1½ � given by

m̂a xð Þ ¼
1
2 � 1

2 1� 2xð Þ1a 0 6 x < 1
2

1
2 þ 1

2 2x� 1ð Þ1a 1
2 6 x 6 1

8<: :

Remark 2. Note that m̂a is not an EVR strictly speaking since it is not differentiable in x ¼ 1
2. However,

limx!1
2�f

0 xð Þ ¼ limx!1
2þf

0 xð Þ ¼ þ1 and therefore there is no problem with considering it as an EVR.

The following result summarizes the performance of the EVR-OWA operator associated to m̂a regarding its main
measures:

Proposition 4. Let a > 1 and m 2 N;m > 1 and consider the EVR-OWA operator of order m U : 0;1½ �m ! 0;1½ � associated to
the EVR m̂a and the respective weighting vector w ¼ w1;w2; . . . ;wmð Þ. Then

� The arithmetic mean of the weights is given by w ¼ Pm
k¼1

wk
m ¼ 1

m,
� The orness measure of the OWA operator is orness Uð Þ ¼ 0:5,
� The standard deviation of the weights is bounded by rw 6 1 ffiffi

aa�1p 1� 1
a

� � 2�0;1�.

Table 1
Measures for ŝa , m ¼ 100.

EVR Orness Entropy Mean SD Min Max

ŝ0 0.5 4.6051 0.01 0 0.01 0.01
ŝ0:04 0.5 4.5892 0.01 0.0017 0.0074 0.0125
ŝ0:08 0.5 4.5398 0.01 0.0035 0.0049 0.0150
ŝ0:09 0.5 4.5216 0.01 0.0039 0.0043 0.0156
ŝ0:15 0.5 4.3443 0.01 0.0066 0.0005 0.0194
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Proof. The two first items are consequence of the discussion made in the previous section. In order to show the third one, let
us study the difference jwk �wj. To do that, let us consider the function g : 0:5;1½ � ! 0:5;1½ � given by

g xð Þ ¼ m̂a xð Þ � x8x 2 0:5;1½ �, which reach its maximum value at x0 ¼ 1
2

ffiffi
1
a

a�1
q

þ 1
� �

. In that case:

jm̂a xð Þ � xj 6 g x0ð Þ ¼ 1
2

ffiffiffi
aa�1

p 1� 1
a

� 	
:

Now we can compute:

jwk �wj ¼ jm̂a
k
m

� �� m̂a
k�1
m

� �� 1
m j ¼

jm̂a
k
m

� �� m̂a
k�1
m

� �� k�kþ1
m j ¼

jm̂a
k
m

� �� k
m þ k�1

m � m̂a
k�1
m

� �j ¼
6 2

2
ffiffi
aa�1p 1� 1

a

� �
:

So

jwk �wj 6 1 ffiffiffi
aa�1

p 1� 1
a

� 	
and

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
k¼1

wk �wð Þ2
vuut 6 1 ffiffiffi

aa�1
p 1� 1

a

� 	
:

Let us study this bound. Consider the function h :�1;1 ! R½ , defined by

Fig. 3. Comparison of wk for different ŝa;m ¼ 100.

Fig. 4. Graph of the entropy function for several fuzzy linguistic quantifiers.
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h að Þ ¼ 1 ffiffiffi
aa�1

p 1� 1
a

� 	
¼ a �1

a�1 1� 1
a

� 	
;8a 2�1;1½

Note that lima!1h að Þ ¼ 0 and

lim
a!1

h að Þ ¼ lim
a!1

a �1
a�1 1� 1

a

� � ¼
lim
a!1

exp �1
a�1 log að Þ� �

1� 1
a

� � ¼ 1

In order to study h0, note that for any A � Rþ and f : A ! R, the derivative of the function g : A ! R defined by
g xð Þ ¼ xf xð Þ ¼ exp f xð Þ log xð Þð Þ8x 2 A is given by

g0 xð Þ ¼ xf xð Þ f 0 xð Þ log xð Þ þ f xð Þ
x

� 	
8x 2 A:

In that case

h0 að Þ ¼ a �1
a�1þ

a� 1ð Þa �1
a�1

� a�1ð Þþa
a�1ð Þ2 log að Þ � 1

a�1

� �
¼

a �1
a�1 1þ log að Þ

a�1 � 1
� �

¼
a �1
a�1

log að Þ
a�1 P 08a 2�1;1½

So h is increasing and ra 2�0;1½ for any value of a.
For m ¼ 100 we show the results of the calculations for most standard measures for the weights in Table 2 (in this case,

the weights associated to the arithmetic mean operator are given by a ¼ 1). In Fig. 5 we show the comparison between val-
ues of the weights obtained for the different values of a. In order to analyze the behavior of the entropy measure for this EVR-
OWA operator, we provide the plot in Fig. 6. For each fuzzy linguistic quantifier, namely the identity function (arithmetic
mean), m̂1:5; m̂2; m̂3 and Q0:2;0:8, the values of the entropy measure of the corresponding OWA operator have been computed
form ¼ 2;3; . . . ;1000. The graph shows that the OWA operators constructed from these EVRs present higher entropy that the
linear RIM quantifier Q0:3;0:7.

Table 2
Measures for m̂a , m ¼ 100.

EVR Orness Entropy Mean SD Min Max

m̂1 0.5 4.605 0.01 0 0.01 0.01
m̂1:35 0.5 4.5581 0.01 0.0034 0.0074 0.0275
m̂2 0.5 4.3421 0.01 0.0098 0.0050 0.0707

m̂3:39 0.5 3.8057 0.01 0.0219 0.0029 0.1576
m̂5 0.5 3.3090 0.01 0.0317 0.0020 0.2286
m̂10 0.5 2.4379 0.01 0.0470 0.0010 0.3381

Fig. 5. Comparison of wk for different m̂a;m ¼ 100.
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5.3. The EVR-OWA associated to b̂r;s
a

Let us consider now the automorphism f a : 0;1½ � ! 0;1½ � given by

f a xð Þ ¼ xa8x 2 0;1½ �;
where 0 < a < 1 and let h : a; b½ � ! a; b½ � be the standard affine transformation given by

h xð Þ ¼ b� a
b� a

� 	

 x� að Þ þ a;8x 2 a;b½ �:

By using similar arguments that the ones applied in [4] the following result is clear.

Proposition 5. Consider r; s 2� 12 ;1½ such that r < s;a 2�0;1½ and � 2�0;1½ and the standard affine transformations:

ha :
1
2 ; r
� � ! 1

2 ; s
� �

hb : r;1½ � ! �;1½ �
hc : �a;1½ � ! s;1½ �:

Then the function b̂r;s
a : 0;1½ � ! 0;1½ � given by

b̂r;s
a xð Þ ¼ 1� b� 1� xð Þ 0 6 x < 1

2

b� xð Þ 1
2 6 x 6 1

(
: ð2Þ

where b� : 1
2 ;1
� � ! 1

2 ;1
� �

is defined by

b� xð Þ ¼ ha xð Þ 1
2 6 x 6 r

hc � f a � hb xð Þ r < x 6 1

(
is an EVR if and only if the following equality holds

k ¼ s� 1
2

r � 1
2

¼ 1� s
1� r

1� �
1� �a

a�a�1;

where k is the derivative of ha and indicates how much the intermediate values further apart.
Some useful combinations of these parameters are shown in Table 3.
Let us analyse the special case r ¼ s ¼ 1=2. Note that this assumption implies that the affine transformation ha disappears

Fig. 6. Graph of the entropy function for several fuzzy linguistic quantifiers.

Table 3
Useful combinations of parameters for the EVR b̂r;s

a .

r s k a �

0.6 0.75 2.5 1
3

0.043034

0.5 0.5 2 1
2

0.111177

0.55 0.6 2 1
2

0.081757
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and b1 xð Þ ¼ hc � f a � hb xð Þ8x 2 1
2 ;1
� �

.
Define g :�0;1 ! R½ by

g �ð Þ ¼ a
�a�1 � �a

1� �a
8� 2�0;1½

Note that lim�!0g �ð Þ ¼ þ1 and

lim
�!1

g �ð Þ ¼ lim
�!1

a�a�1 1� �
1� �a

¼ 1

In addition

g0 �ð Þ ¼ a
1��að Þ2 a� 1ð Þ�a�2 � a�a�1

� �
1� �að Þ þ �a�1 � �a

� �
a�a�1

� � ¼
¼ a�a�2

1��að Þ2 a� 1� a�ð Þ 1� �að Þ þ a �a � �aþ1
� �� � ¼

¼ a�a�2

1��að Þ2 a 1� �ð Þ 1� �að Þ � 1� �að Þ þ a�a 1� �ð Þð Þ ¼
¼ a�a�2

1��að Þ2 a 1� �ð Þ � 1� �að Þð Þ
8� 2�0;1½

To study the sign of g0 let us consider h :�0;1 ! R½ defined by

h �ð Þ ¼ a 1� �ð Þ � 1� �að Þ8� 2�0;1 :½
Since h0 �ð Þ ¼ a �a�1 � 1

� �
> 08� 2�0;1½ and lim�!0h �ð Þ ¼ a� 1; lim�!1h �ð Þ ¼ 0 we can conclude that h < 0 in its domain

and therefore g0 �ð Þ < 08� 2�0;1½ In that case g is strictly decreasing and its codomain is �1;þ1½. This fact allows to state
the following result.

Proposition 6. Let � 2�0;1 ;a 2½ �0;1½ and consider the standard affine transformations hb : 1
2 ;1
� � ! �;1½ � and

hc : �a;1½ � ! 1
2 ;1
� �

and the function b̂1 : 1
2 ;1
� � ! 1

2 ;1
� �

defined by b̂� xð Þ ¼ hc � f a � hb xð Þ8x 2 1
2 ;1
� �

.

Then, for every k 2�1;1½ we can find � 2�0;1½ (i.e. the unique one which satisfies k ¼ a �a�1��a
1��a ) such that the function

b̂ka : 0;1½ � ! 0;1½ � defined by

b̂k
a xð Þ ¼ b̂� xð Þ 1

2 6 x 6 1

1� b̂� 1� xð Þ 0 6 x 6 1
2

(
;

is an EVR such that b̂k
a

� �0
1
2

� � ¼ k.

Note that by taking � ¼ 0 we would obtain the m̂a family of EVRs.
It should be highlighted that the previous reasoning allows to deduce the existence and unicity of a value � which guar-

antees that the EVRs br;s
a is well defined for 1

2 < r < s < 1 and a 2�0;1½.

Proposition 7. Consider r; s 2� 12 ;1½ such that r < s;a 2�0;1½ and � 2�0;1½. Then there exist a unique � 2 0;1½ � such that

s� 1
2

r � 1
2

¼ 1� s
1� r

1� �
1� �a

a�a�1:

In the following, we use the notation br;s
a for the unique EVR which could be defined for the parameters r < s and a.

The quality measures for the OWA weights generated for some of these EVRs for the order 100 case are sumarised in

Table 4 and the respectively obtained weights are sketched in Fig. 7. Note that when using the family b̂r;s
a all the weights

in the interval 0:5� r;0:5þ r½ � remain the same and their value depend on the value of s�0:5
r�0:5. On the other hand, the family

Table 4
Measures for b̂r;s

a , m ¼ 100.

EVR Orness Entropy Mean SD Min Max

b̂11 0.5 4.605 0.01 0 0.01 0.01

b̂0:55;0:61=2
0.5 4.515 0.01 0.004 0.0057 0.020

b̂0:55;0:61=3
0.5 4.505 0.01 0.005 0.0052 0.020

b̂21=2
0.5 4.560 0.01 0.003 0.006 0.019
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b̂k
a allows to control the weight of the median value by modifying the value of k. The comparative graph of the entropies for

the obtained EVR weights is shown in Fig. 8.

5.4. Comparison of the families ŝa; m̂a and b̂r;s
a

Even though, there exist plenty of examples of EVRs, such as the cumulative distribution function for the Gaussian dis-
tribution [17], all the EVR families which have been proposed in this section are parametric families which allow to control
the relevance of the intermediate values in the aggregations by adjusting the value of the parameters. The family ŝa consists
of functions of class C1 which always assign the same weight to the values corresponding to the second and third quartiles.

On the other hand, the family ma resulted to be a particular case of the family b̂r;s
a and provided a simple way of generating

OWA weights which give much more importance to the intermediate values than to the extreme ones. Finally, the family b̂a
allows to control the amount of intermediate values which receive the higher relevance in the aggregations and the exact
weights for these values.

6. Symmetric weights and EVRs

In Section 4 it was proved that any EVR is able to produce a family of symmetric weights which give more importance to
the intermediate values in the OWA aggregations. This section is devoted to show the reciprocal statement, i.e., to some
extent, any family of symmetric weights which prioritizes intermediate values is obtained from an EVR function. First, it
is proposed a result which highlights an interesting property relating the weights associated to a fuzzy linguistic quantifier
Q and its derivative.

Proposition 8. Let Q : 0;1½ � ! 0;1½ � be a RIM quantifier of class C1. Then:

Fig. 7. Comparison of wk for different b̂r;s
a ;m ¼ 100.

Fig. 8. Graph of the entropy function for several fuzzy linguistic quantifiers.
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wk ¼ Q
k
m

� 	
� Q

k� 1
m

� 	
¼ Q 0 nkð Þ 1

m
¼

Z k
m

k�1
m

Q 0 tð Þdt; k ¼ 1;2; . . . ;m

where nk 2� k�1
m ; k

m ½. In addition,

jwk �wj ¼ jQ 0 nkð Þ 1
m

� 1
m

j ¼ 1
m

j1� Q 0 nkð Þj; nk 2�
k� 1
m

;
k
m

½

for any k ¼ 1;2; . . . ;m.

Proof. It is consequence of the Mean Value Theorem and the Fundamental Theorem of Calculus.

Remark 3. For m large enough wk � Q 0 k
m

� �
1
m.

Remark 4. The previous proposition allows to measure how far the weights produced by a RIM quantifier are from their
mean value. For instance, when the EVR ŝa;a 2�0; 1

2p ½ is considered, we obtain

jwk �wj ¼ 1
m

2paj cos 2pnk � pð Þj 6 2pa
m

:

The following Theorem provides the reciprocal statement, i.e., given w1; . . . ;wm, under certain conditions Theorem 2
assures that we can find an EVR such that, when Yager’s method is applied to compute the associated OWA weights, the
obtained values for these weights are precisely w1; . . . ;wm.

Theorem 2. Given a positive symmetric wk ¼ wm�kþ1 > 0; k ¼ 1;2; . . . ;mð Þ weighting vector w ¼ w1;w2; . . . ;wmð Þ consider a
continuous function q : 0;1½ � ! Rþ

0 such that:

1. For any k ¼ 1;2; . . . ;m

wk ¼
Z k

m

k�1
m

q tð Þdt;

2. q satisfies the symmetry condition q xð Þ ¼ q 1� xð Þ8x 2 0;1½ �,
3. q 1ð Þ < 1 and q 0ð Þ < 1,
4. q is strictly increasing in 0; 12

� �
and strictly decreasing in 1

2 ;1
� �

.

Then, the function Q : 0;1½ � ! 0;1½ � given by Q xð Þ :¼ R x
0 q tð Þdt is an EVR whose associated EVR-OWA operator is determined by the

weighting vector w.

Proof. Let us check the properties which characterizes EVRs.

1. Q is a function of class C1. Clear by using the Fundamental Theorem of Calculus.
2. Q is an increasing automorphism. Since q P 0;Q must be an increasing function. The 4th hypothesis guarantees that in

fact, Q is strictly increasing. In addition,

0 ¼ R 0
0 q tð Þdt ¼ Q 0ð Þ

1 ¼
Xm
k¼1

wk ¼
Xm
k¼1

R k
m
k�1
m
q tð Þdt ¼ R 1

0 q tð Þdt ¼ Q 1ð Þ:

3. Involution with respect to the standard negation. Note that

Q xð Þ þ Q 1� xð Þ ¼ R x
0 q tð Þdt þ R 1�x

0 q tð Þdt ¼
¼ R x

0 q tð Þdt þ R 1
1�x q 1� tð Þdt ¼ R 1

0 q tð Þdt ¼ 1;

4. Q 0 0ð Þ ¼ q 0ð Þ < 1 and Q 0 1ð Þ ¼ q 1ð Þ < 1,
5. The convexity of Q in 0; 12

� �
is consequence of the fact that q is increasing in that interval. A similar argument can be pro-

vided to show that Q is concave in 1
2 ;1
� �

By using the first hypothesis and the Fundamental Theorem of Calculus it is obtained that
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Q
k
m

� 	
� Q

k� 1
m

� 	
¼

Z k
m

k�1
m

q tð Þdt ¼ wk:

Therefore, when using Yager’s method to compute the weights for the RIM quantifier Q, the obtained family is the former
one.

Let us analyze the hypotheses of the previous result. The first one is just about relating the derivative of the EVR Q with
the given weights such that when using Proposition 8 to compute the corresponding weights, the obtained values are
w1; . . . ;wm. The second one is a symmetry condition. The third condition is easy to obtain because the minimum values
for a family of weights which prioritizes intermediate values must be lower than the arithmetic mean of these weights,
i.e. w1 < 1

m and wm < 1
m. The last hypothesis is related with both the symmetry condition and the fact that the weights for

the intermediate values should be higher than the weights for the more extreme values.
In order to construct the function q : 0;1½ � ! Rþ

0 required in the previous result, we suggest using a continuous linear
spline such that its restriction to the interval k�1

m ; k
m

� �
, qk :¼ qj k�1

m ; km½ � k ¼ 1;2; . . . ;m, satisfies

wk ¼
Z k

m

k�1
m

qk tð Þdt; k ¼ 1;2; . . . ;m:

Ifm is even we can consider the functions defined by qk tð Þ ¼ ak þ bkt8t 2 k�1
m ; k

m

� �
; k ¼ 1;2; . . . ;m2 , which provide a total ofm

parameters. By considering the equations

wk ¼
Z k

m

k�1
m

qk tð Þdt ¼ ak

m
þ bk 2k� 1ð Þ

2m2 ; k ¼ 1;2; . . . ;
m
2
;

the boundary condition q1 0ð Þ ¼ a1 ¼ 0, and the continuity conditions

qk
k
m

� 	
¼ ak þ k

m
bk ¼ akþ1 þ bkþ1

k
m

¼ qkþ1
k
m

� 	
; k ¼ 1;2; . . .

m
2
� 1

We obtain a total of m linear constraints. The matrix representation of this linear system is

1 0 0 0 
 
 
 0 0 0 0 0 
 
 
 0
1 �1 0 0 
 
 
 0 1

m
�1
m 0 0 
 
 
 0

0 1 �1 0 
 
 
 0 0 2
m

�2
m 0 
 
 
 0

..

. ..
. . .

. . .
. ..

. ..
. ..

. . .
. . .

. ..
. ..

. ..
.

0 0 0 
 
 
 1 �1 0 0 
 
 
 0 m�2
2m �m�2

2m

1 0 0 0 
 
 
 0 1
2m 0 0 0 
 
 
 0

0 1 0 0 
 
 
 0 0 3
2m 0 0 
 
 
 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

. . .
. ..

. ..
.

0 0 0 0 
 
 
 1 0 0 0 0 
 
 
 m�1
2m

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

a1

a2

..

.

am
2

b1

b2

..

.

bm
2

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
¼

0
0
..
.

0
mw1

mw2

..

.

mwm
2

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
The determinant of this m�m matrix is given by
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which is non zero. Therefore the linear system of equations has a unique solution. By using this solution to determine the
functions q1; q2; . . . ; qm

2
a piecewise linear function �q : 0; 12

� � ! Rþ
0 is obtained. This piecewise function can be extended to

the entire interval 0;1½ � by defining �q : 1
2 ;1
� � ! Rþ

0 by �q tð Þ ¼ �q 1� tð Þ8t 2 1
2 ;1
� �

.
If m is odd, a similar reasoning can be developed by considering the system of equations consisting on
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wk ¼
R k

m
k�1
m
qk tð Þdt ¼ ak

m þ bk 2k�1ð Þ
2m2 ; k ¼ 1;2; . . . ;m�1

2 ;

wmþ1
2
2 ¼ R 1

2
m�1
2m

qmþ1
2

tð Þdt ¼
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2
2m þ

bmþ1
2

2m�1ð Þ
8m2 ;

the boundary condition q1 0ð Þ ¼ a1 ¼ 0, and the continuity conditions

qk
k
m

� 	
¼ ak þ k

m
bk ¼ akþ1 þ bkþ1

k
m

¼ qkþ1
k
m

� 	
; k ¼ 1;2; . . .

m� 1
2

which consists of mþ 1 parameters and mþ 1 linear constraints. The matrix representation of this linear system is
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which is non zero too.

To summarise, every family of symmetric positive weights for OWA operators which prioritize the intermediate values in
the aggregations is the family of weights obtained by using Yager’s method with a certain EVR function.

7. An illustrative case of aggregation

In this section an illustrative example is provided in order to show in a practical environment the theoretical contents of
this work.

Suppose a group consisting on 10 experts who give their opinions on how much they prefer a certain alternative x1 to the
alternative x2. These preferences are denoted as pk :¼ pk

1;2 2 0;1½ �; k ¼ 1;2; . . . ;10 and are given as follows:

p1 ¼ 0:1118857p2 ¼ 0:2152431 p3 ¼ 0:7635773 p4 ¼ 0:8914762
p5 ¼ 0:3605274p6 ¼ 0:8650980 p7 ¼ 0:6478957 p8 ¼ 0:2588964
p9 ¼ 0:1553312 p10 ¼ 0:1962114

For m ¼ 10 and the EVR ŝ0:08 the obtained list of weights is:

w1 ¼ 0:05297718 w2 ¼ 0:07093830 w3 ¼ 0:10000000 w4 ¼ 0:12906170
w5 ¼ 0:14702282 w6 ¼ 0:14702282 w7 ¼ 0:12906170 w8 ¼ 0:10000000
w9 ¼ 0:07093830 w10 ¼ 0:05297718

and the collective preference by using these weights is given by
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pc ¼< p1;p2; . . . ;p10ð Þ &; w1;w2; . . . ;w10ð Þ >¼ 0:4239893:

Table 5 compiles the standard measures for the weighting vectors obtained for different fuzzy linguistic quantifiers. Fig. 9
shows the distribution of the weighting vector of order 10 associated with the EVR ŝ0:08 around its mean value.

Table 5 shows that the OWA operator associated with the EVR ŝa provides, in general, values for the entropy measure
which are greater than the obtained for the OWA operator associated with the linear RIM quantifier Qa;b. Consequently,
the aggregations made by using the EVR-OWA operator take into account more information than the aggregations based
on the linear RIM quantifiers Q0:2;0:8 or Q0:3;0:7, which are commonly used in the literature. In addition, the Standard Devia-
tions obtained for the EVR-OWA operators are lower than the obtained for the linear RIM quantifiers Q0:2;0:8 and Q0:3;0:7. Fur-
thermore, whereas the weights associated with linear RIM quantifiers just take the minimum value (0) or the maximum
value (0:125;0:17 or 0:25, depending on the case), the weights which are computed by using the EVR ŝa take different values
in the interval defined by the respective minimum and maximum.

Note that the median for the preferences is 0.3097119. When using the linear RIM quantifier Qa;b, a reduction in the quan-
tity b� a is translated in a value for the collective preference which is closer to the median preference and farther from the
collective preference given by the arithmetic mean operator. However, when using the EVR-OWA operator associated with
the EVR ŝa, changes in the parameter a allows to control the importance given to the more extreme values without losing too
much information in the aggregation process (higher entropy measure) and thus obtaining values for the collective prefer-
ence similar to the obtained with the arithmetic mean operator.

8. Results and discussion

Currently, RIM quantifiers are widely used in order to compute the weights for OWA operators due to their simplicity and
applications in several contexts such as poset environments [7]. Even though, several families of RIM quantifiers have been
proposed in the specialized literature [17], one of the most extended approaches consists of using linear RIM quantifiers
Qa;b : 0;1½ � ! 0;1½ �, where 0 6 a < b 6 1, to define OWA operators.

First, this study has analyzed the limitations of using these linear RIM quantifiers to generate OWA weights (RQ1). To do
so, the impact of the parameters a and b which define this quantifier has been measured by checking out the corresponding
standard quality measures. The obtained results are:

� If a is too high or b is too low the aggregations are non realistic because too many extreme values are ignored, i.e. the
entropy of the obtained OWA operator is too low.

Table 5
Measures for several fuzzy linguistic quantifiers, m ¼ 10.

EVR Orness Entropy Mean SD Min Max Collective Preference

ŝ0 ¼ Q0;1 0.5 2.302585 0.1 0 0.1 0.1 0.4466142
ŝ0:04 0.5 2.287187 0.1 0.01748064 0.07648859 0.1235114 0.4353018
ŝ0:08 0.5 2.239431 0.1 0.03496128 0.05297718 0.1470228 0.4239893
ŝ0:15 0.5 2.052446 0.1 0.0655524 0.01183221 0.1881678 0.4041924

Q0:1;0:9 0.5 2.079442 0.1 0.05 0 0.125 0.4328476
Q0:2;0:8 0.5 1.791759 0.1 0.08164966 0 0.1666667 0.4070586
Q0:3;0:7 0.5 1.386294 0.1 0.1224745 0 0.25 0.3706407

Fig. 9. Weights generated by the EVR ŝ0:08 when m ¼ 10.
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� If aþ b– 1 the aggregations are biased, i.e., the orness measure of the obtained operator is not 0:5, and therefore they are
not suitable for those real world applications which require symmetry around the median value.

� With just two possible exceptions, the value wk is either zero or the constant 1
m b�að Þ. Therefore, the progressive behavior of

the weighting vector calculated by using the EVR approach is more related to the fuzzy environment we are dealing with:
whereas the classical linear RIM quantifier Qa;b completely ignores the most extreme elements, the use of EVR based RIM
quantifiers that is proposed here provides a progressive reduction of the importance we are giving to the more extreme
values, which is closer to the fuzzy philosophy.

Second, the EVR-OWA operator, which is focused on overcoming the limitations of the OWA operator, has been intro-
duced. Several families of EVRs have been proposed and it has been proved that their corresponding EVR-OWA operators
satisfy:

� Symmetry: w1 ¼ wm;w2 ¼ wm�1;w3 ¼ wm�2,. . .,
� No wk is zero,
� The smallest values of the wk’s are the first and, by symmetry, the last ones. The largest values are the intermediate ones,
� Their arithmetic mean is 1=m,
� Their standard deviation is close to zero,
� Their orness measure is 0:5,
� Their entropy is similar to the entropy of the arithmetic mean operator, which is the maximum possible value.

Therefore, OWA operators based in EVRs show a considerably higher performance than those based on linear RIM quan-
tifiers, but keeping their simplicity and applicability (RQ2).

Finally, it has been proved (Theorem 2) that any family of positive symmetric weights which prioritize the intermediate
information is actually the family of OWA weights obtained from a certain EVR (RQ3).

To sum up, this study has highlighted the main disadvantages of the use of linear RIM quantifiers in OWA aggregations,
concluding that these kinds of weights do not show a high quality when non biased aggregations which prioritize interme-
diate information without ignoring the most extreme values are required. The EVR-OWA operator, which is based on using
EVRs as fuzzy linguistic quantifiers, allows to overcome this disadvantages by providing families of positive symmetric
weights which prioritize the intermediate information. Furthermore, it has been proved that any other family of weights
which satisfies these requirements can be obtained from a certain EVR, which guarantees that EVRs are actually a very com-
plete proposal to generate weights with such properties.

9. Conclusions and future research

Linear RIM quantifiers are widely accepted in specialized literature [7,17], but they present several shortcomings. The
novel EVR-OWA operator proposes using EVRs as fuzzy linguistic quantifiers in order to overcome these limitations by
obtaining an OWA operator which takes into account the more extreme values, but gives more importance to the interme-
diate ones.

The aggregations made by EVR-OWA operators are not only more related with the fuzzy logic view than those done by
using the linear RIM quantifier Qa;b, but are also better for certain real world applications such as consensus models for GDM
[6,9], since they aggregate preferences in a non biased way and allow to take into account more information in the aggre-
gation process.

In addition, the abstract nature of this proposal not only provides a simple and general method to obtain OWA weights
with such properties, but also gives a characterization relating those families of symmetric positive OWA weights which pri-
oritize intermediate values and EVRs: for every weighting vector w with these properties it can be found an EVR function
such that the weighing vector for this EVR is the weighting vector w.

Further studies should be related with the behavior of these weights in large scale GDM problems and consensus models
in which preferences tends to be polarized. In addition, it would be interesting to compute the optimal parameters for the
proposed EVR families which maximize the entropy measure of the aggregations under certain constrains. Other research
line could be to extend the proposed methods to other contexts such as Pythagorean fuzzy uncertain environments [16]
or ELICIT information [8].
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a b s t r a c t 

Agreement in Group Decision-Making problems has recently been tackled through the use of Minimum 

Cost Consensus (MCC) models, which are associated with solving convex optimization problems. Such 

models minimize the cost of changing experts’ preferences towards reaching a mutual consensus, and es- 

tablish that the distance between the modified individual preferences and the collective opinion must be 

bounded by the threshold ε > 0 . A recent MCC-based model, called the Comprehensive Minimum Cost 

Consensus (CMCC) model, adds another constraint related to a parameter γ ∈ [0 , 1] to the above con- 
straint related to the parameter ε to enforce modified expert preferences in order to achieve a minimum 

level of agreement dictated by the consensus threshold 1 − γ ∈ [0 , 1] . This paper attempts to analyze the 

relationship between the aforementioned constraints in the CMCC models from two different perspec- 

tives. The first is based on inequalities and allows simple bounds to be determined to relate the parame- 

ters ε and γ . The second one is based on Convex Polytope Theory and provides algorithms that compute 

more precise bounds to relate these parameters, and could also be applied to other similar optimization 

problems. Finally, several examples are provided to illustrate the proposal. 

© 2022 The Author(s). Published by Elsevier B.V. 
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1. Introduction 

Group Decision-Making (GDM) problems are those situations in 

which a group of individuals or experts should decide, from a col- 

lective point of view, which alternative is the most suitable to solve 

a problem. Even though different rules such as majority, unanim- 

ity, or Borda count, among others, have been proposed in the clas- 

sic literature to model these situations ( Butler & Rothstein, 2006 ), 

the use of these rules in the formation of group opinions could 

leave some Decision Makers (DMs) feeling dissatisfied by not tak- 

ing their opinions sufficiently into account in group opinion for- 

mation ( Palomares, Estrella, Martinez, & Herrera, 2014 ). Therefore, 

it is of utmost interest to resolve conflicts among decision mak- 

ers before forming a collective opinion to ensure that everyone is 

satisfied with unanimous acceptance. 

∗ Corresponding author. 

E-mail address: dgzamora@ujaen.es (D. García-Zamora) . 

Consensus Reaching Processes (CRPs) have been proposed 

( Labella, Liu, Rodríguez, & Martínez, 2018; Zhang, Dong, Chiclana, 

& Yu, 2019 ) to deal with conflicts between DMs’ opinions in GDM. 

They consist of iterative discussion processes, usually coordinated 

by a human figure, called a moderator, which aim to smooth out 

conflicts in a GDM situation ( Palomares et al., 2014 ). This itera- 

tive process is controlled by the measure of the level of agreement 

among decision makers, which we refer to as consensus measure . 

If the value obtained from this measure in a given round exceeds 

the consensus threshold set μ ∈ [0 , 1] , or the number of iterations 

exceeds the maximum number of rounds allowed MaxRounds ∈ N 

(the set of natural numbers), the CRP ends ( Palomares et al., 2014 ). 

Often, these CRPs (we also refer to them as consensus models ) are 

time-consuming as they require several discussion rounds among 

experts. Consequently, other consensus models have been pro- 

posed that aim to achieve agreement among experts quickly and 

automatically ( Gong, Zhang, Forrest, Li, & Xu, 2015; Zhang, Dong, & 

Xu, 2012 ). 

https://doi.org/10.1016/j.ejor.2022.08.015 
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Minimum Cost Consensus (MCC) models ( Ben-Arieh & Easton, 

2007; Zhang, Dong, Xu, & Li, 2011 ) stand out from other automatic 

CRPs because they express GDM problems in terms of an optimiza- 

tion model based on minimizing a cost function in the space of 

preferences ( Ben-Arieh & Easton, 2007; Zhang et al., 2011 ). These 

models consider that the constraints defining the feasible region of 

the minimization problem are given by a maximum distance ε > 0 

between the DMs and the collective opinion ( Gong et al., 2015; 

Zhang, Dong, & Xu, 2013 ), but neglect the minimum level of agree- 

ment that characterizes classical CRPs ( Zhang et al., 2012; Zhang, 

Gong, & Chiclana, 2017 ). To overcome this drawback, Comprehen- 

sive MCC (CMCC) models were introduced ( Labella, Liu, Rodríguez, 

& Martínez, 2020; Rodríguez, Labella, Dutta, & Martínez, 2021 ) to 

generalize previous MCC approaches by including a constraint in- 

volving a consensus measure that enforces adjusted preferences to 

ensure a consensus degree 1 − γ ∈ [0 , 1] . However, the inclusion of 

such an additional inequality presents a major drawback in terms 

of redundancy, in some situations, of both types of constraints. 

Rodríguez et al. (2021) observed that for a given fixed value of ε
some constraints of the γ values become redundant and vice versa. 

Furthermore, the calculations shown by Labella et al. (2020) indi- 

cate that the parameters ε and γ could be related to one another. 

Concretely, one of the proposed examples shows that, for a fixed 

value of the parameter γ , the value of the cost of modifying the 

original preferences remains the same for several values of ε. Sim- 

ilarly, for certain fixed values of ε, the value of the cost function 
also remains invariant for some specific values of γ . 

Although there are some initial observations on the dynamics of 

the relationship of the parameters ε and γ and their corresponding 

inequalities, a proper understanding of the behavior of the param- 

eters with respect to the optimal solutions and specific theoretical 

results are yet to be established. From a practical application point 

of view, it is of utmost interest to understand the proper relation- 

ship between these parameters, since if the redundant constraints 

can be identified a priori, they can be suppressed in the compu- 

tational resolution of the CRP. This simplification can be especially 

relevant when the number of DMs involved in the GDM is high be- 

cause CMCC models are based on solving mathematical program- 

ming problems that can be especially slow in these situations. 

Therefore, this paper is devoted to analyzing the relationship 

between the two parameters of the CMCC models. In particular, 

we attempt to explore the structure of such a relationship in light 

of the following research questions. 

• RQ1: For a fixed value of γ (resp. ε), which values of ε
(resp. γ ) imply that the ε (resp. γ ) constraint is redundant 

in CMCC? 
• RQ2: For a fixed value of γ (resp. ε), which values of ε

(resp. γ ) imply that the γ (resp. ε) constraint is redundant 
in CMCC? 

To answer these questions, this proposal studies the influence 

of the parameters γ and ε on the CMCC model using two differ- 

ent approaches. We will start with an inequality-based approach, 

which allows us to derive approximate bounds to relate the param- 

eters that are very simple to calculate. The second approach relies 

on Convex Polytope Theory ( Henk, Richter-Gebert, & Ziegler, 2018; 

Ziegler, 1995 ) to determine more precise bounds for these param- 

eters. In addition, this polytope-based approach also provides a 

generic solution to the abstract problem of establishing a relation- 

ship between any linear constraints that define the feasible region 

of a convex minimization problem. In summary, the main novelties 

of this contribution are: 

• The interactions between the consensus measure and the 

maximum distance between experts and the group in CMCC 

are formally analyzed from two different perspectives, one 

based on inequalities and the other on Polytope Theory, to 

explore the full potential of CMCC models in practice by pro- 

viding a comprehensive view of parameter dynamics. 
• A generic polytope-based algorithm is proposed to analyze 

the relationship between linear constraints in convex min- 

imization problems, i.e., whether some of them are redun- 

dant and, consequently, determine the same feasible region. 

A deeper understanding of the relationship between parameters 

in CMCC has the following main implications: 

• It provides an explanation of certain peculiarities of the be- 

havior of the cost function in the CMCC models that have 

been pointed out in the literature ( Labella et al., 2020; Ro- 

dríguez et al., 2021 ). 
• It simplifies CMCC models by eliminating redundant con- 

straints. 
• It helps the moderator to conduct the CRP more efficiently 

by explicitly detecting unnecessary consensus conditions 

and understanding possible changes in cost and solutions for 

different parameters configurations. 
• It can significantly reduce the computational cost of generat- 

ing experts’ modified preferences in CMCC, which implies an 

immediate improvement in the total time required for the 

CRP. 

The remainder of this contribution is set out as follows. 

Section 2 provides the necessary background on GDM, CRPs, MCC 

models, CMCC models, and Polytope Theory to easily understand 

this proposal. In Section 3 , the minimization problem is refor- 

mulated by using a novel notation to simplify this proposal. 

Section 4 provides several relationships between the parameters γ
and ε which have been obtained by chaining inequalities, and in 

Section 5 a novel approach based on Polytope Theory is developed 

to obtain more precise relationships between these parameters. In 

Section 6 several examples are proposed to illustrate this research. 

Finally, Section 7 concludes the paper. 

2. Preliminaries 

This section provides the background required to fully under- 

stand this proposal and introduces basic concepts about GDM and 

CRPs. In addition, a brief review of the historical evolution of MCC 

models is developed to emphasize the link between the various 

formulations. Finally, we provide a brief introduction to the funda- 

mental concepts of convex polytopes. 

2.1. Group decision-making 

GDM problems are those situations in which several individu- 

als or experts have to decide which alternative, out of a given set 

of possible solutions to a given problem, is the most appropriate 

( Butler & Rothstein, 2006; Kacprzyk, 1986 ). Formally, a GDM prob- 

lem consists of: 

• A set X = { x 1 , x 2 , . . . , x n } of possible solutions to the prob- 
lem. 

• A set E = { e 1 , e 2 , . . . , e m 

} of experts who express their pref- 

erences about the alternatives in X through a certain prefer- 

ence structure. 

For the sake of simplicity, in this work, we restrict our in- 

vestigation to two preference elicitation approaches, namely, nu- 

merical scale and Fuzzy Preference Relation (FPR). In numeri- 

cal scale settings, experts evaluate the alternatives by using a 

number from [0 , 1] . On the other hand, in the FPR setting, it 

is assumed that preferences are elicited from experts by us- 

ing Fuzzy Preference Relations (FPRs), a widely used structure 
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Fig. 1. Scheme of a CRP. 

that has been shown to be effective in dealing with uncertainty 

( Bryson, 1996; Herrera-Viedma, Herrera, & Chiclana, 2002 ). These 

FPRs are obtained by asking the expert e k to assess how much 

they prefer the alternative x i to the alternative x j using a value 

p k 
i, j 

in the interval [0 , 1] . The FPR associated with the expert e k is 

the matrix P k = (p k 
i, j 

) ∈ M n ×n ([0 , 1]) , whose elements must satisfy 

the symmetry condition p k 
i, j 

+ p k 
j,i 

= 1 . 

The classical scheme for a GDM problem consists of two 

phases: 

• Aggregation. An aggregation operator is used to fuse the 

preferences elicited from the experts. 
• Exploitation. The best alternative is selected taking into ac- 

count the results of the previous phase. 

Based on this scenario for a GDM problem, we will illustrate the 

key elements for carrying out the GDM process in the following 

subsection. 

2.2. Consensus reaching processes and consensus measures 

Classically, several rules have been used to select the best al- 

ternative in a GDM problem, such as the majority rule, the mi- 

nority rule, or unanimity ( Butler & Rothstein, 2006 ) but, when us- 

ing these classic rules in the GDM solving process, some experts 

may disagree with the solution chosen by the group ( Labella et al., 

2018; Palomares et al., 2014 ). 

A Consensus Reaching Process (CRP) is an iterative discussion 

process in which experts must modify their initial opinions to 

reach a collective agreement. CRPs have been developed to avoid 

disagreements and reach a collective opinion that satisfies all indi- 

viduals who participate in the GDM problem. 

Several consensus models have been proposed in the literature 

( Palomares et al., 2014 ). The general scheme for these models (see 

Fig. 1 ) is: 

• Consensus Measurement . The preferences elicited from the 

experts are gathered and the level of agreement is computed 

using consensus measures ( Beliakov, Calvo, & James, 2014 ). 
• Consensus control . The obtained level of agreement is com- 

pared with a fixed consensus threshold μ ∈ [0 , 1] . If the level 

of agreement is greater than this threshold, a selection pro- 

cess is applied. Otherwise, another round of discussions is 

conducted. In order to avoid an endless process, a maximum 

number of rounds, MaxRounds ∈ N , must be established be- 

forehand. 
• Consensus Progress . A moderator identifies experts’ prefer- 

ences that are difficult for the agreement process and gener- 

ates recommendations for the experts to consider. 

According to the taxonomy developed in Palomares et al. 

(2014) , the consensus measures can be classified into two groups: 

• Consensus measures based on the distance between each 

expert and the collective opinion, 
• Consensus measures based on distances between experts. 

Based on this background on the elements of the GDM process, 

in the following we will describe the automatic cost-based consen- 

sus models, which are the type of models for which we will study 

the relationships between parameters in this proposal. 

2.3. Minimum cost consensus models 

To study the cost of modifying experts’ preferences, Ben-Arieh 

& Easton (2007) proposed the notion of MCC and introduced a 

model that considers consensus as being the minimum distance 

between each expert and the collective opinion, which is calcu- 

lated using a weighted mean. This model aims to minimize the 

cost of moving preferences using a linear function. Specifically, for 

a set of experts E = { e 1 , e 2 , . . . , e m 

} who express the preferences 

o = (o 1 , o 2 , . . . , o m 

) over a certain alternative, the proposed opti- 

mization model is as follows: 

min 
(x 1 , ... ,x m ) 

m ∑ 

i =1 

c i | x i − o i | 

s.t. 

{ 

x = 

m ∑ 

i =1 

w i x i 

| x i − x | ≤ ε, i = 1 , 2 , . . . , m 

( M-1) 

where the parameter c i ∈ R + models the cost of moving the opin- 

ion of the expert e i one unit and w i ∈ [0 , 1] , 
∑ m 

i =1 w i = 1 , is the 

importance of the expert e i when aggregating the preferences. 

By solving the non-linear programming problem defined in (M- 

1), a vector of optimal preferences ˆ o = ( ̂  o 1 , ̂  o 2 , . . . , ̂  o m 

) is obtained 

that satisfies that the distance between its coordinates and the col- 

lective opinion ˆ o = 

∑ m 

i =1 w i ̂  o i is bounded by ε. 
Zhang et al. (2011) improved this previous proposal by consid- 

ering that collective opinion could be calculated using different ag- 

gregation operators. To do so, the previous model was modified as 

follows: 

min 
(x 1 , ... ,x m ) 

m ∑ 

i =1 

c i | x i − o i | 

s.t. 

{
x = F (x 1 , x 2 , . . . , x m 

) 
| x i − x | ≤ ε, i = 1 , 2 , . . . , m 

( M-2) 

where F is an aggregation operator. 

2.4. Comprehensive minimum cost consensus 

Recent studies ( Gong et al., 2015; Zhang et al., 2013; 2012; 

Zhang et al., 2017 ) have introduced new MCC approaches based 

on the original model proposed in Ben-Arieh & Easton (2007) , but 

they all consider the distance of each expert from the collective 

opinion, ignoring a minimum level of agreement among experts, 

which is a milestone for CRPs ( Chiclana, Mata, Martinez, Herrera- 

Viedma, & Alonso, 2008; Kacprzyk & Zadro ̇zny, 2010 ). In order to 

deal with this shortcoming, Comprehensive MCC (CMCC) models 

were developed ( Labella et al., 2020 ). 

A CMCC model is a modification of the model (M-2) which in- 

cludes a new constraint related to preferences holding a minimum 

consensus level: 
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min 
(x 1 , ... ,x m ) ∈ [0 , 1] m 

m ∑ 

i =1 

c i | x i − o i | 

s.t. 

{ 

x = F (x 1 , . . . , x m 

) 
| x i − x | ≤ ε, i = 1 , 2 , . . . , m 

consensus (x 1 , . . . , x m 

) ≥ μ, 

( M-3) 

where the function consensus : [0 , 1] m → [0 , 1] measures the level 

of consensus reached by experts, μ ∈ [0 , 1] is a consensus thresh- 

old that is fixed a priori, F : [0 , 1] m → [0 , 1] is an averaging aggre- 

gation operator, and ε is a parameter that measures the distance 

between each expert’s adjusted opinion and the collective opinion. 

2.4.1. MCC models dealing with numerical values 

The model (M-3) was first adapted to two possible types of 

consensus measures ( Palomares et al., 2014 ): those based on the 

distance between experts and collective opinion are modeled us- 

ing (M-4) and those based on the distance between experts are 

modeled using (M-5), both of which are detailed below: 

min 
(x 1 , ... ,x m ) ∈ [0 , 1] m 

m ∑ 

i =1 

c i | x i − o i | 

s.t. 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

x = 

m ∑ 

i =1 

w i x i 

| x i − x | ≤ ε, i = 1 , 2 , . . . , m 

m ∑ 

i =1 

w i | x i − x | ≤ γ , 

( M-4) 

min 
(x 1 , ... ,x m ) ∈ [0 , 1] m 

m ∑ 

i =1 

c i | x i − o i | 

s.t. 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

x = 

m ∑ 

i =1 

w i x i 

| x i − x | ≤ ε, i = 1 , 2 , . . . , m 

m −1 ∑ 

i =1 

m −1 ∑ 

j= i +1 

w i + w j 
m −1 

| x i − x j | ≤ γ . 

( M-5) 

where γ = 1 − μ and w i ∈ [0 , 1] ( 
∑ m 

i =1 w i = 1 ) are the importance 

values of the expert e i . 

2.4.2. MCC models dealing with FPRs 

The models provided in the previous section were also adapted 

for FPRs. Model (M-4) was rewritten as (M-6), while model (M- 

5) becomes (M-7). Given the fuzzy preference relations P k = (p k 
i j 
) ∈ 

M ([0 , 1]) n ×n , (k = 1 , . . . , m ) , the model (M-6) is defined as follows: 

min 
(x k 

i j 
) ∈M n ×n ([0 , 1]) 

m ∑ 

k =1 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

c k | x k i j − p k i j | 

s.t. 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

x i j = 

m ∑ 

k =1 

w k x 
k 
i j 

| x k 
i j 

− x i j | ≤ ε, k = 1 , . . . , m, i = 1 , . . . , n − 1 , j = i + 1 , . . . , n 

2 
n (n −1) 

m ∑ 

k =1 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

w k | x k i j − x i j | ≤ γ , 

( M-6) 

where p k 
i j 

is the original preference of the expert e k for the pair 

of alternatives x i and x j . Following the same scheme, the model 

(M-7) was defined as: 

min 
(x k 

i j 
) ∈M n ×n ([0 , 1]) 

m ∑ 

k =1 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

c k | x k i j − p k i j | 

s.t. 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

x i j = 

m ∑ 

k =1 

w k x 
k 
i j 

| x k 
i j 

− x i j | ≤ ε, k = 1 , . . . , m, i = 1 , . . . , n − 1 , j = i + 1 , . . . , n 

2 
n (n −1) 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

m −1 ∑ 

k =1 

m ∑ 

l= k +1 

w k + w l 
m −1 

| x k 
i j 

− x l 
i j 
| ≤ γ . 

( M-7) 

2.5. Polytopes 

In this subsection, some basic notions about the Convex Poly- 

tope Theory are introduced. Convex Polytopes are the general- 

ization of the 2-dimensional notion of convex polygon or the 3- 

dimensional concept of polyhedron. After introducing two differ- 

ent definitions for the concept of Polytope that are present in the 

literature ( Henk et al., 2018; Ziegler, 1995 ), the Main Theorem of 

Polytope Theory, which unifies these two definitions, is stated. 

Definition 1 (V-Polytope) . R ⊂ R 

m is said to be a V-polytope 

if R can be expressed as the convex hull of a finite set V = 

{ v 1 , v 2 , . . . , v n } ⊂ R 

m , i.e.: 

R = 

{ 

n ∑ 

k =1 

λk v k : λk ≥ 0 ∀ k = 1 , 2 , . . . , n and 

n ∑ 

k =1 

λk = 1 

} 

The set V is called the set of vertices of R . 

Definition 2 (H-Polytope) . R ⊂ R 

m is said to be a H-polytope if 

R can be expressed as the bounded solution set of a finite sys- 

tem of q linear inequalities, i.e., we can find A ∈ M q ×m 

(R ) and 

B ∈ M q ×1 (R ) : 

R = { x ∈ R 

m : Ax ≤ B } ⊂ B (0 , r) for a certain r > 0 , 

where B (0 , r) denotes the ball of center 0 ∈ R 

m and radius r > 0 . 

The following fundamental theorem on the representation of 

polytopes ( Henk et al., 2018; Ziegler, 1995 ), which relates the no- 

tions of V-polytope and H-polytope representations, forms the ba- 

sis of our polytope-based analysis of the relationship between the 

inequalities involving the parameters μ and γ and the finding of 

tight bounds. 

Theorem 1 (Main Theorem of Polytope Theory) . The definitions 

of V-polytopes and of H-polytopes are equivalent. That is, every V- 

polytope has a description by a finite system of inequalities, and every 

H-polytope can be obtained as the convex hull of a finite set of points 

(its vertices). 

Definition 3 (Convex Polytope) . R ⊂ R 

m is said to be a convex 

polytope if R ⊂ R 

m is an H-polytope or a V-polytope. 

From the computation point of view, it is important to un- 

derstand how to switch between polytope representations. It was 

pointed out in Henk et al. (2018) , Ziegler (1995) that there are 

three types of algorithms that allow us to transform one repre- 

sentation of a convex polytope into the other, namely, inductive 

algorithms (inserting vertices), projection algorithms and reverse 

search methods. Irrespective of the merits and demerits of the al- 

gorithms for numeric computations, this work will use the popular 

package vertexenum Robere (2018) developed for the software R 

( R Core Team, 2017 ), which allows us to transform the inequality- 

based representation of a convex polytope (H-polytope) into the 

vertex-based representation (V-polytope). 
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3. Problem description 

This section is devoted to establishing a common notation to 

simplify the study of the relationships between the constraint in- 

duced by the consensus measure and the constraints involving 

the distances between preferences and collective opinion in CMCC 

models. 

First, note that all models proposed in Section 2.4 can be de- 

scribed as follows. 

min 
∑ m 

k =1 c k | x k − o k | 
s.t. 

{
(x 1 , x 2 , . . . , x m 

) ∈ R ε , 

(x 1 , x 2 , . . . , x m 

) ∈ R γ , 

( M-G) 

where 

• R ε and R γ are the sets of points in [0 , 1] m that satisfy cer- 

tain constraints related to the parameters ε and γ , respec- 

tively, that is, 

R ε : = { x ∈ [0 , 1] m : g k (x ) ≤ ε ∀ k = 1 , 2 , ..., m } , 
R γ : = { x ∈ [0 , 1] m : g 0 (x ) ≤ γ } , 
where g 0 , g 1 , . . . , g m 

: [0 , 1] m → R + are defined as the com- 

position of a linear function with the absolute values of 

some other linear combination of variables, that is, 

g k ( x 1 , x 2 , . . . , x m 

) = 

m ∑ 

i =1 

w 

k 
i | L i ( x 1 , . . . , x m 

) | , 

∀ ( x 1 , x 2 , . . . , x m 

) ∈ R 

m , (1) 

for all k = 0 , 1 , . . . , m , where L i : R 

m → R is a linear function 

for all i = 1 , 2 , ..., m and w 

k 
i 

≥ 0 . 
• (c 1 , c 2 , . . . , c m 

) ∈ R 

m + are the constant values for the cost of 
moving the opinion of each expert one unit, 

• (o 1 , o 2 , . . . , o m 

) ∈ [0 , 1] m are the initial values for experts’ 

preferences. 

As mentioned earlier, the experimental results conducted in 

Labella et al. (2020) suggest that the parameters γ and ε appear- 

ing in the models (M-4), (M-5), (M-6) and (M-7) could be related. 

Here, we are interested in exploring the relationships of these pa- 

rameters by analyzing the containment relationship between the 

regions R γ and R ε that involve the inequalities corresponding to 

the parameters γ and ε, which attempt to restrict the adjusted 

preferences. 

In light of the inclusion relationships of these regions, we first 

attempt to study if, given a value for γ ∈ [0 , 1] , certain values of 

ε exist for which the region R γ is encapsulated in R ε . In other 

words, we want to find a value ε 1 ∈ [0 , 1] such that R γ ⊆ R ε ∀ ε ≥
ε 1 . This setup leads to some interesting consequences in the geom- 

etry of the regions that we describe in the following. 

Denote R γ ,ε := R γ ∩ R ε � = ∅ ( 0 ∈ R γ ,ε ). Note that for a fixed 

value of γ , the following statements are equivalent: 

• R γ ⊆ R ε ∀ ε ≥ ε 1 . 
• R γ ,ε = R γ ∀ ε ≥ ε 1 . 
• The constraints associated with ε, that is, | x k − x | ≤ ε, k = 

1 , 2 , ..., m , do not affect the shape of R γ ,ε ∀ ε ≥ ε 1 . 
• The values of the preferences that satisfy the constraint of 

R γ also satisfy the constraints of R ε for all ε ≥ ε 1 . 

Remark 1. The notation R 

i 
γ , R 

i 
ε and R 

i 
γ ,ε , i = 4 , 5 , 6 , 7 will be 

used to relate these regions with the models (M-4), (M-5), (M-6) 

and (M-7). When referring to the generic model (M-G) the nota- 

tion R γ , R ε and R γ ,ε is kept for the sake of simplicity. 

Keeping these consequences in mind, one can observe that for 

a fixed γ , studying the shape of the region R γ ,ε is equivalent to 

finding if a maximum value for the distance between the experts’ 

opinions and the respective collective opinion ε is guaranteed. This 

fact leads to the following definitions: 

Definition 4. ( ε 1 (γ ) ) For a fixed γ ∈ [0 , 1] we will denote by 

ε 1 (γ ) , or simply ε 1 if no confusion is possible, the infimum value 

of ε such that R γ ⊆ R ε . 

Definition 5. ( γ1 (ε) ) For a fixed ε ∈ [0 , 1] , we will denote by 

γ1 (ε) , or simply γ1 if no confusion is possible, the infimum value 

of γ such that R ε ⊆ R γ . 

The purpose of ε 1 (γ ) and γ1 (ε) is to detect when the region 

R γ ,ε starts to differ from the region R γ or R ε , respectively. Note 

that finding the values ε 1 (γ ) and γ1 (ε) is equivalent to providing 

an answer to RQ1. However, a change in the region does not neces- 

sarily imply a change in the solution of the minimization problem. 

In order to control this change, we introduce the following alterna- 

tive definition for the notion of boundary, which is more suitable 

for the problem that we are dealing with in this study: 

Definition 6. Let R := { x ∈ [0 , 1] m : g(x ) ≤ r } , for some g : R 

m → 

R and r > 0 , be a region in the unit hypercube. Then, the modified 

boundary of R , Bound ∗(R ) , is defined as follows: 

Bound ∗(R ) := ((R 

′ ) c \ (R 

′ ) ◦) ∩ [0 , 1] m 

where R 

′ := { x ∈ R 

m : g(x ) ≤ r } and c and ◦ denote, respectively, 

the standard closure and interior of a set. 

The point of this definition is to avoid the interference of val- 

ues such as (0 , 0 , . . . , 0) or (1 , 1 , . . . , 1) in the computation of the 

boundaries of the regions R γ and R ε . 

Based on this notion of a modified boundary, we propose the 

following definitions in order to find the values of the parameters 

ε and γ for which a change in the solution is ensured when the 

other parameter is fixed. 

Definition 7. ( ε 2 (γ ) ) For a fixed γ ∈ [0 , 1] , we will denote by 

ε 2 (γ ) , or simply ε 2 if no confusion is possible, the supremum 

of the values of ε such that Bound ∗(R γ ) ∩ Bound ∗(R γ ,ε ) = ∅ , or 
equivalently R ε ⊂ R γ . 

Definition 8. ( γ2 (ε) ) For a fixed ε ∈ [0 , 1] , we will denote by 

γ2 (ε) , or simply γ2 if no confusion is possible, the supremum 

of the values of γ such that Bound ∗(R ε ) ∩ Bound ∗(R γ ,ε ) = ∅ , or 
equivalently R γ ⊂ R ε . 

Note that if these boundaries have no points in common, the 

solution will inevitably change. In addition, by finding these val- 

ues, an answer to RQ2 would be provided. To clarify this, consider 

a fixed value γ ∈ [0 , 1] and the sequence { ε n } = { 1 n } , n ∈ N . Note 

that for ε 1 = 1 , the constraints related to ε 1 in the region R γ ,ε 1 
are always satisfied and consequently R γ ,ε 1 = R γ . If we increase 

the value of n , we will find some n 1 such that ε n 1 < ε 1 (γ ) , which 

means that for n ≥ n 1 , there is at least one point in R γ which 

does not belong to R ε n . However, the solution will not necessar- 

ily change until a value n 2 ≥ n 1 such that ε n 2 < ε 2 (γ ) is found 

and consequently Bound ∗(R γ ) ∩ Bound ∗(R γ ,ε n ) = ∅ for any value 
n ≥ n 2 (see Fig. 2 ). 

Based on this formalization of our research questions in the 

form of the definitions mentioned above, we attempt to find rough 

bounds for the parameters in the next section. 

4. An approach based on inequalities 

In this section, we provide rough bounds for the values of 

ε 1 (γ ) and γ1 (ε) for each CMCC model. Specifically, we obtain the 

values ε ′ 1 and γ ′ 
1 such that ε 

′ 
1 ≥ ε 1 (γ ) and γ ′ 

1 ≥ γ1 (ε) for every 

model. 
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Fig. 2. A sketch of ε 1 (γ ) and ε 2 (γ ) for a fixed value of γ ∈ [0 , 1] . 

4.1. The model (M-4) 

Adopting our earlier introduced notations, the regions associ- 

ated with the consensus model (M-4) can be written as follows: 

R 

4 
ε := { x ∈ [0 , 1] m : | x i − x | ≤ ε, ∀ i = 1 , 2 , . . . , m } , 

R 

4 
γ := 

{ 

x ∈ [0 , 1] m : 

m ∑ 

i =1 

w i | x i − x | ≤ γ

} 

, 

R 

4 
γ ,ε := R 

4 
ε ∩ R 

4 
γ . 

The rough bound of γ for a given ε > 0 in terms of Definition 

5 is illustrated in the following proposition. 

Proposition 1. For a given ε > 0 in the consensus model (M-4), the 

value of γ that ensures the satisfaction of the constraints of R 

4 
γ is 

γ ′ 
1 
(ε) = ε, that is, R 

4 
ε = R 

4 
γ ,ε ∀ γ ≥ ε. 

Proof. Suppose that x ∈ R 

4 
ε . Then | x i − x | ≤ ε and ∑ m 

k =1 w k | x i − x | ≤ ε. Therefore, if γ ≥ ε, R 

4 
ε ⊆ R 

4 
γ ,ε and conse- 

quently R 

4 
ε = R 

4 
γ ,ε . �

The opposite case is described in the following proposition. 

Proposition 2. For a given γ > 0 in the consensus model (M-4), the 

values of ε that ensure the satisfaction of the constraints in R 

4 
ε are 

ε ′ 
1 
(γ ) = 

γ

min k =1 , 2 ,...,m { w k } , that is, 

R 

4 
γ = R 

4 
γ ,ε ∀ ε ≥ γ

min k =1 , 2 ,...,m 

{ w k } 

Proof. Let us suppose that x ∈ R 

4 
γ . Then 

∑ m 

i =1 w i | x i − x | ≤ γ and 

w i | x i − x | ≤ γ ∀ i = 1 , 2 , ..., m . Therefore, 

| x i − x | ≤ γ

min k =1 , 2 ,...,m 

{ w k } ∀ i = 1 , 2 , ..., m. 

So, if ε ≥ ε ′ 
1 
:= 

γ

min k =1 , 2 ,...,m { w k } , x ∈ R 

4 
γ ,ε and consequently, R 

4 
γ = 

R 

4 
γ ,ε . �

4.2. The model (M-5) 

The regions associated with the consensus model (M-5) can be 

cast as follows: 

R 

5 
ε := { x ∈ [0 , 1] m : | x i − x | ≤ ε, ∀ i = 1 , 2 , . . . , m } , 

R 

5 
γ := 

{ 

x ∈ [0 , 1] m : 

m −1 ∑ 

i =1 

m ∑ 

j= i +1 

w i + w j 

m − 1 
| x i − x j | ≤ γ

} 

, 

R 

5 
γ ,ε := R 

5 
ε ∩ R 

5 
γ . 

Similarly, rough bounds for the parameters ε and γ when one of 

them is given can be obtained for (M-5) and are given in the fol- 

lowing propositions. 

Proposition 3. For a given ε > 0 in the consensus model (M-5), the 

values of γ that ensure the satisfaction of the constraint of R 

5 
γ is 

γ ′ 
1 
(ε) = 2 ε, that is, R 

5 
ε = R 

5 
γ ,ε ∀ γ ≥ 2 ε. 

Proof. First, note that 

m −1 ∑ 

i =1 

m ∑ 

j= i +1 

w i + w j 

m − 1 

= 

1 

m − 1 

( 

m −1 ∑ 

i =1 

(m − i ) w i + 

m ∑ 

i =2 

(i − 1) w i 

) 

= 

1 

m − 1 

( 

(m − 1) w 1 + 

m −1 ∑ 

i =2 

(m − i ) w i 

+(m − 1) w m 

+ 

m ∑ 

i =2 

(i − 1) w i 

) 

= 

1 

m − 1 

( 

(m − 1)(w 1 + w m 

) + 

m −1 ∑ 

i =2 

(m − 1) w i 

) 

= 1 . 

For an arbitrary x ∈ R 

5 
ε , we have 

m −1 ∑ 

i =1 

m ∑ 

j= i +1 

w i + w j 

m − 1 
| x i − x j | ≤

m −1 ∑ 

i =1 

m ∑ 

j= i +1 

w i + w j 

m − 1 

(| x i − x | + | x − x j | 
)

≤ 2 ε 
m −1 ∑ 

i =1 

m ∑ 

j= i +1 

w i + w j 

m − 1 
= 2 ε 

Hence, x ∈ R 

5 
γ ,ε ∀ γ > 2 ε. �

Proposition 4. For a given γ > 0 in the consensus model (M-5), the 

values of ε that ensure the satisfaction of the constraints in R 

5 
ε are 

ε ′ 1 (γ ) = (m − 1) γ , that is, 

R 

5 
γ = R 

5 
γ ,ε ∀ ε ≥ (m − 1) γ

Proof. Let x ∈ R 

5 
γ . Then 

| x i − x | = | x i 
m ∑ 

j=1 

w j −
m ∑ 

j=1 

w j x j | ≤
m ∑ 

j =1 , j � = i 
w j | x i − x j | 

≤
m −1 ∑ 

i =1 

m ∑ 

i = j+1 

(w i + w j ) | x i − x j | ≤ γ (m − 1) . 

So, if ε ≥ (m − 1) γ , R 

5 
γ = R 

5 
γ ,ε . �

4.3. The model (M-6) 

Let us define M n ×n ([0 , 1]) 
m := M n ×n ([0 , 1]) × m times . . . 

×M n ×n ([0 , 1]) , whose elements are vectors of n -dimensional 

square matrices. With this notation, the regions associated with 

(M-6) can be represented as follows: 

R 

6 
ε : = 

{
X ∈ M n ×n ([0 , 1]) 

m : | x k i j − x i j | 
≤ ε, k = 1 , . . . , m, i = 1 , . . . , n − 1 , 

j = i + 1 , . . . , n } , 
R 

6 
γ : = { X ∈ M n ×n ([0 , 1]) 

m : 

2 

n (n − 1) 

m ∑ 

k =1 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

w k | x k i j − x i j | ≤ γ

} 

, 

R 

6 
γ ,ε : = R 

6 
ε ∩ R 

6 
γ . 

Similar results for the rough bounds for the parameters can also 

be obtained for (M-6) and are given in the following propositions. 
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Proposition 5. For a given ε > 0 in the consensus model (M-6), the 

values of γ that ensure the satisfaction of the constraint of R 

6 
γ is 

γ ′ 
1 
(ε) = ε, that is, R 

6 
ε = R 

6 
γ ,ε ∀ γ ≥ ε. 

Proposition 6. For a given γ > 0 in the consensus model (M-6), the 

values of ε that ensure the satisfaction of the constraints in R 

6 
ε are 

ε ′ 
1 
(γ ) = 

γ (n −1) n 

2 min k =1 , 2 ,...,m { w k } , that is, 

R 

6 
γ = R 

6 
γ ,ε ∀ ε ≥ γ (n − 1) n 

2 min k =1 , 2 ,...,m 

{ w k } . 

4.4. The model (M-7) 

Analogously, we can cast the attached regions to the model (M- 

7) and find the results of the rough bounds for the parameters as 

follows: 

R 

7 
ε : = 

{
X ∈ M n ×n ([0 , 1]) 

m : | x k i j − x i j | 
≤ ε, k = 1 , . . . , m, i = 1 , . . . , n − 1 , j = i + 1 , . . . , n } , 

R 

7 
γ : = { X ∈ M n ×n ([0 , 1]) 

m 

: 
2 

n (n − 1) 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

m −1 ∑ 

k =1 

m ∑ 

l= k +1 

w k + w l 

m − 1 
| x k i j − x l i j | ≤ γ

} 

, 

R 

7 
γ ,ε := R 

7 
ε ∩ R 

7 
γ . 

The proof for the following results is analogous to some of 

those given previously, and is therefore omitted. 

Proposition 7. For a given ε > 0 in the consensus model (M-7), the 

values of γ that ensure the satisfaction of the constraint of R 

7 
γ is 

γ ′ 
1 (ε) = 2 ε, that is, R 

7 
ε = R 

7 
γ ,ε ∀ γ ≥ 2 ε. 

Proposition 8. For a given γ > 0 in the consensus model (M-7), the 

values of ε that ensure the satisfaction of the constraints in R 

7 
ε are 

ε ′ 
1 
(γ ) = (m − 1) n (n − 1) γ2 , that is, 

R 

7 
γ = R 

7 
γ ,ε ∀ ε ≥ (m − 1) n (n − 1) 

γ

2 
. 

Therefore, we have obtained rough bounds for the parameters ε
and γ that correspond to the different consensus models by treat- 

ing regions R γ and R ε as abstract spaces. Although these rough 

bounds are very easy to obtain and provide an immediate idea 

of the variations and a partial answer to RQ1 and RQ2, they are 

not very precise. In the following, we attempt to find more precise 

bounds for these parameters. 

5. Approach based on polytopes 

In this section, we further explore the geometry of the regions 

to obtain more precise bounds of the parameters ε and γ . We start 

by characterizing the regions R γ and R ε as convex polytopes. Sub- 

sequently, the properties of convex polytopes are used to derive 

the numerical bounds of the parameters along with the connection 

to the optimal solution of the models. 

5.1. Properties of the regions R γ and R ε 

In this subsection, we show that both regions R γ and R ε in the 

generic model (M-G) are convex polytopes. 

The first result proves that any system of inequalities involv- 

ing compositions of linear functions with absolute values can be 

reduced to a system of linear inequalities. 

Proposition 9. Let w = (w 1 , w 2 , . . . w m 

) ∈ R 

m and μ ∈ R , and con- 

sider the function g : R 

m → R defined as 

g ( x 1 , x 2 , . . . , x m 

) = 

m ∑ 

k =1 

w k | x k | ∀ ( x 1 , x 2 , . . . , x m 

) ∈ R 

m . 

Then, for any x = (x 1 , x 2 , . . . , x m 

) ∈ R 

m , the following relations are 

equivalent: 

• g(x ) ≤ μ, 
• < w σ , x > ≤ μ for every σ = (σ1 , . . . , σm 

) ∈ { −1 , 1 } m . 

where < ·, · > denotes the standard dot product and w σ = 

(w 1 σ1 , w 2 σ2 , . . . , w m 

σm 

) . 

Proof. For m = 1 , the statement is an immediate consequence of 

the properties of the absolute value function. Consider the case 

m = 2 . Thus, w 1 , w 2 ≥ 0 and g : R 

2 → R is defined as g(x 1 , x 2 ) = 

w 1 | x 1 | + w 2 | x 2 | , for all (x 1 , x 2 ) ∈ R 

2 . Note that 

w 1 | x 1 | + w 2 | x 2 | ≤ μ ⇐⇒ w 1 | x 1 | ≤ μ − w 2 | x 2 | ⇐⇒ 

w 1 x 1 ≤ μ − w 2 | x 2 | 
−w 1 x 1 ≤ μ − w 2 | x 2 | 

⇐⇒ 

w 2 | x 2 | ≤ μ − w 1 x 1 
w 2 | x 2 | ≤ μ + w 1 x 1 

⇐ ⇒ 

w 2 x 2 ≤ μ − w 1 x 1 
−w 2 x 2 ≤ μ − w 1 x 1 
w 2 x 2 ≤ μ + w 1 x 1 

−w 2 x 2 ≤ μ + w 1 x 1 

⇐ ⇒ 

w 1 x 1 + w 2 x 2 ≤ μ
w 1 x 1 − w 2 x 2 ≤ μ

−w 1 x 1 + w 2 x 2 ≤ μ
−w 1 x 1 − w 2 x 2 ≤ μ

. 

Therefore, this is also true for m = 2 . The rest of the proof is an 

obvious induction. �

Note that the resulting linear inequalities are those obtained by 

considering all possible combinations of the different signs for the 

weights w 1 , . . . , w m 

, as shown in the proof of Proposition 9 . 

This representation of inequalities involving absolute values al- 

lows us to characterize regions R γ and R ε as polytopes as stated 

in the following corollary. 

Corollary 1. Let n ∈ N and consider a set of m -dimensional weighting 

vectors { w 

1 , w 

2 , . . . , w 

n } , i.e., w 

k = (w 

k 
1 
, w 

k 
2 
, . . . w 

k 
m 

) ∈ [0 , 1] m such 

that 
∑ m 

i =1 w 

k 
i 

= 1 , ∀ k = 1 , 2 , ..., m , and μ1 , . . . , μm 

∈ R + . Consider 
the functions g k : R 

m → R defined as 

g k ( x 1 , x 2 , . . . , x m 

) = 

m ∑ 

i =1 

w 

k 
i | x i | , ∀ ( x 1 , x 2 , . . . , x m 

) 

∈ R 

m , k = 1 , 2 , ..., m. 

Then, the region R = { x ∈ [0 , 1] m : g k (x ) ≤ μk ∀ k = 1 , 2 , ..., m } is a 
non-empty polytope. 

Remark 2. Note that the point (0 , 0 , . . . , 0) ∈ R 

m always satisfies 

the conditions that define R . 

Furthermore, we can assure that the obtained polytope is con- 

vex, even if the arguments of the absolute values are replaced with 

linear combinations of the variables. 

Corollary 2. Let n ∈ N and consider a set of m -dimensional weighting 

vectors { w 

1 , w 

2 , . . . , w 

n } , i.e., w 

k = (w 

k 
1 
, w 

k 
2 
, . . . w 

k 
m 

) ∈ [0 , 1] m , such 

that 
∑ m 

i =1 w 

k 
i 

= 1 ∀ k = 1 , 2 , . . . , n , and μ1 , . . . μm 

∈ R + . Consider 
the functions g k : R 

m → R defined as 

g k ( x 1 , x 2 , . . . , x m 

) = 

m ∑ 

i =1 

w 

k 
i | L i (x 1 , . . . , x m 

) | , ∀ (x 1 , x 2 , . . . , x m 

) 

∈ R 

m , k = 1 , 2 , . . . , n. 

where L i : R 

m → R is a linear function for every i = 1 , 2 , ..., m . Then, 

the region 

R = { x ∈ [0 , 1] m : g k (x ) ≤ μk ∀ k = 1 , 2 , . . . , n } 
is a convex non-empty polytope. 
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Proof. Since the linear function L i does not alter the linearity of 

the equations obtained by using Corollary 1 , it is clear that the 

region R is a nonempty polytope. To show that R is convex, let 

us pick any x, y ∈ R . By definition of R , we have g k (x ) ≤ μk and 

g k (y ) ≤ μk for all k = 1 , 2 , ..., n . Now, we observe that for any t ∈ 

[0 , 1] 

g k ((1 − t) x + ty ) = 

m ∑ 

i =1 

w 

k 
i | L i ((1 − t) x + ty ) | 

= 

m ∑ 

i =1 

w 

k 
i | (1 − t) L i (x ) + tL i (y ) | 

≤
m ∑ 

i =1 

w 

k 
i ((1 − t) | L i (x ) | + t| L i (y ) | 

= (1 − t) g k (x ) + tg k (y ) ≤ μk . 

Therefore, (1 − t) x + ty ∈ R and, consequently, R is convex. �

The following result provides the sufficient and necessary con- 

ditions for a convex polytope to be contained in a fixed convex set. 

Proposition 10. Let S ⊂ R 

m be a convex set, and consider a convex 

polytope R ⊂ R 

m . Then R ⊆ S if and only if all the vertices of R be- 

long to S . 

Proof. The proof of the sufficient condition is straightforward. 

To prove the necessary condition, suppose that all vertices, say 

{ v 1 , v 2 , . . . , v n } , of R are contained in S . As R is a convex poly- 

tope, any point x ∈ R can be expressed as a convex combination 

of its vertices x = 

∑ n 
k =1 a k v k for certain scalars a 1 , a 2 , . . . , a n , such 

that a k ≥ 0 ∀ k = 1 , 2 , ..., n and 
∑ n 

k =1 a k = 1 . Since S is convex and 

{ v 1 , v 2 , . . . , v n } ∈ S , then x ∈ S . Hence, R ⊆ S . �

Note that the constraints which define the feasible region in 

the models (M-4), (M-5), (M-6), and (M-7) are similar to the 

hypothesis constraints in Corollary 2 . Based on Corollary 2 and 

Proposition 10 , we can establish the containment relationship be- 

tween regions R γ and R ε in terms of vertex representation, and 

that result is outlined in the following theorem. 

Theorem 2. The regions R 

i 
γ and R 

i 
ε ( i = 4 , 5 , 6 , 7 ) which appear in 

the models (M-4), (M-5), (M-6) and (M-7) are convex nonempty poly- 

topes. Furthermore, for any of these models, the region R 

i 
γ is con- 

tained in R 

i 
ε if and only if all the vertices of R 

i 
γ belong to the region 

R 

i 
ε . In the same way, the region R 

i 
ε is contained in R 

i 
γ if and only if 

all the vertices in R 

i 
ε belong to the region R 

i 
γ . 

Although Theorem 2 sketches the condition for the containment 

between the regions R γ and R ε , it does not make any comment 

on the behavior of the optimal solution of the consensus model. 

Below, we take a closer look at this issue. 

5.2. Existence of solution to (M-G) 

In this section, we investigate the existence of a solution to the 

general optimization model (M-G). To do so, the link between this 

optimal solution and the region R γ ,ε is analyzed from a theoretical 

point of view. 

Proposition 11. The regions R γ ,ε , R γ and R ε are compact subsets 

of the Euclidean spaces in which they are defined for any values of 

γ , ε ∈ [0 , 1] . 

Proof. Note that all of these regions are contained in the unit hy- 

percube of their respective Euclidean spaces, and therefore they 

are bounded. In addition, due to the fact that all of them are con- 

vex polytopes, they are also closed subsets in their respective Eu- 

clidean spaces. �

Proposition 12. The function c : [0 , 1] m → [0 , 1] defined as 

c(x 1 , x 2 , . . . , x m 

) := 

∑ m 

i =1 c i | x i − o i | , for all (x 1 , x 2 , . . . , x m 

) ∈ [0 , 1] m , 

where o = (o 1 , o 2 , . . . , o m 

) ∈ [0 , 1] m are the original preferences, is 

convex. 

Proof. Let us consider x, y ∈ [0 , 1] m . Then, for any α ∈ [0 , 1] 

c(αx + (1 − α) y ) = 

m ∑ 

i =1 

c i | αx i + (1 − α) y i − o i | 

= 

m ∑ 

i =1 

c i | αx i + (1 − α) y i − (αo i + (1 − α) o i ) | 

≤
m ∑ 

i =1 

c i | α(x i − o i ) + (1 − α)(y i − o i ) | 

≤ αc(x ) + (1 − α) c(y ) 

which proves the convexity of c. �

Proposition 13. (Corollary 2.8.1 in Giorgi, Guerraggio, & (Eds) 

(2004) ) Let A ⊂ R 

m be a nonempty convex subset and consider a con- 

vex function f : A → R . Then, if f reaches a local minimum at the 

point x 0 ∈ A , x 0 is also a global minimum for f . 

Based on the above results, we establish a link between the op- 

timal solution and the region R γ ,ε in the following theorem. 

Theorem 3. The model (M-G) always has a solution. If the origi- 

nal preferences o = (o 1 , . . . , o m 

) satisfy o ∈ R γ ,ε , the solution to the 

minimization problem is the original preference vector o. Otherwise, 

the solution for the minimization problem is always obtained in the 

boundary of the region R γ ,ε . 

Proof. Since c is a continuous function defined in the compact 

subset R γ ,ε , it will always reach its maximum and minimum value 

within the region R γ ,ε , so a solution for the (M-G) model always 

exist. 

Suppose that the solution x 0 for the (M-G) model is an inte- 

rior point of the region R γ ,ε . Then, x 0 is a local minimum for the 

function c and according to Proposition 13 it is a global minimum. 

But it is obvious that the global minimum of c is the original pref- 

erences o = (o 1 , o 2 , . . . , o m 

) , so it must be x 0 = o. Otherwise, if x 0 
is not an interior point, then it must belong to the boundary of 

R γ ,ε . �

So far, we have theoretically established the proper geometry of 

the regions associated with consensus models and the link of the 

optimal solution to these regions in light of the convex polytope- 

based analysis. We will further explore this theoretical foundation 

to compute more precise bounds for the parameters ε and γ . 

5.3. Algorithms used to establish the relationship between γ and ε

In this section, we develop several generic algorithms to find 

numeric approximations for the bounds of the parameters when 

one is determined based on the key results of Theorems 2 and 3 . 

5.3.1. Obtaining ε 1 and γ1 

In this section, we take advantage of the fact that the con- 

tainment relationship between the R ε and R γ regions is based 

on the vertex representation of convex polytopes in order to de- 

cisively find the value of the parameters. The idea is to first gener- 

ate the vertex representation of a region for which the parameter 

value is given via successive applications of Proposition 9 and the 

vertexenum algorithm. We then successively reduce the value of 

the parameter we are looking for from the initialized level with 

a constant step-size until the containment relationship between 

regions holds. This principle of finding the parameters has been 
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Algorithm 1: Find γ1 (ε) , when ε is given. 

Input : ε-related constrains R γ , γ -related constraint R ε , 

threshold ε > 0 , step-size δ > 0 . 

1 find the linear inequality-based representation of R ε of the 

form Az ≤ ε using Proposition 9; 
2 obtain vertices of R ε as V = vertexenum ( Az ≤ ε); 
3 initialize: γ1 = 1 ; 

4 while V ⊆ R γ do 

5 γ := γ − δ; 
6 end 

7 Return γ1 (ε) := γ ; 

Output : γ1 (ε) up to a precision equal to the step-size δ. 

Algorithm 2: Find ε 1 (γ ) , when γ is given. 

Input : ε-related constrains R γ , γ -related constraint R ε , 

threshold γ > 0 , step-size δ > 0 . 

1 find the linear inequality-based representation of R γ of the 

form Az ≤ ε using Proposition 9; 
2 obtain vertices of R γ as V = vertexenum ( Az ≤ γ ); 

3 initialize: ε 1 = 1 ; 

4 while V ⊆ R ε do 

5 ε := ε − δ; 
6 end 

7 Return ε 1 (γ ) := ε; 
Output : ε 1 (γ ) up to a precision equal to the step-size δ. 

summarized in Algorithms 1–2 . Theorem 2 guarantees the proper 

functioning of the algorithms. 

If these algorithms are applied, for each parameter ε and γ
the guaranteed value of the other parameter, i.e., γ1 and ε 1 , is 
obtained. Note that the algorithms estimate ε 1 and γ1 with the 

maximum error bounded by δ > 0 . Depending on the precision re- 

quirement, the value of δ > 0 may be adjusted. This algorithm pro- 

vides a clear answer to RQ1. As long as the containment relation- 

ship is maintained, the region associated with one parameter be- 

comes redundant and there is no change to the optimal solution. 

Now the question is: What parameter values would make changes 

to the optimal solution? We attempt to answer this question be- 

low by developing algorithms to find such parameter values using 

Theorem 3 . 

5.3.2. Obtaining ε 2 and γ2 

To develop the algorithms of this subsection, we have taken 

into account that Theorem 3 guarantees that the solution of the 

minimization problem is always reached in the boundary of R γ ,ε 

whenever the solution is not trivial. For example, if γ is fixed, 

when ε is decreased so that none of the vertices of R ε belong 

to the boundary of R γ (with the exception of those vertices like 

(0 , 0 , . . . , 0) , which always satisfy the constraints), we can ensure 

that the solution of the minimization problem will change. Based 

on this idea, we summarize the steps for computing ε 2 and γ2 in 

Algorithms 3–4 . 

When using these algorithms, for each parameter ε or γ the 

guaranteed value of the other parameter, resp. γ2 and ε 2 , is ob- 
tained. Again, the error is given by the value δ > 0 . These algo- 

rithms give the answer to RQ2. We propose a generalization of 

these algorithms below for the more generic case of the (M-G) op- 

timization model. 

Remark 3. It must be highlighted that the output of these algo- 

rithms does not depend on the values of the preferences given by 

the experts, but on the weights that have been assigned to them. 

In other words, if such weights are fixed, we can determine the re- 

Algorithm 3: Find γ2 (ε) , when ε is given. 

Input : ε-related constrains R γ , γ -related constraint R ε , 

threshold ε > 0 , step-size δ > 0 . 

1 find the linear inequality-based representation of R ε of the 

form Az ≤ ε using Proposition 9; 
2 obtain vertices of R ε as V = vertexenum ( Az ≤ ε) 
3 construct refinement of V , say, V ′ by removing vertices of V 

which automatically satisfy γ constraints; 

4 initialize: γ = 1 ; 

5 while V ′ ∩ R γ � = ∅ do 
6 γ := γ − δ
7 end 

8 Return γ2 (ε) := γ ; 

Output : γ2 (ε) up to a precision equal to the step-size δ. 

Algorithm 4: Find ε 2 (γ ) , when γ is given. 

Input : ε-related constrains R γ , γ -related constraint R ε , 

threshold γ > 0 , step-size δ > 0 . 

1 find the linear inequality-based representation of R γ of the 

form Az ≤ γ using Proposition 9; 

2 obtain vertices of R γ as V = vertexenum ( Az ≤ γ ) 

3 construct refinement of V , say, V ′ by removing vertices of V 

which automatically satisfy ε constraints; 
4 initialize: ε = 1 ; 

5 while V ′ ∩ R ε � = ∅ do 
6 ε := ε − δ; 
7 end 

8 Return ε 2 (γ ) := ε; 
Output : ε 2 (γ ) up to a precision equal to the step-size δ. 

lationship between γ and ε and, consequently, whether it is possi- 

ble to simplify the CMCC model for any of their preference values 

by only running the algorithm once. 

5.3.3. Generalizing the algorithm 

To end this section, a generalization of this algorithm is pro- 

vided to compare the constraints that define the feasible region of 

a minimization problem. 

Theorem 4. Let P ⊂ R 

m be a convex polytope in R 

m and consider 

a continuous convex function c : P → R . Consider two compact in- 

tervals I 1 and I 2 in R and the linear functions g 1 
k 
: R 

m → R , for 

k = 1 , 2 , . . . , n 1 and g 
2 
k 
: R 

m → R for k = 1 , 2 , . . . , n 2 . For α ∈ I 1 and 

β ∈ I 2 define the polytopes 

P α : = 

{
x ∈ P : g 1 k (x ) ≤ α ∀ k = 1 , 2 , . . . , n 1 

}
, 

P β : = 

{
x ∈ P : g 2 k (x ) ≤ β ∀ k = 1 , 2 , . . . , n 2 

}
. 

Then: 

• The optimization problem 

min 
x ∈P 

{ c(x ) } 

s.t. 

{
x ∈ P α

x ∈ P β

always has a solution. 
• For any values α ∈ I 1 and β ∈ I 2 , P α ⊆ P β if and only if the 

vertices set of the polytope P α is contained in the polytope P β

Given the hypotheses of the previous theorem, Algorithms 5 

and 6 determine respectively when the feasible region changes and 

when the solution changes. 
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Algorithm 5: Algorithm for obtaining β1 (α) , the infimum 

value of β such that P α ⊆ P β . 

Input : Problem defined in Theorem 4, a fixed α ∈ I 1 and 

step-size δ > 0 . 

1 find the linear inequality-based representation of P α of the 

form Az ≤ α using Proposition 9; 

2 obtain vertices of P α as V = vertexenum ( Az ≤ α); 

3 Initialize β := max I 2 ; 

4 while V ⊂ P β do 

5 β := β − δ
6 end 

7 Return β1 (α) := β; 

Output : β1 (α) up to a precision equal to the step-size δ. 

Algorithm 6: Algorithm for obtaining β2 (α) , the supremum 

value of β such that the solution of the optimization problem 

has changed. 

Input : Problem defined in Theorem 4, a fixed α ∈ I 1 and step 

size δ > 0 . 

1 find the linear of the form representation of P α of the form 

Az ≤ α using Proposition 9; 

2 obtain vertices of P α as V = vertexenum ( Az ≤ α) 

3 construct refinement of V , say, V ′ by removing vertices of V 

which automatically satisfy β constraints; 

4 initialize: β = 1 ; 

5 while V ′ ∩ Bound ∗(P β ) � = ∅ do 
6 β := β − δ; 
7 end 

8 Return β2 (α) := β; 

Output : β2 (α) up to a precision equal to the step-size δ. 

6. Illustrative examples 

In this section, a couple of examples are proposed to show the 

performance of the polytope-based algorithms developed in the 

previous section. 

6.1. Example 1: Labella et al. (2020) GDM problem 

The first illustrative example is related to one of the GDM prob- 

lems with five experts provided by Labella et al. (2020) when they 

defined CMCC models for the first time, which has motivated this 

study. 

Labella et al. considered a set of experts E = { e 1 , e 2 , e 3 , e 4 , e 5 } 
whose weights were 

W = (0 . 375 , 0 . 1875 , 0 . 25 , 0 . 0625 , 0 . 125) , 

and their preferences were (o 1 , o 2 , o 3 , o 4 , o 5 ) = 

(0 , 0 . 09 , 0 . 36 , 0 . 45 , 1) . The values of the costs of moving experts’ 

opinions were established as (c 1 , c 2 , c 3 , c 4 , c 5 ) = (6 , 3 , 4 , 1 , 2) . The 

values obtained by Labella et al. (2020) for the cost function for 

different values of ε and γ when using the model (M-5) are 

summarized in Table 1 . 

Note that Table 1 clearly suggests that the relationship between 

the parameters γ and ε exists. For instance, if we compare the 

values of the cost function for γ = 0 . 1 and the different values 

of ε, we can see that all of them, except the one obtained when 

ε = 0 . 05 , are the same. 

When CMCC models were first proposed, the authors were un- 

able to provide any explanation for this phenomenon. In fact, exist- 

ing studies do not offer any insight into the relationship of these 

parameters, how it influences the minimum consensus cost, and 

Table 1 

The costs with different values of ε and γ of (M-5) in Example 1. 

γ = 0 . 3 γ = 0 . 25 γ = 0 . 2 γ = 0 . 15 γ = 0 . 1 γ = 0 . 05 

ε = 0 . 30 1.01 1.20 1.60 2.14 2.69 3.24 

ε = 0 . 25 1.13 1.20 1.60 2.14 2.69 3.24 

ε = 0 . 20 1.32 1.32 1.60 2.14 2.69 3.24 

ε = 0 . 15 1.81 1.81 1.81 2.14 2.69 3.24 

ε = 0 . 10 2.47 2.47 2.47 2.47 2.69 3.24 

ε = 0 . 05 3.13 3.13 3.13 3.13 3.13 3.24 

Table 2 

Different bounds for ε when γ is fixed in (M-5) in Example 1. 

γ = 0 . 3 γ = 0 . 25 γ = 0 . 2 γ = 0 . 15 γ = 0 . 1 γ = 0 . 05 

ε ′ 1 (γ ) 1.2 1 0.8 0.6 0.4 0.2 

ε 1 (γ ) 0.94 0.79 0.64 0.48 0.32 0.16 

ε 2 (γ ) 0.23 0.19 0.15 0.11 0.07 0.03 

how one parameter could be computed when the other is given. 

Without such knowledge of the proper dynamics of CMCC models, 

the moderator, in practice, is forced to choose the other parameter 

on a hit and trial basis and cannot take advantage of computa- 

tional cost reduction, which results in inefficiency when conduct- 

ing the CRP. However, using the results of our study and the devel- 

oped algorithms, it is not only possible to explain the rationale be- 

hind the behavior of the cost function, but we are also able to get 

a complete picture of how different parameter configurations will 

impact the cost of reaching consensus, which can help the moder- 

ator manage the CRP more efficiently. To explore this fact, we as- 

sume here that the parameter γ is given at the beginning for the 

problem described above, and the moderator wants to know how 

the values of the parameter ε impact the cost of solving the CMCC 

model. Therefore, we are going to use the results of our proposal to 

obtain the different bounds of the parameter ε for different values 

of γ (see Table 2 ). Specifically, the following values are collected: 

• ε ′ 
1 
(γ ) : The upper bound for ε 1 provided by the results 

presented in Section 4 , which are based on inequalities 

( Proposition 4 ). This value represents an easy-to-compute 

rough bound for which the constraints provided by ε in the 

optimization problem are guaranteed by the γ condition. 
• ε 1 (γ ) : An estimate for ε 1 (up to a precision δ = 0 . 01 ) cal- 

culated using the algorithms in Section 5 ( Algorithm 2 ). Al- 

though this threshold also stands for a bound for the values 

of ε whose constraints are redundant with the one related 

to γ , this value is more accurate than the previous one. 
• ε 2 (γ ) : An estimation for ε 2 (up to a precision δ = 0 . 01 ) 

computed using the algorithms in Section 5 ( Algorithm 4 ). 

This threshold for ε indicates when the feasible region re- 

lated to ε is strictly contained in the one related to γ . In 

other words, if the moderator chooses a value of ε lower 

than this bound, the γ constraint is always guaranteed and 

the DMs will move their opinions just to satisfy the ε con- 

ditions. 

If we look at the column γ = 0 . 1 , we can deduce that the feasi- 

ble region will not change until ε < ε 1 (0 . 1) = 0 . 32 and we cannot 

ensure that the solution of the optimization problem changes un- 

til ε < ε 2 (0 . 1) = 0 . 07 . In fact, Table 1 shows that the values of the 

cost function are the same for all ε > 0 . 07 . 

Furthermore, the inequality-based approach reveals that for ε > 

ε ′ 
1 
(0 . 1) = 0 . 4 the constraints related to the distance between ex- 

perts’ opinions and collective opinions are guaranteed by the con- 

straint corresponding to the parameter γ and therefore they could 

be omitted in the resolution of the mathematical programming 

model, resulting in an immediate reduction of the computational 

costs. In fact, if more precision was necessary, the polytope-based 
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Table 3 

The costs with different values of ε and γ of (M-5) in Example 2. 

γ = 0 . 3 γ = 0 . 25 γ = 0 . 2 γ = 0 . 15 γ = 0 . 1 γ = 0 . 05 

ε = 0 . 30 0.19 0.26 0.32 0.39 0.46 0.53 

ε = 0 . 25 0.19 0.26 0.32 0.39 0.46 0.53 

ε = 0 . 20 0.21 0.26 0.32 0.39 0.46 0.53 

ε = 0 . 15 0.30 0.30 0.33 0.39 0.46 0.53 

ε = 0 . 10 0.40 0.40 0.40 0.40 0.46 0.53 

ε = 0 . 05 0.50 0.50 0.50 0.50 0.50 0.53 

Table 4 

Different bounds for ε when γ is fixed in (M-5) in Example 2. 

γ = 0 . 3 γ = 0 . 25 γ = 0 . 2 γ = 0 . 15 γ = 0 . 1 γ = 0 . 05 

ε ′ 1 (γ ) 0.60 0.50 0.40 0.30 0.20 0.10 

ε 1 (γ ) 0.55 0.46 0.37 0.28 0.19 0.10 

ε 2 (γ ) 0.19 0.16 0.13 0.09 0.06 0.03 

algorithm guarantees that it is possible to ignore all the constraints 

obtained when ε > ε 1 (0 . 1) = 0 . 32 . In other words, if the modera- 

tor considers that a maximum distance between DMs and the col- 

lective equal to 0.35 is sufficient when γ = 0 . 1 , all the constraints 

related to ε could be erased from the optimization model when 

implementing it in a numerical solver because they are already 

granted by the consensus constraint. In fact, we have used the Clp 

solver with the Julia programming language ( Bezanson, Edelman, 

Karpinski, & Shah, 2017 ) to implement the linearized version of 

(M-5) with and without ε constraints when ε = 0 . 3 and consider- 

ing the threshold γ = 0 . 1 . While the first model takes around 300 

milliseconds to be solved, the second one only needs around 200 

milliseconds, yet both provide the same solution as guaranteed by 

our algorithms. 

Similarly, since for ε < 0 . 07 = ε ′ 
2 
(0 . 1) the feasible region related 

to ε is strictly contained in the one determined by γ = 0 . 1 , the 

constraints associated with the latter parameter could be omitted 

in the resolution of the model. In this case, we have also solved the 

optimization model in both scenarios: considering both γ = 0 . 1 

and ε = 0 . 05 constraints and only taking into account the ε = 0 . 05 

constraints. As before, deleting the γ = 0 . 1 constraints has also im- 

plied accelerating the model by about 50%. 

6.2. Example 2: The 3-dimensional GDM problem 

This second GDM situation aims at explaining the relationship 

between the parameters ε and γ from a geometrical point of view. 

To do so, a consensus process involving three experts has been 

studied. Note that if three experts are considered, their preferences 

can be represented as a point in a 3-dimensional space (o 1 , o 2 , o 3 ) . 

This makes it possible to provide a graphical visualization of the 

relationship between the parameters γ and ε. 
In this case, we consider a set of experts E = { e 1 , e 2 , e 3 } whose 

weights are given by W = (0 . 5 , 0 . 05 , 0 . 45) . Their initial preferences 

are (o 1 , o 2 , o 3 ) = (0 . 3 , 0 . 6 , 0 . 9) and the cost vector is (c 1 , c 2 , c 3 ) = 

(1 , 1 , 1) . The optimization problem (M-5) has been solved for dif- 

ferent values of ε and γ , and the values obtained for the cost func- 

tion have been compiled in Table 3 . 

Let us compare these results with the bounds obtained by the 

algorithms proposed in this paper. To do so, we have compiled in 

Table 4 the different bounds for ε obtained when γ is fixed and 

the step-size δ = 0 . 01 is considered. 

We provided a graphical analysis of these values by taking ad- 

vantage of the 3-dimensional nature of this decision problem be- 

low. Let us fix γ = 0 . 2 . According to Table 4 , the region will not 

change for ε ∈ [0 . 4 , 1] , and we are sure that it changes when 

ε < 0 . 37 . Fig. 3 , which has been plotted using the Mathematica 

software, shows the evolution of the corresponding feasible region 

Fig. 3. The change of the region R γ ,ε for γ = 0 . 2 in Example 2. 

Fig. 4. The change of the region R γ ,ε and its solutions for γ = 0 . 2 in Example 2. 

The blue dot represents the original preferences and the red dot the solution for the 

given value of ε. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

R 0 . 2 ,ε for some values of ε. Note that the plots obtained for ε = 1 

and ε = 0 . 4 are the same. However, the one obtained for ε = 0 . 34 

is slightly different from the previous plots, and the plot corre- 

sponding to ε = 0 . 24 is completely different. 

However, a change in the region does not necessarily imply a 

change in the solution. Fig. 4 shows the feasible region R 0 . 2 ,ε , the 

position of the original preferences (blue dot), and the correspond- 
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Table 5 

Computational time required for each GDM problem. 

Decision-makers 5 10 50 100 

M − 7 10.0 ms 46.0 ms 16947.0 ms 480451.0 ms 

M − 7 ′ 3.0 ms 7.0 ms 132.0 ms 531.0 ms 

ing modified preferences obtained by solving the CMCC model (red 

dot). According to Table 4 , we cannot guarantee that the solu- 

tion will change until ε < 0 . 13 , and this is exactly what the fig- 

ure shows. Note that even though the values of ε are lower than 

ε 1 (0 . 2) = 0 . 37 and we know that the feasible region is changing, 

the solution of the optimization problem is the same for ε = 0 . 3 , 

ε = 0 . 2 and ε = 0 . 15 . In contrast, the solution obtained for ε = 

0 . 1 < ε 2 (γ ) = 0 . 13 changes. 

6.3. Example 3: Simplifying CMCC in large-scale GDM 

The following example is intended to show how the appropri- 

ate use of the relationship between the parameters ε and γ can 

be applied when solving a GDM problem to considerably improve 

computational time costs. 

Let us consider a GDM problem which is going to be resolved 

by using the consensus model M-7. For a value ε > 0 , Proposition 

7 guarantees that, for any γ ≥ 2 ε, the model M − 7 is equivalent to 

the following simplified version, which does not depend on the γ
constraint: 

min 
(x k 

i j 
) ∈M n ×n ([0 , 1]) 

m ∑ 

k =1 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

c k | x k i j − p k i j | 

s.t. 

⎧ ⎨ 

⎩ 

x i j = 

m ∑ 

k =1 

w k x 
k 
i j 

| x k 
i j 

− x i j | ≤ ε, k = 1 , . . . , m, i = 1 , . . . , n − 1 , j = i + 1 , . . . , n 

( M- 7 ′ ) 

Note that, even though this model does not require the γ con- 

straint, any solution for M- 7 ′ ( ε > 0 ) is also a solution for M-7 

( ε > 0 , γ ≥ 2 ε) and vice-versa. 
To analyze the computational cost of using M-7 or M- 7 ′ , we 

implemented their respective linearized versions ( Rodríguez et al., 

2021 ) in the Julia 1.6 programming language ( Bezanson et al., 2017 ) 

on the Google Colaboratory cloud service ( Bisong, 2019 ) (2.20GHz 

Intel(R) Xeon(R) CPU and 13 GB RAM). 

Four GDM problems were solved, each considering a different 

number of experts. For these scenarios, the experts’ preferences 

were randomly generated, and the consensus parameters were set 

to ε = 0 . 1 , γ = 0 . 2 . We obtained the consensus solution to the dif- 

ferent GDM situations for both M-7 and M- 7 ′ by using the solver 
GLPK (GNU Linear Programming Kit) and we then measured the 

time required for the solver to compute the optimal solution in 

milliseconds (ms) (see Table 5 ). 

The results show that the resolution of the M-7 model is much 

more time-consuming than the resolution of its modified version 

M- 7 ′ . While the former considerably increases the time cost when 

the number of experts also increases, the latter requires less than 

a second to provide a solution to optimization problems with the 

same characteristics as the former. In this case, understanding of 

the relationship between the parameters γ and ε has been key 

to shortening the computational time when dealing with many 

decision-makers. 

7. Conclusions 

CRPs, specifically MCC models, have been widely applied to 

GDM problems to achieve consensus solutions. Classical CRPs and 

MCC models fix different constraints using parameters specifically 

associated with the consensus level ( γ = 1 − μ) and the absolute 

distance ( ε), to obtain a more general consensus solution. CMCC 

models include both types of constraints to obtain the agreed so- 

lution for the GDM problems. Nevertheless, the values of these 

parameters in CMCC have been traditionally fixed a priori by the 

moderator of the decision process according to the desired level of 

agreement among the stakeholders. However, our study shows that 

some configurations of such parameters may imply redundant con- 

straints in the mathematical programming model, which, in prac- 

tice, leads to higher computational costs. In this regard, our pro- 

posal defines a method to identify for which parameter pairs the 

optimization model can be simplified by removing such redundant 

inequalities. Understanding the proper dynamics of these parame- 

ters and corresponding constraints over the optimal consensus so- 

lution is key to applying these models in real-life large-scale group 

decision-making scenarios. 

This paper has analyzed the relationship between both param- 

eters γ and ε, and the associated constraints that determine the 

feasible region of the CMCC models. The use of inequalities for this 

analysis provides simple and straightforward relationships that are 

not very precise, but the analysis based on polytopes has provided 

a novel algorithm that relates the parameters of the linear con- 

straints of any convex optimization problem, providing an accurate 

relationship between them. Based on the point of view of decision 

support in CMCC-based CRPs, the proposed algorithms could help 

the moderator set these parameters when one is given, and pro- 

vide information on the impact of different configurations of these 

parameters in optimal solutions. Furthermore, understanding the 

relationship between these parameters also implies an immediate 

computational improvement because it allows redundant inequali- 

ties to be neglected and thus a better performance is achieved. 

In the future, it would be interesting to analyze CMCC mod- 

els that not only consider the minimization of the cost of chang- 

ing opinions, but also attempt to minimize the number of opinion 

changes in light of the machinery developed in this work. Further- 

more, investigations could be oriented to apply this algorithm to 

other optimization problems. For example, it would be interest- 

ing to develop a deeper analysis of the computational impact of 

removing the corresponding constraints when dealing with large- 

scale GDM problems where hundreds or thousands of DMs are 

considered. In this regard, such research could also highlight any 

differences when applying our algorithms to different preferences 

structures, such as utility vectors or FPRs. 
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A B S T R A C T

Minimum Cost Consensus (MCC) models are a popular approach to obtaining consensus in Group Decision-
Making (GDM) problems, but previous extensions of these models have not been thoroughly analyzed in terms
of their relationships and generalizability, which limits the practical application of these models. This paper
presents a reformulation of MCC models for GDM problems using the Fuzzy Set Theory. The proposed fuzzy-
based MCC (FZZ-MCC) framework offers a clearer understanding of MCC models and their extensions, as well
as a rigorous and flexible methodology for addressing various types of GDM problems. The applicability of
the FZZ-MCC framework is demonstrated through three practical examples related to e-democracy, personnel
selection, and green supplier selection.

1. Introduction

In Group Decision-Making (GDM) problems, a group of DMs is asked
to provide their preferences about the different alternative solutions for
a certain problem (He et al., 2021; Song et al., 2023). However, the
consideration of Decision-Makers (DMs) in decision problems usually
implies the emergence of disagreements among their opinions. To
manage such conflicts, it is necessary to develop a Consensus Reaching
Process (CRPs) that ensures that the collective decision is accepted by
the members of the group (Herrera-Viedma et al., 2002). Such CRPs
are discussion processes whose aim is to increase the group consensus
degree, which is usually computed using a consensus measure. The
main goal of the CRP is to modify the DMs’ initial opinions until the
measured consensus degree surpasses a predefined consensus thresh-
old (Herrera-Viedma et al., 2002). There are essentially two strategies
to modify DMs’ preferences (Palomares et al., 2014): (1) carrying out
a feedback process, in which a moderator detects conflicting opinions
and provides recommendations to the DMs, and (2) applying automatic
changes according to a certain algorithm.

Minimum Cost Consensus (MCC) models are automatic CRPs for
GDM that guarantee that DMs’ opinions are modified as little as pos-
sible by satisfying a certain consensus constraint (Ben-Arieh & Easton,
2007). Due to their simplicity and unique vision of a CRP as a math-
ematical optimization problem, the original MCC models (Ben-Arieh
& Easton, 2007) have been extended in order to deal with various
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demands in GDM (Zhang et al., 2020). For example, Zhang et al. (2011)
analyzed the use of different aggregation operators when computing the
collective opinion. On the other hand, Labella et al. (2020) proposed
the so-called Comprehensive MCC (CMCC) models by arguing that the
maximal deviation considered in classical MCC models does not ensure
that classical consensus measures achieve a certain consensus thresh-
old, and thus they included another constraint in the optimization
model.

Since real-world group decision scenarios may have different char-
acteristics, the underlying assumptions and constraints of the MCC
models may not hold in all situations. For this reason, the popularity
of extensions of MCC models has increased during recent years (Cheng
et al., 2018; Ji et al., 2021). Although, these proposals have their
own characteristics such as different preference structures (Wang et al.,
2021) or some additional constraints to control the consensus level (La-
bella et al., 2020), all of them present several common elements whose
relations and generalization have not been sufficiently analyzed yet.
However, to increase the applicability and robustness of MCC models
across various contexts, it is essential to generalize them. This can be
achieved by introducing new constraints or objectives (Garcia-Zamora
et al., 2022), or adapting the consensus process to account for the
specific DMs’ characteristics, such as weights (Zhang et al., 2011), or
the environment, such as the required consensus level (Rodríguez et al.,
2021). By doing so, we can streamline and unify context-specific MCC
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Received 19 September 2022; Received in revised form 1 May 2023; Accepted 9 May 2023



Computers & Industrial Engineering 181 (2023) 109295

2

D. García-Zamora et al.

models, making it possible to apply MCC models to a wide range of
real-world GDM problems, while also gaining a deeper understanding
of the underlying mechanisms involved in the consensus process (Xiao
et al., 2022).

Therefore, in this paper, we aim at proposing a theoretical frame-
work that allows generalizing MCC models and also adapting them
for dealing with specific decision situations. Concretely, the research
questions this contribution aims to answer are as follows.

RQ1 How to propose a common rigorous framework to generalize
MCC?

RQ2 How to adapt such an abstract approach to address new GDM
problems?

Fuzzy Set Theory allows both formalizing the idea of preference
structure and expressing the different relevant functions required in
MCC models, such as cost or consensus measure, in terms of mappings
defined on Fuzzy Sets. Therefore, in this proposal, we apply Fuzzy Set
Theory (Zadeh, 1996) to reformulate, from an abstract and rigorous
point of view, the common parts of the different versions of MCC
models. This fuzzy-set-based reformulation of MCC models (FZZ-MCC)
not only provides a better understanding of the relations of the classic
components in MCC but also yields a clear framework to propose
new MCC-based models which are able to address different types of
GDM situations. Additionally, we provide diverse application examples
to illustrate the applicability of the FZZ-MCC framework to different
decision-making problems. Such examples aim to demonstrate the ver-
satility and effectiveness of our approach and highlight its potential
applications in various decision-making contexts.

In summary, the main novelties introduced here are:

1. The key notions related to MCC models are redefined from the
Fuzzy Set Theory point of view.

2. An abstract scheme for MCC models based on Fuzzy Set Theory
is introduced.

3. This Fuzzy Set based formulation of MCC models, FZZ-MCC in
short, is then utilized for solving three real-world GDM. Con-
cretely, we adapt the FZZ-MCC framework for dealing with the
following situations:

(a) Urban planning selection through e-democracy. FZZ-MCC
models are adapted to manage thousands of preferences
elicited through Multiplicative Preferences Relations
(MPRs).

(b) Analyzing the cost of persuading a hiring committee
about selecting a certain manager. FZZ-MCC models are
applied to a decision problem involving the idea of driv-
ing DMs toward an agreement on a target solution.

(c) Combining expert’s knowledge and data in green sup-
plier selection. By adapting the FZZ-MCC framework, we
propose a hybrid consensus model to combine ratings
obtained from a database with the pairwise comparisons
provided by DMs.

The remainder of this paper is broken down as follows: Section 2
introduces elementary concepts to facilitate the exposition of the pro-
posal. Section 3 presents a novel framework for MCC models based
on Fuzzy Set Theory. Afterward, this framework has been applied to
the resolution of different real-world decision-making problems in Sec-
tion 4. Finally, Section 5 draws some conclusions and future research.

2. Preliminaries

This section reviews some general concepts on GDM, its CRPs, and
MCC proposals. In addition, some basic notions related to Fuzzy Sets
Theory are also included.

2.1. GDM problems and CRPs

Formally, a GDM problem consists of a set of 𝑛, (𝑛 ∈ N, 𝑛 ≥ 2)
alternatives 𝑋 =

{
𝑥1, 𝑥2,… , 𝑥𝑛

}
and a set of 𝑚, (𝑚 ∈ N, 𝑚 ≥ 2)

DMs 𝐸 =
{
𝑒1, 𝑒2,… , 𝑒𝑚

}
who rate such alternatives by using a certain

preference structure. In the following, GDM problems will be identified
with their corresponding pairs (𝐸,𝑋) (García-Zamora et al., 2022).

In GDM, DMs have often different views about the solution to the
problem, which implies the emergence of disagreements. If these con-
flicts are neglected in the resolution, some DMs may be unsatisfied with
the solution achieved and do not support its implementation, leading to
unsuccessful results (Butler & Rothstein, 2006; Saint & Lawson, 1994).
To avoid this situation, a discussion process, so-called CRP (Herrera-
Viedma et al., 2002), is included before the selection process. Such a
CRP has been classically depicted as a process that aims to increase the
level of agreement within the group by modifying DMs’ initial opinions
to bring their positions closer together (Yang et al., 2022).

Palomares et al. (2014) proposed a taxonomy for categorizing CRPs
based on the type of advising process and the consensus measure used.
The advising process can be either a feedback mechanism, in which
DMs are asked if they want to change their preferences, or an automatic
advising mechanism, in which changes are applied to DMs’ preferences
without asking DMs (García-Zamora et al., 2022). Consensus measures
can be divided into two classes: (i) Measures of class 1, in which the
consensus level is determined by comparing DMs’ preferences with
the collective opinion, and (ii) measures of class 2, in which the
consensus level is determined by comparing DMs’ preferences with each
other (Palomares et al., 2014).

2.2. Minimum cost consensus models

MCC models are automatic CRPs that reformulate a GDM problem
in terms of a mathematical programming problem. These models were
firstly proposed by Ben-Arieh and Easton (2007) and they aim at
minimizing the cost of moving DMs preferences to guarantee that the
individual modified opinions are close enough (in terms of a prede-
fined threshold, 𝜀 ∈]0, 1]) to the group opinion. Concretely, for the
initial values of the preferences (𝑜1, 𝑜2,… , 𝑜𝑚) ∈ R𝑛 and a cost vector
(𝑐1, 𝑐2,… , 𝑐𝑚) ∈ R𝑛

+, the MCC model was defined as follows:

min
𝑜′

𝑚∑
𝑘=1

𝑐𝑘|𝑜′𝑘 − 𝑜𝑘|

𝑠.𝑡. |𝑜′𝑘 − 𝑜′| ≤ 𝜀, 𝑘 = 1, 2,… , 𝑚

(MCC)

where (𝑜′1,… , 𝑜′𝑚) are the adjusted opinions of the DMs, 𝑜′ represents
the collective opinion computed through a weighted mean operator
and 𝜀 ∈]0, 1] is the maximum absolute deviation of each DM and the
collective opinion.

Lately, Zhang et al. (2011) studied the impact of the chosen aggrega-
tion operator on the resolution of the optimization model and proposed
a more general reformulation of the former MCC model:

min
𝑜′

𝑚∑
𝑘=1

𝑐𝑘|𝑜′𝑘 − 𝑜𝑘|

𝑠.𝑡.

⎧⎪⎨⎪⎩

𝑜′ = 𝐹 (𝑜′1,… , 𝑜′𝑚),

|𝑜′𝑘 − 𝑜′| ≤ 𝜀, 𝑘 = 1, 2,… , 𝑚,

(MCC:AO)

where 𝑜′ is now computed by using different aggregation operators
𝐹 ∶ [0, 1]𝑚 → [0, 1].

Even though these models allow reformulating GDM situations as
mathematical programming problems, the constraint defined by 𝜀 is
quite simple and cannot assure that a certain consensus threshold
𝜇0 ∈ [0, 1[ is achieved by the group. To overcome such a limitation,
the CMCC model was introduced by Labella et al. (2020). Such model
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includes the use of another constraint to control such consensus thresh-
old:

min
𝑜′

𝑚∑
𝑘=1

𝑐𝑘|𝑜′𝑘 − 𝑜𝑘|

𝑠.𝑡.

⎧⎪⎪⎨⎪⎪⎩

𝑜′ = 𝐹 (𝑜′1,… , 𝑜′𝑚),

|𝑜′𝑘 − 𝑜′| ≤ 𝜀, 𝑘 = 1, 2,… , 𝑚

𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑜′1,… , 𝑜′𝑛) ≥ 𝜇0,

(CMCC)

where 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(⋅) represents the desired consensus measure. In ad-
dition to these models, there are other proposals in the literature.
For instance, some of them are devoted to guaranteeing that the
solution to the optimization model satisfies a minimum consistency
degree (Rodríguez et al., 2021). Furthermore, there are some proposals
aim at considering asymmetric cost functions as the objective of the
mathematical programming problem (Ji et al., 2021) and others which
adapt the MCC proposal to deal with linguistic information (Wang
et al., 2021) or define performance metrics of CRPs (Labella et al.,
2020).

2.3. Fuzzy sets and distance measures

In this subsection, some basics about the Fuzzy Sets Theory (Zadeh,
1996) are introduced in order to easily understand their use in our
proposal. A fuzzy set on a certain universe of discourse 𝑋 is usually
understood as a generalization of the idea of membership function of
a set. Note that each subset 𝐴 ⊂ 𝑋 can be identified with the function
𝐴 ∶ 𝑋 → {0, 1} defined as

𝐴(𝑥) =
⎧
⎪⎨⎪⎩

1 if 𝑥 ∈ 𝐴,

0 if 𝑥 ∉ 𝐴.

Fuzzy sets aim at considering membership functions whose possible
values are not necessarily equal to 0 or 1, i.e., their image set can be
any subset of the interval [0, 1].

Definition 1 (Fuzzy Sets Wang et al., 2009). Let 𝑋 be the universe of
discourse. A mapping 𝐴 ∶ 𝑋 → [0, 1] is called a fuzzy set on 𝑋. The
value 𝐴(𝑥) of 𝐴 at 𝑥 ∈ 𝑋 stands for the degree of membership of 𝑥 in
𝐴. The set of all fuzzy sets on 𝑋 will be denoted by  (𝑋).

In this paper, fuzzy sets will be used as a model for representing
the preferences elicited from the DMs participating in a GDM problem.
Therefore, there are two essential operations required: fusing the in-
formation provided in several fuzzy sets and computing the similarities
and distances between them. To address the fusion of information, we
will use the notion of aggregation operator:

Definition 2 (Aggregation Operator Bustince et al., 2008). 𝑀 ∶ [0, 1]𝑚
→ [0, 1] such that

• 𝑀(𝑥) = 0 if and only if 𝑥 = (0, 0,… , 0),
• 𝑀(𝑥) = 1 if and only if 𝑥 = (1, 1,… , 1),
• For any 𝑥, 𝑦 ∈ [0, 1]𝑚 such that 𝑥𝑘 ≤ 𝑦𝑘, 𝑘 = 1, 2,… , 𝑛, then
𝑀(𝑥) ≤ 𝑀(𝑦).

To make comparisons between two fuzzy sets, we will use the
concept of distance measure:

Definition 3 (Distance Measure Bustince et al., 2008). A function 𝐷 ∶
 (𝑋) ×  (𝑋) → [0, 1] is called a distance measure on  (𝑋) if satisfies:

1. 𝐷(𝐴,𝐵) = 𝐷(𝐵,𝐴),
2. 𝐷(𝐴,𝐵) = 0 if and only if 𝐴 = 𝐵,
3. 𝐷(𝐴,𝐵) = 1 if and only if 𝐴 and 𝐵 are complementary non-fuzzy

sets,

4. If 𝐴 ≤ 𝐴′ ≤ 𝐵′ ≤ 𝐵, then 𝐷(𝐴,𝐵) ≥ 𝐷(𝐴′, 𝐵′).

These distance measures for fuzzy sets are based on Restricted
Dissimilarity Functions, a sort of ‘‘distance’’ functions for real numbers.

Definition 4 (Restricted Dissimilarity Function Bustince et al., 2008). A
function 𝛿 ∶ [0, 1] × [0, 1] → [0, 1] is called a restricted dissimilarity
function if satisfies:

1. 𝛿(𝑥, 𝑦) = 𝛿(𝑦, 𝑥),
2. 𝛿(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,
3. 𝛿(𝑥, 𝑦) = 1 if and only if {𝑥, 𝑦} = {0, 1},
4. For all 𝑥, 𝑦, 𝑧 ∈ [0, 1] such that 𝑥 ≤ 𝑦 ≤ 𝑧, then 𝛿(𝑥, 𝑦) ≤ 𝛿(𝑥, 𝑧)

and 𝛿(𝑦, 𝑧) ≤ 𝛿(𝑥, 𝑧).

For instance, the functions in the family 𝛿𝑝(𝑥, 𝑦) = |𝑥𝑝 − 𝑦𝑝| 1𝑝 ∀ 𝑥, 𝑦 ∈
[0, 1], 𝑝 ∈ N are restricted dissimilarity functions. Therefore, to propose
distance measures for fuzzy sets, it is possible to extend their analogous
counterpart for real numbers by using aggregation operators:

Theorem 1 (Bustince et al., 2008). Let 𝑀 ∶ [0, 1]𝑚 → [0, 1] be an
aggregation operator and consider 𝛿 ∶ [0, 1] × [0, 1] → [0, 1] be a
restricted dissimilarity function. Then, in any finite universe of discourse
𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑚}, the function 𝐷 ∶  (𝑋) ×  (𝑋) → [0, 1] defined as
𝐷(𝐴,𝐵) = 𝑀𝑚

𝑘=1𝛿(𝐴(𝑥𝑘), 𝐵(𝑥𝑘)) is a distance measure.

Even though it is also possible to use the notions of Similarity and
Restricted Equivalence Function (Bustince et al., 2008) to deal with
consensus, here we consider, for the sake of clarity, that they are
essentially obtained by composing the standard negation (𝑁 ∶ [0, 1] →
[0, 1], 𝑁(𝑥) = 1 − 𝑥 ∀ 𝑥 ∈ [0, 1]) with Distance Measures and Restricted
Dissimilarity Functions, respectively.

3. Generalized minimum cost consensus

MCC models are commonly used in various fields to reach a com-
mon decision or agreement among a group of DMs with conflicting
preferences or objectives (Zhang et al., 2020). However, the involved
DMs may have different characteristics that can affect their ability to
participate in the consensus process. In addition, the decision scenario
may require certain underlying assumptions and constraints. For this
reason, it is necessary to generalize MCC models to make them more ro-
bust and applicable in diverse contexts. This can involve relaxing some
assumptions, introducing new constraints or objectives, or adapting the
consensus algorithms to the specific characteristics of the DMs or the
decision problem environment.

Therefore, this section proposes a rigorous and deep reformulation
of MCC models by redefining their generic concepts (Zadeh, 1996)
based on Fuzzy Set Theory, which generalizes these consensus models.
First, the main notions related to these models, namely preference
structure, aggregation function, consensus measures, and cost func-
tions, are redefined according to the fuzzy set nomenclature. Afterward,
all these concepts are integrated into a generalized version of MCC
models.

3.1. The main elements of MCC models

In order to make the MCC models applicable to a wider range of
real-world situations and decision-making scenarios, it is essential to
generalize the following key elements (see Fig. 1):

• Preference Structure. The preference structure refers to the way
in which the DMs provide their opinions on the alternatives
under consideration. This can take many forms, such as numerical
ratings, rankings, or qualitative descriptions (Rodríguez et al.,
2021).
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Fig. 1. MCC notions.

• Collective Opinion: Once DMs’ individual preferences have been
obtained, they need to be aggregated into a single group prefer-
ence. There are many ways to aggregate individual preferences,
such as taking the average or median of the ratings or using a
weighted average, among others (Zhang et al., 2013).

• Consensus Measure: The consensus measure is the way in which
the level of agreement within the group is calculated. This can
be computed taking into account the distance between individual
preferences or the distance between individual preferences and
group opinion (García-Zamora et al., 2023).

• Cost Function: The cost function measures the cost of modifying
the DMs’ opinions to reach a consensus. This can take multiple
forms that depend on how the distances between opinions are
measured (Cheng et al., 2018).

By generalizing these key elements of MCC models, the models be-
come more flexible and applicable to a wide range of decision-making
situations. This enhances the usefulness and practicality of the mod-
els in real-world decision-making scenarios. In the following subsec-
tions, a brief review of the use of such key elements in the classic
decision-making literature is provided. A generalized version of these
components which relies on the Fuzzy Set Theory is then proposed.

3.1.1. Preference structure
A preference structure in a GDM problem is the format in which

DMs are asked to give their opinions. In this contribution, since we aim
at solving optimization problems at ease, we focus on those preference
structures dealing with discrete numeric information, which are based
on eliciting DMs’ opinions by using utility vectors or pairwise compari-
son matrices (Herrera-Viedma et al., 2002). Note that, as it occurs with
fuzzy sets, discrete numeric preference structures can be normalized
to consider values in the unit interval without any loss of generality.
In this context, the natural way to study preference structures from
the fuzzy logic point of view is to establish the alternative set 𝑋 as
the universe of discourse. Therefore, a discrete numeric preference
structure will be a collection of fuzzy sets defined on 𝑋 or 𝑋 ×𝑋:

Definition 5 (Discrete Numeric Preference Structure). Given a GDM
problem (𝐸,𝑋), a numeric preference structure for the alternative set
𝑋 is a subset P ⊂  (𝑋𝑑 ), where 𝑑 = 1, 2.

Remark 1. Note that 𝑑 = 1 models the case in which the DMs provide
numeric vectors and the index set of 𝑋1 is {1, 2,… , 𝑛}. For 𝑑 = 2
the DMs provide pairwise comparison matrices and the index set of
𝑋2 is {1, 2,… , 𝑛} × {1, 2,… , 𝑛}, which can be identified with the set{
1, 2,… , 𝑛2

}
. For clarity, when no confusion is possible, we will use

the notation
{
1, 2,… , 𝑛𝑑

}
to refer to the index set of 𝑋𝑑 to simplify the

reading of this contribution.

Usually, it is necessary to emphasize that a preference has been
provided by a certain DM. Therefore, we also identify the set of
preferences given by the DMs with a fuzzy set on 𝐸 ×𝑋𝑑 .

Definition 6 (Numeric Ratings Associated To P). Given a GDM problem
(𝐸,𝑋) and a discrete numeric preference structure P, a numeric rating
is a fuzzy set 𝑃 ∶ (𝐸,𝑋𝑑 ) → [0, 1] such that for every 𝑘 = 1, 2,… , 𝑚,
𝑃 (𝑒𝑘, ⋅) ∈ P. The set containing all the possible numeric ratings for
the GDM (𝐸,𝑋) and the preference structure P, which is a subset of
 (𝐸,𝑋𝑑 ), will be denoted by  and called the numeric ratings set
associated to P.

A classic example of preference structure based on pairwise com-
parisons is Fuzzy Preference Relations (FPRs) (Orlovsky, 1978). To
facilitate the understanding of the proposal, let us adapt the ideas
of Discrete Numeric Preference Structure and Numeric Ratings to the
context of FPRs.

Example 1. According to the previous definitions, the Discrete Nu-
meric Preference Structure corresponding to FPRs is:

P𝐴 ∶=
{
𝑃 ∈  (𝑋 ×𝑋) ∶ 𝑃 (𝑥𝑖, 𝑥𝑗 ) + 𝑃 (𝑥𝑗 , 𝑥𝑖) = 1, 𝑖, 𝑗 = {1, 2,… , 𝑛}

}

and the numeric ratings set is given by:

𝐴 ∶=
{
𝑃 ∈  (𝐸,𝑋 ×𝑋) ∶ 𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) + 𝑃 (𝑒𝑘, 𝑥𝑗 , 𝑥𝑖) = 1,

∀ 𝑖, 𝑗 = {1, 2,… , 𝑛} ∀ 𝑘 = {1, 2,… , 𝑚}} .

Concretely, the FPR

𝑃 =

⎛⎜⎜⎜⎜⎝

0.5 0.6 0.3

0.4 0.5 0.8

0.7 0.2 0.5

⎞⎟⎟⎟⎟⎠
can be identified, according to the previous definitions, with the fuzzy
set 𝑃 ∶ 𝑋×𝑋 → [0, 1] defined as 𝑃 (𝑥𝑖, 𝑥𝑗 ) = 𝑃𝑖𝑗 ∀ 𝑖, 𝑗 = 1, 2, 3. In that case
𝑃 (𝑥1, 𝑥2) = 0.6, 𝑃 (𝑥1, 𝑥3) = 0.3 and 𝑃 (𝑥2, 𝑥3) = 0.8. If we aim at making
explicit that the FPR 𝑃 corresponds with the opinion given by the DM
𝑒𝑘, then 𝑃 is identified with the fuzzy set 𝑃 ∶

{
𝑒𝑘
}
× 𝑋 × 𝑋 → [0, 1]

and some of their values are 𝑃 (𝑒𝑘, 𝑥1, 𝑥2) = 0.6, 𝑃 (𝑒𝑘, 𝑥1, 𝑥3) = 0.3 and
𝑃 (𝑒𝑘, 𝑥2, 𝑥3) = 0.8. In other words, 𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) is the DM 𝑒𝑘’s preference
degree of the alternative 𝑥𝑖 with respect to the alternative 𝑥𝑗 .

It must be highlighted that, although the previous definitions are
based on fuzzy sets theory, they are general enough to model decision-
making scenarios in which preferences are not necessarily elicited as
fuzzy sets. Further details are provided in Section 4.

3.1.2. Aggregation of information
The essence of any GDM problem is to obtain a single collective

opinion that takes into account the information provided by all DMs’
preferences using a suitable rule (Herrera-Viedma et al., 2002). In this
paper, the collective opinion formation process will be modeled by
aggregation operators (Beliakov et al., 2016).

Definition 7 (Collective Opinion). Let us consider a GDM problem
(𝐸,𝑋), a preference structure P ⊂  (𝑋𝑑 ) and an aggregation operator
𝑀 ∶ [0, 1]𝑚 → [0, 1]. For 𝑃 ∈  , the fuzzy set 𝑃 ∶ 𝑋𝑑 → [0, 1] defined as
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𝑃 (𝑥𝑖) ∶= 𝑀𝑚
𝑘=1𝑃 (𝑒𝑘, 𝑥𝑖) ∀ 𝑖 = 1, 2,… , 𝑛𝑑 is called the collective opinion

of 𝑃 under 𝑀 . When an aggregation operator 𝑀 ∶ [0, 1]𝑚 → [0, 1]
preserves the preference structure, i.e. 𝑃 ∈ P, the respective induced
collective opinion operator 𝑀 ∶ P𝑚 → P is well-defined.

It should be highlighted that using an aggregation operator on
preferences elicited via a certain preference structure does not guar-
antee that the obtained collective opinion adheres to that preference
structure. In other words, not every aggregation operator is suitable for
preserving the constraints required by a certain preference structure.

Example 2. A collective opinion for FPRs can be computed with the
arithmetic mean 𝐴 ∶ P𝑚

𝐴 → P𝐴 defined as:

𝐴(𝑃1,… , 𝑃𝑚)(𝑥𝑖, 𝑥𝑗 ) =
1
𝑚

𝑚∑
𝑘=1

𝑃𝑘(𝑥𝑖, 𝑥𝑗 ) ∀ 𝑖, 𝑗 ∈ {1, 2,… , 𝑛} , ∀ 𝑃1,… , 𝑃𝑚 ∈ P𝐴.

3.1.3. Consensus measurement
In some real-world GDM problems, it is essential to guarantee that

the collective solution does not neglect the particular satisfaction of the
DMs participating in the decision process. To provide these agreed so-
lutions, several consensus models for GDM have been developed in the
classic literature, which rely on the use of consensus measures to com-
pute the degree of the agreement existing among DMs (Herrera-Viedma
et al., 2002).

To reformulate the idea of consensus measure from the fuzzy set
point of view, the main purpose must be computing a sort of aver-
age distance between DMs’ opinions. Therefore, given a preference
structure P, a function to measure the consensus should be a mapping
𝜅 ∶  → [0, 1] which computes the degree of dissimilarity among
the elements in the image set 𝑃 (𝐸,𝑋𝑑 ). Concretely, the consensus
measures based on computing the distance between individual opinions
and collective preference are defined as follows.

Definition 8 (Consensus Metric of Class 1). Given a GDM problem (𝐸,𝑋)
and a preference structure P, the consensus metric of class 1 for 
associated to an aggregation operator �̂� ∶ [0, 1]𝑚𝑛𝑑 → [0, 1] and the
restricted dissimilarity function 𝛿 is a function 𝜅 ∶  → [0, 1] defined
as

𝜅(𝑃 ) = �̂�𝑘=1,…,𝑚;𝑖=1,…,𝑛𝑑 𝛿(𝑃 (𝑒𝑘, 𝑥𝑖), 𝑃 (𝑥𝑖)) ∀ 𝑃 ∈  ,

where 𝑃 ∈ P is the collective opinion of 𝑃 under an aggregation
operator 𝑀 ∶ [0, 1]𝑚 → [0, 1].

In addition, the consensus measures based on the distances be-
tween individual opinions are adapted to the fuzzy formulation in the
following way.

Definition 9 (Consensus Metric of Class 2). Given a GDM problem (𝐸,𝑋)
and a preference structure P, the consensus metric of class 2 for 
associated to the aggregation operators 𝑀 ∶ [0, 1]𝑚2

→ [0, 1] and
�̂� ∶ [0, 1]𝑛𝑑 → [0, 1] and the restricted dissimilarity function 𝛿 is a
function 𝜅 ∶  → [0, 1] defined as

𝜅(𝑃 ) = 𝑀𝑚
𝑘,𝑙=1�̂�

𝑛𝑑
𝑖=1𝛿(𝑃 (𝑒𝑘, 𝑥𝑖), 𝑃 (𝑒𝑙 , 𝑥𝑖)) ∀ 𝑃 ∈  .

Example 3. As an example of these consensus metrics for FPRs, we
can consider the function 𝜅 ∶ 𝐴 → [0, 1] defined as

𝜅(𝑃 ) =
𝑚∑

𝑘=1

1
𝑚

𝑛∑
𝑖=1

𝑛∑
𝑗=1

1
𝑛(𝑛 − 1)

|𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − 𝑃 (𝑥𝑖, 𝑥𝑗 )|, ∀ 𝑃 ∈ 𝐴

which is obtained from Definition 8 by taking �̂� ∶ [0, 1]𝑚𝑛2 → [0, 1] as
an arithmetic average operator and 𝛿(𝑥, 𝑦) = |𝑥 − 𝑦| ∀ 𝑥, 𝑦 ∈ [0, 1]. Here,
𝑃 denotes collective opinion for the rating 𝑃 ∈ 𝐴.

The reformulation of a consensus measure as a consensus metric
𝜅 ∶  → [0, 1] does not only allow providing a general vision of the
existing idea of consensus measure, but also gives rise to other ways
of defining consensus measures besides the identified by Palomares
et al. (2014). For instance, we could think about consensus measures
devoted to computing the distances between the collective preferences
of clusters inside the global group, which would be especially useful to
deal with large-scale GDM problems (García-Zamora et al., 2022).

Even though in classic literature the consensus measures are exclu-
sively computed according to the similarity between the opinions (Palo-
mares et al., 2014), some authors have studied the group’s consensus
using the dissimilarity between them (Ben-Arieh & Easton, 2007).
However, these approaches have not been considered proper consen-
sus measures until now. The general notion of consensus metric, here
introduced, allows unifying both perspectives and, even though our
definition is based on dissimilarities, using the similarity obtained by
composing with the standard negation does not modify the results of
the optimization problem (Bustince et al., 2008).

3.1.4. Cost function
A cost function measures a weighted difference between the DMs’

original opinions and their modified ones. It could be interpreted as
a measure of DMs’ satisfaction because the less their preferences are
changed, the more pleased they will be with the chosen solution. To
adapt this idea to the fuzzy set framework, the cost function should
provide a value that increases with the distance between DMs’ original
opinions 𝑃0 ∈  and the modified opinions 𝑃 ∈  . In addition, such
a distance should be weighted according to a certain relative cost that
depends on the respective DM:

Definition 10 (Cost Function). Given a GDM problem (𝐸,𝑋), a pref-
erence structure P, an initial numeric rating 𝑃0 ∈  , a relative cost
vector 𝑐 ∈ [0, 1]𝑚 satisfying ∑𝑚

𝑘=1 𝑐𝑘 = 1 and a distance measure
𝐷 ∶ P × P → [0, 1]. A cost function is a mapping 𝜉𝑐 ∶  → [0, 1] defined
as 𝜉𝑐 (𝑃 , 𝑃0) =

∑𝑚
𝑘=1 𝑐𝑘𝐷(𝑃 (𝑒𝑘, ⋅), 𝑃0(𝑒𝑘, ⋅)), For simplicity, we will use the

notation 𝜉 ∶  → [0, 1] to denote a cost function in which all the relative
costs are equal, i.e., 𝑐𝑘 = 1

𝑚 ∀ 𝑘 = 1, 2,… , 𝑚.

Example 4. An example of a cost function for FPRs may be the function
𝜉 ∶ 𝐴 → [0, 1] may be obtained from Definition 10 by considering
𝑐𝑘 = 1

𝑚 ∀ 𝑘 = 1, 2,… , 𝑚 as follows:

𝜉(𝑃 ) =
𝑚∑

𝑘=1

1
𝑚

𝑛∑
𝑖=1

𝑛∑
𝑗=1

1
𝑛(𝑛 − 1)

|, 𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − 𝑃0(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 )|, ∀ 𝑃 ∈ 𝐴

where 𝑃0 is an initial numeric rating.

The previous definition demands the sum of the costs to be equal
to one. The purpose of this constraint is a normalization to guarantee
that the corresponding cost function is a mapping valued in [0, 1]. In
practice, the cost values are usually defined as the cost of modifying
one unit DMs’ opinions and thus their sum is not necessarily equal
to one. However, in such a situation, it is possible to compute the
corresponding normalized costs by dividing each individual cost by
the sum of all of them. In any case, minimizing a non-normalized
cost function and the corresponding normalized version here proposed
are equivalent from the optimization point of view and consequently,
such a normalization does not have any impact on the solution of the
mathematical programming model.

3.2. Fuzzy-set-based formulation for MCC models

Here, we propose a global model that integrates the Fuzzy-Set-
based reformulations of the aforementioned classical elements of MCC
models. This approach not only offers a generalization of previous
proposals but also streamlines the adaptation of new MCC models to
address specific real-world problems.
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Definition 11 (Fuzzy-Set-Based MCC Model). Let (𝐸,𝑋) be a GDM
problem and a preference structure P. Given an initial numeric rating
𝑃0 ∈  , a cost function 𝜉𝑐 ∶  → [0, 1] for 𝑃0 and a family of 𝑞 ∈ N
consensus metrics 𝜅 = (𝜅1,… , 𝜅𝑞) ∶  → [0, 1]𝑞 , the corresponding
Fuzzy-Set-based MCC model is given by:

min
𝑃∈ 𝜉𝑐 (𝑃 , 𝑃0)

𝑠.𝑡. 𝜅(𝑃 ) ≤ (𝜀1,… , 𝜀𝑞),
(FZZ-MCC)

where (𝜀1,… , 𝜀𝑞) ∈ [0, 1]𝑞 is the vector of desired parameters to control
the 𝑞 consensus metrics.

Please note that the definition of the FZZ-MCC model requires
a preference structure, an aggregation operator, a set of consensus
metrics, and a cost function. Moreover, additional constraints may be
added to the model as required (see Appendix and Section 4). However,
while this formulation provides a straightforward approach for defining
MCC models, various factors can affect the resolution of the optimiza-
tion model. For example, the impact of the aggregation operator was
studied by Zhang et al. (2013), and Rodríguez et al. (2021) investigated
how the consensus measure affects the performance of MCC models,
while García-Zamora et al. (2023) analyzed the relationship between
some consensus parameters. Determining the best configuration for
these elements is not feasible in general, and they should be selected
based on the specific requirements of the decision problem at hand.
Therefore, it is essential to carefully consider the factors that influence
the model’s resolution and to choose the appropriate elements based
on the specific needs of the decision-making process.

Furthermore, the feasibility of the FZZ-MCC model is guaranteed
by the convexity of the constraints and the objective function. How-
ever, determining its computational complexity is not feasible in gen-
eral because of the general nature of the constraints and the objec-
tive function. Nevertheless, if specific assumptions, such as linear-
ity, are considered, similar analyses as those conducted by previous
works (Garcia-Zamora et al., 2022; Rodríguez et al., 2021) can be
applied.

Now, a couple of examples are introduced to illustrate how the
FZZ-MCC modeling generalizes classical MCC models. First, we derive
the classic model for real values introduced by Ben-Arieh and Easton
(2007).

Example 5. Let us consider a GDM problem (𝐸,𝑋) where 𝐸 ={
𝑒1,… , 𝑒𝑚

}
, 𝑋 = {𝑥}, with the preference structure P =  ({𝑥}),

the arithmetic mean operator 𝑃 ∶  → [0, 1] defined as 𝑃 (𝑥) =
1
𝑚
∑𝑛

𝑘=1 𝑃 (𝑒𝑘, 𝑥), the consensus metric 𝜅1 ∶  → [0, 1] (𝑞 = 1) given by
𝜅1(𝑃 ) = max𝑘=1,…,𝑚

{
|𝑃 (𝑒𝑘, 𝑥) − 𝑃 (𝑥)|

}
, and the cost function 𝜉𝑐 ∶  →

[0, 1] defined as 𝜉𝑐 (𝑃 , 𝑃0) =
∑𝑚

𝑘=1 𝑐𝑘|𝑃 (𝑒𝑘, 𝑥) − 𝑃0(𝑒𝑘, 𝑥)|. Then, under
this configuration, the resulting (FZZ-MCC) model is the original (MCC)
proposed by Ben-Arieh and Easton (2007).

Even though classic MCC models are defined for real values (Ben-
Arieh & Easton, 2007), other authors have demonstrated the use of
FPRs (Labella et al., 2020). Below, we show that the FZZ-MCC approach
can be easily adapted to manage FPRs too.

Example 6. Let us consider the GDM problem (𝐸,𝑋) where 𝐸 ={
𝑒1,… , 𝑒𝑚

}
, 𝑋 =

{
𝑥1,… , 𝑥𝑚

}
, in which the preferences are elicited

using FPRs P𝐴. Select the aggregation operator 𝐴 ∶ P𝑚
𝐴 → P𝐴 defined as

𝐴(𝑃1,… , 𝑃𝑚)(𝑥𝑖, 𝑥𝑗 ) =
1
𝑚
∑𝑚

𝑘=1 𝑃𝑘(𝑥𝑖, 𝑥𝑗 ) ∀ 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}, the consen-
sus measures 𝜅1, 𝜅2 ∶ 𝐴 → [0, 1] defined as 𝜅1(𝑃 )
= max𝑖,𝑗,𝑘 |𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − 𝑃 (𝑥𝑖, 𝑥𝑗 )|, 𝜅2(𝑃 ) =

∑𝑚
𝑘=1

1
𝑚
∑𝑛

𝑖=1
∑𝑛

𝑗=1
1

𝑛(𝑛−1)
|𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − 𝑃 (𝑥𝑖, 𝑥𝑗 )|, and the cost function 𝜉 ∶ 𝐴 → [0, 1] given by
𝜉(𝑃 ) =

∑𝑚
𝑘=1

1
𝑚
∑𝑛

𝑖=1
∑𝑛

𝑗=1
1

𝑛(𝑛−1) |𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − 𝑃0(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 )|, where 𝑃0 is
an initial numeric rating. Then, the obtained (FZZ-MCC) model corre-
sponds to (CMCC) for FPRs with a class 1 consensus measure (Labella
et al., 2020).

This (FZZ-MCC) framework extends the classic MCC models, which
are very specific examples of the generalized version here proposed. In
addition, due to its general nature, it is possible to adapt the (FZZ-MCC)
model to other decision-making problems, if the involved functions
are properly selected. Therefore, the following section is devoted to
illustrating how to effectively modify the FZZ-MCC approach to address
various real-world decision scenarios.

4. Applications

The FZZ-MCC approach, introduced in the previous section, pro-
vides a flexible and comprehensive method for formulating MCC mod-
els that can be adapted to a variety of decision situations. In this
section, we demonstrate the versatility of the FZZ-MCC framework by
using it as a basis for defining several models for different scenarios
never considered before in the specialized literature. Concretely, this
section focuses on:

• Providing MCC models to manage preferences elicited using mul-
tiplicative scales,

• Examining the cost of bringing DMs to a consensus on a desired
solution,

• Introducing a hybrid consensus model that combines data from
a database with the preferences of DMs, gathered using various
preference structures.

To show the practical application of the FZZ-MCC approach, we
provide three real-world decision scenarios, namely, e-democracy (Xu
et al., 2018), hiring personnel (Li et al., 2019), and green supplier
selection (Zhang et al., 2022). For all these decision problems, the
used original preferences have been randomly generated. In addition,
the optimization problems considered in this section have been solved
by considering their respective linearized versions (Rodríguez et al.,
2021).

4.1. E-democracy for urban planning selection

In today’s digital age, e-democracy has become an increasingly
popular approach for facilitating group decision-making. E-democracy
refers to the use of electronic platforms and tools to promote public en-
gagement, transparency, and accountability in the decision-making pro-
cess (Xu et al., 2018). The goal of e-democracy is to enhance citizen par-
ticipation in decision-making and to ensure that the voices of all DMs
are heard. In this regard, a major challenge for e-democracy is the dif-
ficulty of reaching a consensus among a large number of DMs (García-
Zamora et al., 2022). For this reason, this subsection adapts the FZZ-
MCC approach to solve an e-democracy situation regarding urban
planning.

In urban planning, decisions must be made regarding the use of
public spaces, the allocation of resources, and the development of
infrastructure. These decisions have far-reaching consequences that can
impact the quality of life of local residents.

Specifically, this subsection addresses the allocation of a new public
park in a central location in a city. The council has identified four
potential sites for the park, each with its own advantages and disadvan-
tages. The council needs to make a decision on which site to choose.
The four potential sites for the park are:

• Site A: This site is located in a residential area and would require
the demolition of several homes to make way for the park. The
site is relatively small but is easily accessible by public transport
and is close to several schools and community centers.

• Site B: This site is located on the outskirts of the city, near a major
highway. The site is large and would not require the demolition
of any homes, but it is less accessible by public transport and is
not close to any schools or community centers.
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• Site C: This site is located in a commercial area and would require
the demolition of several small businesses. The site is moderately
sized and easily accessible by public transport, but it is not close
to any schools or community centers.

• Site D: This site is located on a brownfield site, previously used
for industrial purposes, and would require significant remediation
before development. The site is large, but the remediation work
is likely to be costly, and it is not easily accessible by public
transport. However, it is close to a large residential area.

The city council has decided that it should be the citizens who
choose where to build the public park. Consequently, they have made a
questionnaire available online so that any citizen may provide his/her
opinions by using Multiplicative Preferences Relations (MPRs) in a 1−9
Saaty’s scale (Saaty, 1988). At the end of the survey, 4000 citizens
𝐸 = {𝑒1, 𝑒2,… , 𝑒4000} give their preferences over the 4 sites 𝑋 = {𝑥1 =
Site A, 𝑥2 = Site B, 𝑥3 = Site C, 𝑥4 = Site D}, i.e., 𝑚 = 4000 and 𝑛 = 4.

Although FZZ-MCC has been designed to manage preferences in
a 0–1 for the sake of simplicity, working with preference structures
whose values are not in the interval [0, 1] is also possible within our
FZZ-MCC framework by using appropriate transformations between
the preference structures and customization of the compatible FZZ-
MCC components. Therefore, we consider the previously defined GDM
problem (𝐸,𝑋) whose preference structures are represented by MPRs
defined as follows:

P𝑀 ∶=
{
𝑃 ′ ∶ 𝑋 ×𝑋 → [ 1

9
, 9] ∶ 𝑃 ′(𝑥𝑖, 𝑥𝑗 )𝑃 ′(𝑥𝑗 , 𝑥𝑖) = 1, ∀ 𝑖, 𝑗 = {1, 2,… , 𝑛}

}
.

Consequently, a numeric rating 𝑃 ′ ∈ 𝑀 can be decomposed in 𝑚
matrices (one for each DM) 𝑃 ′

1 , 𝑃
′
2 ,… , 𝑃 ′

𝑚 of dimension 𝑛 × 𝑛 whose
values are within the interval [ 19 , 9] satisfying the reciprocal condition
𝑃 ′(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 )𝑃 ′(𝑒𝑘, 𝑥𝑗 , 𝑥𝑖) = 1.

In order to compute a collective opinion, the geometric mean can
be used. Let us consider a family of weights 𝑤 = (𝑤1, 𝑤2,… , 𝑤𝑚),

∑𝑚
𝑘=1

𝑤𝑘 = 1, 𝑤𝑘 ≥ 0 ∀ 𝑘 = 1, 2,… , 𝑚. Then, for each pairwise preference
rating 𝑃 ′ ∈ 𝑀 , the corresponding collective opinion will be given by

𝑃 ′ ∶ 𝑋 ×𝑋 → [ 1
9
, 9],

𝑃 ′(𝑥𝑖, 𝑥𝑗 ) =
𝑚∏

𝑘=1
𝑃 ′(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 )𝑤𝑘 ∀𝑖, 𝑗 = 1, 2,… , 𝑛.

Note that the function 𝑑 ∶ [ 19 , 9] × [ 19 , 9] → [0, 1] defined as 𝑑(𝑥, 𝑦) =
1
2 | log9(𝑥∕𝑦)| ∀ 𝑥, 𝑦 ∈ [ 19 , 9] behaves as a dissimilarity function in these
intervals. Therefore, this function can be used to define consensus
metrics. For instance, by using the maximum operator, it is possible
to obtain the consensus metric 𝜅′

1 ∶ 𝑀 → [0, 1] as

𝜅′
1(𝑃

′) = 1
2

max
𝑘=1,…,𝑚;𝑖,𝑗=1,…,𝑛

{
| log9(𝑃 ′(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 )∕𝑃 ′(𝑥𝑖, 𝑥𝑗 ))|

}
,

∀𝑃 ′ ∈ 𝑀 . Another possible definition for a consensus metric could be
𝜅′
2 ∶ 𝑀 → [0, 1] given as

𝜅′
2(𝑃

′) = 1
𝑚𝑛(𝑛 − 1)

𝑚∑
𝑘=1

𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

| log9(𝑃 ′(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 )∕𝑃 ′(𝑥𝑖, 𝑥𝑗 ))|∀𝑃 ′ ∈ 𝑀

which considers distances between DMs opinions.
Finally, given an initial preference 𝑃 ′

0 ∈ 𝑀 , the cost function
𝜉′𝑐 ∶ 𝑀 → [0, 1] could be defined as

𝜉′𝑐 (𝑃
′) = 1

2𝑛2

𝑚∑
𝑘=1

𝑐𝑘
𝑛∑

𝑖,𝑗=1
| log9(𝑃 ′(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 )∕𝑃 ′

0(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ))|,∀𝑃 ′ ∈  ′.

Therefore, the corresponding MCC model could be presented as:

min
𝑃 ′∈𝑀

𝜉′𝑐 (𝑃
′)

𝑠.𝑡.

⎧⎪⎨⎪⎩

𝜅′
1(𝑃

′) ≤ 𝜀1

𝜅′
2(𝑃

′) ≤ 𝜀2

(M-FZZ-MCC)

It is clear that such a model is a nonlinear programming prob-
lem, and thus its resolution could be imprecise and time-consuming,
especially when handling a large number of inputs as it occurs in
a large-scale GDM problem (Rodríguez et al., 2021). Therefore, we
linearize it by considering the functions 𝑓 ∶ [ 19 , 9] → [0, 1] defined as
𝑓 (𝑥) = 1

2 (1 + log9(𝑥)) ∀ 𝑥 ∈ [ 19 , 9] and its inverse 𝑓−1 ∶ [0, 1] → [ 19 , 9]
defined as 𝑓−1(𝑥) = 92𝑥−1 ∀ 𝑥 ∈ [0, 1]. In fact, 𝑓 (P𝑀 ) is the set P𝐴 of
FPRs defined in [0, 1]. In addition,

𝑓 (𝑃 ′(𝑥𝑖, 𝑥𝑗 )) =
1
2
(1 + log9(

𝑚∏
𝑘=1

𝑃 ′(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 )𝑤𝑘 ))

= 1
2
(1 +

𝑚∑
𝑘=1

𝑤𝑘 log9(𝑃 ′(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 )))

= 1
2
(1 +

𝑚∑
𝑘=1

𝑤𝑘 log9(92𝑃 (𝑒𝑘 ,𝑥𝑖 ,𝑥𝑗 )−1))

=
𝑚∑

𝑘=1
𝑤𝑘𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) = 𝑃 (𝑥𝑖, 𝑥𝑗 )

where 𝑃 = 𝑓 (𝑃 ′) ∈ 𝐴 ∀ 𝑃 ′ ∈ 𝑀 . Furthermore, the functions
𝜅1, 𝜅2, 𝜉 ∶ 𝐴 → [0, 1] defined as 𝜅1 ∶= 𝜅′

1◦𝑓
−1, 𝜅2 ∶= 𝜅′

2◦𝑓
−1 and

𝜉 ∶= 𝐶 ′◦𝑓−1 can be expressed as:

𝜅1(𝑃 ) = max
𝑘=1,…,𝑚;𝑖,𝑗=1,…,𝑛

{
|𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − 𝑃 (𝑥𝑖, 𝑥𝑗 )|

}
,

𝜅2(𝑃 ) =
2

𝑚𝑛(𝑛 − 1)

𝑚∑
𝑘=1

𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

|𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − 𝑃 (𝑥𝑖, 𝑥𝑗 )|,

𝜉𝑐 (𝑃 , 𝑃0) =
1
𝑛2

𝑚∑
𝑘=1

𝑐𝑘
𝑛∑

𝑖,𝑗=1
|𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − 𝑃0(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 )|,

∀𝑃 ∈ 𝑀 , where 𝑃0 = 𝑓 (𝑃 ′
0) ∈  . Note that the obtained linearization

min
𝑃∈𝑀

𝜉𝑐 (𝑃 , 𝑃0)

𝑠.𝑡.

⎧
⎪⎨⎪⎩

𝜅1(𝑃 ) ≤ 𝜀1,

𝜅2(𝑃 ) ≤ 𝜀2,

(L-M-FZZ-MCC)

corresponds to one of the CMCC models proposed by Labella et al.
(2020).

At this point, the consensus parameters are set up as 𝜀1 = 𝜀2 = 0.2,
because it would be not reasonable to demand a high level of agreement
that may not be achieved in practice with so many DMs. In addition,
the relative cost of moving each DM’s opinion and their weights is
1

4000 because we consider that all the citizens should present be equally
important in e-democracy.

After the linearization process, it is possible to determine the col-
lective opinion in just a few seconds. In fact, it shows a similar time
complexity as reported by Rodríguez et al. (2021). Fig. 2 shows a
multidimensional scaling (MDS) (Borg & Groenen, 2005) visualization
of the DMs’ preferences before and after applying the model L-M-
FZZ-MCC. Note that the DMs’ preferences are much closer to the
corresponding collective opinions when consensus is considered to
compute the group’s preference. According to the L-M-FZZ-MCC model,
the place preferred by the citizens is Site C, the commercial area.

This case study illustrates that the FZZ-MCC approach can be used to
consider MPRs, which have not been used before in the MCC literature
to the authors’ knowledge. In addition, most of the CRPs in the liter-
ature, even in large-scale GDM, consider decision problems involving
less than 50 DMs (García-Zamora et al., 2022). In this regard, the FZZ-
MCC approach can be applied to solve actual e-democracy problems
involving thousands of citizens.

Theoretically, this case study highlights the potential of the FZZ-
MCC framework as a unifying tool to analyze MCC models with di-
verse preference structures. Instead of creating distinct models for each
preference structure, the FZZ-MCC framework enables researchers to
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Fig. 2. MDS visualization of the DMs’ preferences.

examine and compare these structures within a single framework. This
approach promotes a more integrated and comprehensive understand-
ing of MCC models, facilitating the development of new insights and
hypotheses.

4.2. Persuading a committee to hire a manager

In any organization, selecting the right manager is crucial for its
success (Li et al., 2019). The process of choosing a manager involves
a committee that evaluates the candidates’ qualifications, experience,
and skills. However, when the council has a preference for a particular
candidate, they may want to analyze if it is feasible to persuade the
committee to select that candidate (Caillaud & Tirole, 2007; Chinn
et al., 2018). In this subsection, we demonstrate the flexibility of our
proposed generalized framework to design a new MCC model including
the idea of persuasion. Specifically, we adapt our framework by design-
ing a minimum-cost persuading model, which aims to shape the group’s
opinions as per a predefined target opinion.

Let us consider a corporation that operates in the manufacturing
industry and is looking to hire a new manager for its production depart-
ment. The committee responsible for hiring has received applications
from four qualified candidates.

1. Candidate 1: John Smith — 10 years of experience in production
management, with expertise in lean manufacturing and process
optimization.

2. Candidate 2: Lisa Jones — 8 years of experience in production
management with a successful track record of improving quality
and reducing costs.

3. Candidate 3: Robert Brown — 12 years of experience in produc-
tion management with a focus on safety and compliance.

4. Candidate 4: Amanda Green — 6 years of experience in produc-
tion management with a strong background in project manage-
ment.

The council of the corporation believes that Lisa Jones is the best
candidate for the job, who had previously worked for the corporation
and had an excellent track record, but the final decision must be made
by the committee through a CRP. Such a CRP will be supervised by a
moderator, who is selected by the council and will guide the DMs to
reach an agreed solution. However, such a moderator, following the
guidelines of the council, wants the committee to select Lisa Jones. For
this reason, the moderator is interested in analyzing how much it would
cost, in terms of time-consuming, effort, and resources, to convince the
committee members about selecting each one of the candidates.

The committee that must make the decision is modeled by four DMs,
𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}, who provide their preferences by using FPRs over

the set of alternatives {𝑥1: John Smith, 𝑥2: Lisa Jones, 𝑥3: Robert Brown,
𝑥4: Amanda Green}, i.e., 𝑚 = 4 and 𝑛 = 4.

To model this decision problem using the FZZ-MCC approach, let us
consider the GDM problem (𝐸,𝑋) which uses FPRs

P𝐴 ∶=
{
𝑃 ∶ 𝑋 ×𝑋 → [0, 1] ∶ 𝑃 (𝑥𝑖, 𝑥𝑗 ) + 𝑃 (𝑥𝑗 , 𝑥𝑖) = 1, 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}

}
.

For 𝑃 ∈ 𝐴, the collective opinion may be computed by using the
weighted arithmetic mean 𝑃 ∶ 𝑋 ×𝑋 → [0, 1] defined as

𝑃 (𝑥𝑖, 𝑥𝑗 ) =
𝑚∑

𝑘=1
𝑤𝑘𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ), ∀ 𝑖, 𝑗 = 1, 2,… , 𝑛.

The consensus metrics can be 𝜅1, 𝜅2 ∶ 𝐴 → [0, 1], defined as:

𝜅1(𝑃 ) = max
𝑘=1...𝑚

max
𝑖,𝑗=1...𝑛

|𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − 𝑃 (𝑥𝑖, 𝑥𝑗 )|,

𝜅2(𝑃 ) =
2

𝑚𝑛(𝑛 − 1)

𝑚∑
𝑘=1

𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

|𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − 𝑃 (𝑥𝑖, 𝑥𝑗 )|,

∀ 𝑃 ∈ 𝐴. In addition, given an initial preference 𝑃0 ∈ 𝐴, the cost
function 𝜉𝑐 ∶ 𝐴 → [0, 1] is defined as

𝜉𝑐 (𝑃 , 𝑃0) =
𝑚∑

𝑘=1
𝑐𝑘

2
𝑛(𝑛 − 1)

𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

|𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − 𝑃0(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 )|,

∀ 𝑃 ∈ 𝐴, where 𝑐𝑘 stands for the relative costs of moving DM 𝑒𝑘’s
preferences (𝑐𝑘 ≥ 0, 𝑘 = 1,… , 𝑚,

∑𝑚
𝑘=1 𝑐𝑘 = 1).

With this basic configuration of the FZZ-MCC framework, we are
now ready to include the concept of persuasion. The goal is to analyze
the cost of persuading DMs about reaching a consensus on a certain
alternative 𝑥𝑖0 , 𝑖0 ∈ {1, 2,… , 𝑛}, as the best choice among all the
considered alternatives. This persuasion condition can be modeled by
computing the group average preference of any alternative 𝑥𝑖 regarding
others via the function 𝜂𝑖 ∶ 𝐴 → [0, 1] defined as

𝜂𝑖(𝑃 ) = 1
𝑛

𝑛∑
𝑗=1

𝑚∑
𝑘=1

𝑤𝑘𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) ∀ 𝑃 ∈ 𝐴, ∀ 𝑖 = 1, 2,… , 𝑛

and setting the conditions that the alternative 𝑥𝑖0 performs better than
the rest of the alternatives as follows:

𝜂𝑖0 (𝑃 ) ≥ 𝜂𝑖(𝑃 ) ∀ 𝑖 = 1, 2,… , 𝑛 (𝑖 ≠ 𝑖0).

These constraints in FZZ-MCC guarantee that the alternative 𝑥𝑖0 is
preferred by the group and the corresponding optimization model is



Computers & Industrial Engineering 181 (2023) 109295

9

D. García-Zamora et al.

Fig. 3. Comparative visualization. Each shape stands for a different DM, except squares, which represent the collective opinion, and crosses, which represent the position of the
extreme preference in which the corresponding alternative is completely preferred over the others and the others are equally preferred. Different colors correspond to different
scenarios.

given as follows:

min𝑃∈ 𝜉𝑐 (𝑃 , 𝑃0)

𝑠.𝑡.

⎧
⎪⎪⎨⎪⎪⎩

𝜅1(𝑃 ) ≤ 𝜀1,

𝜅2(𝑃 ) ≤ 𝜀2,

𝜂𝑖0 (𝑃 ) ≥ 𝜂𝑖(𝑃 ) 𝑖 ≠ 𝑖0.

(P-FZZ-MCC)

The committee’s original preferences are given by FPRs:

𝑃1 =

⎛⎜⎜⎜⎜⎜⎜⎝

− 0.5 0.4 0.8

0.5 − 0.4 0.8

0.6 0.6 − 0.85

0.2 0.2 0.15 −

⎞⎟⎟⎟⎟⎟⎟⎠

𝑃2 =

⎛⎜⎜⎜⎜⎜⎜⎝

− 0.95 1.0 1.0

0.05 − 0.92 0.94

0.0 0.08 − 0.58

0.0 0.06 0.42 −

⎞⎟⎟⎟⎟⎟⎟⎠

𝑃3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.6 0.33 1.0

0.4 − 0.25 1.0

0.67 0.75 − 1.0

0.0 0.0 0.0 −

⎞
⎟⎟⎟⎟⎟⎟⎠

𝑃4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.57 0.72 0.58

0.43 − 0.67 0.51

0.28 0.33 − 0.34

0.42 0.49 0.66 −

⎞
⎟⎟⎟⎟⎟⎟⎠

The consensus conditions are, 𝜀1 = 𝜀2 = 0.2, which guarantee a
reasonable level of agreement, keeping in mind that the moderator
have to try to convince DMs to select a specific candidate who, a priori,
may not be their preferred one. The relative cost of modifying the
opinions of each DM is equal, with a cost ratio of 1

4 , making it equally
costly to adjust any of the DMs’ opinions. In addition, we recall that
the moderator wants to analyze the cost of persuading the committee
to choose Candidate 𝑥2, Lisa Jones. Therefore, to study the feasibility
of persuading the committee about choosing her as the future manager,
the moderator applies the P-FZZ-MCC model to analyze the relative cost
of persuading the DMs about choosing 𝑥2, i.e., 𝑖0 = 2. In addition, the
moderator also runs the P-FZZ-MCC for the remaining cases 𝑖0 = 1, 3, 4
in order to also consider the relative cost of convincing the committee
about all the others candidates.

At this point, let us apply the corresponding P-FZZ-MCC models to
solve the GDM problem. Fig. 3 shows the evolution of the committee’s
preferences depending on the selected preferred candidate by means of
an MDS representation (Borg & Groenen, 2005). Each color represents
a different scenario: purple is for 𝑖0 = 1 (candidate 1 is the most

Table 1
Comparative results between Persuading and CMCC.

Consensus Consensus Desired Cost Ranking of

model parameters alternative alternatives

P-FZZ-MCC 𝜀1 = 𝜀2 = 0.2

𝑥1 0.048 𝑥1 ≻ 𝑥2 ≻ 𝑥3 ≻ 𝑥4

𝑥2 0.072 𝑥2 = 𝑥1 ≻ 𝑥3 ≻ 𝑥4

𝑥3 0.081 𝑥3 = 𝑥1 ≻ 𝑥2 ≻ 𝑥4

𝑥4 0.173 𝑥4 = 𝑥1 = 𝑥2 ≻ 𝑥3

preferred by the council), orange for 𝑖0 = 2 (candidate 2 is the most
preferred by the council), green for 𝑖0 = 3 (candidate 3 is the most
preferred by the council), and blue for 𝑖0 = 4 (candidate 4 is the most
preferred by the council). The squares represent the collective opinion
obtained in each scenario, whereas the crosses stand for the positions
of the extreme preference in which the corresponding alternative is
completely preferred over the others, which are equally preferred to
each other. The preferences of each DM are represented by stars for 𝑒1,
triangles for 𝑒2, pentagons for 𝑒3 and circles for 𝑒4. Note how every DMs’
position moves toward the corresponding extreme preference in each
scenario in order to obtain a collective opinion in which that candidate
is preferred.

Note that the collective opinions obtained in the scenarios 𝑖0 = 1
and 𝑖0 = 2 are pretty close, which means that these two are the most
similar scenarios. On the contrary, the collective in the case 𝑖0 = 4 is the
one that is further from the other scenarios. In addition, such collective
opinion is close to the neutral ideal preference (all alternatives are
equally preferred).

Table 1 shows the numeric results of solving the P-FZZ-MCC model.
The cost analysis reveals that convincing the committee to select the
candidate 𝑥2 ∶ Lisa Jones implies a cost equal to 0.072, 50% extra
relative cost regarding the committee’s most preferred candidate, who
is 𝑥1, John Smith, because he is the one with the lowest cost (0.048).
With this information, the council may evaluate if such 50% extra cost
can be assumable or not to choose, in practice, the candidate 𝑥2 instead
of 𝑥1.

This subsection has introduced the novel idea of persuading models
as methods for GDM that aim at driving the DMs toward a target
solution. The FZZ-MCC approach has been applied to propose a general
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MCC model able to solve a decision problem related to influencing a
staff recruitment process, which illustrates its flexibility to address new
decision-making scenarios.

This case study highlights the practical value of the generalized FZZ-
MCC model as a flexible and adaptable framework for designing new
consensus models that meet specific decision-making requirements.
By modifying key elements of the framework, researchers can easily
tailor it to address the specific needs of a given decision context. This
approach streamlines the development and analysis of new MCC models
by emphasizing the crucial elements of change and facilitating connec-
tions with existing results. Thus, the generalized FZZ-MCC model offers
a powerful tool for enhancing decision-making processes and advancing
the field of consensus modeling.

4.3. Green supplier selection

Green supplier selection is the process of identifying and selecting
suppliers who prioritize environmentally sustainable practices (Zhang
et al., 2022). This involves evaluating suppliers based on their environ-
mental performance and considering factors such as energy efficiency,
waste management, and the use of hazardous materials. Green supplier
selection can have a significant impact on a company’s sustainability
performance, as the environmental impact of a company’s supply chain
can be substantial. By selecting suppliers who prioritize sustainability,
companies can reduce their environmental footprint and enhance their
reputation among environmentally conscious consumers (Xing et al.,
2022).

However, it can be difficult to assess suppliers’ environmental per-
formance and ensure that suppliers are adhering to sustainable prac-
tices. Additionally, some sustainable practices may be more costly for
suppliers, which can affect the cost of goods and services for the
purchasing company. For this reason, companies have to evaluate the
performance of the suppliers over several aspects, and choose the one
that best suits its needs.

In this section, we will explore how a company may successfully
address green supplier selection through a hybrid model that integrates
expert knowledge and data by adapting the FZZ-MCC approach.

Let us consider a manufacturing company that needs to select a new
supplier for its raw materials. The company has identified four potential
suppliers 𝑋 = {𝑥1 = Supplier A, 𝑥2 = Supplier B, 𝑥3 = Supplier C, 𝑥4 =
Supplier D}, i.e., 𝑛 = 4, each with their own strengths and weaknesses
in terms of their environmental sustainability credentials:

• Supplier A: A local supplier with a strong track record of using
renewable energy sources, but higher prices than other suppliers.

• Supplier B: A multinational supplier with an established sustain-
ability program and a well-developed supply chain, but some
concerns about the environmental impact of their transportation
methods.

• Supplier C: A smaller supplier with a focus on sustainable pro-
duction methods, but limited capacity to meet the company’s
needs.

• Supplier D: A relatively new supplier with a strong commitment
to sustainability and innovative production methods, but some
uncertainty about their long-term viability.

The company’s procurement department has convened a group of
stakeholders, including representatives from the company as well as
external experts in sustainability and environmental issues, to evaluate
each supplier and make a decision, 𝐸1 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}, i.e., 𝑚1 = 4,
which will give their opinions using FPRs. In addition, the company
also wants to consider the information within a database with ratings in
a [0, 1] scale for the suppliers obtained from other 𝑚2 = 2625 companies
and public institutions that have collaborated with them previously,
𝐸2 =

{
𝑒5, 𝑒6,… , 𝑒2629

}
, i.e.,

𝐸 = 𝐸1 ∪ 𝐸2 =
{
𝑒1, 𝑒2,… , 𝑒𝑚1

, 𝑒𝑚1+1, 𝑒𝑚1+2,… , 𝑒𝑚1+𝑚2

}
.

Since the experts provide their opinions using FPRs it is necessary
to consider the preference structure:

P1 ∶= P𝐴 =
{
𝑃 ∶ 𝑋 ×𝑋 → [0, 1] ∶ 𝑃 (𝑥𝑖, 𝑥𝑗 ) + 𝑃 (𝑥𝑗 , 𝑥𝑖) = 1,

∀ 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}} .

In addition, since the ratings in the database are given in a [0, 1]
scale, we also need a preference structure in the form:

P2 ∶=
{
𝑃 ∶ 𝑋 → [0, 1

2
]
}
.

Here, we have rescaled the ratings to the interval [0, 12 ] to be able
to transform them into FPRs via the formula 1

2 +𝑃 (𝑥𝑖)−𝑃 (𝑥𝑗 ) ∀ 𝑃 ∈ P2.
Note that, if we do not restrict the value 𝑃 (𝑥𝑖) to be in the interval [0, 12 ],
the result of such formula does not define an FPR (Herrera-Viedma
et al., 2002).

Then, the collective opinion (𝑃1, 𝑃2) ∶ 𝑋 × 𝑋 → [0, 1] can be
computed as:

(𝑃1, 𝑃2)(𝑥𝑖, 𝑥𝑗 ) = 𝛼
𝑚1∑
𝑘=1

𝑤𝑘𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) +
𝛽
𝑚2

𝑚1+𝑚2∑
𝑘=𝑚1+1

( 1
2
+ 𝑃2(𝑒𝑘, 𝑥𝑖) − 𝑃2(𝑒𝑘, 𝑥𝑗 )),

where 𝑤1, 𝑤2,… , 𝑤𝑚1
are weights for the DMs in 𝐸1, and 𝛼 + 𝛽 = 1,

(𝛼 > 0 is the desired importance of DMs’ opinions and 𝛽 > 0 is the
importance of the information in the database). Note that (𝑃1, 𝑃2) is an
FPRs too, i.e., (𝑃1, 𝑃2) ∈ 1:

(𝑃1, 𝑃2)(𝑥𝑖, 𝑥𝑗 ) + (𝑃1, 𝑃2)(𝑥𝑗 , 𝑥𝑖) =

𝛼
𝑚1∑
𝑘=1

𝑤𝑘𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) +
𝛽
𝑚2

𝑚1+𝑚2∑
𝑘=𝑚1+1

( 1
2
+ 𝑃2(𝑒𝑘, 𝑥𝑖) − 𝑃2(𝑒𝑘, 𝑥𝑗 ))+

𝛼
𝑚1∑
𝑘=1

𝑤𝑘𝑃 (𝑒𝑘, 𝑥𝑗 , 𝑥𝑖) +
𝛽
𝑚2

𝑚1+𝑚2∑
𝑘=𝑚1+1

( 1
2
+ 𝑃2(𝑒𝑘, 𝑥𝑗 ) − 𝑃2(𝑒𝑘, 𝑥𝑖)) =

𝛼
𝑚1∑
𝑘=1

𝑤𝑘(𝑃 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) + 𝑃 (𝑒𝑘, 𝑥𝑗 , 𝑥𝑖))+

𝛽
𝑚2

𝑚1+𝑚2∑
𝑘=𝑚1+1

( 1
2
+ 𝑃2(𝑒𝑘, 𝑥𝑖) − 𝑃2(𝑒𝑘, 𝑥𝑗 ) +

1
2
+ 𝑃2(𝑒𝑘, 𝑥𝑗 ) − 𝑃2(𝑒𝑘, 𝑥𝑖)) =

𝛼
𝑚1∑
𝑘=1

𝑤𝑘 +
𝛽
𝑚2

𝑚1+𝑚2∑
𝑘=𝑚1+1

1 = 𝛼 + 𝛽 = 1, ∀ 𝑖, 𝑗 = 1,… , 𝑛.

Therefore, three compatible consensus metrics could be 𝜅1, 𝜅2, 𝜅3 ∶
1 × 2 → [0, 1] defined as

𝜅1(𝑃1, 𝑃2) = max
𝑖,𝑗=1,…,𝑛,
𝑘=1,…,𝑚1

|𝑃1(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − (𝑃1, 𝑃2)(𝑥𝑖, 𝑥𝑗 )|,

𝜅2(𝑃1, 𝑃2) = max
𝑖=1,…,𝑛,
𝑘=𝑚1+1,
...,𝑚1+𝑚2

| 1
2
+ 𝑃2(𝑒𝑘, 𝑥𝑖) − 𝑃2(𝑒𝑘, 𝑥𝑗 ) − (𝑃1, 𝑃2)(𝑥𝑖)|,

𝜅3(𝑃1, 𝑃2) = 𝛼
𝑚1∑
𝑘=1

𝑤𝑘|
𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

𝑃1(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − (𝑃1, 𝑃2)(𝑥𝑖, 𝑥𝑗 )|+

𝛽 2
𝑚2𝑛(𝑛 − 1)

𝑚1+𝑚2∑
𝑘=𝑚1+1

𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

| 1
2
+ 𝑃2(𝑒𝑘, 𝑥𝑖) − 𝑃2(𝑒𝑘, 𝑥𝑗 ) − (𝑃1, 𝑃2)(𝑥𝑖, 𝑥𝑗 )|.

Finally, given an initial opinion 𝑃 0 ≡ (𝑃 0
1 , 𝑃

0
2 ) ∈ 1 × 2, a feasible

cost function may be 𝜉𝑐 ∶ 1 × 2 → [0, 1] defined as

𝜉𝑐 (𝑃1, 𝑃2) =
𝑚1∑
𝑘=1

2𝑐𝑘
𝑛(𝑛 − 1)

𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

|𝑃1(𝑒𝑘, 𝑥𝑖, 𝑥𝑗 ) − 𝑃 0
1 (𝑒𝑘, 𝑥𝑖, 𝑥𝑗 )|+

𝑚1+𝑚2∑
𝑘=𝑚1+1

𝑐𝑘
𝑛

𝑛∑
𝑖=1

|𝑃2(𝑒𝑘, 𝑥𝑖) − 𝑃 0
2 (𝑒𝑘, 𝑥𝑖)|,

where ∑𝑚1+𝑚2
𝑘=1 𝑐𝑘 = 1, 𝑐𝑘 ≥ 0.

With this basic configuration of the key elements of FZZ-MCC
framework, the hybrid MCC model to derive consensual opinions can
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Table 2
DMs’ initial opinions.

𝑒1 𝑥1 𝑥2 𝑥3 𝑥4

𝑥1 0.5 0.1 0.33 0.85

𝑥2 0.9 0.5 0.36 0.4

𝑥3 0.67 0.64 0.5 0.0

𝑥4 0.15 0.6 1.0 0.5

𝑒2 𝑥1 𝑥2 𝑥3 𝑥4

𝑥1 0.5 0.96 0.92 0.74

𝑥2 0.04 0.5 0.5 0.55

𝑥3 0.08 0.5 0.5 0.49

𝑥4 0.26 0.45 0.51 0.5

𝑒3 𝑥1 𝑥2 𝑥3 𝑥4

𝑥1 0.5 0.5 0.32 0.49

𝑥2 0.5 0.5 0.51 0.85

𝑥3 0.68 0.49 0.5 0.01

𝑥4 0.51 0.15 0.99 0.5

𝑒4 𝑥1 𝑥2 𝑥3 𝑥4

𝑥1 0.5 0.16 0.57 0.15

𝑥2 0.84 0.5 0.02 0.85

𝑥3 0.43 0.98 0.5 0.62

𝑥4 0.85 0.15 0.38 0.5

Table 3
Examples of ratings in the database.

Ratings 𝑥1 𝑥2 𝑥3 𝑥4

𝑒5 0.28 0.19 0.16 0.36

𝑒6 0.31 0.17 0.22 0.28

𝑒7 0.14 0.55 0.28 0.00

𝑒8 0.29 0.29 0.02 0.37

be put into the following form:

min
(𝑃1 ,𝑃2)∈(1 ,2)

𝜉𝑐 (𝑃1, 𝑃2)

𝑠.𝑡.

⎧⎪⎪⎨⎪⎪⎩

𝜅1(𝑃1, 𝑃2) ≤ 𝜀1,

𝜅2(𝑃1, 𝑃2) ≤ 𝜀2,

𝜅3(𝑃1, 𝑃2) ≤ 𝜀3,

(H-FZZ-MCC)

where 𝜀1, 𝜀2, 𝜀3 ∈]0, 1] are the consensus parameters.
The stakeholders’ preferences are expressed through the FPRs (P1)

in Table 2, whereas some of the ratings in the database (P2) are shown
in Table 3. In this case, the company needs to get an agreed solution
that takes into account both the stakeholders’ opinions according to the
weights 𝛼 = 0.7 and 𝛽 = 0.3 in the model (H-FZZ-MCC), which suggests
that the company places more trust in the experts’ opinions than in the
information stored in the database. The consensus parameter 𝜀1 = 0.1
ensures that DMs’ opinions, which are the most trusted in this decision-
making problem, present a high consensus degree. In addition, the
parameter 𝜀2 = 0.2 helps to reduce the variability of the ratings in
the database, and the parameter 𝜀3 = 0.15, guarantees a moderate
agreement between the experts’ opinions and the data.

The results of the consensus model are represented in Fig. 4 by
using MDS (Borg & Groenen, 2005). This figure shows how initially
the ratings obtained from the database are quite far from each other
(yellow crosses), even some stakeholders’ preferences are also far from
each other (purple circles). However, after the application of the H-FZZ-
MCC model, all these preferences are closer and satisfy the consensus
conditions previously defined. The agreed collective opinion, i.e., the
solution of the (H-FZZ-MCC) model, is:

⎛⎜⎜⎜⎜⎜⎜⎝

0.5 0.45 0.47 0.55

0.55 0.5 0.45 0.59

0.53 0.55 0.5 0.49

0.45 0.41 0.51 0.5

⎞⎟⎟⎟⎟⎟⎟⎠

Therefore, by computing the dominance of each alternative (Mont-
gomery, 1983; Yakowitz et al., 1993), the consensual selection of the
supplier is 𝑥2 Supplier B.

This case study has shown that FZZ-MCC can manage several pref-
erence structures at the same time if the proper metrics are considered.
In addition, we have shown that FZZ-MCC can be used to define
hybrid models that integrate expert knowledge and data through an
application for green supplier selection.

From a theoretical point of view, here it is demonstrated the poten-
tial of the FZZ-MCC framework to manage heterogeneous preference
structures in MCC-driven consensus models. By modifying key elements
such as consensus and distance metrics, researchers can effectively
integrate diverse preference structures within a unified framework.
This approach offers a flexible and adaptable tool for analyzing and
synthesizing complex preference data, ultimately enabling more robust
and informed decision-making processes. Thus, the FZZ-MCC frame-
work offers a promising avenue for addressing the challenges posed by
heterogeneous preference structures in consensus modeling.

5. Conclusions and future works

This contribution introduces the FZZ-MCC approach, a reformula-
tion of classical MCC models in terms of fuzzy sets. This reformulation
introduces three main advantages:

• A rigorous unified notation based on Fuzzy Sets which allows
generalizing previous studies regarding MCC,

• Generalization of classical notions regarding GDM such as prefer-
ence structure, consensus measure or cost function,

• Abstract nature which implies flexibility to adapt the FZZ-MCC
scheme to address diverse decision situations.

In addition, this proposal has exploited such flexibility of FZZ-MCC
to propose several novel MCC-based models:

• A FZZ-MCC model is defined to deal with an e-democracy sce-
nario that involves urban planning by managing thousands of
preferences through FZZ-MCC models and Multiplicative Prefer-
ences Relations.

• A FZZ-MCC model is used to persuade a hiring committee to select
a particular manager by analyzing the associated cost and driving
DMs toward agreement on a target solution.

• A hybrid FZZ-MCC model that merges database ratings with
pairwise comparisons from DMs is proposed to combine expert
knowledge and data in a green supplier selection problem.

Furthermore, all these models have been proposed in terms of
linear and absolute-value-based objective functions and constraints,
which facilitates their linearization to improve both their accuracy
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Fig. 4. MDS representation for (H-FZZ-MCC).

and computational efficiency aspects, which are essential to deal with
large-scale GDM problems (Rodríguez et al., 2021).

The FZZ-MCC approach also gives raise to endless possibilities
regarding future studies. For instance, it may be studied how to adapt
MCC to deal with other preferences structures such as those related
to linguistic information or include the use of nonlinear scales when
modeling DMs’ opinions. Furthermore, the FZZ-MCC may be applied
to propose new optimization models to solve other real-world decision
problems. Finally, the use of asymmetric cost may also be considered
from the FZZ-MCC point of view to address those situations in which
the cost of each individual depends on the adjustment direction of
her/his opinion.
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Appendix. Consistency metric

Inconsistencies usually emerge when the preferences are elicited
from DMs using pairwise comparison matrices (Saaty, 1990). In order
to obtain more realistic results, some authors highlight the impor-
tance of considering consistency measures to ensure that the modified
preferences are not contradictory (Rodríguez et al., 2021).

Even though there are several consistency measures in the litera-
ture (Rezaei, 2015; Rodríguez et al., 2021), all of them are based on
a certain consistency formula that derives a degree of consistency for
a preference structure. Such a consistency formula usually stands for
the ideal situation in which the pairwise comparisons provided by the
DMs do not contain contradictory information. In order to maintain
that flexibility when defining the idea of consistency, we introduce the
notion of 𝑔-consistency.

Definition A.1. Consider a GDM problem (𝐸,𝑋). Let 𝑔 ∶ [0, 1]×[0, 1] →
[𝑎, 𝑏] ⊇ [0, 1] be a surjective mapping and P ⊂  (𝑋 × 𝑋) a preference
structure. We say that 𝑃 ∈ P is 𝑔-consistent if

𝑃 (𝑥𝑖, 𝑥𝑗 ) = 𝑔(𝑃 (𝑥𝑖, 𝑥𝑘), 𝑃 (𝑥𝑗 , 𝑥𝑘)) ∀ 𝑖, 𝑗, 𝑘 ∈ {1, 2,… , 𝑛} .

Example A.1. For instance, when using FPRs it is possible to consider
the function 𝑔 ∶ [0, 1] × [0, 1] → [−12 , 32 ] defined as 𝑔(𝑥, 𝑦) = 1

2 + 𝑥 −

𝑦 ∀ 𝑥, 𝑦 ∈ [0, 1]. In that case, an FPR 𝑃 ∈ P𝐴 is 𝑔-consistent if and only
if

𝑃 (𝑥𝑖, 𝑥𝑗 ) =
1
2
+ 𝑃 (𝑥𝑖, 𝑥𝑘) − 𝑃 (𝑥𝑗 , 𝑥𝑘) ⟺

𝑃 (𝑥𝑖, 𝑥𝑗 ) + 𝑃 (𝑥𝑗 , 𝑥𝑘) + 𝑃 (𝑥𝑘, 𝑥𝑖) =
3
2
∀ 𝑖, 𝑗, 𝑘 ∈ {1, 2,… , 𝑛} ,

which are the classical definitions for additive consistency (Herrera-
Viedma et al., 2004).

The previous definition allows expressing the idea of consistency
according to the satisfaction of a certain formula, which is modeled by
the function 𝑔. The surjectivity is required to emphasize that the result
of computing the value 𝑔(𝑃 (𝑥𝑖, 𝑥𝑘), 𝑃 (𝑥𝑗 , 𝑥𝑘)) should be comparable to
𝑃 (𝑥𝑖, 𝑥𝑗 ) for any 𝑖, 𝑗, 𝑘 = 1,… , 𝑛. In other words, if 𝑔 takes values in an
interval that does not contain [0, 1], not a single 𝑃 ∈ P could satisfy the
g-consistency condition.

Obtaining fully consistent pairwise comparisons from DMs is chal-
lenging in practice, particularly when there are numerous elements to
compare (Rezaei, 2015). To provide more flexibility, it is essential to
establish a consistency metric that quantifies the level of consistency
in a pairwise comparison matrix. Before stating the definition of such a
consistency metric, we need to extend the idea of restricted dissimilar-
ity function to be able to compare the output of the function 𝑔, which
is valued in [𝑎, 𝑏] and the values of the preference, given in the interval
[0, 1]. Therefore, we will say that a mapping 𝛿 ∶ [0, 1] × [𝑎, 𝑏] → [0, 1] is
a restricted dissimilarity function if it satisfies:

1. 𝛿(𝑥, 𝑦) = 𝛿(𝑦, 𝑥) ∀ 𝑥, 𝑦 ∈ [0, 1],
2. 𝛿(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,
3. 𝛿(𝑥, 𝑦) = 1 if and only if either 𝑥 = 0 and 𝑦 = 𝑏 or 𝑥 = 1 and

𝑦 = 𝑎,
4. For all 𝑥, 𝑦, 𝑧 ∈ [0, 1] such that 𝑥 ≤ 𝑦 ≤ 𝑧, then 𝛿(𝑥, 𝑦) ≤ 𝛿(𝑥, 𝑧)

and 𝛿(𝑦, 𝑧) ≤ 𝛿(𝑥, 𝑧).

By using this notion of dissimilarity, we can introduce the notion of con-
sistency metric for pairwise preference structures and their respective
numeric ratings.

Definition A.2 (g-Consistency Metric for Preference Structure). Consider a
GDM problem (𝐸,𝑋). Let 𝑔 ∶ [0, 1]×[0, 1] → [𝑎, 𝑏] ⊇ [0, 1] be a surjective
mapping and P ⊂  (𝑋 ×𝑋) a preference structure. Then a consistency
metric �̂� ∶ P → [0, 1] for P and 𝑔 is given by

�̂�(𝑃 ) = �̂�𝑛
𝑖,𝑗,𝑘=1𝛿(𝑃 (𝑥𝑖, 𝑥𝑗 ), 𝑔(𝑃 (𝑥𝑖, 𝑥𝑘), 𝑃 (𝑥𝑘, 𝑥𝑗 )))

where �̂� ∶ [0, 1]× 𝑛3… ×[0, 1] → [0, 1] is an aggregation operator and
𝛿 ∶ [0, 1] × [𝑎, 𝑏] → [0, 1] is a restricted dissimilarity measure.

Following the lines described in Section 3, it is possible to measure
the consistency of a group by extending the g-consistency metric for a
preference structure to the corresponding set of numeric ratings.
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Definition A.3 (g-Consistency Metric for Numeric Ratings). Consider a
GDM problem (𝐸,𝑋). Let 𝑔 ∶ [0, 1]×[0, 1] → [𝑎, 𝑏] ⊃ [0, 1] be a surjective
mapping and P ⊂  (𝑋 ×𝑋) a preference structure. Then a consistency
metric 𝜂 ∶  → [0, 1] for  and 𝑔 is a function 𝜂 ∶  → [0, 1] given by

𝜂(𝑃 ) = 𝑀(�̂�(𝑃 (𝑒1, ⋅, ⋅)),… , �̂�(𝑃 (𝑒𝑚, ⋅, ⋅))),

where �̂� is a consistency metric for the preference structure associated
to  and 𝑀 ∶ [0, 1]× 𝑚… ×[0, 1] → [0, 1] is an aggregation operator.

Example A.2. Let us consider the restricted dissimilarity 𝛿 ∶ [0, 1] ×
[−12 , 32 ] → [0, 1] given by 𝛿(𝑥, 𝑦) = 2

3 |𝑥 − 𝑦| ∀ 𝑥, 𝑦 ∈ [0, 1]. Then, by using
the maximum as an aggregation operator, a consistency metric for FPRs
�̂� ∶ P → [0, 1] can be defined as

�̂�(𝑃 ) = 2
3

max
𝑖,𝑗,𝑘=1,…,𝑛

{
|𝑃 (𝑥𝑖, 𝑥𝑗 ) + 𝑃 (𝑥𝑗 , 𝑥𝑘) + 𝑃 (𝑥𝑘, 𝑥𝑖) −

3
2
|
}
,

and the consistency metric for numeric ratings 𝜂 ∶  → [0, 1] defined
as

𝜂(𝑃 ) = 2
3

max
𝑙=1,…,𝑚,

𝑖,𝑗,𝑘=1,…,𝑛

{
|𝑃 (𝑒𝑙 , 𝑥𝑖, 𝑥𝑗 ) + 𝑃 (𝑒𝑙 , 𝑥𝑗 , 𝑥𝑘) + 𝑃 (𝑒𝑙 , 𝑥𝑘, 𝑥𝑖) −

3
2
|
}
.

Note that for a preference matrix 𝑃 ∈ P ⊂  (𝑋×𝑋) and a surjective
function 𝑔 ∶ [0, 1] × [0, 1] → [𝑎, 𝑏], [0, 1] ⊂ [𝑎, 𝑏] ⊂ R, 𝑃 is 𝑔-consistent if
and only if �̂�(𝑃 ) = 0. In the same way, for a numeric rating 𝑃 ∈  , each
fuzzy set 𝑃 (𝑒𝑘, ⋅, ⋅) is 𝑔-consistent if and only if 𝜂(𝑃 ) = 0. In addition,
the greater the values of 𝜂, the further the preference structure or the
numeric rating are from the ideal 𝑔-consistency.

To summarize, if a consistency metric 𝜂 ∶  → [0, 1] is considered,
the FZZ-MCC model could be rewritten as

min
𝑃∈ 𝜉𝑐 (𝑃 , 𝑃0)

𝑠.𝑡.

⎧
⎪⎨⎪⎩

𝜅(𝑃 ) ≤ (𝜀1,… , 𝜀𝑞),

𝜂(𝑃 ) ≤ 𝜃,

where 𝜃 ∈ [0, 1], and 𝜉𝑐 , 𝜅 and 𝜀1,… , 𝜀𝑞 are defined as in Section 3.2.
To remark on the flexibility of the notion of 𝑔-consistency, please

note that if we consider another scale that is not in [0, 1], such as the
multiplicative 1–9 Saaty’ scale (Saaty, 1990), it is possible to define
the function 𝑔 ∶ [ 19 , 9] × [ 19 , 9] → [ 1

81 , 81] as 𝑔(𝑥, 𝑦) = 𝑥
𝑦 ∀ 𝑥, 𝑦 ∈ [ 19 , 9]

and conduct a similar discussion to derive the classical definitions
for multiplicative consistency (Rezaei, 2015). We further analyze the
adaptation of FZZ-MCC to multiplicative scales in Section 4.
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and Luis Martínez , Senior Member, IEEE

Abstract—Linguistic group decision making (LiGDM) aims at
solving decision situations involving human decision makers (DMs)
whose opinions are modeled by using linguistic information. To
achieve agreed solutions that increase DMs’ satisfaction toward
the collective solution, linguistic consensus reaching processes (Li-
CRPs) have been developed. These LiCRPs aim at suggesting DMs
to change their original opinions to increase the group consensus
degree, computed by a certain consensus measure. In recent years,
these LiCRPs have been a prolific research line, and consequently,
numerous proposals have been introduced in the specialized liter-
ature. However, we have pointed out the nonexistence of objective
metrics to compare these models and decide which one presents
the best performance for each LiGDM problem. Therefore, this
article aims at introducing a metric to evaluate the performance of
LiCRPs that takes into account the resulting consensus degree and
the cost of modifying DMs’ initial opinions. Such a metric is based
on a linguistic comprehensive minimum cost consensus (CMCC)
model based on Extended Comparative Linguistic Expressions with
Symbolic Translation information that models DMs’ hesitancy and
provides accurate Computing with Words processes. In addition,
the linguistic CMCC optimization model is linearized to speed up
the computational model and improve its accuracy.

Index Terms—Computing with Words (CW), extended
comparative linguistic expressions with symbolic translation
(ELICIT) information, fuzzy linguistic approach, linguistic cost
metric, minimum cost consensus.

I. INTRODUCTION

IN GROUP decision making (GDM), a group of decision
makers (DMs) faces a decision situation in which they

provide their preferences to select the best alternative as a
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solution to the decision problem. Even though the participation
of several DMs allows the consideration of several points of
view in the decision process, it often implies the emergence of
disagreements among them, which should be properly managed
to avoid unsatisfactory results. Consensus reaching processes
(CRPs) were designed to soften such discrepancies and drive
the group toward an agreed solution [1], [2], [3]. Classically, a
desired consensus threshold is fixed a priori; then, a discussion
process is carried out in which a moderator suggests the DMs to
modify their preferences in order to increase the group consensus
degree. A CRP is usually an iterative process, which is repeated
for several rounds until either the consensus degree surpasses
the consensus threshold or the number of rounds exceeds a
maximum limit [2].

Real-world GDM problems and their CRPs are generally
presented in uncertain contexts characterized by the absence
of objective information, which increases the complexity of the
decision situation. Under these circumstances, the DMs may
have difficulties in providing their opinions by using numerical
assessments. To offer more realistic and suitable frameworks
for DMs to express their preferences according to their natural
way of thinking, the use of the fuzzy linguistic approach and
linguistic variables [4], [5], [6] has increased its popularity in
recent years. When DMs provide their opinions through linguis-
tic assessments, we talk about linguistic group decision making
(LiGDM) [7] and linguistic consensus reaching processes (Li-
CRPs) [8], [9], [10].

Since achieving linguistic agreed solutions is essential in
many real-world decision situations [11], [12], the interest of
researchers has been aroused, leading to many LiCRP proposals
in the specialized literature [1]. Although a priori having many
proposals could make the resolution of LiGDM problems easier,
the bibliographic analysis developed by García-Zamora et al. [1]
pointed out that there is an evident lack of objective metrics to
compare the performance of different LiCRPs and discern which
one presents a better performance to deal with a certain LiGDM
problem. The main consequence of this situation is that the
authors justify the alleged well performance of their proposals
through the resolution of simple illustrative examples, which
could easily be biased to obtain good results [1]. In this regard,
the authors have used different measures to compare consensus
proposals, such as the number of rounds necessary to reach the

1063-6706 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universidad de Jaen. Downloaded on May 12,2023 at 11:32:31 UTC from IEEE Xplore.  Restrictions apply. 



GARCÍA-ZAMORA et al.: LINGUISTIC METRIC FOR CONSENSUS REACHING PROCESSES BASED ON ELICIT CMCC MODELS 1677

Fig. 1. Scheme of the proposed metric.

consensus threshold [13], [14], the trust among experts [13], or
the consensus degree [2], [15]. However, these aspects could not
be the representative of the quality of the models because they do
not provide enough information about their global performance,
and consequently, the authors could show them in the most
convenient way. For instance, a fast consensus model in terms
of the number of rounds may present several drawbacks related
to the achieved consensus degree or the changes performed in
the original preferences, which could have been excessively
modified. In addition, these measures may allow comparing
models in a specific case study, but they do not offer a global
vision of the performance of the model when different DMs’
opinions are used.

Therefore, the main goal of this article is proposing the first
linguistic metric to objectively compare linguistic consensus
models and show which one presents the best performance in
the resolution of an LiGDM problem. The proposed metric com-
pares the results of the LiCRP with an ideal scenario in which
the consensus threshold is achieved by making as few changes
as possible to DMs’ original opinions (see Fig. 1). This article
uses the comprehensive minimum cost consensus (CMCC) [16],
[17] models, which are automatic CRPs, to determine such ideal
results but extending them to deal with linguistic information.
Consequently, we raise the following research questions.� RQ1: How to define CMCC models in a linguistic environ-

ment?� RQ2: How to evaluate objectively the performance of
LiCRPs?

To answer these questions, we first propose a linguistic
CMCC model for extended comparative linguistic expressions
with symbolic translation (ELICIT) information [7], a recently
proposed linguistic modeling approach that guarantees precise
computations with linguistic information [4], [5], [6]. ELICIT
information hybridizes the 2-tuple linguistic approach [18] and
hesitant fuzzy linguistic term sets (HFLTS) [19] by introducing
a Computing with Words (CW) [20], [21] framework that guar-
antees precise computations with hesitant expressions without
losing interpretability during the operational process [7]. These
ELICIT-CMCC models inherit the properties of classic CMCC
models [16] for numeric assessments; thus, they provide modi-
fied DMs’ preferences, which preserve as much as possible the
initial opinions and, in turn, guarantee the predefined consen-
sus threshold. In addition, ELICIT-CMCC models follow the
CW methodology [20], [21], i.e., linguistic results are obtained
from linguistic inputs. Since such optimization models do not
only require the use of many variables, but also the use of

nonlinear constraints involving the absolute value, this proposal
also includes a linearized version of the proposed ELICIT-
CMCC models to speed up the computational model and im-
prove the accuracy of the solution for the decision situation.
Finally, these novel linguistic CMCC models are used as the
basis to define a linguistic cost metric to evaluate LiCRPs that is
based on two indicators to determine the quality of a consensus
model: 1) the consensus degree achieved and 2) the minimum
changes necessary to obtain an agreed solution. The former is
essential to ensure that the consensus process has been carried
out successfully, i.e., it would be nonsense to score a consensus
model that does not achieve the desired level of consensus
with a high score [14], [15]. The latter guarantees that the
original opinions of the DMs are not modified beyond the strictly
necessary to reach the consensus threshold [16]. Therefore, an
LiCRP that performs unnecessary changes on DMs’ opinions to
reach the consensus will receive a low mark.

To summarize, the main novelties of this proposal are as
follows.

1) CMCC models for linguistic information are proposed
following a CW approach.

2) Such models are then linearized to accelerate computa-
tional cost, even with dealing with hundreds or thousands
of DMs, and improve the precision of the results.

3) From the linearized ELICIT-CMCC model, a linguistic
cost metric is proposed to objectively evaluate the perfor-
mance of LiCRPs.

The rest of this article is organized as follows. Section II
includes some preliminary notions required to better understand
this proposal related to LiGDM, 2-tuple, and ELICIT linguistic
representation schemes and minimum cost consensus (MCC)
models. In Section III, CMCC models for ELICIT information
are proposed and then linearized. Here, we also provide a brief
analysis regarding the feasibility of such linear models when
dealing with decision situations in which hundreds or thousands
of DMs take part. Afterward, Section IV introduces a linguistic
cost metric based on the previous CMCC models, and a couple of
CRPs are evaluated to illustrate its working. Section V shows the
CW nature of the ELICIT-CMCC models through the resolution
of an LiGDM problem, and Section V-C includes a comparative
analysis between the novel linguistic CMCC model for ELICIT
information and other proposals. Finally, Section VI concludes
this article.

II. BACKGROUND

This section introduces a revision of the basic notions related
to the proposal. First, the basic concepts of LiGDM are revised.
Afterward, the linguistic 2-tuple model and the ELICIT linguis-
tic representation model are reviewed, and some notations are
fixed to simplify their understanding. Finally, LiCRPs and MCC
models are revised.

A. Linguistic Group Decision Making

Decision processes are inherent in human beings’ daily life.
These decision situations consist of making the best possible
choice among several possible solutions to a certain problem.
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Fig. 2. LiGDM resolution scheme.

Fig. 3. Linguistic label.

Some decision problems are simple to solve and may involve
just one individual. However, other decision problems are more
complex and require several DMs, who may contribute with dif-
ferent points of view and knowledge. Formally, a GDM problem
is modeled as a decision situation in which several individuals
or DMs E = {e1, e2, . . ., em}, m ∈ N, have to decide which
alternative from a set X = {x1, x2, . . ., xn}, n ∈ N , is the best
solution to a problem [9], [22].

In addition, the complexity of GDM problems increases when
the available information is not objective, but vague and im-
precise. In such contexts, the stakeholders must address the
decision situation from a subjective point of view by using
qualitative assessments. In this regard, modeling DMs’ opinions
properly becomes crucial to managing the uncertainty inherent
in these situations. Although some proposals translate qualitative
information to a numerical scale, the goal of LiGDM is to model
the uncertainty using linguistic expressions close to the natural
way of human thinking (see Fig. 2).

This article uses the fuzzy linguistic approach [4], [5], [6]
based on fuzzy sets theory [23], [24] to model uncertainty in
LiGDM. This approach represents the linguistic information
using linguistic variables [4], [5], [6], which usually model
the information through parametric membership functions with
triangular or trapezoidal graphical representation, among others
(see Fig. 3).

The resolution of LiGDM problems implies to carry out
computations with linguistic information. In this sense, the CW
approach aims to provide linguistic solutions to problems formu-
lated with linguistic expressions that emulate human thinking.
There are several CW proposals in the literature [1] such as the
linguistic model based on the fuzzy relation proposed by Tang
and Zheng [25], linguistic distribution assessment proposed by
Dong et al. [26], or the fuzzy set approach to treat determinacy
and consistency of linguistic terms introduced by Ma et al. [27].

Fig. 4. Symbolic translation.

In particular, this article considers that the linguistic information
is modeled by the 2-tuple linguistic model [18] and the ELICIT
information [7], which highlight because they allow modeling
uncertainty according to the fuzzy linguistic approach [24]
without losing information or interpretability.

B. 2-Tuple Linguistic Model

The 2-tuple linguistic model [18] aimed to overcome the lack
of precision in classical linguistic computational approaches
through a continuous fuzzy representation of the linguistic
information and a computational model capable of carrying
out simple symbolic precise computations without approxima-
tions, obtaining accurate linguistic results according to the CW
scheme.

A 2-tuple linguistic value is a tuple (si, α) ∈ S := S ×
[−0.5, 0.5[, where si is a linguistic term that belongs to a certain
linguistic term set S = {s0, s1, . . . sg} (for a fixed even number
g ∈ N) andα is the so-called symbolic translation, i.e., a numer-
ical value that represents the shifting of si fuzzy membership
function (see Fig. 4). Note that for a linguistic 2-tuple value
(si, α) ∈ S, the possible values for the symbolic translation α
are

α ∈

⎧
⎪⎨
⎪⎩

[−0.5, 0.5), if si ∈ {s1, s2, . . . , sg−1}
[0, 0.5), if si = s0

[−0.5, 0], if si = sg

.

The key characteristic of 2-tuple linguistic expressions is the
fact that they can be translated into a numerical quantity x ∈
[0, g], which simplifies the computations.

Proposition 1 (See [18]): Let S = {s0, . . . sg} be a linguistic
term set. Then, the function Δ−1

S : S → [0, g] defined by

Δ−1
S (si, α) = i+ α, ∀(si, α) ∈ S

is a bijection whose inverse ΔS : [0, g] → S is given by

ΔS(x) = (sround(x), x− round(x))∀x ∈ [0, g]

where round(·) is the function that assigns the closest integer
number i ∈ {0, . . . , g}.

Remark 1: Note that any linguistic term si ∈ S can be repre-
sented as a 2-tuple linguistic value by considering (si, 0) ∈ S.
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Fig. 5. Example of ELICIT linguistic expressions.

C. ELICIT Information

The 2-tuple linguistic framework follows a CW scheme to
carry out computations, obtaining precise results that are easy
to understand. However, it presents an important drawback re-
garding the lack of expressiveness, because the linguistic 2-tuple
values are not able to model the DMs’ hesitancy between several
linguistic terms like HFLTS [19] do. Labella et al. [7] proposed
the use of ELICIT information to address this limitation by
introducing a linguistic approach that preserves the accuracy and
understandability of the 2-tuple linguistic model and improves
the expressiveness by hybridizing it with HFLTS.

Formally, ELICIT information is denoted here by an ex-
pression [si, sj ]γ1,γ2

, where si, sj ∈ S, i ≤ j are two 2-tuple
linguistic values. In addition, ELICIT values also consider two
parameters γ1 and γ2, which guarantee that no information is
lost during the computations with these expressions. It should
be noted that any trapezoidal fuzzy number (TrFN) [23], [24] can
be unequivocally represented as an ELICIT value (see Fig. 5).

Remark 2: A TrFN is a function T ≡ T (a, b, c, d) : [0, 1] →
[0, 1] of the form

T (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if 0 ≤ x ≤ a
x−a
b−a , if a < x < b
1, if b ≤ x ≤ c

d−x
d−c , if c < x < d
0, if d ≤ x ≤ 1

∀x ∈ [0, 1]

for certain 0 ≤ a ≤ b ≤ c ≤ d ≤ 1. For the sake of clarity, the
set of all TrFNs on the interval [0, 1] will be denoted by

T = {T : [0, 1] → [0, 1] : T is a TrFN} .

Proposition 2: Let S be the set of all possible ELICIT values.
Then, the mapping ζ given by

ζ : T → S

T (a, b, c, d) → [s1, s2]γ1,γ2

where

s1 = ΔS(gb) γ1 = a−max

{
b− 1

g2
, 0

}

s2 = ΔS(gc) γ2 = d−min

{
c+

1

g2
, 1

}

is a bijection whose inverse ζ−1 is defined by

ζ−1 : S → T

[s1, s2]γ1,γ2
→ T (a, b, c, d)

and allows computing the fuzzy representation of an ELICIT
expression as follows:

a = γ1 +max

{
Δ−1

S (s1)− 1
g

g
, 0

}
, b =

Δ−1
S (s1)

g

c =
Δ−1

S (sm)

g
, d = γ2 +min

{
Δ−1

S (sm) + 1
g

g
, 1

}
.

Remark 3: It must be highlighted that the notation
[s1, s2]γ1,γ2

is used for the sake of clarity, but the reader should
keep in mind that, in spite of its formal nature, this notation
resembles a linguistic expression. In other words, ELICIT infor-
mation can be used to represent the hesitancy between several
linguistic terms and perform precise computations on them by
providing a linguistic result.

The ELICIT computational model follows a CW approach
that computes the fuzzy representation of the respective linguis-
tic expressions, whose results are lately retranslated to ELICIT
information. From a theoretical point of view, ELICIT expres-
sions are generated by a context-free grammar, which models
comparative linguistic structures close to human language such
as at least bad, at most fast, or between expensive and rather
expensive [7]. Thus, this context-free grammar together with a
linguistic term set, for instance,

S = {Much Worse (MW),Worse (W),Slightly Worse (SW)

Equal (E),Slightly Better (SB),Better (B),Much Better (MB)}
can model linguistic expressions such as at least (W, 0.2)0.2, at
most (W, 0.1)0.1, or between (E, 0)−0.11 and (SB, 0.32)0.

Remark 4: Note that any linguistic term si ∈ S can be repre-
sented as the ELICIT expression (si, 0)0 ≡ [(si, 0), (si, 0)]00.
In the same way, an HFLTS {si, si+1, . . ., sj}, i < j, can be
translated to the ELICIT value [(si, 0), (sj , 0)]00.

To aggregate ELICIT values, Labella et al. [7] proposed
the use of the fuzzy weighted average operator A : T m → T
defined by

A(T1, T2, . . ., Tm)

=

(
m∑

k=1

ωkT
a
k ,

m∑

k=1

ωkT
b
k ,

m∑

k=1

ωkT
c
k ,

m∑

k=1

ωkT
d
k

)

where T t
k denotes the tth t ∈ {a, b, c, d} coordinate of the TrFN

Tk, k = 1, 2, . . .,m and ω1, ω2, . . ., ωm ≥ 0,
∑m

k=1 ωk = 1 are
the weights for the DMs.

A comparison measure to order ELICIT values based on the
method presented by Abbasbandy and Hajjari [28] was also
proposed. This method translates the fuzzy representation of the
ELICIT values, given by a TrFN, into a numerical value called
magnitude, which is defined by

Mag([si, sj ]γ1,γ2
) = Mag(T (a, b, c, d)) =

a+ 5b+ 5c+ d

12
.
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To compare two ELICIT values, it suffices to compute the
respective magnitudes. According to Labella et al. [7], the higher
the magnitude, the larger the ELICIT value.

Furthermore, to measure the distance between two ELICIT
values, Labella et al. [22] proposed using the geometric dis-
tance [29] between their respective associated TrFNs, δ : T ×
T → [0, 1] defined by

δ(T1, T2) =
1

4
(|a1 − a2|+ |b1 − b2|+ |c1 − c2|+ |d1 − d2|)

whereT1 ≡ (a1, b1, c1, d1), andT2 ≡ (a2, b2, c2, d2). Note that,
even though the geometric distances were originally proposed
as a parametric family [29], here, we consider just the distance
δ because it is defined in terms of absolute values rather than
powers, and this facilitates the linearization of the optimization
models we aim at proposing in the following section.

The use of ELICIT information can be adapted in classical
linguistic preference structures. In the following, we consider
that DMs’ opinions are modeled by using ELICIT preference
relations (EPRs), i.e., matrices of ELICIT values whose associ-
ated TrFNs are additive reciprocal matrices of TrFNs.

Remark 5: Let us define the set of matrices whose items are
TrFN

Mn×n(T ) :=
{
(T ij)n×n : T ij ∈ T ∀1 ≤ i ≤ n, 1 ≤ j ≤ n

}
.

We will say that T ∈ Mn×n(T ) is additive reciprocal [30] if

T ij [1] + T ji[4] = 1

T ij [2] + T ji[3] = 1

T ij [3] + T ji[1] = 1

T ij [4] + T ji[1] = 1

for any i, j ∈ {1, 2, . . ., n}, where T ij [t], t = 1, 2, 3, 4 repre-
sents the tth coordinate of the TrFN T ij . Furthermore, we will
use the notation Mn×n(T )∗ to denote the set of TrFN matrices
that are additive reciprocal.

Therefore, EPRs allow the generalization of other commonly
used preference structures based on linguistic pairwise compar-
ison matrices that rely on triangular or TrFNs such as linguistic
preference relations [31] or hesitant fuzzy linguistic preference
relations (HFLPRs) [32]. For example, the HFLPR on the lin-
guistic term set S given by

⎛
⎝

E W Bt SW and E
B E SB

Bt E and SB SW E

⎞
⎠

may be expressed as the EPR
⎛
⎝

(E, 0)0 (W, 0)0 [(SW, 0), (E, 0)]00
(B, 0)0 (E, 0)0 (SB, 0)0

[(E, 0), (SB, 0)]00 (SW, 0)0 (E, 0)0

⎞
⎠ .

D. Linguistic Consensus Reaching Processes

In order to address GDM making problems, several rules have
been proposed in the classical literature, such as the majority
rule, the minority rule, unanimity, or the Borda count [33],
[34]. However, even using these rules, some DMs may feel

unsatisfied with the solution chosen by the group because their
opinions have not been considered as much as they expected.
This situation may especially be undesired in certain real-world
problems that require a concrete level of agreement among the
DMs.

To soften these disagreements, CRPs have been developed to
guide DMs toward an agreed solution [9], [16], [22]. Usually
in a CRP, a moderator or automatic moderator process suggests
the DMs how to modify their opinions to lead the group to a
greater agreement through different discussion rounds. Owing
to the increasing necessity of LiGDM, CRPs have also been
adapted to manage linguistic information, emerging LiCRPs.
The general scheme of an LiCRP follows the scheme of CRPs but
includes the management of linguistic information and presents
the following phases [2].

1) Aligning preferences: DMs’ opinions are elicited by using
linguistic information.

2) Determining consensus degree: In each round of discus-
sion, the current consensus degreeμ ∈ [0, 1] in the group is
derived to evaluate the evolution of the consensus process.

3) Consensus control: After the discussion, the moderator
computes if the group has reached a certain consensus
threshold (μ0 ∈ [0, 1]). If so, the CRP stops and the ex-
ploitation process starts. If not, the discussion process
continues for another round. In any case, if a predefined
maximum number of rounds MaxRounds ∈ N is ex-
ceeded, the CRP stops.

4) Recommendation process: In case the desired consensus
threshold μ0 is not achieved, those DMs whose opinions
are furthest from the rest of the group are identified and
modified if necessary.

5) Exploitation: After the desired consensus threshold is
reached, the consensual modified opinions are aggregated
in order to derive the group collective opinion.

Over the years, researchers have proposed many consensus
models to support CRPs [17], [35]. For this reason, Palomares
et al. [2] proposed a taxonomy to categorize them based on two
characteristics related to consensus models.

1) Type of recommendation process to modify DMs’
opinions.

a) Feedback mechanism: The moderator asks the DMs if they
want to change or not their preferences [9], [22].

b) Automatic changes: DMs’ opinions are automatically
modified according to a certain algorithm without asking
the DMs [17], [35].

2) Type of consensus measure to derive the consensus degree.
a) Consensus measure of class 1: The consensus degree

among the DMs is computed by comparing the DMs’
preferences with the collective opinion [17], [36], [37].

b) Consensus measure of class 2: The consensus degree
among the DMs is computed by comparing the DMs’
preferences with each other [17], [22], [38].

E. Comprehensive Minimum Cost Consensus

Ben-Arieh and Easton [35] proposed MCC models to study
the cost of changing DMs’ preferences in a consensus process.
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These models are automatic CRPs (without feedback mecha-
nism) that minimize the cost of changing DMs’ original prefer-
ences by assuring that a maximum absolute deviation (ε ∈]0, 1])
between the individual assessments and the collective opinion is
not surpassed. Formally, for the initial values of the preferences
(o1, o2, . . ., om) ∈ R and a cost vector (c1, c2, . . ., cm) ∈ R+,
the proposed CRPs were defined by

min

m∑

k=1

ck|ok − ok|

s.t. |ok − o| ≤ ε, k = 1, 2, . . . ,m (MCC)

where (o1, . . . , om) are the adjusted opinions of the DMs, o
represents the group collective opinion computed by using a
weighted average operator, and ε is the maximum acceptable
distance of each DM to the collective opinion.

Lately, Zhang et al. [39] studied the influence of the aggrega-
tion operator used to derive the collective opinion on the solution
of the optimization problem. Consequently, they proposed a
generalized version of MCC as follows:

min

m∑

k=1

ck|ok − ok|

s.t.

{
o = F (o1, . . . , om)
|ok − o| ≤ ε, k = 1, 2, . . . ,m

(MCC : AO)

where o is now calculated using a different aggregation operator
F : Rm → R.

Even though these proposals allow translating a CRP situa-
tion into a mathematical programming problem, the constraint
defined by ε is quite simple and does not guarantee that a certain
consensus threshold μ0 ∈ [0, 1[ is achieved by the group. This
drawback is solved by the CMCC models introduced by Labella
et al. [16]. These models include the use of another constraint
to control such a consensus threshold

min
m∑

i=1

ci|oi − oi|

s.t.

⎧
⎨
⎩

o = F (o1, . . . , om)
|oi − o| ≤ ε, i = 1, 2, . . . ,m
consensus(o1, . . . , on) ≥ μ0

(CMCC)

where consensus(·) represents the desired consensus measure.

III. ELICIT-CMCC MODELS FOR LIGDM

Keeping in mind that our main goal is to define an objective
metric for measuring the performance of different LiCRPs, it is
essential to compute some ideal values for the DMs’ modified
preferences. To obtain such optimal values, we follow the CMCC
philosophy [16], which assumes that the best possible values
for such modified opinions are those that, by satisfying the
consensus threshold, are closest to their original preferences.

Even though MCC and CMCC models are focused on nu-
merical assessments [16], [17], [35], [39], some proposals in-
troduce extensions of the MCC models to a fuzzy environ-
ment. Nevertheless, the extended models either neglect the CW
approach [40] or are not able to model hesitancy [18], [41].
Because ELICIT information allows carrying out computations

with linguistic expressions that model hesitancy without loss
of information, this section extends the numeric CMCC mod-
els [16] to deal with ELICIT information and obtain an optimal
adjustment consensus model for the CW approach.

The general scheme of this article is as follows: let us con-
sider an LiGDM problem in which E = {e1, e2, . . ., em} DMs
have to decide in a consensual way which alternative X =
{x1, x2, . . ., xn} is the best solution for a concrete problem. To
do so, each DM provides an HFLPR [32], which is expressed
in terms of ELICIT information as an EPR. The ELICIT in-
formation contained in these matrices is then expressed as the
corresponding TrFNs by using the mapping ζ−1 (see Proposition
2). Such TrFNs are used as inputs for the ELICIT-CMCC model,
whose output provides the agreed preferences that are closest to
the original opinions given by the DMs. Finally, the modified
preferences obtained of solving the optimization problem, rep-
resented by TrFNs, are retranslated into ELICIT information by
using the mapping ζ (see Fig. 6).

Let O1, O2, . . ., Om ∈ Mn×n(T )∗ be the additive recipro-
cal matrices of TrFNs corresponding to the translation via the
mapping ζ−1 of DMs’ original preferences expressed in form
of EPRs, and let T1, T2, . . ., Tm ∈ Mn×n(T )∗ be the respective
modified DMs’ opinions. The cost function and the consensus
measures for these values are modeled by using the distance
δ revised in Section II-C. Consequently, the classical distance
measure between DMs’ opinions and the collective opinion
(0 < ε ≤ 1) and the consensus threshold used in CMCC models
(0 ≤ μ0 < 1) are adapted to the ELICIT-CMCC models as
follows.

1) ELICIT-CMCC model considering a consensus measure
of class 1

min
T i,j
1 ,...,T i,j

m ∈T

m∑

k=1

∑

i<j

cijk δ(T
i,j
k , Oi,j

k )

s.t.

⎧
⎪⎨
⎪⎩

T
i,j

= A(T i,j
1 , T i,j

2 , . . . , T i,j
m ), 1 ≤ i < j ≤ n

δ(T i,j
k , T

i,j
) ≤ ε, 1 ≤ i < j ≤ n, k = 1, 2, . . .,m

1− 1
N

∑m
k=1

∑
i<j wkδ(T

i,j
k , T

i,j
) ≥ μ0

(ELICIT− CMCC : 1)

2) ELICIT-CMCC model considering a consensus measure
of class 2

min
T i,j
1 ,...,T i,j

m ∈T

m∑

k=1

∑

i<j

cijk δ(T
i,j
k , Oi,j

k )

s.t.

⎧
⎪⎨
⎪⎩

T
i,j

= A(T i,j
1 , T i,j

2 , . . . , T i,j
m ), 1 ≤ i < j ≤ n

δ(T i,j
k , T

i,j
) ≤ ε, 1 ≤ i < j ≤ n, k = 1, 2, . . .,m

1− 1
N

∑
k<l

∑
i<j

wk+wl

m−1 δ(T i,j
k , T i,j

l ) ≥ μ0

(ELICIT− CMCC : 2)

where cijk ∈ [0, 1](
∑m

k=1

∑
i<j c

ij
k = 1) models the cost of

moving the DM ek’s preference of the alternative xi over xj ,
w1, w2, . . ., wm ∈ [0, 1] (

∑m
k=1 wk = 1) are the weights for

the DMs, N = n(n−1)
2 , and A : T m → T is a fuzzy weighted

average operator.
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Fig. 6. ELICIT-CMCC scheme.

Remark 6: To adapt these linguistic models to return trian-
gular fuzzy numbers, the condition T ij

k [1] ≤ T ij
k [2] ≤ T ij

k [3] ≤
T ij
k [4] should be replaced by T ij

k [1] ≤ T ij
k [2] = T ij

k [3] ≤
T ij
k [4].
It should be highlighted that both the inputs and the outputs

of these models are represented by using linguistic information
(EPRs), following a CW scheme that facilitates the understand-
ability of the results by the involved DMs (RQ1).

Note that the resolution of the previous consensus models
requires numerous variables and constraints of a nonlinear
optimization problem, which may lead to a high time con-
sumption [9]. To overcome this drawback, we introduce below
linearized versions of both (ELICIT-CMCC:1) and (ELICIT-
CMCC:2). For the sake of clarity, the domains of the constraints
in the models below use the notation Ib

a := [a, b] ∩ N for any
pair a < b ∈ N.

Theorem 1 (Linear ELICIT-CMCC:1): Let Oij
k [t] be the tth

coordinate (t = 1, 2, 3, 4) of the TrFN Oij
k , which represents

the initial rating about the alternative xi over xj provided by
the DM ek. In the same way, T ij

k [t] t = 1, 2, 3, 4 denotes the
corresponding modified opinions. Then, the model (ELICIT-
CMCC:1) is linearized as follows:

min
T i,j
k [t]∈[0,1]

1

4

m∑

k=1

∑

i<j

cijk

4∑

t=1

vijk [t]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ vijk [t] ≤ 1, k ∈ Im
1 , i ∈ In−1

1 , j ∈ In
i+1, t ∈ I4

1

−1 ≤ uij
k [t] ≤ 1, k ∈ Im

1 , i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

uij
k [t] = T ij

k [t]−Oij
k [t], k ∈ Im

1 , i ∈ In−1
1 ,

j ∈ In
i+1, t ∈ I4

1

vijk [t] ≥ uij
k [t], k ∈ Im

1 , i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

vijk [t] ≥ −uij
k [t], k ∈ Im

1 , i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

T
ij
[t] =

∑m
k=1 ωkT

ij
k [t], i ∈ In−1

1 , j ∈ In
i+1, t ∈ I4

1

0 ≤ zijk [t] ≤ 1, k ∈ Im
1 , i ∈ In−1

1 , j ∈ In
i+1, t ∈ I4

1

−1 ≤ yijk [t] ≤ 1, k ∈ Im
1 , i ∈ In−1

1 , j ∈ In
i+1, t ∈ I4

1

yijk [t] = T ij
k [t]− T

ij
k [t], k ∈ Im

1 , i ∈ In−1
1 ,

j ∈ In
i+1, t ∈ I4

1

zijk [t] ≥ yijk [t], k ∈ Im
1 , i ∈ In−1

1 , j ∈ In
i+1, t ∈ I4

1

zijk [t] ≥ −yijk [t], k ∈ Im
1 , i ∈ In−1

1 , j ∈ In
i+1, t ∈ I4

1

T ij
k [1] ≤ T ij

k [2] ≤ T ij
k [3] ≤ T ij

k [4], k ∈ Im
1 ,

i ∈ In−1
1 , j ∈ In

i+1
1
4

∑4
t=1 z

ij
k [t] ≤ ε, k ∈ Im

1 , i ∈ In−1
1 , j ∈ In

i+1

1− 1
4 N

∑m
k=1

∑
i<j wk

∑4
t=1 z

ij
k [t] ≥ μ0

.

L− ELICIT− CMCC : 1

where cijk ∈ [0, 1](
∑m

k=1

∑
i<j c

ij
k = 1)model the cost of mov-

ing the DM ek’s preference of the alternative xi over xj ,
w1, w2, . . ., wm ∈ [0, 1] (

∑m
k=1 wk = 1) are the weights for the

DMs, N = n(n−1)
2 , and ω1, ω2, . . ., ωm ∈ [0, 1] (

∑m
k=1 ωk =

1) are the weights for a fuzzy weighted average operator.
Theorem 2 (Linear ELICIT-CMCC:2): Let Oij

k [t] be the tth
coordinate (t = 1, 2, 3, 4) of the TrFN Oij

k , which represents
the initial rating about the alternative xi over xj provided by
the DM ek. In the same way, T ij

k [t] t = 1, 2, 3, 4 denotes the for
the corresponding modified opinions. Then, the linearized ver-
sion of the model (ELICIT-CMCC:2) is given by, unnumbered
equation shown at the bottom of the next page.
where cijk ∈ [0, 1](

∑m
k=1

∑
i<j c

ij
k = 1)model the cost of mov-

ing the DM ek’s preference of the alternative xi over xj ,
w1, w2, . . ., wm ∈ [0, 1] (

∑m
k=1 wk = 1) are the weights for the

DMs, N = n(n−1)
2 , and ω1, ω2, . . ., ωm ∈ [0, 1] (

∑m
k=1 ωk =

1) are the weights for a fuzzy weighted average operator.
Proof: The proof of these results are provided in Appendix A,

available in the online supplementary material. �
This linear formulation of the ELICIT-CMCC models allows

us to considerably accelerate the resolution of the optimization
problem and improve the accuracy of the results provided by
computational solvers. Indeed, the linear formulation also allows
applying these models in large-scale GDM problems [1], [42],
namely, decision situations in which hundreds or thousands
of DMs may take part. In this regard, we have tested the
performance of the proposal in such contexts under randomly
generated initial preferences. The simulations have considered
n = 4,μ0 = 0.8, and ε = 0.2 and have been carried out by using
the solver Clp for the programming language Julia 1.6 [43] on
the cloud service Google Colaboratory [44] (2.20-GHz Intel(R)
Xeon(R) CPU and 13-GB RAM). These simulations have shown
that the model (ELICIT-CMCC:1) is able to deal with problems
involving hundreds of DMs in a few seconds and just needs
around 4 min to solve problems with 2000 DMs. However, since
the volume of constraints and variables required to linearize
(ELICIT-CMCC:2) is much higher, the latter requires around
26 min to solve problems in which 200 DMs are considered.

Remark 7: Note that, according to the literature review
carried out by García-Zamora et al. [1], most of the existing
large-scale CRPs are evaluated by using GDM problems involv-
ing just 20 or 50 DMs.

IV. LINGUISTIC COST METRIC BASED ON ELICIT-CMCC

The high prevalence of LiGDM problems in society has
attracted the attention of researchers, who have proposed many
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LiCRPs based on the fuzzy linguistic approach [9], [22]. How-
ever, this large number of proposals implies a considerable
problematic related to choose the most suitable consensus model
for solving a certain LiGDM problem. Even though several
authors carry out a comparative analysis with other proposals
in order to show their advantages, the lack of objective metrics
prevents from categorically claiming that one model is better
than another. In addition, this absence of metrics harms the
research in the area, since there is no filter to evaluate the novel
CRPs from a performance point of view [1].

Hereafter, we introduce a linguistic metric based on the
ELICIT-CMCC models presented in the previous section. This
linguistic metric aims at measuring the performance of those
LiCRPs that model the linguistic information by means of
linguistic variables with a triangular or trapezoidal membership
function representation because they can be easily written in
terms of ELICIT information. As in the previous section, here,
we consider an LiGDM problem in which m DMs want to reach
a consensus about which alternative, from a set of n, is the most
suitable one with a consensus threshold μ0 ∈ [0, 1[.

To do so, their judgments, which are elicited by using linguis-
tic expressions and pairwise comparisons, are first translated
into TrFNs. If two TrFN matrices T and T ′ that are additive
reciprocal are given, the distance between them is computed
by using the function ν : Mn×n(T )∗ ×Mn×n(T )∗ → [0, 1]

defined by

ν(T, T ′) =
2

n(n− 1)

∑

i<j

δ(T ij , T ′ij)

=
2

n(n− 1)

∑

i<j

1

4

4∑

t=1

|T ij [t]− T ′ij [t]|∀(T, T ′)

∈ Mn×n(T )∗ ×Mn×n(T )∗

where δ is the geometric distance between TrFNs defined in
Section II-C and T ij [t], T ′ij [t] t = 1, 2, 3, 4 denote the tth co-
ordinates of the TrFNs T ij and T ′ij , respectively.

Let O = {O1, O2, . . ., Om} ⊂ Mn×n(T )∗ be the TrFN ma-
trices corresponding to the initial values of DMs’ prefer-
ences for the aforementioned LiGDM problem, and let T =
{T̂1, T̂2, . . . , T̂m} ⊂ Mn×n(T )∗ be the set of modified agreed
preferences obtained as output from a certain LiCRP. In the
same way, the set T 0 = {T 0

1 , . . . , T
0
m} ∈ Mn×n(T )∗ denotes

the optimal solution obtained for the consensus threshold μ0 by
using either the model ELICIT-CMCC:1 if the LiCRP uses a
consensus measure of class 1 or ELICIT-CMCC:2 if the LiCRP
uses a consensus measure of class 2. From these TrFN matrices,
the mean distance between the outputs of the corresponding

min
T i,j
k [t]∈[0,1]

1

4

m∑

k=1

∑

i<j

cijk

4∑

t=1

vijk [t]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ vijk [t] ≤ 1, k ∈ Im
1 , i ∈ In−1

1 , j ∈ In
i+1, t ∈ I4

1

−1 ≤ uij
k [t] ≤ 1, k ∈ Im

1 , i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

uij
k [t] = T ij

k [t]−Oij
k [t], k ∈ Im

1 , i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

vijk [t] ≥ uij
k [t], k ∈ Im

1 , i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

vijk [t] ≥ −uij
k [t], k ∈ Im

1 , i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

T
ij
[t] =

∑m
k=1 ωkT

ij
k [t]

0 ≤ zijk [t] ≤ 1, i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

−1 ≤ yijk [t] ≤ 1, k ∈ Im
1 , i ∈ In−1

1 , j ∈ In
i+1, t ∈ I4

1

yijk [t] = T ij
k [t]− T

ij
k [t], k ∈ Im

1 , i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

zijk [t] ≥ yijk [t], k ∈ Im
1 , i ∈ In−1

1 , j ∈ In
i+1, t ∈ I4

1

zijk [t] ≥ −yijk [t], k ∈ Im
1 , i ∈ In−1

1 , j ∈ In
i+1, t ∈ I4

1

T ij
k [1] ≤ T ij

k [2] ≤ T ij
k [3] ≤ T ij

k [4], k ∈ Im
1 , i ∈ In−1

1 , j ∈ In
i+1

1
4

∑4
t=1 z

ij
k [t] ≤ ε, k ∈ Im

1 , i ∈ In−1
1 , j ∈ In

i+1

0 ≤ qijkl[t] ≤ 1, k ∈ Im−1
1 , l ∈ Im

k+1i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

−1 ≤ pijkl[t] ≤ 1, k ∈ Im−1
1 , l ∈ Im

k+1i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

pijkl[t] = T ij
k [t]− T ij

l [t], k ∈ Im−1
1 , l ∈ Im

k+1i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

qijkl[t] ≥ pijkl[t], k ∈ Im−1
1 , l ∈ Im

k+1i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

qijkl[t] ≥ −pijkl[t], k ∈ Im−1
1 , l ∈ Im

k+1i ∈ In−1
1 , j ∈ In

i+1, t ∈ I4
1

1− 1
4 N

∑m
k=1

∑
i<j

wk+wl

m−1

∑4
t=1 q

ij
kl[t] ≥ μ0,

(L− ELICIT− CMCC : 2)
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Fig. 7. Sketch of the graph of Φ0.25,0.75.

consensus models and the original preferences are computed as

d :=
1

m

m∑

k=1

ν(Tk, Ok) ∈ [0, 1]

d0 :=
1

m

m∑

k=1

ν(T 0
k , Ok) ∈ [0, 1].

Note that these values strongly depend on the original values of
the DMs’ preferences, but such dependence is not reflected in
the notation for the sake of simplicity.

To analyze the performance of the LiCRP, the distance d com-
puted from the corresponding modified preferences is compared
to the distance d0 computed by using the ELICIT-CMCC model,
which provides the preferences that require the lowest changes
to reach the consensus threshold μ0 (when ε = 1).

To compare these values, we use the metric Φd0,μ0
: [0, 1]×

[0, 1] → [−1, α6] given by

Φd0,μ0
(x, y)

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(α1 − α2)x+ α3−α2

μ0
y + α2, 0 ≤ y < μ0

−1,

{
μ0 ≤ y ≤ 1
0 ≤ x < d0

(x−d0

1−d0
)

1
3 (α4 − α6+

(y−μ0

1−μ0
)(α5 − α4)) + α6

,

{
μ0 ≤ y ≤ 1
d0 ≤ x ≤ 1

∀x, y ∈ [0, 1], where 0 ≤ α1 < α2 < α3 ≤ α4 < α5 < α6

are some parameters to configure the scale. In this regard, we
propose the use of the default values α1 = 0.0, α2 = 0.3, α3 =
0.5, α4 = 0.5, α5 = 0.6, and α6 = 1.0, which guarantee that
the function Φd0,μ0

is valuated in the interval [0, 1]. For such
values, the graph shown in Fig. 7 is obtained when the distance
between the minimal solution to the ELICIT-CMCC optimiza-
tion problem and the original preferences is d0 = 0.25, and the
consensus threshold is μ0 = 0.75.

Note that this metric provides a numeric rating in a [0, 1] scale,
which is higher when the performance of the analyzed LiCRP is
better. Consequently, to objectively evaluate the performance of
an LiCRP in a certain LiGDM problem, it suffices to compute

the value of Φd0,μ0
(d, μ), where d is the distance between

the original preferences and the modified opinions provided as
output of the evaluated LiCRP and μ is the consensus degree of
such modified preferences.

Remark 8: It should be highlighted that changing the values
of the parameters α1, α2, . . ., α6 implies a change of the scale
in which the marks of the CRPs are given, but the better CRPs
will still receive the higher marks.

Let us analyze the geometrical interpretation of the value
Φd0,μ0

(d, μ).
1) 0 ≤ μ < μ0: In this case, the consensus degree μ obtained

by the LiCRP is worse than the consensus threshold μ0. In
this case, the worst scenario is Φd0,μ0

(1, 0) = α1 and the
best ones are those close to the pair (0, μ0), which receives
a value close to α3. α2 is the value assigned to the pairs
close to (0, 0).

2) μ0 ≤ μ ≤ 1: In the case in which the LiCRP reaches the
consensus threshold, it is necessary to differentiate two
scenarios:

1) 0 ≤ d < d0: This case is unfeasible in practice because to
achieve the consensus thresholdμ0, the minimum distance
required is d0. Therefore, the metric assigns −1 to the
values in this region.

2) d0 ≤ d ≤ 1: In this case, the LiCRP achieves the consen-
sus threshold μ0, but the distance d between the modified
preferences and the original ones may not be close to the
optimal distance d0. The best pairs are those in which
the distance d is equal to the optimal, and therefore, the
metric receives the value α6. If the LiCRP reaches the
consensus threshold but makes unnecessary changes (d
close to 1), the metric returns values close to α4. The
value α5 is obtained when the distance is maximal, but
the consensus level is close to 1.

The metric Φd0,μ0
allows testing the performance of a model

by comparing it with the optimal modified preferences obtained
from the ELICIT-CMCC models (RQ2). However, the value of
Φα

d0,μ0
(d, μ) highly depends on the original values of the pref-

erences given by the DMs O = {O1, O2, . . ., Om}. To provide
fair comparisons, the value of this metric should be computed
for different LiGDM problems. To do that, the consensus model
should be tested under several contexts O1, O2, . . ., Or in order
to better evaluate its performance, thus obtaining an average
valueΦμ0

:= 1
r

∑r
s=1 Φdr

0,μ0
(ds, μs), where dr0 is the minimum

value of the cost function for the initial preferences Os, dr0 is the
value of the cost function for the preferences modified by the
LiCRP, and μs is the corresponding consensus degree. There-
fore, we propose solving the same LiGDM problem for several
randomized preferences and computing the average value of the
metric.

For instance, this metric has been used to evaluate the perfor-
mance of two LiCRPs: the consensus model for ELICIT infor-
mation introduced by Labella et al. [22] and the model proposed
by Rodriguez et al. [9] for large-scale dealing with comparative
linguistic expressions (CLEs). To do so, ten simulations with
random preferences have been carried out in both the models.
In each simulation, five DMs have to decide which alternative
within a collection of four possible choices is the best one from
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TABLE I
LABELLA ET AL. [22] SIMULATIONS RESULTS FOR µ0 = 0.8

TABLE II
RODRÍGUEZ ET AL. [9] SIMULATIONS RESULTS FOR µ0 = 0.8

a consensual point of view. The consensus threshold has been
established in μ0 = 0.8 and the maximum number of allowed
rounds is MaxRounds = 5.

The results of both the models are, respectively, shown in
Tables I and II. Whereas the average value of our metric for
the Labella et al. model is 0.849, the Rodríguez et al. model
obtained an average mark of 0.808. Although both the models
usually reach the consensus threshold μ0 = 0.8, the Rodríguez
et al. model has shown a slightly worse performance because it
changes DMs’ initial opinions more than Labella et al. model,
i.e., the average value d− d0 is larger for the Rodríguez et al.
model.

Finally, in order to perform a comparative analysis of this
metric with other proposals, a search in Web of Science of
the topics “metric” and “consensus reaching process” reveals
that there is only one proper related paper proposed by Labella
et al. [16]. Even though such work also considers as input the
cost of modifying experts’ opinions, the metric here proposed
includes the following novelties regarding the one in [16].

1) The proposed metric in this article is capable to deal with
flexible comparative linguistic information, which allows
applying the metric in LiCRPs that require the modeling
of DMs’ hesitancy with expressions closer to their way of
thinking.

2) It can be used to rate consensus models for large-scale
LiGDM problems due to the linearization of the ELICIT-
CMCC model.

3) Whereas the Labella et al. metric [16] assigns the same
value to models with similar cost, the proposed metric
assigns the metric value according to not only the cost
but also the consensus degree reached by the consensus
model. Consequently, the mathematical definition of the
proposed metric is completely different to the one given
in [16] (see Fig. 7) to ensure that the models are evaluated
according to different scenarios that are determined by the
consensus threshold and the minimum feasible cost.

4) The metric proposed in [16] is valuated in [−1, 1], where
0 is the best scenario in terms of cost and 1 and −1 are
bad scenarios with different meanings. On the contrary,
the metric here introduced returns a value in a 0–1 scale
that increases according to the quality of the evaluated
model. This new metric, even though it is formally more

complex, simplifies the comparison process because the
higher the value of the metric, the better the quality of the
model.

V. APPLYING THE LICRP METRIC TO LIGDM PROBLEMS

Here, the performance of both the ELICIT-CMCC models
and the proposed linguistic cost metric is shown. First, in Sec-
tion V-A, an illustrative LiGDM problem is introduced. After-
ward, Section V-B solves such an LiGDM problem by using
the CW ELICIT-CMCC:2 model. Finally, in Section V-C, two
LiCRPs proposed in the literature [9], [22] are used to solve the
same LiGDM problem in order to compare their performances
through the linguistic cost metric. Since the purpose of this
section is not solving a real-world problem, but showing how
to use our proposals, we consider a toy problem with five DMs
to simplify the process.

A. Illustrative LiGDM Problem Description

The LiGDM problem we aim at solving consists of a group of
five friends m = 5 who want to decide in a consensual way (to
avoid none of them feel unsatisfied with the chosen alternative),
which movie franchise is the most preferred by the group to do
a marathon. The possible alternatives are x1 : Avengers, x2 :
Harry Potter, x3 : Star Wars, and x4 : The Lord of the Rings.
In order to facilitate the decision process, they are asked to
provide linguistic assessments by comparing the alternatives
to each other. Since they may doubt in their preferences, we
use HFLPRs to model their opinions. The linguistic expression
domain is as follows:

S = {Much Worse (MW),Worse (W),Slightly Worse (SW)

Equal (E),Slightly Better (SB),Better (B),Much Better (MB)}.

The initial values provided by the three DMs are compiled in
Appendix B.A.

B. Solving the LiGDM Problem With ELICIT-CMCC Models

Here, the resolution of the illustrative LiGDM problem using
the ELICIT-CMCC:2 model is carried out. First, the HFLPRs
provided by the DMs (see Appendix B.A) are rewritten as EPRs
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Fig. 8. Graphical visualization regarding the DMs’ preferences in the different simulations and consensus models.

TABLE III
DOMINANCES AND MAGNITUDES FOR DETERMINING THE RANKING

OF EACH ALTERNATIVE

(Appendix B.B) and then expressed as TrFNs by using the
mapping ζ−1 (Appendix B.C).

To obtain the results of the linearized optimization problem,
we have used the programming language Julia [43], concretely
the package Clp which allows solving linear optimization prob-
lems. For a consensus threshold established as μ0 = 0.8 and
a maximal distance between DMs and the collective opin-
ion ε = 0.2, the optimal agreed preferences obtained for the
ELICIT-CMCC:2 model are shown in Appendix B.D, and their
translation into ELICIT values are in Appendix B.E.

From the collective values, the ELICIT expressions corre-
sponding to the dominance degree [45], [46] of each alternative
over the others are computed by using the fuzzy weighted
average. For each one of such dominances, the respective value
of its magnitude [7] (see Section II-C) is computed in order to
determine the ranking of the alternatives. Both the dominances
and their magnitudes are summarized in Table III.

Therefore, the ranking of the alternatives is x3 � x2 � x4 �
x1. In other words, choosing the alternative x3 : Star Wars is the
best option from a consensual point of view, which requires the
lowest cost.

C. Comparative Analysis

This section is devoted to compare the performance of two
different LiCRPs to the ELICIT-CMCC approach when facing
the problem described in the previous section. To do so, several
aspects of these models are analyzed, such as the value of the
metricΦμ0

or the number of rounds required to reach the desired
consensus under different scenarios.

TABLE IV
COMPARATIVE RESULTS OF LABELLA ET AL. [22], RODRÍGUEZ ET AL. [9], AND

ELICIT-CMCC:2 FOR µ0 = 0.8 AND d0 = 0.06

TABLE V
COMPARATIVE RESULTS OF LABELLA ET AL. [22], RODRÍGUEZ ET AL. [9], AND

ELICIT-CMCC:2 FOR µ0 = 0.9 AND d0 = 0.12

The selected consensus models for this comparative analysis
are the consensus model for ELICIT information introduced by
Labella et al. [22] and the consensus model that deals with CLEs
proposed by Rodríguez et al. [9]. Both the proposals have solved
the problem previously introduced under two different scenarios.

1) Scenario 1: μ0 = 0.8 and MaxRounds = 5 (see Ta-
ble IV).

2) Scenario 2: μ0 = 0.9 and MaxRounds = 5 (see Ta-
ble V).

In addition, the value for the parameter ε used in the ELICIT-
CMCC:2 is set as ε = 0.2. This model is also evaluated under
the two aforementioned consensus situations.

In the first scenario, the Labella et al. model [22] achieves
a consensus degree μ = 0.81 in one discussion round, and the
Rodríguez et al. [9] model achieves a consensus degree of μ =
0.85 in two discussion rounds. Regarding the maximal distance
between DMs and collective opinion, note that the condition ε ≤
0.2guarantees such a maximal distance in ELICIT-CMCC:2 (see
Table IV). However, such distance is much higher in both Labella
et al. and Rodríguez et al. models, which can be appreciated in
Fig. 8.

In the second scenario, the consensus degree obtained by
Labella et al. model is μ = 0.91 in five rounds and the obtained
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by Rodríguez et al. model is μ = 0.92 in three rounds. In this
scenario, the distance between modified preferences and the
collective opinion is lower than before for the Labella et al.
model (0.12), but still higher than ε = 0.2 for the Rodríguez
et al. (see Table V and Fig. 8).

As expected, the costs obtained in ELICIT-CMCC:2 (0.06
and 0.12) are lower than the costs of both Labella et al. [22]
(0.08 and 0.15) and Rodríguez et al. [9] (0.14 and 0.17) models.
In this regard, the ELICIT:CMCC:2 stands out because of its
efficiency.

Regarding the marks provided by our metric for these three
approaches, in the μ0 = 0.8 scenario, Labella et al. CRP gets a
score of 0.875, whereas Rodríguez et al. proposal obtains a score
equal to 0.801. The performance of both the models to solve
this specific LiGDM problem in terms of “extra cost” could be
considered “good” but far from the optimal modified preferences
provided by the ELICIT-CMCC model, whose mark is 0.939.

In the μ0 = 0.9 case, the Labella et al. model is still better
than the Rodríguez et al. approach, but their marks are closer
than in the previous scenario (0.843 and 0.815, respectively).
Meanwhile, the ELICIT-CMCC:2 proposal gets an approximate
mark of 1, which means that, for these values of the initial prefer-
ences, the solutions for the optimization problems corresponding
to ε = 1, which provides the ideal modified preferences used in
the metric, and ε = 0.2, which is the value used to derive the
agreed solution in this illustrative example, are very close.

To sum up, the marks provided by the cost metric are quite
simple and intuitive and allow evaluating properly the perfor-
mance of LiCRPs, because it compares the output provided by
the LiCRPs with the one provided by the ELICIT-CMCC model
in terms of cost and consensus degree achieved.

VI. CONCLUSION

This article proposed a cost metric for LiCRPs, which takes
into account both the cost of modifying the original DMs’ pref-
erences and the final consensus degree obtained by the group.

The definition of such a metric relies on ELICIT-CMCC
models, a novel extension of CMCC models to manage linguistic
information. The use of ELICIT information guarantees the
manipulation of linguistic values without losing information
in the process and assuring the interpretability of the results.
Concretely, the output obtained from ELICIT-CMCC models
present the following properties.

1) It is expressed in a linguistic domain.
2) It minimizes the cost of moving DMs’ preferences.
3) It guarantees a maximal absolute deviation ε between the

modified opinions and the collective one.
4) The obtained consensus degree is equal to or greater than

a predefined consensus threshold μ0.
In order to improve the computational performance of these

ELICIT-CMCC models, we also proposed the corresponding
linearized version, which additionally grants more precise so-
lutions when it is implemented in a computer solver. Further-
more, the performance of these linear ELICIT-CMCC in GDM
problems involving hundreds or thousands of DMs was briefly
discussed.

The inherent features of the previous models have also al-
lowed us to address one of the most recurrent limitations in
the LiCRP literature: the lack of metrics capable to evaluate
the performance of these processes. In this sense, the proposed
linguistic cost metric compares the optimal cost necessary to
reach the desired consensus threshold, which is obtained from
solving an ELICIT-CMCC model (ELICIT-CMCC:1 or ELICIT-
CMCC:2), with the changes made by the LiCRP. In addition, if
the resulting consensus degree after the LiCRP is lower than the
desired consensus threshold, the metric will rate such LiCRP
with a low mark. This metric has also been used to evaluate the
performance of two linguistic consensus models already defined
in the specialized literature [9], [22] to show its implementation
in practice.

Finally, we developed a comparative analysis that reveals that
ELICIT-CMCC models are much better in terms of efficiency
(lower cost and better values for μ and ε) than two LiCRPs [9],
[22].

To summarize, the main contributions of this article are as
follows:

1) linguistic CMCC models for LiGDM based on ELICIT
information which follow a CW approach;

2) linearization of the ELICIT-CMCC models to improve
their performance and expand their use to LiCRP with
many DMs;

3) a linguistic cost metric to evaluate LiCRPs.
As future works, we will analyze some formal aspects such

as the use of other linguistic preference structures to propose
ELICIT-CMCC, instead of pairwise comparison matrices, such
as utility linguistic vectors. Furthermore, we will study the
impact of using different aggregation operators to compute the
collective opinion to improve the scope of ELICIT-CMCC, as
well as the use of different weighting mechanisms to determine
experts’ importance [47]. In addition, the influence of the param-
eters μ0 and ε in the resolution of the GDM problem should be
discussed. From the application point of view, ELICIT-CMCC
will be used to solve real-world decision problems with hundreds
or thousands of DMs. Last but not least, the proposed metric
must be applied to the evaluation of novel proposed LiCRPs to
draw conclusions about their capability.
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5
C O N C L U S I O N E S Y T R A B A J O S F U T U R O S

Para finalizar esta memoria, presentaremos las conclusiones que
hemos extraído durante nuestra investigación, así como los posibles
proyectos futuros que podrían abordarse a partir de los resultados
obtenidos.

5.1 conclusiones

La TDGGE surge para resolver problemas reales de decisión en
contextos de incertidumbre que requieren considerar las opiniones
de un gran número de decisores. Al tener en cuenta las opiniones
de muchas personas se pueden lograr resultados más objetivos que
cuando se utilizan grupos reducidos, pero a cambio aumenta la
complejidad.

El primer objetivo de esta memoria consistía en proponer nuevos
enfoques para modelar la naturaleza no lineal de las preferencias
dadas por seres humanos. Para cumplirlo, hemos definido las fun-
ciones EVAs y EVRs, que permiten transformar las valoraciones de
los decisores en problemas de TDG de forma no lineal. Hemos com-
probado que utilizar EVAs en PAC, además de ser más realista desde
el punto de vista psicológico, generalmente mejora los resultados
del PAC. Por otro lado, se ha demostrado que los EVRs pueden ser
utilizados para fusionar las opiniones de los decisores dando mayor
prioridad a los valores intermedios, que son los de mayor relevancia
para alcanzar el consenso.

El siguiente objetivo estaba relacionado con mejorar los modelos de
TDGGE para abordar problemas que requieran de un gran número
de decisores. Para ello, nos hemos centrado en los modelos de CCM,
que, al ser PAC automáticos, son especialmente útiles para manejar
problemas en TDGGE, pues no requieren de varias rondas de ne-
gociación para alcanzar una solución consensuada. En este aspecto,
hemos analizado en detalle la estructura matemática de los modelos
CCM integrales, concluyendo que es posible mejorar considerable-
mente su eficiencia cuando se eliminan restricciones que pueden
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ser redundantes. Además, hemos propuesto los modelos FZZ-MCC,
que generalizan los modelos CCM existentes en la literatura de una
forma flexible. Desde un punto de vista práctico, hemos definido
diversos modelos de consenso que permiten abordar problemas de
TDGGE tales como democracia electrónica y la integración de datos
y conocimiento experto en la TD.

El último objetivo consistía en la definición de métricas que per-
mitan evaluar objetivamente el rendimiento de los PACGE. Para
lograr esto, hemos desarrollado una métrica que evalúa los PAC
atendiendo simultáneamente al nivel de acuerdo alcanzado y a las
modificaciones realizadas en las preferencias originales.

En conclusión, es importante resaltar que hemos logrado alcanzar
todos los objetivos establecidos al inicio de esta investigación, lo que
ha permitido desarrollar herramientas, modelos y resultados que
superan el estado del arte previo y abren nuevas posibilidades de
investigación, tal como se describe en la siguiente sección.

5.2 trabajos futuros

Los resultados de esta investigación abren la posibilidad de explo-
rar nuevas áreas de estudio que pueden ser abordadas en trabajos
futuros. Algunas de las posibles líneas de investigación que pueden
continuar el trabajo realizado en esta tesis doctoral son:

• Aplicar la teoría de EVAs y EVRs para hacer frente a retos de
la TDGGE como la polarización de opiniones o las opiniones
minoritarias.

• Estudiar el uso de Operadores EVR-OWA en problemas de
TDGGE.

• Desarrollar nuevos modelos de TDGGE escalables para resolver
problemas de TD del mundo real que involucren a millones de
personas.

• Extender los modelos FZZ-MCC para hacer frente a nuevas
situaciones de decisión, por ejemplo, integrando análisis de
redes sociales.

• Explorar nuevos tipos de problemas de decisión desde la per-
spectiva de la TDGGE, como los de sorting, que buscan clasi-
ficar alternativas en diferentes categorías.
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5.3 publicaciones adicionales

En el desarrollo de esta investigación se han presentado otras publica-
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a continuación:

• Publicaciones en otras revistas internacionales:

– H. Song, D. García-Zamora, A. Labella Romero, X. Jia, Y.
Wang, and L. Martínez. “Handling multi-granular hesitant
information: A group decision-making method based on
cross-efficiency with regret theory”. In: Expert Systems with
Applications, 2023, 120332. Impact factor 8.665, Q1.

– Y. Wang, S. He, D. García Zamora, X. Pan, and L.Martínez,
“A Large Scale Group Three-Way Decision-based con-
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Impact factor 12.253, Q1.
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Martínez. “Nonlinear Scaled Preferences in Linguistic
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Multi-Criteria Group Decision Making”. In: Real Life Ap-
plications of Multiple Criteria Decision-Making Techniques in
Fuzzy Domain. Springer Nature Singapore Pte Ltd; 2022.

• Congresos internacionales:

– Á. Labella, D. García-Zamora, W. He, R.M. Rodríguez, and
L. Martínez (2022). “Grouping representative points in
AHP-FuzzySort with agglomerative hierarchical cluster-
ing”. In: The International Symposium on the Analytic
Hierarchy Process (ISAHP2022), Online, December 15-18,
2022.

– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “Comprehensive Minimum Cost Consensus for
Analyzing the Cost of Different Agreed Solutions”. In: 15th
International FLINS Conference on Machine Learning, Multi
agent and Cyber physical systems and the 17th International
ISKE Conference (FLINS/ISKE 2022), 26-28 August Tianjin
(China) 2022.
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Martínez. “Comprehensive Minimum Cost Consensus
Models for ELICIT Information”. In: 2022 Word Congress on
Computational Intelligence (IEEE WCCI2022), Padua, Italy
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– J. Baz, D. García-Zamora, I. Díaz, S. Montes, L. Martínez.
“Flexible-Dimensional EVR-OWA as Mean Estimator for
Symmetric Distributions”. In: The 19th International Con-
ference On Information Processing And Management Of Un-
certainty In Knowledge-Based Systems (IPMU 2022), Milan
(Italy), July 11-15, 2022.

– Á. Labella, D. García-Zamora, R.M. Rodríguez, and L.
Martínez (2022). “Fuzzy TODIM for ELICIT Information”.
In: International Conference on Intelligent and Fuzzy Systems
(INFUS 2022), Istanbul (Turkey), July 19-21, 2022 .

– A. Labella, D. García-Zamora, R. M. Rodríguez and L.
Martínez. “A Consensus-based Best-Worst Method for
Multi-criteria Group Decision-Making”. In: The Third Inter-
national Workshop on Best-Worst Method (BWM-2022), Delft,
The Netherlands, 09-10 June 2022.
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– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “Modelling non linear preferences in Consensus
Reaching Processes. A sustainability application”. In: 16th
International Conference on Intelligent Systems and Knowledge
Engineering (ISKE 2021), 26-28 November Chengdu (China)
2021.

– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “An Ordered Weighted Averaging Operator
based on Extreme Values Reductions´´. In: The 19th World
Congress of the International Fuzzy Systems Association. The
12th Conference of the European Society for Fuzzy Logic and
Technology jointly with the AGOP, IJCRS, and FQAS confer-
ences. Bratislava (Slovakia), September 19-24, 2021.

– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “Non Linear Scales in GDM: Extreme Values
Amplifications”. In: International Virtual Workshop on Busi-
ness Analytics Eureka, 2-4 Junio, Ciudad Juarez (Mexico),
2021.

– A. Labella, D. García-Zamora, R. M. Rodríguez and L.
Martínez. “A Novel Linguistic Cohesion Measure based
on Restricted Equivalence Functions for Weighting Ex-
perts’ subgroups in Large-scale Group Decision Making
Problems´´. In: International Virtual Workshop on Business
Analytics Eureka, 2-4 Junio, Ciudad Juarez (Mexico), 2021.

• Congresos Nacionales:

– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “Nonlinear Preferences in Consensus Reaching
Processes. Extreme Values Amplifications”. In: XXI Con-
greso español sobre Tecnologías y Lógica Fuzzy (ESTYLF 2022),
celebrado en Toledo el 4 –7 de Septiembre 2022.

– D. García-Zamora, A. Labella, P. Nuñez-Cacho, R. M. Ro-
dríguez and L. Martínez. “Modelos de consenso basados
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greso español sobre Tecnologías y Lógica Fuzzy (ESTYLF 2022),
celebrado en Toledo el 4 –7 de Septiembre 2022.
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en Grupo. Amplificación de Valores Extremos”. In: CEDI
20/21: VI Congreso Español de Informática, celebrado el 22 –
24. Septiembre 2021.

5.4 reconocimientos

Es importante mencionar que algunos de los trabajos realizados
durante esta tesis doctoral han sido reconocidos por la comunidad
científica:

1. El trabajo “Modelling Non Linear Preferences in Consensus
Reaching Processes: A Sustainability Application”, presentado
en the 16th International Conference on Intelligent Systems and
Knowledge Engineering (ISKE 2021), celebrado en Chengdu,
China, en noviembre de 2021 recibió el premio al mejor artículo
de estudiante.

2. El poster titulado “ Non-linear preferences in Group Decision
Making: Extreme Values Amplifications” recibió la mención
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de la Universidad de Jaén, celebradas en noviembre de 2021.

3. El trabajo titulado “Comprehensive Minimum Cost Consensus
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tado en the 15th International FLINS Conference on Machine
Learning, Multi agent and Cyber physical systems and the 17th
International ISKE Conference (FLINS/ISKE 2022), celebrado
en Tianjin, China, durante agosto de 2022, también recibió el
premio al mejor artículo de estudiante.

Los diplomas asociados con los reconocimientos mencionados
anteriormente se incluyen al final de este capítulo.

5.5 estancias y colaboraciones

Durante la tesis doctoral, se llevaron a cabo dos estancias de in-
vestigación con el fin de mejorar la formación investigadora del
doctorando mediante el conocimiento y la experiencia de expertos
en la materia. Gracias a las ayuda de movilidad para beneficiarios
del contrato FPU EST22/00031, concedida por el Ministerio de Uni-
versidades, se pudo realizar una estancia de tres meses (desde el
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15/04/2022 hasta el 14/07/2022) en la School of Computing, Ulster
University, en el Reino Unido. Además, se realizó otra estancia de
un mes (desde el 23/01/2023 hasta el 24/02/2023) en el Grupo de
Investigación en Inteligencia Artificial y Razonamiento Aproximado
de la Universidad Pública de Navarra.
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Parte II

R E S U M E N E N I N G L É S





A
E N G L I S H S U M M A RY

As a partial requirement for obtaining the International Ph.D. Award,
this appendix consists of an English summary of the thesis titled
"Intelligent Decision-making under Uncertainty". The summary in-
cludes a brief introduction to the research topic and the motivation
for the research conducted. It also outlines the objectives of this the-
sis and the structure of the chapters that shape it. Additionally, a
summary of the research papers presented in the thesis is provided.
Finally, the conclusions are discussed.

a.1 state of the art

A Decision-making problem is usually understood as a cognitive pro-
cess that involves various mental and reasoning processes to choose
the most appropriate alternative among several possible solutions
in a given situation [23]. A decision-making problem becomes more
complex in situations of uncertainty that require consideration of
various types of costs, conflicts, and large volumes of data [36]. To
address problems of this complexity, intelligent decision techniques
tailored specifically to the problem at hand are developed [5]. Gen-
erally speaking, decision-making processes have certain common
phases (see Fig. A.1), such as [18]:

Fig. A.1: Decision-making scheme

167
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intelligence Observe the real world to identify the problem.

information gathering Obtain data, knowledge, and prefer-
ences related to the problem.

modeling Define a framework that establishes the structure of the
problem, preferences, and uncertainty.

analysis Study and combine information according to the objec-
tives, constraints, and results considered in the selection phase.

selection Exploit the results of the analysis to select an alterna-
tive/solution to the problem.

Nowadays, it is increasingly common to rely on data-driven decision-
making processes and quantitative models that may limit the partic-
ipation of human experts, who usually develop their decision pro-
cesses using qualitative information [1]. Despite this, in many fields
that require intelligent, efficient, and effective decisions under uncer-
tainty, the participation of human decision-makers remains essential
[37]. Indeed, to address decision situations where no objective data
or information is available about the problem at hand, expert-driven
decision-making approaches remain indispensable [41]. However, in
order to efficiently integrate expert knowledge into decision-making,
it is necessary to take into account certain limitations associated with
the human beings.

First, to ensure effective decision-making it is necessary to pay
attention to the modeling of the experts’ preferences. Unlike numer-
ical data, using experts’ opinions requires not only modeling the
uncertainty associated with their preferences but also considering the
psychological aspects involved in the preference elicitation process
[14, 22]

Second, it is necessary to consider that when experts are required
to elicit their preferences about the possible solutions to the decision-
making problem, they may have a partial view of the problem based
not only on their background and experience but also on their own
interests [24]. To eliminate possible biases in the decision-making
process caused by these factors, it is suitable to use Group Decision-
Making (GDM) techniques, which simultaneously take into account
the opinions of several experts [32].
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Finally, when different experts participate in a GDM problem, it is
expected that, in a certain sense, they all seek to see their particular
opinions reflected in the final decision, which may lead to conflict
situations among the members of the group [9]. Consensus Reaching
Processes (CRPs) are intended to ensure a level of agreement on the
decisions obtained in GDM problems [40]. Generally, a CRP is said to
be an iterative process, usually coordinated by a human moderator,
whose goal is to increase the degree of agreement among group
members over multiple rounds of discussion.

GDM problems classically involved a small number of experts.
However, recent technological advances make it possible to consider
many decision-makers in the resolution of GDM problems [25]. In
this context, a great interest has recently arisen in the so-called
Large-Scale Group Decision-Making (LSGDM) problems, as well
as in their Large-Scale Consensus Reaching Processes (LSCRPs),
whose goal is to solve GDM problems that involve a large number of
decision-makers [27]. Considering a large number of decision-makers
in decision-making processes allows taking into account a greater
number of experiences, backgrounds, and points of view, which can
lead to a more comprehensive decision that considers a wider range
of factors and possible outcomes. Consequently, large groups can
make more diverse and better-informed decisions than decisions
made by a single individual or a small group [25].

a.2 motivation

LSGDM offers a greater capacity to solve real-world GDM problems
involving a large number of decision-makers, as opposed to the
classical GDM in which the number is limited to a reduced set of
participants. However, increasing the number of decision-makers
involved also means an increase in the complexity of the decision-
making process, which requires the development of new models,
methods, and tools to improve and analyze these problems under
the new assumptions. This is especially important to ensure the
effectiveness of LSGDM processes and to address new emerging
challenges such as the following ones:

1. Nonlinear preference modeling. Traditionally, it has been as-
sumed that experts provide their opinions in a linear way
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[10]. However, recent psychological studies argue that using
nonlinear scales to represent their preferences could improve
decision-making results [6].

2. LSGDM processes that involve hundreds or thousands of ex-
perts. In the specialized literature, LSGDM has been defined as
a GDM problem involving more than twenty experts [5]. How-
ever, the philosophy of this type of problem, due to current
technological advances and social demand, should be focused
on problems in which hundreds, thousands, or even more
decision-makers can take part. Therefore, LSGDM processes
need to be improved to efficiently handle opinions in really
large groups, such as users of a marketplace or a social network.

3. Metrics for LSCRPs. In the related literature, there are multiple
proposals for LSCRP, but it is difficult to objectively discrimi-
nate which one is the most suitable to solve a particular LSGDM
problem. Consequently, it is necessary to develop metrics capa-
ble of determining the performance of LSCRPs in an objective
manner [15].

These limitations and challenges in the field of LSGDM under uncer-
tainty led us to formulate the following hypotheses at the beginning
of this research:

1. The use of nonlinear representation models of experts’ opinions
will allow improving the results of GDM problems and their
CRPs.

2. The optimization of current LSGDM processes will facilitate
addressing problems with a large number of decision-makers
efficiently, improving the current results and fields of applica-
tion.

3. The definition of metrics for LSCRPs will enable more effec-
tive performance evaluation of both existing CRPs and new
proposals.
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a.3 objectives

Taking into account the motivations derived from the limitations in
the current LSGDM literature and considering the initial hypothe-
ses, the main purpose of this doctoral thesis is to improve LSGDM
processes under uncertainty, and their LSCRPs, through the use of
mathematical tools and models. The aim is to overcome the current
methodological deficiencies and contribute to greater accuracy and
robustness in the decision-making field. Consequently, the following
objectives are proposed:

1. Define a methodological framework for modeling the nonlinear
behavior of experts when providing their opinions that allows
correcting deviations derived from human psychology.

2. Optimize LSGDM processes to address decision-making prob-
lems that require the participation of a large number of decision-
makers (hundreds, thousands, ...).

3. Introduce objective metrics for LSCRPs that establish perfor-
mance standards for consensus outreach.

a.4 structure

In accordance with Article 25 point 2 of the current regulations for
Doctoral Studies at the University of Jaén (RD. 99/2011), this doctoral
thesis consists of a compilation of articles published by the doctoral
student. The aim of this compilation is to achieve the objectives
established in the previous section. Specifically, this memory consists
of seis articles, published or accepted, in Q1 international journals
indexed in the Journal Citation Reports (JCR) database.

The remainder of the report consists of the following chapters:

chapter 2 . The fundamental concepts related to the subject mat-
ter of the doctoral thesis are presented. GDM problems are
described, paying special attention to LSGDM, and the ad-
vantages and limitations of the existing decision models are
analyzed. Also, the need for LSCRPs to reach consensual solu-
tions is presented.
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chapter 3 . The papers that make up this report are described,
highlighting the results and conclusions obtained from each
one of them.

chapter 4 . It consists of the above-mentioned papers.

chapter 5 . The main conclusions of the doctoral thesis are iden-
tified and possible fields of research for future work are sug-
gested.

Finally, a bibliographic compilation of the most relevant articles
related to this report has been included.

a.5 background

This section presents a brief summary of the theoretical concepts
and background relevant to the research presented in this report.
Specifically, it addresses the basic concepts of GDM and its CRPs,
as well as a summary of the main proposals in the literature, and
the existing limitations in LSGDM. The contents of this chapter are
further developed in Section 4.1, which corresponds to a systematic
review of LSGDM performed during my research and in which these
concepts and related issues are shown in more detail.

a.5.1 Group Decision Making and Consensus Reaching Processes

A GDM problem arises when several individuals are required to
choose the best among several alternatives to solve a given problem
[10]. Formally, GDM problems are modeled as a pair (D, A) in which
D is a finite set of m decision-makers D = {dm1, dm2, . . . , dmm}, who
are asked to evaluate n alternatives A = {a1, a2, . . . , an} with the goal
of selecting the best solution for the decision-making problem. In
general, solving this type of problem consists of two main steps [28]
(see Fig. A.2):

aggregation To represent the overall opinion of the group, the
preferences of the decision-makers are combined by an aggre-
gation operator into a single collective preference.

exploitation. One or several alternatives are chosen as a solution
to the problem.
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Fig. A.2: Scheme of a GDM problem

Butler and Rothstein [4] have proposed several rules to solve the
GDM process, such as the majority or minority rules, or the Borda
count. However, when employing these rules, some decision-makers
could not be completely satisfied with the chosen solution since their
views may not have been properly considered in the final collective
choice. In order to address possible discrepancies among the decision
makers’ opinions, a CRP is often incorporated into the resolution
of the GDM problem. A CRP is a dynamic, iterative process in
which decision-makers discuss and adjust their initial opinions to
achieve greater consensus within the group [23]. These processes are
usually overseen by a moderator who is responsible for providing
the decision-makers with the necessary information on the status of
negotiations to smooth out conflicts. Generally speaking, a CRP is
composed of four main steps, as described in the literature [24] (see
Fig. A.3):

gathering preferences . Decision-makers provide their evalua-
tions on the alternatives using a certain preference structure.

determining consensus level . Consensus measures are used
to obtain the current level of agreement in the group.

consensus control . Such a level of agreement is compared to a
previously established desired level of consensus. If the group
succeeds in reaching the desired level, the CRP is terminated
and the selection process is carried out to choose the best
alternative. If not, another round is conducted. To prevent the
process from dragging on indefinitely, a limit is set on the
number of rounds allowed.
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Fig. A.3: Scheme of a CRP

feedback generation. The moderator identifies the decision-
makers and opinions that cause the conflicts in the group and
suggests ways to modify them to reduce the disagreements.

a.5.2 Large-Scale Group Decision-Making

Traditionally, GDM problems and their CRPs have involved only
a small number of decision-makers. However, recent technological
advances, such as Big Data [21] and e-commerce [35], together with
the demands of modern society to address critical problems such as
emergency situations [34] or sustainability [17], have given rise to new
decision problems that require the involvement of a larger number
of decision-makers. In this context, the so-called LSGDM arises,
which, according to the classical definition, refers to GDM problems
involving a large number of decision-makers (usually defined in the
specialized literature as twenty or more decision-makers) [7].

Tang et al. [33] and Labella et al. [12] pointed out that the involve-
ment of a large number of decision-makers with different views and
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Fig. A.4: Scheme of an LSGDM problem

preferences requires considering new aspects in the overall LSGDM
problem-solving process (see Fig. A.4):

dimension reduction. To handle the large amount of informa-
tion involved in LSGDM models, some mechanisms are intro-
duced to reduce the dimensionality of the data.

weighting and aggregation. These are related to the task of
properly determining the importance of the decision-makers
involved in the decision process and fusing their opinions
effectively.

behavior management. Refers to the need to include mecha-
nisms to detect and manage uncooperative decision-makers in
the decision-making process, in order to prevent these decision-
makers from negatively affecting the final outcome.

cost management It is necessary to consider the human, eco-
nomic, and time resources required to develop models that aim
to manage hundreds, thousands, or even millions of decision-
makers in the decision process.

Social network analysis. In large groups, it is necessary to consider
how relationships between decision-makers (such as trust or
reputation) influence the decision process.

consensus As the number of people involved in a decision in-
creases, the likelihood of disagreement also increases. There-
fore, it is essential to develop LSCRPs for large groups in order
to reach agreed solutions.

LSGDM is based on the classical GDM scheme (see Fig. A.2), which
consists of two phases: aggregation and exploitation. However, the
aggregation phase in LSGDM is much more complex as several
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aspects are taken into account to merge the original values of the
decision-makers’ opinions. Thanks to this combination of techniques,
it is possible to propose a wide variety of LSGDM schemes. Some of
the most important ones are described below.

1. Palomares et al. [25] and Dong et al. [8] introduced consensus
models that consider non-cooperative behavior management
and dimension reduction for information weighting and aggre-
gation.

2. In their work, Zhang et al. [42] used a linguistic aggregation
process to address multi-attribute LSGDM problems under
uncertainty.

3. Liu et al. [16] proposed a consensus model that integrates
mechanisms to control the cost of modifying decision-makers’
opinions and use social network analysis to determine their
importance.

4. Lu et al. [19] introduced a consensus process that combines
social network analysis and clustering techniques to perform
dimension reduction and determine the influence of decision-
makers in a decision process. This process also takes into ac-
count the cost associated with changing decision-maker prefer-
ences.

5. Shi et al. [29] used behavior and cost management techniques
in their consensus model, which also incorporates a dimension
reduction with adaptive weights.

a.5.3 Main limitations of the literature on LSGDM

Currently, LSGDM is a hot topic among researchers in various areas
(operations research, politics, computer science, management, engi-
neering, marketing, etc. [15, 25, 37]). However, the foundations of
LSGDM are based on assumptions inherited from its widespread use,
rather than on solid theoretical or practical foundations. To determine
the challenges in the research area, this section aims to discuss the
main shortcomings of the current research on LSGDM.

In general terms, the main limitations of the LSGDM stem from its
own definition. The widespread definition in the specialized litera-
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ture considers that LSGDM consists of “GDM problems with more
than twenty experts”. This definition seems to be completely obsolete,
especially considering that new technologies allow considering deci-
sion situations involving hundreds or thousands of decision-makers.
It is necessary to revise this definition to ensure not only the appli-
cability of the models in real-world problems but also to be able to
compare the different processes in a fair way.

Moreover, in the specialized literature, it is common to find GDM
techniques applied directly in LSGDM without studying their fea-
sibility and performance [27]. Regarding the models reviewed in
Section 4.1, an important critique is the lack of studies demonstrating
the good performance of classical GDM techniques in large-scale
contexts involving hundreds or thousands of decision-makers. Al-
though these methods have been successfully applied in contexts
with fifty or fewer decision-makers, there is no evidence that they
are equally effective in decision situations with larger numbers of
decision-makers. Rigorous studies are needed to assess the feasibility
of these techniques in large-scale contexts, and if necessary, adapt
existing approaches to address LSGDM problems.

Another consequence of defining LSGDM as "GDM with twenty or
more experts" is its abuse in publications that are not aimed at solving
real-world problems. The vast majority of the proposals reviewed in
section 4.1 are limited to testing the validity of the corresponding
models on examples that consider less than fifty experts, without
giving an objective and verifiable analysis of their performance when
handling thousands of decision makers (see Figure A.5). In this sense,
it is necessary to demand a higher level of quality in terms of the
conditions under which the validity of a method is tested.

In addition, it is a common practice to apply the more convenient
measure to highlight the advantages of the proposed models when
comparing them with others, but there are no objective metrics to
fairly present both the positive and negative aspects of such models.
A new approach with this capability has recently been proposed
for consensus models in GDM [15], but there are no proposals for
LSGDM. It is important to develop new metrics to address other
problems to objectively analyze different features of LSGDM meth-
ods.

Regarding preference structures, it is worth noting the large num-
ber of them that can be found in the literature (see Section 4.1).
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Fig. A.5: Papers reviewed in Section 4.1 according to the number of decision-
makers.

However, considering excessively complex preference structures sig-
nificantly increases the number of variables in the LSGDM problem,
leading to higher resource consumption [27]. Therefore, in LSGDM,
improvements in preference modeling should not imply an increase
in the number of variables but focus on better modeling of human
psychology. In this regard, it should be remarked that existing pro-
posals for preference representation assume that decision-makers
provide their preferences in a linear way. However, recent studies
suggest that by using nonlinear scales to reallocate decision makers’
preferences, more psychologically realistic collective solutions are
obtained [6, 20]. Therefore, further studies on the impact of nonlinear
scales in LSGDM are needed.

a.6 discussion of results

This section presents a summary of the proposals that make up this
research report, as well as the results and conclusions derived from
them.
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a.6.1 Critical analysis of the matter

The aim of the first paper in this report, included in Section 4.1,
is to serve as an updated state-of-the-art for researchers. With a
better understanding of the concept of LSGDM, researchers may
present new proposals aimed at addressing the challenges in the area
related to technological developments (such as Big Data or social
networks), and pay more attention to the validity of their models in
these contexts.

In this work, a systematic review of the existing literature on LS-
GDM has been carried out, following the indications proposed by
Kitchenham et al. [11] for the development of bibliographic analy-
sis in Software Engineering. Using this methodology, the existing
proposals have been reviewed from four different perspectives: Pref-
erence Structure, Group Decision Rules, Quality Assessment, and
Applications. These points of view contain the most relevant key-
words in the LSGDM literature and represent the different steps
to consider when proposing models. Since the analysis performed
revealed several important limitations in the current research in the
area, this paper also provides a further detailed critical analysis of
these bad practices found in the literature, as well as some indications
on how to redirect future research toward a more realistic LSGDM,
related to proposing methodologies to cope with decision situations
involving a really large number of decision-makers.

Generally speaking, it is important to note that the definition of
theoretical models and the testing of their performance on very sim-
ple examples (toy examples), in which from twenty to fifty decision
makers are considered, could hardly be applied in real practical situ-
ations if they do not explicitly specify the number of decision-makers
they are able to manage and demonstrate their good performance
in these contexts. In such an applied field as LSGDM, researchers
should focus future studies on addressing real-world problems in-
volving a large group of decision-makers (e.g., Netflix manages 209

million paid subscriptions) rather than proposing “large-scale” mod-
els that work with twenty decision-makers and do not clarify how
they would perform if that number were increased.

In order to bring more transparency to LSGDM processes, this
paper also proposes the definition of m−LSGDM models as those
proposals that can efficiently handle at least m decision makers.
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This not only provides a fairer view of the performance of each
proposal but also allows differentiating models oriented to handle
a few hundred decision-makers from models designed to handle
millions.

a.6.2 Non-linear preferences

Even though there are several proposals of CRPs in the literature, they
usually assume linear scales for experts’ preferences [10]. However,
recent studies suggest that the use of nonlinear scales can improve
the results of GDM processes [6, 20].

The work presented in Section 4.2 explores the use of nonlinear
scales to define more realistic preference models from the original
preferences of experts, even in large-scale situations. In that work, we
have made a comprehensive study of the analytical properties of such
nonlinear scales and obtained the main mathematical characteristics
of the functions that may be suitable for adapting expert preferences
according to this psychological factor. We have called these functions
Extreme Values Amplifications (EVAs) and they allow reallocating
fuzzy preference relations given on a linear scale into a nonlinear
scale by increasing the distance between extreme values and decreas-
ing the distance between intermediate values. In addition, the dual
definition of Extreme Values Reductions (EVR), which reduce the
distance between extreme values and amplify the distance between
intermediate values, has also been provided.

A general method for constructing EVAs and EVRs has been in-
troduced and several families of EVAs have been proposed. The
use of the nonlinear scales provided by EVAs has been found to
improve the performance of the consensus models used in the study.
Specifically, in addition to obtaining more psychologically realistic
results, simulations show that the EVA approach reduces the average
number of rounds required to reach consensus in both models and
increases the level of consensus.

a.6.3 Aggregation of extreme values in CRPs

In GDM, it is necessary to combine the preferences of the experts in
an aggregation phase to obtain a collective opinion before moving on
to the exploitation phase. In the literature on aggregation operators,
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Ordered Weighted Average (OWA) operators stand out because they
allow merging information according to the magnitude of the values
to be aggregated [38]. To calculate the corresponding weights, several
alternatives have been proposed, including the method given by
Yager, which is based on the use of a parametric family of linear
fuzzy linguistic quantifiers [39].

The work developed in Section 4.3 proves that, although the
method proposed by Yager [39] is simple and effective, it has signifi-
cant drawbacks in terms of the choice of parameters. For example,
aggregations could produce biased results (orness measure [2] not
equal to 0.5) or even not aggregate enough information (entropy
measure [2] low). Furthermore, the OWA operator constructed from
these quantifiers completely ignores the most extreme values in the
aggregation process, which could result in unrealistic aggregations.

These biased aggregations are a major drawback in real-world
applications such as CRPs [10, 23], since an OWA operator whose or-
ness is greater than 0.5 would tend to prioritize extreme values close
to 1 over those close to 0, which is unreasonable since these values
should be equally important. Moreover, a theoretical consensus that
completely ignores the most extreme values would be unrealistic.
Since it has also been shown that less extreme information has a
cohesive effect and facilitates agreement among experts [30, 31], the
paper in Section 4.3 explores new ways to generate OWA weights
that prioritize intermediate information without neglecting extreme
data by taking more information into account in the aggregation
process and avoiding biased aggregations in the results.

To overcome these limitations, the EVR-OWA operator, which uses
an EVR as a fuzzy linguistic quantifier, has been proposed. This
OWA operator takes into account the most extreme values but gives
more importance to the intermediate ones. Moreover, aggregations
performed by EVR-OWA operators are better for certain real-world
applications such as consensus models for GDM [10], because these
operators aggregate preferences in an unbiased way and allow taking
into account more information in the aggregation process.

The proposed EVR-OWA operator not only provides a simple
and general method to obtain OWA weights but also provides a
characterization that relates those families of symmetric, positive
OWA weights that prioritize intermediate values to the EVRs.
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a.6.4 Optimization of LSGDM processes

The Minimum Cost Consensus (MCC) models, which are based on
convex optimization problems, are automatic CRPs that do not need
a recommendation mechanism, and, consequently, they are particu-
larly interesting for LSGDM problems [3, 27]. These models minimize
the cost of modifying experts’ preferences to reach a consensus and
guarantee that the distance between the modified individual pref-
erences and the collective opinion is bounded by a threshold ε > 0.
Recently, Comprehensive Minimum Cost Consensus (CMCC) mod-
els have been proposed, which add an additional constraint related
to the consensus threshold γ ∈ [0, 1] associated with a consensus
measure.

The work presented in Section 4.4 analyzes the relationship be-
tween the aforementioned constraints in CMCC models from two
different perspectives. The first one is based on inequalities and al-
lows determining simple bounds to relate the parameters ε and γ.
The second perspective is based on Convex Polytope Theory and pro-
vides algorithms that compute more precise and complex constraints
to relate these parameters.

Since in CMCC models the parameter values are fixed a priori, the
proposed method allows identifying parameter configurations that
can simplify the optimization model, eliminating those constraints
that are redundant and, consequently, significantly improving the
efficiency of these models in LSGDM.

a.6.5 Generalized MCC models for LSGDM

MCC models have been widely used to reach agreed solutions to
GDM problems. However, the relationship between previous exten-
sions of these models has not yet been studied, which limits their
practical application. In this paper, a reformulation of MCC mod-
els using Fuzzy Set Theory is presented. The proposed approach,
called FZZ-MCC, provides a clearer understanding of MCC models
and their extensions, as well as a rigorous and flexible methodology
to address various types of GDM problems. In addition, the appli-
cability of the FZZ-MCC approach is demonstrated through three
practical examples related to e-democracy, personnel selection, and
green supplier selection.
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The FZZ-MCC approach introduces three main advantages:

• A rigorous and unified notation based on Fuzzy Sets that allows
generalizing previous studies on MCC,

• Generalization of classical notions related to GDM such as
preference structure, consensus measure, or cost function,

• Abstract nature that implies flexibility to adapt the FZZ-MCC
scheme to address various decision situations.

In this proposal, the flexibility of the FZZ-MCC approach is ex-
ploited to propose several models based on MCC:

• An FZZ-MCC model is defined to cope with an e-democracy
scenario involving urban planning by managing thousands of
preferences through MCC models and multiplicative preference
relations.

• An FZZ-MCC model is used to efficiently persuade a hiring
committee to select a particular manager. This is done by analyz-
ing the associated cost of driving the decision-makers toward
an agreement on the predefined target solution.

• A hybrid FZZ-MCC model is proposed that combines valu-
ations in a database with managers’ pairwise comparisons,
integrating expert knowledge and data in a green supplier
selection problem.

Moreover, all these models have been proposed in terms of linear and
absolute-based objective functions and constraints, which facilitates
their linearization to improve both their accuracy and computational
efficiency aspects, which are essential for dealing with LSGDM prob-
lems.

a.6.6 Metric for large-scale linguistic consensus modeling

Even though CRPs based on linguistic information have been the
subject of extensive research and numerous solutions have been
proposed in the specialized literature, there is not an objective metric
to compare these models and decide which one is the best for each
decision problem.
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In the work developed in Section 4.6, we introduce a metric to
evaluate the performance of linguistic CRPs that takes into account
both the resulting degree of consensus and the cost of modifying the
initial opinions of the participants.

This metric is based on a linguistic CCM model that uses ELICIT
(Extended Comparative Linguistic Expressions with Symbolic Trans-
lation) [14] information to model participant indecision and ensure
accurate word computation processes. Furthermore, this metric is
defined based on a linear optimization model to speed up the com-
putational model and improve its accuracy, thus being able to be
applied in LSGDM processes with several thousands of experts in a
few seconds.

The proposed metric for evaluating linguistic CRPs compares the
optimal cost required to achieve the desired level of consensus with
the changes made by the CRP. If the degree of consensus achieved
by the CRP is below the desired threshold, the metric will rate the
CRP as ineffective. In the event that the CRP exceeds the consensus
threshold, the metric will score the CRP higher or lower based on
the extent of the unnecessary modifications made.

This metric has also been used to evaluate the performance of
two linguistic consensus models defined in the literature [13, 26] to
demonstrate their applicability in practice.

a.7 conclusions and future works

To conclude this report, we present the conclusions we have drawn
during this research, as well as possible future works that could be
undertaken based on the results obtained.

a.7.1 Conclusions

LSGDM arises to solve real-world decision problems in contexts of
uncertainty that require considering the opinions of a large number
of decision-makers. By taking into account the opinions of many
people, more objective results can be achieved than when using small
groups, but at the same time, the complexity increases.

The first objective of this thesis was to propose new approaches to
model the nonlinear nature of preferences given by human beings.
To accomplish this, we have defined the EVAs and EVRs functions,
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which allow transforming decision-makers’ preferences in a nonlinear
way. We have found that using EVAs in CRP, besides being more
realistic from a psychological point of view, generally improves the
results of the CRP. On the other hand, it has been shown that EVRs
can be applied to merge decision-makers’ opinions by giving higher
priority to intermediate values, which are the most relevant for
reaching a consensus.

The following objective was related to improving LSGDM models
to address problems that require a large number of decision-makers.
To this end, we focused on MCC models, which are particularly
useful for handling problems in LSGDM as they do not require
several rounds of negotiation to reach a consensual solution. In
this aspect, we have analyzed in detail the mathematical structure
of CMCC models, concluding that it is possible to considerably
improve their efficiency when constraints that may be redundant
are removed. In addition, we have proposed the FZZ-MCC models,
which generalize existing MCC models in the literature in a flexible
way using Fuzzy Set Theory. From a practical point of view, FZZ-
MCC models have been used to define several consensus models that
allow addressing LSGDM problems such as e-democracy and the
integration of data and expert knowledge in decision-making.

The last objective consisted of defining metrics that enable objec-
tively evaluating the performance of LSCRPs. To achieve this, we
have developed a metric that evaluates CRPs by simultaneously tak-
ing into account the level of agreement reached in the CRP and the
modifications made to the original preferences.

In conclusion, it is important to highlight that this thesis has
achieved all the objectives established at the beginning of this re-
search, which has allowed us to develop tools, models, and results
that go beyond the previous state of the art and open up new research
possibilities, as described below.

a.7.2 Future works

The results of this research open the possibility of exploring new
areas of study that can be addressed in future works. Some of the
possible lines of research that can continue the work done in this
doctoral thesis are:
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• Apply the theory of EVAs and EVRs to deal with LSGDM chal-
lenges such as the polarization of opinions or the management
of minority opinions.

• Study the use of EVR-OWA Operators in LSGDM problems.

• Develop new scalable LSGDM models to solve real-world
decision-making problems involving millions of people.

• Extend FZZ-MCC models to address new decision situations,
e.g., integrating social network analysis.

• Explore new types of decision problems from the LSGDM
perspective, such as sorting problems that seek to classify alter-
natives into different categories.

a.7.3 Additional publications

In the course of this research, other publications have been presented
that have not been included in this report. They are listed below:

• Publications in international journals:

– H. Song, D. García-Zamora, A. Labella Romero, X. Jia, Y.
Wang, and L. Martínez. “Handling multi-granular hesitant
information: A group decision-making method based on
cross-efficiency with regret theory”. In: Expert Systems with
Applications, 2023, 120332. Impact factor 8.665, Q1.

– Y. Wang, S. He, D. García Zamora, X. Pan, and L.Martínez,
“A Large Scale Group Three-Way Decision-based con-
sensus model for site selection of New Energy Vehicle
charging stations” In: Expert Systems with Applications, 214,
119107 (2023). Impact factor 8.665, Q1.

– S. Feng, Y. Xin, S. Xiong, Z. Cheng, M. Devecy, D. García-
Zamora, and W. Pedrycz. “Safety Perception Evaluation
of Civil Aviation Based on Weibo Posts in China: An En-
hanced Large-Scale Group Decision-Making Framework”.
Int. J. Fuzzy Syst. (2023). Impact factor 4.085, Q2.

– M. Zhou, Z. Chen, J. Jiang, G. Qian, D. García-Zamora,
B. Dutta, Q. Zhan, and L. Jin. “Auto-generated Relative
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Importance for Multi-agent Inducing Variable in Uncer-
tain and Preference Involved Evaluation”. In: International
Journal of Computational Intelligence Systems 15, 108 (2022).
Impact factor 2.259, Q3.

– Y. Wang, X. Pan, S. He, B. Dutta, D. García-Zamora, and
L. Martínez, “A New Decision-Making Framework for
Site Selection of Electric Vehicle Charging Station with
Heterogeneous Information and Multi-Granular Linguis-
tic Terms”. In: IEEE Transactions on Fuzzy Systems (2022).
Impact factor 12.253, Q1.

• Book chapters:

– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “Nonlinear Scaled Preferences in Linguistic
Multi-Criteria Group Decision Making”. In: Real Life Ap-
plications of Multiple Criteria Decision-Making Techniques in
Fuzzy Domain. Springer Nature Singapore Pte Ltd; 2022.

• Internacional conferences:

– Á. Labella, D. García-Zamora, W. He, R.M. Rodríguez, and
L. Martínez (2022). “Grouping representative points in
AHP-FuzzySort with agglomerative hierarchical cluster-
ing”. In: The International Symposium on the Analytic
Hierarchy Process (ISAHP2022), Online, December 15-18,
2022.

– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “Comprehensive Minimum Cost Consensus for
Analyzing the Cost of Different Agreed Solutions”. In: 15th
International FLINS Conference on Machine Learning, Multi
agent and Cyber physical systems and the 17th International
ISKE Conference (FLINS/ISKE 2022), 26-28 August Tianjin
(China) 2022.

– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “Comprehensive Minimum Cost Consensus
Models for ELICIT Information”. In: 2022 Word Congress on
Computational Intelligence (IEEE WCCI2022), Padua, Italy
18-23 July 2022.

– J. Baz, D. García-Zamora, I. Díaz, S. Montes, L. Martínez.
“Flexible-Dimensional EVR-OWA as Mean Estimator for
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Symmetric Distributions”. In: The 19th International Con-
ference On Information Processing And Management Of Un-
certainty In Knowledge-Based Systems (IPMU 2022), Milan
(Italy), July 11-15, 2022.

– Á. Labella, D. García-Zamora, R.M. Rodríguez, and L.
Martínez (2022). “Fuzzy TODIM for ELICIT Information”.
In: International Conference on Intelligent and Fuzzy Systems
(INFUS 2022), Istanbul (Turkey), July 19-21, 2022 .

– A. Labella, D. García-Zamora, R. M. Rodríguez and L.
Martínez. “A Consensus-based Best-Worst Method for
Multi-criteria Group Decision-Making”. In: The Third Inter-
national Workshop on Best-Worst Method (BWM-2022), Delft,
The Netherlands, 09-10 June 2022.

– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “Modelling non linear preferences in Consensus
Reaching Processes. A sustainability application”. In: 16th
International Conference on Intelligent Systems and Knowledge
Engineering (ISKE 2021), 26-28 November Chengdu (China)
2021.

– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “An Ordered Weighted Averaging Operator
based on Extreme Values Reductions´´. In: The 19th World
Congress of the International Fuzzy Systems Association. The
12th Conference of the European Society for Fuzzy Logic and
Technology jointly with the AGOP, IJCRS, and FQAS confer-
ences. Bratislava (Slovakia), September 19-24, 2021.

– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “Non Linear Scales in GDM: Extreme Values
Amplifications”. In: International Virtual Workshop on Busi-
ness Analytics Eureka, 2-4 Junio, Ciudad Juarez (Mexico),
2021.

– A. Labella, D. García-Zamora, R. M. Rodríguez and L.
Martínez. “A Novel Linguistic Cohesion Measure based
on Restricted Equivalence Functions for Weighting Ex-
perts’ subgroups in Large-scale Group Decision Making
Problems´´. In: International Virtual Workshop on Business
Analytics Eureka, 2-4 Junio, Ciudad Juarez (Mexico), 2021.
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• National conferences:

– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “Nonlinear Preferences in Consensus Reaching
Processes. Extreme Values Amplifications”. In: XXI Con-
greso español sobre Tecnologías y Lógica Fuzzy (ESTYLF 2022),
celebrado en Toledo el 4 –7 de Septiembre 2022.

– D. García-Zamora, A. Labella, P. Nuñez-Cacho, R. M. Ro-
dríguez and L. Martínez. “Modelos de consenso basados
en Mínimo Coste para expresiones ELICIT”. In: XXI Con-
greso español sobre Tecnologías y Lógica Fuzzy (ESTYLF 2022),
celebrado en Toledo el 4 –7 de Septiembre 2022.

– D. García-Zamora, A. Labella, R. M. Rodríguez and L.
Martínez. “Preferencias no lineales en Toma de Decisión
en Grupo. Amplificación de Valores Extremos”. In: CEDI
20/21: VI Congreso Español de Informática, celebrado el 22 –
24. Septiembre 2021.

a.7.4 Awards

It is important to mention that some of the works developed during
this doctoral thesis have been recognized by the scientific community:

1. The contribution entitled “Modelling Non Linear Preferences
in Consensus Reaching Processes: A Sustainability Applica-
tion”, presented at the 16th International Conference on Intelli-
gent Systems and Knowledge Engineering (ISKE 2021), held in
Chengdu, China, in November 2021, received the best student
paper award.

2. The poster entitled “ Non-linear preferences in Group Decision
Making: Extreme Values Amplifications” received a special
mention at the Doctoral Conference for young researchers of
the University of Jaen held in November 2021.

3. The contribution “Comprehensive Minimum Cost Consensus
for Analyzing the Cost of Different Agreed Solutions”, pre-
sented at the 15th International FLINS Conference on Machine
Learning, Multi-agent and Cyber-physical systems and the 17th
International ISKE Conference (FLINS/ISKE 2022), held in Tian-



190 english summary

jin, China, during August 2022, also received the best student
paper award.

All the diplomas associated with the aforementioned awards are
included at the end of Chapter 5.

a.7.5 Research stays

During the doctoral thesis, two research stays were carried out in
order to improve the research training of the doctoral student through
the knowledge and experience of experts in the field. Thanks to
the mobility aid for beneficiaries of the FPU contract EST22/00031,
granted by the Ministry of Universities, a three-month stay (from
15/04/2022 to 14/07/2022) was made at the School of Computing,
Ulster University, in the United Kingdom. In addition, a one-month
stay (from 23/01/2023 to 24/02/2023) was spent at the Artificial
Intelligence and Approximate Reasoning Research Group of the
Public University of Navarra.
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