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Abstract: Under uncertain environments, how to characterize individual preferences more naturally 

and aggregate parameters better have been hot research topics in multiple attribute decision making 

(MADM). Fuzzy set theory provides a better mathematical tool to deal with uncertain data, which 

promotes substantial extended studies. In this paper, we propose a hybrid fuzzy set model by com-

bining a linguistic interval-valued spherical fuzzy set with a soft set for MADM. The emergence of 

a linguistic interval-valued spherical fuzzy soft set (LIVSFSS) not only handles qualitative infor-

mation and provides more freedom to decision makers, but also solves the inherent problem of 

insufficient parameterization tools for fuzzy set theory. To tackle the application challenges, we in-

troduce the basic concepts and define some operations of LIVSFSS, e.g., the “complement”, the 

“AND”, the “OR”, the “necessity”, the “possibility” and so on. Subsequently, we prove De Morgan’s 

law, associative law, distribution law for operations on LIVSFSS. We further propose the linguistic 

weighted choice value and linguistic weighted overall choice value for MADM by taking parameter 

weights into account. Finally, the MADM algorithm and parameter reduction algorithm are pro-

vided based on LIVSFSS, together with examples and comparisons with some existing algorithms 

to illustrate the rationality and effectiveness of the proposed algorithms. 

Keywords: fuzzy set; linguistic interval-valued spherical fuzzy soft set; multiple attribute  

decision-making; parameter reduction 

 

1. Introduction 

In real life, we often encounter uncertain and fuzzy data when dealing with decision-

making problems in various fields such as economics, engineering, etc. How to deal with 

imprecise information is always a huge challenge. Many scholars are committed to opti-

mizing the description of uncertainty by constructing different models or representations, 

such as fuzzy set theory [1], rough set theory [2], vague set theory [3] and so on. Fuzzy set 

describes the uncertainty in the data nicely by utilizing membership functions. It provides 

a better mathematical tool for decision-making problems with uncertainty. In order to 

optimize the problems of single membership degree of a fuzzy set, more scholars have 

extended their theories on the basis of the fuzzy set. Atanassov [4] proposed an intuition-

istic fuzzy set (IFS), which described more uncertainty in terms of the membership degree 

and non-membership degree. Atanassov and Gargov [5] developed an interval-valued in-

tuitionistic fuzzy set, which described the membership degree and non-membership de-

gree by interval values. Yager [6] developed the Pythagorean fuzzy set as a generalization 

of the intuitionistic fuzzy set, which ensured that the square summation of the member-

ship degree and non-membership degree was less than or equal to 1. This development 

has been beneficial for decision makers in solving attribute problems where the sum of 
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the membership degree and non-membership degree exceeds 1. Cuong and Kreinovich 

[7] initiated the picture fuzzy set, which dealt with the situation where the neutral mem-

bership degree was considered independently in real decision-making problems. Hesita-

tion of the decision maker plays a significant role in practical decision-making problems. 

To enhance decision makers’ flexibility when dealing with situations where the sum of 

the membership degree, hesitancy and non-membership degree exceeds 1, Gündoğdu 

and Kahraman [8] proposed the concept of the spherical fuzzy set. This concept is a gen-

eralization of the picture fuzzy set and ensures that the square summation of the mem-

bership degree, non-membership degree and hesitancy is less than or equal to 1. As a re-

sult, spherical fuzzy sets have been extensively explored by various scholars and applied 

in diverse fields [9–11]. 

In the real word, it is always more natural for people to use natural language to ex-

press their preferences than to use numerical values. In light of this, Zadeh proposed lin-

guistic variables [12] to enable people to solve problems through qualitative evaluation. 

Furthermore, Herrera et al. [13] proposed the linguistic-term set (LTS) to describe all the 

discrete linguistic variables. Xu [14] studied aggregation operators based on probabilistic 

linguistic information. Thereafter, increasing numbers of studies have begun to explore 

hybrid models that combine LTS with extensions of fuzzy sets. Ünever et al. [15] proposed 

the linguistic single- and interval-valued hybrid intuitionistic fuzzy multi-set and linguis-

tic single- and interval-valued hybrid intuitionistic fuzzy multi-value, which provided a 

qualitative and sensitive assessment tool for multi-criterion group decision making. Liu 

et al. [16] proposed the linguistic interval-valued spherical fuzzy set (LIVSFS), which was 

the extension of the interval-valued spherical fuzzy set and linguistic term set to address 

the difficulty of obtaining quantitative evaluation in decision making. Gurmani et al. [17] 

proposed the linguistic interval-valued T-spherical fuzzy set, which allowed decision 

makers to provide their evaluations in a wider space and to deal with vague information 

better. However, an inherent limitation of all these fuzzy set theories is the inadequacy of 

the parametrization tools associated with them, that is, the inability to capture information 

in the form of approximations by different parameters. 

Molodtsov [18] pointed out the inherent difficulties of the above theories and intro-

duced a new model called a soft set, which aimed to overcome the lack of parametrization 

tools in traditional uncertainty theories. The soft set is a parameterized family of subsets 

defined over a universe and can allow us to use any parameterization, which gives us 

more flexibility in practical application. Because of the advantages of the soft set as para-

metrization tools, it provides many excellent methods in different fields [19–21]. Since hy-

brid models combine the advantages of each model, researchers have conducted in-depth 

studies on the combined models of soft set theory and other mathematical models. Maji 

et al. [22] presented the fuzzy soft set by combining a fuzzy set with a soft set, which 

helped decision makers to deal with fuzzy data better. The main advantage of the fuzzy 

soft set is that it can solve MADM better when fuzzy data arise in the form of approxima-

tions by different parameters. Hence, more and more scholars studied and proposed new 

hybrid models, such as the interval-valued fuzzy soft set [23], spherical fuzzy soft set [24], 

intertemporal hesitant fuzzy soft set [25], possibility fermatean fuzzy soft set [26], gener-

alized interval-valued intuitionistic fuzzy soft set [27] and so on [28–30]. These hybrid 

models effectively combine the description of imprecise and ambiguous data by different 

fuzzy sets with the advantage of the soft set as parametrization tools, and achieve prom-

ising results in some tasks, such as MADM [31–34], parameter reduction [35–37], approx-

imate reasoning [38,39] and so on [40]. The geometric representations of the intuitionistic 

fuzzy set, Pythagorean fuzzy set, picture fuzzy set, spherical fuzzy, linguistic interval-

valued spherical fuzzy set and LIVSFSS are given in Figure 1. 
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Figure 1. Geometric representations of intuitionistic fuzzy set, Pythagorean fuzzy set, picture fuzzy 

set, spherical fuzzy, linguistic interval-valued spherical fuzzy set and LIVSFSS [4,6–9,13,16]. 

The purpose of this paper is to propose a new hybrid model: the linguistic interval-

valued spherical fuzzy soft set (LIVSFSS), which can not only achieve the preferences of 

decision makers by using linguistic terms and provide a greater degree of freedom for the 

decision makers, but also captures fuzzy information better in the form of approximations 

by different parameters under MADM. Hence, we first define the basic concepts of 

LIVSFSS. Then, we discuss various operational laws and the proofs of properties about 

LIVSFSS, such as the “AND” operation, the “OR” operation, the possibility operation, the 

necessity operation and so on. Subsequently, we redefine the linguistic weighted choice 

value and the linguistic soft weighted overall choice value after analyzing the decision-

making algorithms based on different interval-valued fuzzy soft set models. Finally, we 

propose the MADM algorithm and the parameter reduction algorithm. Furthermore, we 

illustrate the algorithms’ rationality and effectiveness by examples and comparative anal-

ysis. The main contributions of this paper are summarized as follows. 

(1) LIVSFSS is proposed for the first time by combining the linguistic interval-valued 

spherical fuzzy set with the soft set, and its basic concepts, operations and properties 

are discussed. 

(2) In order to solve MADM problems and consider the influence of the parameter 

weight, the linguistic weighted choice value and the linguistic soft weighted overall 

choice value are redefined by analyzing other models. Then the MADM algorithm 

and parameter reduction algorithm are proposed. 

(3) We apply the MADM algorithm and parameter reduction algorithm to examples and 

compare them with some existing algorithms to illustrate their rationality and effec-

tiveness. 

The remainder of this paper is organized as follows. In Section 2, we recall the basic 

concepts required for this paper. In Section 3, we introduce the proposed concepts and 

operations of LIVSFSS. In Section 4, we introduce the multi-attribute decision-making al-

gorithm and parameter reduction algorithm based on LIVSFSS. The conclusions and di-

rections for future work are outlined in Section 5. 

2. Preliminaries 

In this section, we review some basic concepts briefly, including the linguistic inter-

val-valued spherical fuzzy set and fuzzy soft set, which are very helpful in the remaining 

study of the paper. 
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2.1. Linguistic Interval-Valued Spherical Fuzzy Set 

Definition 1. [13] Let 𝑆 = {𝑠𝑡|𝑡 = 0,1,2, … , 𝑔} be a finite linguistic term set (LTS) with an odd 

number of linguistic terms, where 𝑔 is a positive integer. The LTS 𝑆  satisfies the following 

characteristics. 

(1) order relation: 𝑠𝑖 ≥ 𝑠𝑘, if 𝑖 ≥ 𝑘; 

(2) negation operator: 𝑁𝑒𝑔(𝑠𝑖) = 𝑠𝑘, where 𝑘 = 𝑔 − 𝑖; 

(3) maximization operator: 𝑚𝑎𝑥{𝑠𝑖 , 𝑠𝑘} = 𝑠𝑖, if 𝑖 ≥ 𝑘; 

(4) minimization operator: 𝑚𝑎𝑥{𝑠𝑖 , 𝑠𝑘} = 𝑠𝑘, if 𝑖 ≥ 𝑘. 

For example, an LTS with five linguistic terms can be represented as 𝑆 = {𝑠0 =

𝑛𝑜𝑛𝑒, 𝑠1 = 𝑙𝑜𝑤, 𝑠2 = 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑠3 = ℎ𝑖𝑔ℎ, 𝑠4 = 𝑝𝑒𝑟𝑓𝑒𝑐𝑡}. 

Definition 2. [14] Let 𝑆 = {𝑠𝑡|𝑡 = 0,1,2, … , 𝑔} be an LTS. The discrete LTS 𝑆 is extended to a 

continuous linguistic term set 𝑆̅ = {𝑠𝛼|𝑠0 ≤ 𝑠𝛼 ≤ 𝑠ℎ , 𝛼 ∈ [0, ℎ]}, where ℎ(ℎ > 𝑔) is a sufficiently 

large positive integer. Consider any linguistic terms 𝑠𝑖, 𝑠𝑘 ∈ 𝑆̅, and 𝜆, 𝜆1, 𝜆2 ∈ [0,1], some oper-

ation rules are as follows. 

𝑠𝑖 ⊕ 𝑠𝑘 = 𝑠𝑘 ⊕ 𝑠𝑖 = 𝑠𝑖+𝑘 (1) 

𝑠𝑖 ⊗ 𝑠𝑘 = 𝑠𝑘 ⊗ 𝑠𝑖 = 𝑠𝑖∗𝑘 (2) 

𝜆𝑠𝑖 = 𝑠𝜆𝑖 (3) 

(𝜆1 + 𝜆2)𝑠𝑖 = 𝜆1𝑠𝑖 ⊕ 𝜆2𝑠𝑖  (4) 

𝜆(𝑠𝑖 ⊕ 𝑠𝑘) = 𝜆𝑠𝑖 ⊕ 𝜆𝑠𝑘 (5) 

Definition 3. [16] Let 𝑈 ≠ ∅ be an initial universe and 𝑆̅ = {𝑠𝛼|𝑠0 ≤ 𝑠𝛼 ≤ 𝑠ℎ, 𝛼 ∈ [0, ℎ]} be a 

continuous linguistic term set. An LIVSFS 𝐴 in 𝑈 is defined as 

𝐴 = {⟨𝑥, (𝑠̃𝑢𝐴(𝑥), 𝑠̃𝜋𝐴(𝑥), 𝑠̃𝑣𝐴(𝑥))⟩|𝑥 ∈ 𝑈} (6) 

where 𝑠̃𝑢𝐴(𝑥) = [𝑠𝑢𝐴
𝐿 (𝑥), 𝑠𝑢𝐴

𝑈 (𝑥)] ⊆ [𝑠0, 𝑠ℎ], 𝑠̃𝜋𝐴(𝑥) = [𝑠𝜋𝐴
𝐿 (𝑥), 𝑠𝜋𝐴

𝑈 (𝑥)] ⊆ [𝑠0, 𝑠ℎ] , 𝑠̃𝑣𝐴(𝑥) = 

[𝑠̃𝑣𝐴
𝐿 (𝑥), 𝑠̃𝑣𝐴

𝑈 (𝑥)] ⊆ [𝑠0, 𝑠ℎ]  are the membership degree, the hesitancy degree and the non-

membership degree of 𝑥 to 𝐴 such that, for all 𝑥 ∈ 𝑈, respectively, 

0 ≤ (𝑠̃𝑢𝐴
𝑈 (𝑥))

2
+ (𝑠̃𝜋𝐴

𝑈 (𝑥))
2

+ (𝑠̃𝑣𝐴
𝑈 (𝑥))

2
≤ ℎ2 (7) 

then 𝑠̃𝑟𝐴(𝑥) = [𝑠̃𝑟𝐴
𝐿 (𝑥), 𝑠̃𝑟𝐴

𝑈 (𝑥)]  is the waiver degree of 𝑥  to 𝑈 , where 𝑠̃𝑟𝐴
𝐿 (𝑥) =

𝑠√ℎ2−(𝑢𝐴𝐿(𝑥))2+(𝜋𝐴𝐿(𝑥))2+(𝑣𝐴𝐿(𝑥))2)
, 𝑠̃𝑟𝐴

𝑈 (𝑥) = 𝑠√ℎ2−(𝑢𝐴𝑈(𝑥))2+(𝜋𝐴𝑈(𝑥))2+(𝑣𝐴𝑈(𝑥))2)
. The set of all 

LIVSFS on 𝑈 is denoted by 𝐿𝐼𝑉𝑆𝐹(𝑈). 

For notational simplicity, the linguistic interval-valued spherical fuzzy number (LIVSFN) is 

denoted by 𝛼 = ([𝑠𝑎 , 𝑠𝑏], [𝑠𝑐 , 𝑠𝑑], [𝑠𝑒 , 𝑠𝑜]), where [𝑠𝑎 , 𝑠𝑏] ⊆ [𝑠0, 𝑠ℎ], [𝑠𝑏 , 𝑠𝑐] ⊆ [𝑠0, 𝑠ℎ], [𝑠𝑒 , 𝑠𝑜] ⊆

[𝑠0, 𝑠ℎ], 0 ≤ 𝑏2 + 𝑑2 + 𝑜2 ≤ ℎ2 and 𝑠𝑎 , 𝑠𝑏 , 𝑠𝑐 , 𝑠𝑑 , 𝑠𝑒 , 𝑠𝑜 ∈ 𝑆̅. The basic operations of LIVSFS are 

defined as follows. 

Let 𝐴 = {⟨𝑥, (𝑠̃𝑢𝐴(𝑥), 𝑠̃𝜋𝐴(𝑥), 𝑠̃𝑣𝐴(𝑥))⟩|𝑥 ∈ 𝑈} , 𝐵 = {⟨𝑥, (𝑠̃𝑢𝐵(𝑥), 𝑠̃𝜋𝐵(𝑥), 𝑠̃𝑣𝐵(𝑥))⟩|𝑥 ∈ 𝑈} 

∈ 𝐿𝐼𝑉𝑆𝐹(𝑈), then 

(1) 𝐴 ⊆ 𝐵 ⇔ 𝑠̃𝑢𝐴
𝐿 (𝑥) ≤ 𝑠̃𝑢𝐵

𝐿 (𝑥), 𝑠̃𝑢𝐴
𝑈 (𝑥) ≤ 𝑠̃𝑢𝐵

𝑈 (𝑥), 𝑠̃𝜋𝐴
𝐿 (𝑥) ≤ 𝑠̃𝜋𝐵

𝐿 (𝑥), 𝑠̃𝜋𝐴
𝑈 (𝑥) ≤ 𝑠̃𝜋𝐵

𝑈 (𝑥), 𝑠̃𝑣𝐴
𝐿 (𝑥) ≥

𝑠̃𝑣𝐵
𝐿 (𝑥), 𝑠̃𝑣𝐴

𝑈 (𝑥) ≥ 𝑠̃𝑣𝐵
𝑈 (𝑥); 

(2) 𝐴 = 𝐵 ⇔ 𝐴 ⊆ 𝐵, 𝐵 ⊆ 𝐴; 

(3) 𝐴 ∪ 𝐵 = {< 𝑥, ([𝑚𝑎𝑥{𝑠̃𝑢𝐴
𝐿 (𝑥), 𝑠̃𝑢𝐵

𝐿 (𝑥)} , 𝑚𝑎𝑥{𝑠̃𝑢𝐴
𝑈 (𝑥), 𝑠̃𝑢𝐵

𝑈 (𝑥)}], [𝑚𝑖𝑛{𝑠̃𝜋𝐴
𝐿 (𝑥), 𝑠̃𝜋𝐵

𝐿 (𝑥)} , 𝑚𝑖𝑛 

{𝑠̃𝜋𝐴
𝑈 (𝑥), 𝑠̃𝜋𝐵

𝑈 (𝑥)}], [𝑚𝑖𝑛{𝑠̃𝑣𝐴
𝐿 (𝑥), 𝑠̃𝑣𝐵

𝐿 (𝑥)} , min{𝑠̃𝑣𝐴
𝑈 (𝑥), 𝑠̃𝑣𝐵

𝑈 (𝑥)}]) > |𝑥 ∈ 𝑈}; 

(4) 𝐴 ∩ 𝐵 = {< 𝑥, ([𝑚𝑖𝑛{𝑠̃𝑢𝐴
𝐿 (𝑥), 𝑠̃𝑢𝐵

𝐿 (𝑥)} , 𝑚𝑖𝑛{𝑠̃𝑢𝐴
𝑈 (𝑥), 𝑠̃𝑢𝐵

𝑈 (𝑥)}], [𝑚𝑖𝑛{𝑠̃𝜋𝐴
𝐿 (𝑥), 𝑠̃𝜋𝐵

𝐿 (𝑥)} , 𝑚𝑖𝑛 

{𝑠̃𝜋𝐴
𝑈 (𝑥), 𝑠̃𝜋𝐵

𝑈 (𝑥)}], [𝑚𝑎𝑥{𝑠̃𝑣𝐴
𝐿 (𝑥), 𝑠̃𝑣𝐵

𝐿 (𝑥)} , 𝑚𝑎𝑥{𝑠̃𝑣𝐴
𝑈 (𝑥), 𝑠̃𝑣𝐵

𝑈 (𝑥)}]) > |𝑥 ∈ 𝑈}; 
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(5) 𝐴𝐶 = {< 𝑥, (𝑠̃𝑣𝐴(𝑥), 𝑠̃𝜋𝐴(𝑥), 𝑠̃𝑢𝐴(𝑥)) > |𝑥 ∈ 𝑈}. 

2.2. Fuzzy Soft Set 

Definition 4. [18] Let 𝑈 be an initial universe set, 𝐸 be a set of parameters, 𝐴 ⊆ 𝐸 and 𝑃(𝑈) 

be the power set of 𝑈. A pair < 𝐹, 𝐴 > is called a soft set on 𝑈, where 𝐹 is the mapping given 

by 

𝐹: 𝐴 → 𝑃(𝑈) (8) 

In other words, a soft set can be regarded as a parameterized family of subsets over 

the universe 𝑈. 

Definition 5. [22] Let 𝑈 be an initial universe, 𝐸 be a set of parameters, 𝐹(𝑈) be the set of 

all fuzzy sets of 𝑈. A pair < 𝐹̃, 𝐸 > is called a fuzzy soft set on 𝑈, where 𝐹̃ is the mapping 

given by 

𝐹̃: 𝐸 → 𝐹(𝑈) (9) 

Obviously, the combination of a fuzzy set and a soft set is a fuzzy soft set, i.e., the 

fuzzy soft set is a mapping from parameters to 𝐹(𝑈). It is a parameterized family of fuzzy 

subsets over the universe 𝑈. 

3. Linguistic Interval-Valued Spherical Fuzzy Soft Set 

By combining the linguistic interval-valued spherical fuzzy set with a soft set, it is 

natural to define the linguistic interval-valued spherical fuzzy soft set (LIVSFSS) model. 

In this section, we introduce the concepts of LIVSFSS. 

3.1. Basic Concept of LIVSFSS 

Definition 6. Let 𝑈 be an initial universe, 𝐸 be a set of parameters, 𝐿𝐼𝑉𝑆𝐹(𝑈) be the set of 

all LIVSFS of 𝑈. A pair < 𝐹̃, 𝐸 > is called a linguistic interval-valued spherical fuzzy soft set 

on 𝑈, where 𝐹̃ is the mapping given by 

𝐹̃: 𝐸 → 𝐿𝐼𝑉𝑆𝐹(𝑈) (10) 

An LIVSFSS is a parameterized family of linguistic interval-valued spherical fuzzy 

subsets of 𝑈, thus, its universe is the set of all LIVSFS on 𝑈. In other words, because 

LIVSFSS is still a mapping from parameters to 𝐿𝐼𝑉𝑆𝐹(𝑈), it is regarded as a powerful 

extention of soft set. 

For ∀𝜀 ∈ 𝐸, 𝐹̃(𝜀) is referred to as the LIVSFS with parameter 𝜀, and it is actually an 

LIVSFS on 𝑈. For 𝑥 ∈ 𝑈 and 𝜀 ∈ 𝐸, it can be written as follows. 

𝐹̃(𝜀) = {⟨𝑥, (𝑠̃𝑢𝐹̃(𝜀)(𝑥), 𝑠̃𝜋𝐹̃(𝜀)(𝑥), 𝑠̃𝑣𝐹̃(𝜀)(𝑥))⟩ |𝑥 ∈ 𝑈} (11) 

where 𝐹̃𝑥𝑖
(𝜀) = ([s𝑢𝐹̃(𝜀)

𝐿 (𝑥𝑖), s𝑢𝐹̃(𝜀)
𝑈 (𝑥𝑖)], [s𝜋𝐹̃(𝜀)

𝐿 (𝑥𝑖), s𝜋𝐹̃(𝜀)
𝑈 (𝑥𝑖)], [s𝑣𝐹̃(𝜀)

𝐿 (𝑥𝑖), s𝑣𝐹̃(𝜀)
𝑈 (𝑥𝑖)]) are the 

membership degree, the hesitancy degree and the non-membership degree of object 𝑥𝑖 

respectively. 

Example 1. Under uncertain environments, how do we deal with the situation where the sum of 

membership degree, hesitancy and non-membership degree exceeds 1 after the experts evaluate each 

parameter? And experts prefer to evaluate each parameter in natural language. LIVSFSS can facilitate 

the handing of the above situations. Let 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}  be a set of teachers and 𝐸 =

{𝑒1, 𝑒2, 𝑒3} = {teaching quality, blackboard writing, research  ability}  be a set of parameters for 

evaluation indicators of teachers. Experts assign a value to each parameter according to a continuous 

LTS 𝑆̅ defined as 𝑆̅ = {𝑠0 = ”𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑝𝑜𝑜𝑟”, 𝑠1 = ”𝑣𝑒𝑟𝑦 𝑝𝑜𝑜𝑟”, 𝑠2 = ”𝑝𝑜𝑜𝑟”,  𝑠3 = ”𝑠𝑙𝑖𝑔ℎ𝑡𝑙𝑦 
𝑝𝑜𝑜𝑟”,  𝑠4 =  ”𝑚𝑒𝑑𝑖𝑢𝑚”, 𝑠5 = “𝑠𝑙𝑖𝑔ℎ𝑡𝑙𝑦 𝑔𝑜𝑜𝑑”, 𝑠6 = “𝑔𝑜𝑜𝑑”,  𝑠7 = “𝑣𝑒𝑟𝑦 𝑔𝑜𝑜𝑑”, 𝑠8 =
“𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑔𝑜𝑜𝑑”}. The result described by the LIVSFSS (𝐹̃, 𝐸) is presented in Table 1 and (𝐹̃, 𝐸) is 

defined as follows. 
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𝐹̃(𝑒1) = {< 𝑥1, ([𝑠3, 𝑠5], [𝑠0, 𝑠3], [𝑠2, 𝑠3]) >, < 𝑥2, ([𝑠3, 𝑠5], [𝑠0, 𝑠3], [𝑠2, 𝑠3]) >, < 𝑥3, ([𝑠5, 𝑠6 

], [𝑠0, 𝑠2], [𝑠1, 𝑠2]) >, < 𝑥4, ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠2, 𝑠3]) >}; 
 

𝐹̃(𝑒2) = {< 𝑥1, ([𝑠5, 𝑠6], [𝑠0, 𝑠2], [𝑠1, 𝑠2]) >, < 𝑥2, ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠2, 𝑠3]) >, < 𝑥3, ([𝑠3, 𝑠4 
], [𝑠1, 𝑠3], [𝑠2, 𝑠3]) >, < 𝑥4, ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠2, 𝑠3]) >}; 

 

𝐹̃(𝑒3) = {< 𝑥1, ([𝑠5, 𝑠6], [𝑠0, 𝑠2], [𝑠1, 𝑠2]) >, < 𝑥2, ([𝑠2, 𝑠4], [𝑠0, 𝑠3], [𝑠3, 𝑠4]) >, < 𝑥3, ([𝑠3, 𝑠4 
], [𝑠1, 𝑠3], [𝑠2, 𝑠3]) >, < 𝑥4, ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠1, 𝑠3]) >}. 

 

Table 1. LIVSFSS (𝐹̃, 𝐸) of Example 1. 

𝑼 𝒆𝟏 𝒆𝟐 𝒆𝟑 
𝑥1 ([𝑠3, 𝑠5], [𝑠0, 𝑠3], [𝑠2, 𝑠3]) ([𝑠5, 𝑠6], [𝑠0, 𝑠2], [𝑠1, 𝑠2]) ([𝑠5, 𝑠6], [𝑠0, 𝑠2], [𝑠1, 𝑠2]) 
𝑥2 ([𝑠3, 𝑠5], [𝑠0, 𝑠3], [𝑠2, 𝑠3]) ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠2, 𝑠3]) ([𝑠2, 𝑠4], [𝑠0, 𝑠3], [𝑠3, 𝑠4]) 
𝑥3 ([𝑠5, 𝑠6], [𝑠0, 𝑠2], [𝑠1, 𝑠2]) ([𝑠3, 𝑠4], [𝑠1, 𝑠3], [𝑠2, 𝑠3]) ([𝑠3, 𝑠4], [𝑠1, 𝑠3], [𝑠2, 𝑠3]) 
𝑥4 ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠2, 𝑠3]) ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠2, 𝑠3]) ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠1, 𝑠3]) 

Definition 7. Let 𝑈 be an initial universe set, 𝐸 be a set of parameters and suppose that 𝐴, 

𝐵 ⊂  𝐸, (𝐹̃, 𝐴) and (𝐺̃, 𝐵) are two linguistic interval-valued spherical fuzzy soft sets; (𝐹̃, 𝐴) is 

a linguistic interval-valued spherical fuzzy soft subset of (𝐺̃, 𝐵), which can be denoted by (𝐹̃, 𝐴) ⊂̃ 

(𝐺̃, 𝐵), if and only if 

(1) 𝐴 ⊂ 𝐵; 

(2) ∀𝜀 ∈ 𝐴, 𝐹̃(𝜀) is a linguistic interval-valued spherical fuzzy subset of 𝐺̃(𝜀). 

Definition 8. Let (𝐹̃, 𝐴) and (𝐺̃, 𝐵) be two linguistic interval-valued spherical fuzzy soft sets; 

(𝐹̃, 𝐴) and (𝐺̃, 𝐵) are said to be a linguistic interval-valued spherical fuzzy soft equal, which can 

be denoted by (𝐹̃, 𝐴) =̃ (𝐺̃, 𝐵), if and only if 

(1) (𝐹̃, 𝐴) is a linguistic interval-valued spherical fuzzy soft subset of (𝐺̃, 𝐵); 

(2) (𝐺̃, 𝐵) is a linguistic interval-valued spherical fuzzy soft subset of (𝐹̃, 𝐴). 

3.2. Operations on LIVSFSS 

Definition 9. The complement of a linguistic interval-valued spherical fuzzy soft set (𝐹̃, 𝐴) is 

denoted by (𝐹̃, 𝐴)𝐶. It is defined by 

(𝐹̃, 𝐴)
𝐶

= (𝐹̃𝐶 , ¬𝐴) (12) 

where ∀𝛼 ∈ 𝐴, ¬ 𝛼 = 𝑛𝑜𝑡 𝛼, is the not set of parameters 𝛼, which holds the opposite meanings 

to parameter 𝛼; 

𝐹̃𝐶 : ¬𝐴 → 𝐿𝐼𝑉𝑆𝐹(𝑈) (13) 

is a mapping given by 𝐹̃𝐶(𝜀) = (𝐹̃(𝜀))𝐶 for all 𝑥 ∈ 𝑈 𝑎𝑛𝑑 𝜀 ∈ ¬𝐴. 

Definition 10. A linguistic interval-valued spherical fuzzy soft set (𝐹̃, 𝐴) over 𝑈 is said to be a 

null linguistic interval-valued spherical fuzzy soft set if 𝐹̃𝑥𝑖
(𝜀) = ([𝑠0, 𝑠0], [𝑠0, 𝑠0], [𝑠ℎ , 𝑠ℎ]) for 

∀𝜀 ∈ 𝐴, 𝑥 ∈ 𝑈. 

Definition 11. A linguistic interval-valued spherical fuzzy soft set (𝐹̃, 𝐴) over 𝑈 is said to be 

an absolute linguistic interval-valued spherical fuzzy soft set if 𝐹̃𝑥𝑖
(𝜀) = ([𝑠ℎ, 𝑠ℎ], [𝑠0, 𝑠0], [𝑠0, 𝑠0]) 

for ∀𝜀 ∈ 𝐴, 𝑥 ∈ 𝑈. 

Definition 12. The union of two linguistic interval-valued spherical fuzzy soft sets (𝐹̃, 𝐴) and 

(𝐺̃, 𝐵) over 𝑈 is a linguistic interval-valued spherical fuzzy soft set (𝐻̃, 𝐶), where 𝐶 = 𝐴 ∪ 𝐵, 

∀𝜀 ∈ 𝐶, 

𝐻(𝜀) = {

𝐹̃(𝜀), 𝜀 ∈ 𝐴 − 𝐵;

𝐺̃(𝜀), 𝜀 ∈ 𝐵 − 𝐴;

𝐹̃(𝜀) ∪ 𝐺̃(𝜀), 𝜀 ∈ 𝐴 ∩ 𝐵; 

 (14) 
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where 𝜀 ∈ 𝐴 ∩ 𝐵, then, 𝐻(𝜀) = 𝐹̃(𝜀) ∪ 𝐺̃(𝜀) = {< 𝑥, ([𝑚𝑎𝑥{𝑠̃𝑢𝐹̃(𝜀)
𝐿 (𝑥), 𝑠̃𝑢𝐺̃(𝜀)

𝐿 (𝑥)} , 𝑚𝑎𝑥{𝑠̃𝑢𝐹̃(𝜀)
𝑈  

(𝑥), 𝑠̃𝑢𝐺̃(𝜀)
𝑈 (𝑥)}], [𝑚𝑖𝑛 {𝑠̃𝜋𝐹̃(𝜀)

𝐿 (𝑥), 𝑠̃𝜋𝐹̃(𝜀)
𝐿 (𝑥)}, 𝑚𝑖𝑛{𝑠̃𝜋𝐹̃(𝜀)

𝑈 (𝑥), 𝑠̃𝜋𝐺̃(𝜀)
𝑈 (𝑥)}] , [𝑚𝑖𝑛{𝑠̃𝑣𝐹̃(𝜀)

𝐿 (𝑥), 𝑠̃𝑣𝐺̃(𝜀)
𝐿  

(𝑥)}, 𝑚𝑖𝑛{𝑠̃𝑣𝐹̃(𝜀)
𝑈 (𝑥),𝑠̃𝑣𝐺̃(𝜀)

𝑈 (𝑥)}]) > |𝑥 ∈ 𝑈}. We denote it by (𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵) = (𝐻̃, 𝐶). 

Definition 13. The intersection of two linguistic interval-valued spherical fuzzy soft sets (𝐹̃, 𝐴) 

and (𝐺̃, 𝐵) over 𝑈 is a linguistic interval-valued spherical fuzzy soft set (𝐻, 𝐶), where 𝐶 = 𝐴 ∩

𝐵, ∀𝜀 ∈ 𝐶, 𝐻(𝜀) = 𝐹̃(𝜀) ∩ 𝐺̃(𝜀) = {< 𝑥, ([𝑚𝑖𝑛{𝑠̃𝑢𝐹̃(𝜀)
𝐿 (𝑥), 𝑠̃𝑢𝐺̃(𝜀)

𝐿 (𝑥)} , 𝑚𝑖𝑛{𝑠̃𝑢𝐹̃(𝜀)
𝑈 (𝑥), 𝑠̃𝑢𝐺̃(𝜀)

𝑈  

(𝑥)}], [𝑚𝑖𝑛{𝑠̃𝜋𝐹̃(𝜀)
𝐿 (𝑥), 𝑠̃𝜋𝐹̃(𝜀)

𝐿 (𝑥)}, 𝑚𝑖𝑛{𝑠̃𝜋𝐹̃(𝜀)
𝑈 (𝑥), 𝑠̃𝜋𝐺̃(𝜀)

𝑈 (𝑥)}] , [𝑚𝑎𝑥{𝑠̃𝑣𝐹̃(𝜀)
𝐿 (𝑥), 𝑠̃𝑣𝐺̃(𝜀)

𝐿 (𝑥)} , 𝑚𝑎𝑥{ 

𝑠̃𝑣𝐹̃(𝜀)
𝑈 (𝑥), 𝑠̃𝑣𝐺̃(𝜀)

𝑈 (𝑥)}]) > |𝑥 ∈ 𝑈}. We denote it by (𝐹̃, 𝐴) ∩̃ (𝐺̃, 𝐵) = (𝐻, 𝐶). 

Theorem 1. Let (𝐹̃, 𝐴), (𝐺̃, 𝐵) and (𝑀̃, 𝐶) be three linguistic interval-valued spherical fuzzy 

soft sets over 𝑈, then we have the following properties. 

(1) Transitive law: If (𝐹̃, 𝐴) ⊂̃ (𝐺̃, 𝐵) and (𝐺̃, 𝐵) ⊂̃ (𝑀̃, 𝐶), then (𝐹̃, 𝐴) ⊂̃ (𝑀̃, 𝐶); 

(2) Commutative law: (𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵) = (𝐺̃, 𝐵) ∪̃ (𝐹̃, 𝐴) and  

(𝐹̃, 𝐴) ∩̃ (𝐺̃, 𝐵) = (𝐺̃, 𝐵) ∩̃ (𝐹̃, 𝐴); 

(3) Idempotent law: (𝐹̃, 𝐴) ∪̃ (𝐹̃, 𝐴) = (𝐹̃, 𝐴) and (𝐹̃, 𝐴) ∩̃ (𝐹̃, 𝐴) = (𝐹̃, 𝐴);  

(4) Associative law: (𝐹̃, 𝐴) ∪̃ ((𝐺̃, 𝐵) ∪̃ (𝑀̃, 𝐶)) = ((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵)) ∪̃ (𝑀̃, 𝐶)  and 

(𝐹̃, 𝐴) ∩̃ ((𝐺̃, 𝐵) ∩̃ (𝑀̃, 𝐶)) = ((𝐹̃, 𝐴) ∩̃ (𝐺̃, 𝐵)) ∩̃ (𝑀̃, 𝐶); 

(5) Distributive law: (𝐹̃, 𝐴) ∪̃ ((𝐺̃, 𝐵) ∩̃ (𝑀̃, 𝐶)) = ((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵)) ∩̃ ((𝐹̃, 𝐴) ∪̃ (𝑀̃, 𝐶))  and 

(𝐹̃, 𝐴) ∩̃ ((𝐺̃, 𝐵) ∪̃ (𝑀̃, 𝐶)) = ((𝐹̃, 𝐴) ∩̃ (𝐺̃, 𝐵)) ∪̃ ((𝐹̃, 𝐴) ∩̃ (𝑀̃, 𝐶)); 

(6) Absorption law: ((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵)) ∩̃ (𝐹̃, 𝐴) = (𝐹̃, 𝐴) and  

((𝐹̃, 𝐴) ∩̃ (𝐺̃, 𝐵)) ∪̃ (𝐹̃, 𝐴)  = (𝐹̃, 𝐴); 

(7) De Morgan’s law: ((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵))𝐶 = (𝐹̃, 𝐴)𝐶 ∩̃ (𝐺̃, 𝐵)𝐶  and  

((𝐹̃, 𝐴) ∩̃ (𝐺̃, 𝐵))𝐶 = (𝐹̃, 𝐴)𝐶 ∪̃ (𝐺̃, 𝐵)𝐶. 

Proof. We can obtain (1)–(4) easily according to Definitions 7, 12 and 13. And we prove 

the other properties as follows. 

Suppose that, for (𝐹̃, 𝐴), ∀𝛼 ∈ 𝐴, 𝐹̃(𝛼) = {⟨𝑥, (𝑠̃𝑢𝐹̃(𝛼)(𝑥), 𝑠̃𝜋𝐹̃(𝛼)(𝑥), 𝑠̃𝑣𝐹̃(𝛼)(𝑥))⟩|𝑥 ∈ 𝑈}, 

for (𝐺̃, 𝐵) , ∀𝛽 ∈ 𝐵 , 𝐺̃(𝛽) = {⟨𝑥, (𝑠̃𝑢𝐺̃(𝛽)(𝑥), 𝑠̃𝜋𝐺̃(𝛽)(𝑥), 𝑠̃𝑣𝐺̃(𝛽)(𝑥))⟩|𝑥 ∈ 𝑈}  and, for (𝑀̃, 𝐶), 

∀𝛾 ∈ 𝐶 , 𝑀̃(𝛾) = {⟨𝑥, (𝑠̃𝑢𝑀̃(𝛾)(𝑥), 𝑠̃𝜋𝑀̃(𝛾)(𝑥), 𝑠̃𝑣𝑀̃(𝛾)(𝑥))⟩|𝑥 ∈ 𝑈} . For convenience, we 

denote 𝐹̃(𝛼) = ([𝑠𝑎1, 𝑠𝑏1], [𝑠𝑐1, 𝑠𝑑1], [𝑠𝑒1, 𝑠𝑜1]) , 𝐺̃(𝛽) = ([𝑠𝑎2, 𝑠𝑏2], [𝑠𝑐2, 𝑠𝑑2], [𝑠𝑒2, 𝑠𝑜2])  and 

𝑀̃(𝛾) = ([𝑠𝑎3, 𝑠𝑏3], [𝑠𝑐3, 𝑠𝑑3], [𝑠𝑒3, 𝑠𝑜3]), respectively. 

(5). Suppose that (𝐺̃, 𝐵) ∩̃ (𝑀̃, 𝐶) = (𝑄̃, 𝑌), where 𝑌 = 𝐵 ∩ 𝐶, 𝑌 ≠ ∅ and ∀𝜑 ∈ 𝑌, 𝑄̃(𝜑) =

𝐺̃(𝜑) ∩ 𝑀̃(𝜑) = ([𝑚𝑖𝑛{𝑠𝑎2 , 𝑠𝑎3} , 𝑚𝑖𝑛{𝑠𝑏2, 𝑠𝑏3}] , [𝑚𝑖𝑛{𝑠𝑐2, 𝑠𝑐3} , 𝑚𝑖𝑛{𝑠𝑑2, 𝑠𝑑3}], [𝑚𝑎 𝑥{𝑠𝑒2, 𝑠𝑒3},  
𝑚𝑎𝑥{𝑠𝑜2, 𝑠𝑜3}]).  Then we have (𝐹̃, 𝐴) ∪̃ ((𝐺̃, 𝐵) ∩̃ (𝑀̃, 𝐶)) = (𝐹̃, 𝐴) ∪̃ (𝑄̃, 𝑌) . According to 

Definition 12, (𝐹̃, 𝐴) ∪̃ (𝑄̃, 𝑌) = (𝐿̃, 𝑍), where 𝑍 = 𝐴 ∪ 𝑌 and ∀𝜔 ∈ 𝑍, 

𝐿̃(𝜔) = {

𝐹̃(𝜔), 𝜔 ∈ 𝐴 − 𝑌 = 𝐴 − 𝐵 ∩ 𝐶;

𝑄̃(𝜔), 𝜔 ∈ 𝑌 − 𝐴 = 𝐵 ∩ 𝐶 − 𝐴;

𝐹̃(𝜔) ∪ 𝑄̃(𝜔), 𝜔 ∈ 𝐴 ∩ 𝑌 = 𝐴 ∩ 𝐵 ∩ 𝐶;

  

where 𝐹̃(𝜔) ∪ 𝑄̃(𝜔) = ([𝑚𝑎𝑥{𝑠𝑎1, 𝑚𝑖𝑛{𝑠𝑎2, 𝑠𝑎3}}, 𝑚𝑎𝑥{𝑠𝑏1, 𝑚𝑖𝑛{𝑠𝑏2, 𝑠𝑏3}}],[𝑚𝑖𝑛{𝑠𝑐1, 𝑚𝑖𝑛{ 

𝑠𝑐2, 𝑠𝑐3}}, 𝑚𝑖𝑛{𝑠𝑑1, 𝑚𝑖𝑛{𝑠𝑑2, 𝑠𝑑3}}], [𝑚𝑖𝑛{𝑠𝑒1, 𝑚𝑎𝑥{𝑠𝑒2, 𝑠𝑒3}} , 𝑚𝑖𝑛 {𝑠𝑜1, 𝑚𝑎𝑥{𝑠𝑜2, 𝑠𝑜3}}]). 

Assume that (𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵) = (𝑁, 𝐷)  and (𝐹̃, 𝐴) ∪̃ (𝑀̃, 𝐶) =  (𝐼, 𝐸) . According to 

Definition 12, for (𝑁, 𝐷), where 𝐷 = 𝐴 ∪ 𝐵 and ∀𝜌 ∈ 𝐷, 

𝑁(𝜌) = {

𝐹̃(𝜌), 𝜌 ∈ 𝐴 − 𝐵;

𝐺̃(𝜌), 𝜌 ∈ 𝐵 − 𝐴;

𝐹̃(𝜌) ∪ 𝑁(𝜌), 𝜔 ∈ 𝐴 ∩ 𝐵;
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where 𝐹̃(𝜌) ∪ 𝐺̃(𝜌) =  ([ 𝑚𝑎𝑥{𝑠𝑎1, 𝑠𝑎2} , 𝑚𝑎𝑥{𝑠𝑏1, 𝑠𝑏2}] , [𝑚𝑖𝑛{𝑠𝑐1, 𝑠𝑐2} , 𝑚𝑖𝑛{𝑠𝑑1, 𝑠𝑑2}], [𝑚𝑖𝑛 { 

𝑠𝑒1, 𝑠𝑒2}, 𝑚𝑖𝑛{𝑠𝑜1, 𝑠𝑜2}]). For (𝐼, 𝐸), we have 𝐸 = 𝐴 ∪ 𝐶 and ∀𝜎 ∈ 𝐸, 

𝐼(𝜎) = {

𝐹̃(𝜎), 𝜎 ∈ 𝐴 − 𝐶;

𝑀̃(𝜎), 𝜎 ∈ 𝐶 − 𝐴;

𝐹̃(𝜎) ∪ 𝑀̃(𝜎), 𝜎 ∈ 𝐴 ∩ 𝐶;

  

where 𝐹̃(𝜎) ∪ 𝑀̃(𝜎) =  ([ 𝑚𝑎𝑥{𝑠𝑎1, 𝑠𝑎3} , 𝑚𝑎𝑥{𝑠𝑏1, 𝑠𝑏3}] , 

[ 𝑚𝑖𝑛{𝑠𝑐1, 𝑠𝑐3} , 𝑚𝑖𝑛{𝑠𝑑1, 𝑠𝑑3}], [ 𝑚𝑖𝑛 {𝑠𝑒1, 𝑠𝑒3},  𝑚𝑖𝑛{𝑠𝑜1, 𝑠𝑜3}]) . Hence 

((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵)) ∩̃ ((𝐹̃, 𝐴) ∪̃ (𝑀̃, 𝐶)) = (𝑁, 𝐷) ∩̃ (𝐼, 𝐸) , suppose (𝑁, 𝐷) ∩̃ (𝐼, 𝐸)  = (𝐽, 𝐹) , 

where 𝐹 = 𝐷 ∩ 𝐸 and 𝐹 ≠ ∅, then 

𝐽(𝑧) = {

𝐹̃(𝑧), ∀𝑧 ∈ 𝐷 ∩ 𝐸 = 𝜌 ∩ 𝜎 = (𝐴 − 𝐶) ∩ (𝐴 − 𝐵) = 𝐴 − 𝐵 ∩ 𝐶;

𝐺̃(𝑧), ∀𝑧 ∈ 𝐵 ∩ 𝐶 − 𝐴;

𝑁(𝑧) ∩ 𝐼(𝑧), ∀𝑧 ∈ 𝐷 ∩ 𝐸 = 𝜌 ∩ 𝜎 = (𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶) = 𝐴 ∩ 𝐵 ∩ 𝐶;

  

where 𝑁(𝑧) ∩ 𝐼(𝑧) = ([𝑚𝑖𝑛{𝑚𝑎𝑥{𝑠𝑎1 , 𝑠𝑎2} , 𝑚𝑎𝑥{𝑠𝑎1, 𝑠𝑎3}} , 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑠𝑏1, 𝑠𝑏2}, 𝑚𝑎𝑥 { 𝑠𝑏1, 

𝑠𝑏3 }}], [𝑚𝑖𝑛{𝑚𝑖𝑛{𝑠𝑐1, 𝑠𝑐2} , 𝑚𝑖𝑛{𝑠𝑐1, 𝑠𝑐3}} , 𝑚𝑖𝑛{𝑚𝑖𝑛{𝑠𝑑1, 𝑠𝑑2} , 𝑚𝑖𝑛{𝑠𝑑1, 𝑠𝑑3}}] ,[ 𝑚𝑎𝑥{𝑚𝑖𝑛 { 𝑠𝑒1 , 

𝑠𝑒2}, 𝑚𝑖𝑛{𝑠𝑒1, 𝑠𝑒3}}, 𝑚𝑎𝑥 {𝑚𝑖𝑛{𝑠𝑜1, 𝑠𝑜2} , 𝑚𝑖𝑛 {𝑠𝑜1, 𝑠𝑜3}}]). 

Consequently, we can obtain (𝐿̃, 𝑍) = (𝐽, 𝐹) . Thus (𝐹̃, 𝐴) ∪̃ ((𝐺̃, 𝐵) ∩̃ (𝑀̃, 𝐶)) =

((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵)) ∩̃ ((𝐹̃, 𝐴) ∪̃ (𝑀̃, 𝐶)). 

Similarly, (𝐹̃, 𝐴) ∩̃ ((𝐺̃, 𝐵) ∪̃ (𝑀̃, 𝐶)) = ((𝐹̃, 𝐴) ∩̃ (𝐺̃, 𝐵)) ∪̃ ((𝐹̃, 𝐴) ∩̃ (𝑀̃, 𝐶)). 

(6). The proof is similar to that of (5). 

(7). Suppose that (𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵) = (𝐻, 𝐶), where 𝐶 = 𝐴 ∪ 𝐵 and ∀𝜀 ∈ 𝐶, 

𝐻(𝜀) = {

𝐹̃(𝜀), 𝜀 ∈ 𝐴 − 𝐵;

𝐺̃(𝜀), 𝜀 ∈ 𝐵 − 𝐴;

𝐹̃(𝜀) ∪ 𝐺̃(𝜀), 𝜀 ∈ 𝐴 ∩ 𝐵;

  

where 𝐹̃(𝜀) ∪ 𝐺̃(𝜀) = ([𝑚𝑎𝑥{𝑠𝑎1, 𝑠𝑎2} , 𝑚𝑎𝑥{𝑠𝑏1, 𝑠𝑏2}], [𝑚𝑖𝑛{𝑠𝑐1, 𝑠𝑐2} , 𝑚𝑖𝑛{𝑠𝑑1, 𝑠𝑑2}], [𝑚𝑖𝑛{ 

𝑠𝑒1, 𝑠𝑒2}, 𝑚𝑖𝑛{𝑠𝑜1, 𝑠𝑜2}]). Then we have ((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵))𝐶 = (𝐻̃, 𝐶)𝐶, where ∀𝜀 ∈ 𝐶, 

(𝐻(𝜀))𝐶 = {

(𝐹̃(𝜀))𝐶 = ([𝑠𝑒1, 𝑠𝑜1], [𝑠𝑐1, 𝑠𝑑1], [𝑠𝑎1, 𝑠𝑏1]), 𝜀 ∈ 𝐴 − 𝐵;

(𝐺̃(𝜀))𝐶 = ([𝑠𝑒2, 𝑠𝑜2], [𝑠𝑐2, 𝑠𝑑2], [𝑠𝑎2, 𝑠𝑏2]), 𝜀 ∈ 𝐵 − 𝐴;

(𝐹̃(𝜀) ∪ 𝐺̃(𝜀))𝐶 , 𝜀 ∈ 𝐴 ∩ 𝐵;

  

where (𝐹̃(𝜀) ∪ 𝐺̃(𝜀))
𝐶

= ([𝑚𝑖𝑛{𝑠𝑒1, 𝑠𝑒2} , 𝑚𝑖𝑛{𝑠𝑜1, 𝑠𝑜2}], [𝑚𝑖𝑛{𝑠𝑐1, 𝑠𝑐2} , 𝑚𝑖𝑛{𝑠𝑑1, 𝑠𝑑2}],  

[𝑚𝑎𝑥{𝑠𝑎1, 𝑠𝑎2}, 𝑚𝑎𝑥{𝑠𝑏1, 𝑠𝑏2}]). 

Assume that (𝐹̃, 𝐴)𝐶 ∩̃ (𝐺̃, 𝐵)𝐶 = (𝐼, 𝐷), where 𝐷 = 𝐴 ∩ 𝐵, 𝐷 ≠ ∅ and ∀𝜀 ∈ 𝐷, then 

𝐼(𝜀) = (𝐹̃, 𝐴)𝐶 ∩̃ (𝐺̃, 𝐵)𝐶 = ([𝑚𝑖𝑛{𝑠𝑒1, 𝑠𝑒2} , 𝑚𝑖𝑛{𝑠𝑜1, 𝑠𝑜2}], [𝑚𝑖𝑛{𝑠𝑐1, 𝑠𝑐2} , 𝑚𝑖𝑛{𝑠𝑑1, 𝑠𝑑2}],  

[𝑚𝑎𝑥{𝑠𝑎1, 𝑠𝑎2}, 𝑚𝑎𝑥{𝑠𝑏1, 𝑠𝑏2}]). 

Consequently, (𝐻, 𝐶) = (𝐼, 𝐷). Thus ((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵))𝐶 = (𝐹̃, 𝐴)𝐶 ∩̃ (𝐺̃, 𝐵)𝐶 . 

Similarly, we can obtain ((𝐹̃, 𝐴) ∩̃ (𝐺̃, 𝐵))𝐶 = (𝐹̃, 𝐴)𝐶 ∪̃ (𝐺̃, 𝐵)𝐶 .  

Definition 14. The “AND” operation on the two linguistic interval-valued spherical fuzzy soft 

sets (𝐹̃, 𝐴) and (𝐺̃, 𝐵) is defined by 

(𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵) = (𝐻, 𝐴 × 𝐵) (15) 

where 𝐻(𝛼, 𝛽) = 𝐹̃(𝛼) ∩ 𝐺̃(𝛽), ∀(𝛼, 𝛽) ∈ 𝐴 × 𝐵. 

Definition 15. The “OR” operation on the two linguistic interval-valued spherical fuzzy soft sets 

(𝐹̃, 𝐴) and (𝐺̃, 𝐵) is defined by 

(𝐹̃, 𝐴) ∨ (𝐺̃, 𝐵) = (𝐻, 𝐴 × 𝐵) (16) 

where 𝐻(𝛼, 𝛽) = 𝐹̃(𝛼) ∪ 𝐺̃(𝛽), ∀(𝛼, 𝛽) ∈ 𝐴 × 𝐵. 
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Theorem 2. Let (𝐹̃, 𝐴), (𝐺̃, 𝐵) and (𝑀̃, 𝐶) be three linguistic interval-valued spherical fuzzy 

soft sets over U, then we have the following properties. 

(1) Associative law: (𝐹̃, 𝐴) ∨ ((𝐺̃, 𝐵) ∨ (𝑀̃, 𝐶)) = ((𝐹̃, 𝐴) ∨ (𝐺̃, 𝐵)) ∨ (𝑀̃, 𝐶) and 

(𝐹̃, 𝐴) ∧ ((𝐺̃, 𝐵) ∧ (𝑀̃, 𝐶)) = ((𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵)) ∧ (𝑀̃, 𝐶); 

(2) Distributive law: (𝐹̃, 𝐴) ∨ ((𝐺̃, 𝐵) ∧ (𝑀̃, 𝐶)) =  ((𝐹̃, 𝐴) ∨ (𝐺̃, 𝐵)) ∧ ((𝐹̃, 𝐴) ∨ (𝑀̃, 𝐶))  and 

(𝐹̃, 𝐴) ∧ ((𝐺̃, 𝐵) ∨ (𝑀̃, 𝐶)) = ((𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵)) ∨ ((𝐹̃, 𝐴, 𝐴) ∧ (𝑀̃, 𝐶)); 

(3) De Morgan’s law: ((𝐹̃, 𝐴) ∨ (𝐺̃, 𝐵))𝐶 = (𝐹̃, 𝐴)𝐶 ∧ (𝐺̃, 𝐵)𝐶  and ((𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵))𝐶 =

(𝐹̃, 𝐴)𝐶 ∨ (𝐺̃, 𝐵)𝐶. 

Proof. We can obtain (1) easily according to Definitions 14 and 15. And we prove the other 

properties as follows. 

(2). Suppose (𝐺̃, 𝐵) ∧ (𝑀̃, 𝐶) =  (𝐻, 𝐵 × 𝐶) , where ∀(𝛽, 𝛾) ∈ 𝐵 × 𝐶 , 𝐻(𝛽, 𝛾) = 𝐺̃(𝛽) ∩

𝑀̃(𝛾) . Then we have (𝐹̃, 𝐴) ∨ ((𝐺̃, 𝐵) ∧ (𝑀̃, 𝐶)) = (𝐹̃, 𝐴) ∨ (𝐻, 𝐵 × 𝐶) . And suppose 

(𝐹̃, 𝐴) ∨ (𝐻, 𝐵 × 𝐶) = (𝐼, 𝐴 × (𝐵 × 𝐶)) , ∀(𝛼, (𝛽, 𝛾)) ∈ 𝐴 × (𝐵 × 𝐶) , 𝐼(𝛼, (𝛽, 𝛾)) = 𝐹̃(𝛼) ∪

(𝐺̃(𝛽) ∩ 𝑀̃(𝛾)). 

Assume that (𝐹̃, 𝐴) ∨ (𝐺̃, 𝐵) = (𝐽, 𝐴 × 𝐵)  and (𝐹̃, 𝐴) ∨ (𝑀̃, 𝐶) = (𝐾, 𝐴 × 𝐶) , where 

∀(𝛼, 𝛽) ∈ 𝐴 × 𝐵 , 𝐽(𝛼, 𝛽) = 𝐹̃(𝛼) ∪ 𝐺̃(𝛽)  and ∀(𝛼, 𝛾) ∈ 𝐴 × 𝐶 , 𝐾(𝛼, 𝛾) = 𝐹̃(𝛼) ∪ 𝑀̃(𝛾) . 

Then we have ((𝐹̃, 𝐴) ∨ (𝐺̃, 𝐵)) ∧ ((𝐹̃, 𝐴) ∨ (𝑀̃, 𝐶)) = (𝐽, 𝐴 × 𝐵) ∧ (𝐾, 𝐴 × 𝐶). 

Suppose (𝐽, 𝐴 × 𝐵) ∧ (𝐾, 𝐴 × 𝐶) = (𝐿̃, (𝐴 × 𝐵) × (𝐴 × 𝐶)), where ∀(𝛼, 𝛾) ∈ 𝐴 × 𝐶 × 𝐵, 

then, 𝐿̃((𝛼, 𝛽), (𝛼, 𝛾)) = (𝐹̃(𝛼) ∪ 𝐺̃(𝛽)) ∩ (𝐹̃(𝛼) ∪ 𝑀̃(𝛾)) . According to Theorem 1(5), 

(𝐹̃, 𝐴) ∪̃ ((𝐺̃, 𝐵) ∩̃ (𝑀̃, 𝐶))= ((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵)) ∩̃ ((𝐹̃, 𝐴) ∪̃ (𝑀̃, 𝐶)). 

Consequently, (𝐹̃, 𝐴) ∨ ((𝐺̃, 𝐵) ∧ (𝑀̃, 𝐶)) =  ((𝐹̃, 𝐴) ∨ (𝐺̃, 𝐵)) ∧ ((𝐹̃, 𝐴) ∨ (𝑀̃, 𝐶)). 

Similarly, (𝐹̃, 𝐴) ∧ ((𝐺̃, 𝐵) ∨ (𝑀̃, 𝐶)) = ((𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵)) ∨ ((𝐹̃, 𝐴) ∧ (𝑀̃, 𝐶)). 

(3). Suppose (𝐹̃, 𝐴) ∨ (𝐺̃, 𝐵) = (𝐻, 𝐴 × 𝐵), where ∀(𝛼, 𝛽) ∈ 𝐴 × 𝐵, 𝐻̃(𝛼, 𝛽) = 𝐹̃(𝛼) ∪ 𝐺̃(𝛽). 

Then we have ((𝐹̃, 𝐴) ∨ (𝐺̃, 𝐵))𝐶 = (𝐻̃, 𝐴 × 𝐵)𝐶 . According to Definition 15, ∀(𝛼, 𝛽) ∈

𝐴 × 𝐵, (𝐻(𝛼, 𝛽))𝐶 = (𝐹̃(𝛼) ∪ 𝐺̃(𝛽))𝐶. 

Assume that (𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵) = (𝐼, 𝐴 × 𝐵) , where ∀(𝛼, 𝛽) ∈ 𝐴 × 𝐵 , 𝐼(𝛼, 𝛽) = 𝐹̃(𝛼) ∩

𝐺̃(𝛽). According to Definition 9, (𝐹̃, 𝐴)𝐶 = (𝐹̃𝐶 , ¬𝐴), (𝐺̃, 𝐵)𝐶 = (𝐺̃̃𝐶 , ¬𝐵). Then we have 

(𝐹̃, 𝐴)𝐶 ∧ (𝐺̃, 𝐵)
𝐶

= (𝐼𝐶 , ¬(𝐴 × 𝐵)) , where ∀(𝛼, 𝛽) ∈ ¬(𝐴 × 𝐵) , 𝐻̃𝐶(𝛼, 𝛽) = (𝐹̃(𝛼))𝐶 ∩

(𝐺̃(𝛽))𝐶 . According to Theorem 1(7), (𝐹̃(𝛼) ∪ 𝐺̃(𝛽))𝐶 = (𝐹̃(𝛼))𝐶 ∩ (𝐺̃(𝛽))𝐶. 

Consequently, ((𝐹̃, 𝐴) ∨ (𝐺̃, 𝐵))𝐶 = (𝐹̃, 𝐴)𝐶 ∧ (𝐺̃, 𝐵)𝐶 . 

Similarly, we can obtain ((𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵))𝐶 = (𝐹̃, 𝐴)𝐶 ∨ (𝐺̃, 𝐵)𝐶 .  

Definition 16. The necessity operation on a linguistic interval-valued spherical fuzzy soft set 

(𝐹̃, 𝐸) is denoted as □(𝐹̃, 𝐸), ∀𝜀 ∈ 𝐸, 

□𝐹̃(𝜀) = {⟨𝑥, (𝑠̃□𝑢𝐹̃(𝜀)(𝑥), 𝑠̃□𝜋𝐹̃(𝜀)(𝑥), 𝑠̃□𝑣𝐹̃(𝜀)(𝑥))⟩ |𝑥 ∈ 𝑈 } (17) 

Here, 𝑠̃□𝑢𝐹̃(𝜀)(𝑥) = [𝑠̃𝑢𝐹̃(𝜀)
𝐿 (𝑥), 𝑠̃𝑢𝐹̃(𝜀)

𝑈 (𝑥)] is the necessary membership degree that ob-

ject 𝑥 holds on parameter 𝜀, 𝑠̃□𝜋𝐹̃(𝜀)(𝑥) = [𝑠0, 𝑠0] is the empty hesitancy degree that ob-

ject 𝑥 holds on parameter 𝜀, 𝑠̃□𝑣𝐹̃(𝜀)(𝑥) = [𝑠̃
√(ℎ)2−((𝑢𝐹̃(𝜀))𝑈)

2
(𝑥), 𝑠̃

√(ℎ)2−((𝑢𝐹̃(𝜀))𝐿)
2
(𝑥)] is the 

possible non-membership degree that object 𝑥 does not hold on parameter 𝜀. 

Theorem 3. Let (𝐹̃, 𝐴) and (𝐺̃, 𝐵) be two linguistic interval-valued spherical fuzzy soft sets 

over 𝑈, then we have following properties. 

(1) □□(𝐹̃, 𝐴) = □(𝐹̃, 𝐴); 

(2) □((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵)) = □(𝐹̃, 𝐴) ∪̃ □(𝐺̃, 𝐵); 

(3) □((𝐹̃, 𝐴) ∩̃ (𝐺̃, 𝐵)) = □(𝐹̃, 𝐴) ∩̃ □(𝐺̃, 𝐵); 

(4) □((𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵)) = □(𝐹̃, 𝐴) ∧ □(𝐺̃, 𝐵); 

(5) □((𝐹̃, 𝐴) ∨ (𝐺̃, 𝐵)) = □(𝐹̃, 𝐴) ∨ □(𝐺̃, 𝐵). 
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Proof. We can obtain (1) easily according to Definition 16. And we prove the other prop-

erties as follows. 

Suppose that, for (𝐹̃, 𝐴) , ∀𝛼 ∈ 𝐴 , 𝐹̃(𝛼) = ([𝑠𝑎1, 𝑠𝑏1], [𝑠𝑐1, 𝑠𝑑1], [𝑠𝑒1, 𝑠𝑜1])  and for 

(𝐺̃, 𝐵), ∀𝛽 ∈ 𝐵, 𝐺̃(𝛽) = ([𝑠𝑎2, 𝑠𝑏2], [𝑠𝑐2, 𝑠𝑑2], [𝑠𝑒2, 𝑠𝑜2]). 

(2). Suppose that (𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵) = (𝐻, 𝐶), where 𝐶 = 𝐴 ∪ 𝐵 and ∀𝜀 ∈ 𝐶, 

𝐻(𝜀) = {

𝐹̃(𝜀) = ([𝑠𝑎1 , 𝑠𝑏1], [𝑠𝑐1 , 𝑠𝑑1], [𝑠𝑒1, 𝑠𝑜1]), 𝜀 ∈ 𝐴 − 𝐵;

𝐺̃(𝜀) = ([𝑠𝑎2 , 𝑠𝑏2], [𝑠𝑐2 , 𝑠𝑑2], [𝑠𝑒2, 𝑠𝑜2]), 𝜀 ∈ 𝐵 − 𝐴;

𝐹̃(𝜀) ∪ 𝐺̃(𝜀), 𝜀 ∈ 𝐴 ∩ 𝐵;

  

where 𝐹̃(𝜀) ∪ 𝐺̃(𝜀) = ([𝑚𝑎𝑥{𝑠𝑎1 , 𝑠𝑎2} , 𝑚𝑎𝑥{𝑠𝑏1, 𝑠𝑏2}] , [𝑚𝑖𝑛{𝑠𝑐1, 𝑠𝑐2} , 𝑚𝑖𝑛{𝑠𝑑1, 𝑠𝑑2}], 
[𝑚𝑖𝑛{𝑠𝑒1, 𝑠𝑒2} , 𝑚𝑖𝑛 {𝑠𝑜1 , 𝑠𝑜2}]). Then we have □((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵)) = □(𝐻̃, 𝐶). According to 

Definition 16, we have 

□𝐻(𝜀) = {

□𝐹̃(𝜀) = ([𝑠𝑎1, 𝑠𝑏1], [𝑠0, 𝑠0], [𝑠√(ℎ)2−(𝑏1)2 , 𝑠√(ℎ)2−(𝑎1)2]), 𝜀 ∈ 𝐴 − 𝐵;

□𝐺̃(𝜀) = ([𝑠𝑎2, 𝑠𝑏2], [𝑠0, 𝑠0], [𝑠√(ℎ)2−(𝑏2)2 , 𝑠√(ℎ)2−(𝑎2)2]), 𝜀 ∈ 𝐵 − 𝐴;

□(𝐹̃(𝜀) ∪ 𝐺̃(𝜀)), 𝜀 ∈ 𝐴 ∩ 𝐵;

  

where □(𝐹̃(𝜀) ∪ 𝐺̃(𝜀)) = ([𝑚𝑎𝑥{𝑠𝑎1, 𝑠𝑎2} , 𝑚𝑎𝑥{𝑠𝑏1, 𝑠𝑏2}] , [𝑠0, 𝑠0], [min {𝑠√(ℎ)2−(𝑏1)2 , 

𝑠√(ℎ)2−(𝑏2)2}, 𝑚𝑖𝑛 {𝑠√(ℎ)2−(𝑎1)2 , 𝑠√(ℎ)2−(𝑎2)2}]). 

According to Definitions 12 and 16, □(𝐹̃, 𝐴) ∪̃ □(𝐺̃, 𝐵) = (𝑂̃, 𝐶), 𝐶 = 𝐴 ∪ 𝐵 and ∀𝜀 ∈ 𝐶, 

𝑂̃(𝜀) = {

□𝐹̃(𝜀) = ([𝑠𝑎1, 𝑠𝑏1], [𝑠0, 𝑠0], [𝑠√(ℎ)2−(𝑏1)2 , 𝑠√(ℎ)2−(𝑎1)2]), 𝜀 ∈ 𝐴 − 𝐵;

□𝐺̃(𝜀) = ([𝑠𝑎2, 𝑠𝑏2], [𝑠0, 𝑠0], [𝑠√(ℎ)2−(𝑏2)2 , 𝑠√(ℎ)2−(𝑎2)2]), 𝜀 ∈ 𝐵 − 𝐴;

□𝐹̃(𝜀) ∪ □𝐺̃(𝜀), 𝜀 ∈ 𝐴 ∩ 𝐵;

  

where □𝐹̃(𝜀) ∪ □𝐺̃(𝜀) = ([𝑚𝑎𝑥{𝑠𝑎1, 𝑠𝑎2} , 𝑚𝑎𝑥{𝑠𝑏1, 𝑠𝑏2}] , [𝑠0, 𝑠0], [𝑚𝑖𝑛 {𝑠√(ℎ)2−(𝑏1)2 , 

𝑠√(ℎ)2−(𝑏2)2}, 𝑚𝑖𝑛 {𝑠√(ℎ)2−(𝑎1)2 , 𝑠√(ℎ)2−(𝑎2)2}]). 

Consequently, □(𝐻, 𝐶) = (𝑂̃, 𝐶). Thus □((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵)) = □(𝐹̃, 𝐴) ∪̃ □(𝐺̃, 𝐵). 

(3). The proof is similar to that of (2). 

(4). Suppose that (𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵) = (𝐻, A × B) , where ∀(𝛼, 𝛽) ∈ 𝐴 × 𝐵 , 𝐻(𝛼, 𝛽) =

𝐹̃(𝛼) ∩ 𝐺̃(𝛽) = ([𝑚𝑖𝑛{𝑠𝑎1, 𝑠𝑎2} , 𝑚𝑖𝑛{𝑠𝑏1, 𝑠𝑏2}] , [𝑚𝑖𝑛{𝑠𝑐1, 𝑠𝑐2} , 𝑚𝑖𝑛{𝑠𝑑1, 𝑠𝑑2}], 
[𝑚𝑎𝑥{𝑠𝑒1 , 𝑠𝑒2} , 𝑚𝑎𝑥{𝑠𝑜1, 𝑠𝑜2}]) . Then we have (𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵) = (𝐻̃, A × B) . According to 

Definition 16, ∀𝜀 ∈ 𝐴 × 𝐵 , □𝐻̃(𝜀) =

([𝑚𝑖𝑛{𝑠𝑎1, 𝑠𝑎2} , 𝑚𝑖𝑛{𝑠𝑏1, 𝑠𝑏2}] , [𝑠0, 𝑠0], [𝑠
√(ℎ)2−(𝑚𝑖𝑛{𝑠𝑏1,𝑠𝑏2})2 , 𝑠

√(ℎ)2−(𝑚𝑖𝑛{𝑠𝑎1,𝑠𝑎2 })2]). 

According to Definition 14 and Definition 16, assume that □(𝐹̃, 𝐴) ∧ □(𝐺̃, 𝐵) =

(𝐼, A × B), where ∀(𝛼, 𝛽) ∈ 𝐴 × 𝐵,  

𝐼(𝛼, 𝛽) = □𝐹̃(𝛼) ∩ □𝐺̃(𝛽) = ([𝑚𝑖𝑛{𝑠𝑎1 , 𝑠𝑎2} , 𝑚𝑖𝑛{𝑠𝑏1, 𝑠𝑏2}] , [𝑠0, 𝑠0], [𝑚𝑎𝑥{𝑠√(ℎ)2−(𝑏1)2 , 

𝑠√(ℎ)2−(𝑏2)2}, 𝑚𝑎𝑥{𝑠√(ℎ)2−(𝑎1)2 , 𝑠√(ℎ)2−(𝑎2)2}]) = ([𝑚𝑖𝑛{𝑠𝑎1, 𝑠𝑎2} , 𝑚𝑖𝑛{𝑠𝑏1, 𝑠𝑏2}] , [𝑠0, 𝑠0] , 

[𝑠√(ℎ)2−(min{𝑠𝑏1,𝑠𝑏2})2 , 𝑠√(ℎ)2−(min{𝑠𝑎1,𝑠𝑎2 })2]) =  □((𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵)). 

(5). The proof is similar to that of (4).  

Definition 17. The possibility operation on a linguistic interval-valued spherical fuzzy soft set 

(𝐹̃, 𝐸) is denoted as ○ (𝐹̃, 𝐸), ∀𝜀 ∈ 𝐸, 

○ 𝐹̃(𝜀) = {⟨𝑥, (𝑠̃○𝑢𝐹̃(𝜀)(𝑥), 𝑠̃○𝜋𝐹̃(𝜀)(𝑥), 𝑠̃○𝑣𝐹̃(𝜀)(𝑥))⟩ |𝑥 ∈ 𝑈 } (18) 

Here, 𝑠̃○𝑢𝐹̃(𝜀)(𝑥) = [𝑠̃
√(ℎ)2−((𝑣𝐹̃(𝜀))𝑈)

2
(𝑥), 𝑠̃

√(ℎ)2−((𝑣𝐹̃(𝜀))𝐿)
2
(𝑥)] is the possible member-

ship degree that object 𝑥 holds on parameter 𝜀, 𝑠̃○𝜋𝐹̃(𝜀)(𝑥) = [𝑠0, 𝑠0] is the empty hesi-

tancy degree that object 𝑥 holds on parameter 𝜀, 𝑠̃○𝑣𝐹̃(𝜀)(𝑥) = [𝑠̃𝑣𝐹̃(𝜀)
𝐿 (𝑥), 𝑠̃𝑣𝐹̃(𝜀)

𝑈 (𝑥)] is the 

necessary non-membership degree that object 𝑥 does not hold on parameter 𝜀. 
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Theorem 4. Let (𝐹̃, 𝐴) and (𝐺̃, 𝐵) be two linguistic interval-valued spherical fuzzy soft sets 

over 𝑈, then we have the following properties. 

(1) ○○ (𝐹̃, 𝐸) =○ (𝐹̃, 𝐸); 

(2) ○ ((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵)) =○ (𝐹̃, 𝐴)  ∪̃ ○ (𝐺̃, 𝐵); 

(3) ○ ((𝐹̃, 𝐴) ∩̃ (𝐺̃, 𝐵)) =○ (𝐹̃, 𝐴)  ∩̃ ○ (𝐺̃, 𝐵); 

(4) ○ ((𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵)) =○ (𝐹̃, 𝐴)  ∧ ○ (𝐺̃, 𝐵); 

(5) ○ ((𝐹̃, 𝐴) ∨ (𝐺̃, 𝐵)) =○ (𝐹̃, 𝐴)  ∨ ○ (𝐺̃, 𝐵). 

Proof. We can obtain (1) easily according to Definition 17. And we prove the other 

properties as follows. 

(2). Suppose that (𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵) = (𝐻, 𝐶), where 𝐶 = 𝐴 ∪ 𝐵 and ∀𝜀 ∈ 𝐶, 

𝐻(𝜀) = {

𝐹̃(𝜀) = ([𝑠𝑎1 , 𝑠𝑏1], [𝑠𝑐1 , 𝑠𝑑1], [𝑠𝑒1, 𝑠𝑜1]), 𝜀 ∈ 𝐴 − 𝐵;

𝐺̃(𝜀) = ([𝑠𝑎2 , 𝑠𝑏2], [𝑠𝑐2 , 𝑠𝑑2], [𝑠𝑒2, 𝑠𝑜2]), 𝜀 ∈ 𝐵 − 𝐴;

𝐹̃(𝜀) ∪ 𝐺̃(𝜀), 𝜀 ∈ 𝐴 ∩ 𝐵;

  

where 𝐹̃(𝜀) ∪ 𝐺̃(𝜀) = ([𝑚𝑎𝑥{𝑠𝑎1 , 𝑠𝑎2} , 𝑚𝑎𝑥{𝑠𝑏1, 𝑠𝑏2}] , [𝑚𝑖𝑛{𝑠𝑐1, 𝑠𝑐2} , 𝑚𝑖𝑛{𝑠𝑑1, 𝑠𝑑2}], [𝑚𝑖𝑛{ 

𝑠𝑒1, 𝑠𝑒2}, 𝑚𝑖𝑛 {𝑠𝑜1, 𝑠𝑜2}]).  Then we have ○ ((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵)) = ○ (𝐻, 𝐶) . According to 

Definition 17, we have 

○ 𝐻̃(𝜀) = {

○ 𝐹̃(𝜀) = ([𝑠√(ℎ)2−(𝑜1)2 , 𝑠√(ℎ)2−(𝑒1)2], [𝑠0, 𝑠0], [𝑠𝑒1, 𝑠𝑜1]), 𝜀 ∈ 𝐴 − 𝐵;

○ 𝐺̃(𝜀) = ([𝑠√(ℎ)2−(𝑜2)2 , 𝑠√(ℎ)2−(𝑒2)2], [𝑠0, 𝑠0], [𝑠𝑒2, 𝑠𝑜2]), 𝜀 ∈ 𝐵 − 𝐴;

○ (𝐹̃(𝜀) ∪ 𝐺̃(𝜀)), 𝜀 ∈ 𝐴 ∩ 𝐵;

  

where ○ (𝐹̃(𝜀) ∪ 𝐺̃(𝜀)) = ([max {𝑠√(ℎ)2−(𝑜1)2 , 𝑠√(ℎ)2−(𝑜2)2}, 𝑚𝑎𝑥{𝑠√(ℎ)2−(𝑒1)2 , 𝑠√(ℎ)2−(𝑒2)2}], 

[𝑠0, 𝑠0], [𝑚𝑖𝑛 {𝑠𝑒1, 𝑠𝑒2}, 𝑚𝑖𝑛 {𝑠𝑜1, 𝑠𝑜2}]). 

According to Definitions 12 and 17, suppose ○ (𝐹̃, 𝐴) ∪̃○ (𝐺̃, 𝐵) = (𝑂̃, 𝐶), where 𝐶 =

𝐴 ∪ 𝐵 and ∀𝜀 ∈ 𝐶, 

𝑂̃(𝜀) = {

○ 𝐹̃(𝜀) = ([𝑠√(ℎ)2−(𝑜1)2 , 𝑠√(ℎ)2−(𝑒1)2], [𝑠0, 𝑠0], [𝑠𝑒1, 𝑠𝑜1]), 𝜀 ∈ 𝐴 − 𝐵;

○ 𝐺̃(𝜀) = ([𝑠√(ℎ)2−(𝑜2)2 , 𝑠√(ℎ)2−(𝑒2)2], [𝑠0, 𝑠0], [𝑠𝑒2, 𝑠𝑜2]), 𝜀 ∈ 𝐵 − 𝐴;

○ 𝐹̃(𝜀) ∪○ 𝐺̃(𝜀), 𝜀 ∈ 𝐴 ∩ 𝐵;

  

where ○ 𝐹̃(𝜀) ∪○ 𝐺̃(𝜀) = ([max {𝑠√(ℎ)2−(𝑜1)2 , 𝑠√(ℎ)2−(𝑜2)2}, 𝑚𝑎𝑥{𝑠√(ℎ)2−(𝑒1)2 , 𝑠√(ℎ)2−(𝑒2)2}], 

[𝑠0, 𝑠0], [𝑚𝑖𝑛 {𝑠𝑒1, 𝑠𝑒2}, 𝑚𝑖𝑛 {𝑠𝑜1, 𝑠𝑜2}]). 

Consequently, ((𝐹̃, 𝐴) ∪̃ (𝐺̃, 𝐵)) =○ (𝐹̃, 𝐴)  ∪̃ ○ (𝐺̃, 𝐵). 

(3). The proof is similar to that of (2). 

(4). Suppose that (𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵) = (𝐻, A × B) , where ∀(𝛼, 𝛽) ∈ 𝐴 × 𝐵 , 𝐻(𝛼, 𝛽) =

([𝑚𝑖𝑛{𝑠𝑎1, 𝑠𝑎2} , 𝑚𝑖𝑛{𝑠𝑏1, 𝑠𝑏2}] , [𝑚𝑖𝑛{𝑠𝑐1, 𝑠𝑐2} , 𝑚𝑖𝑛{𝑠𝑑1, 𝑠𝑑2}], [𝑚𝑎𝑥{𝑠𝑒1, 𝑠𝑒2} , 𝑚𝑎𝑥{𝑠𝑜1, 𝑠𝑜2}]). 

Then we have ○ ((𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵)) =○ (𝐻, A × B). According to Definition 17, we have 

○ 𝐻(𝜀) = ([𝑠√(ℎ)2−(𝑚𝑎𝑥{𝑜1,𝑜2})2 , 𝑠√(ℎ)2−(𝑚𝑎𝑥{𝑒1,𝑒2})2] , [𝑠0, 𝑠0], [𝑚𝑎𝑥{𝑠𝑒1, 𝑠𝑒2} , 𝑚𝑎𝑥{𝑠𝑜1, 𝑠𝑜2}]). 

According to Definitions 14 and 17, assume that ○ (𝐹̃, 𝐴) ∧ ○ (𝐺̃, 𝐵) = (𝐼, A × B) , 

where ∀(𝛼, 𝛽) ∈ 𝐴 × 𝐵 , 𝐼(𝛼, 𝛽) =○ 𝐹̃(𝛼) ∩○

𝐺̃(𝛽) = ([min {𝑠√(ℎ)2−(𝑜1)2 , 𝑠√(ℎ)2−(𝑜2)2}, 𝑚𝑖𝑛{𝑠√(ℎ)2−(𝑒1)2 , 𝑠√(ℎ)2−(𝑒2)2}], 

[𝑠0, 𝑠0], [𝑚𝑎𝑥{𝑠𝑒1, 𝑠𝑒2} , 𝑚𝑎𝑥{𝑠𝑜1, 𝑠𝑜2}]) =( [𝑠√(ℎ)2−(𝑚𝑎𝑥{𝑜1,𝑜2})2 , 𝑠√(ℎ)2−(𝑚𝑎𝑥{𝑒1,𝑒2})2] , [𝑠0, 𝑠0], 

[𝑚𝑎𝑥{𝑠𝑒1 , 𝑠𝑒2} , 𝑚𝑎𝑥{𝑠𝑜1, 𝑠𝑜2}])= ○ ((𝐹̃, 𝐴) ∧ (𝐺̃, 𝐵)). 

(5). The proof is similar to that of (4).  

Theorem 5. Let (𝐹̃, 𝐴) be a linguistic interval-valued spherical fuzzy soft set over 𝑈, then we 

have the following properties. 

(1) □(𝐹̃, 𝐴) ⊂̃ (𝐹̃, 𝐴); 

(2) ○ □(𝐹̃, 𝐴) = □(𝐹̃, 𝐴); 
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(3) □ ○ (𝐹̃, 𝐴) =○ (𝐹̃, 𝐴). 

Proof. (1). According to Definitions 16 and 17, we have □𝐹̃(𝛼) = ([𝑠𝑎 , 𝑠𝑏], 
[𝑠0, 𝑠0], [𝑠√(ℎ)2−(𝑏)2 , 𝑠√(ℎ)2−(𝑎)2]) and ○ 𝐹̃(𝛼) = ([𝑠√(ℎ)2−(𝑜)2 , 𝑠√(ℎ)2−(𝑒)2], [𝑠0, 𝑠0], [𝑠𝑒 , 𝑠𝑜]). 

Since 0 ≤ 𝑏2 + 𝑑2 + 𝑓2 ≤ ℎ2 , then we have 𝑠√(ℎ)2−(𝑏)2 ≥ 𝑠𝑜 . Thus, 𝑠√(ℎ)2−(𝑎)2 ≥

𝑠√(ℎ)2−(𝑏)2 ≥ 𝑠𝑜 ≥ 𝑠𝑒 . Since 𝑠𝑎 ≤ 𝑠𝑎 , 𝑠𝑏 ≤ 𝑠𝑏 , 𝑠0 ≤ 𝑠𝑐 , 𝑠0 ≤ 𝑠𝑑 , hence □(𝐹̃, 𝐴) ⊂̃ (𝐹̃, 𝐴). 

(2). Assume that ∀𝛼 ∈ 𝐴, □𝐹̃(𝛼) = ([𝑠𝑎 , 𝑠𝑏], [𝑠0, 𝑠0], [𝑠√(ℎ)2−(𝑏)2 , 𝑠√(ℎ)2−(𝑎)2]). Then 

○ □𝐹̃(𝛼) = ([𝑠
√(ℎ)2−(√(ℎ)2−(𝑎)2)

2 , 𝑠
√(ℎ)2−(√(ℎ)2−(𝑏)2)

2] , [𝑠0, 𝑠0], [𝑠√(ℎ)2−(𝑏)2 , 𝑠√(ℎ)2−(𝑎)2])  

= □𝐹̃(𝛼). 

(3). The proof is similar to that of (2).  

4. Application of Linguistic Interval-Valued Spherical Fuzzy Soft Set 

Inspired by the work of [23,32], we first define some of the necessary concepts we 

used. And then we introduce the decision-making and parameter reduction algorithms 

based on LIVSFSS. We apply the proposed algorithms to examples and we apply the 

MADM algorithm and parameter reduction algorithm to examples and compare them 

with some existing algorithms to illustrate their rationality and effectiveness. 

4.1. Multi-Attribute Decision Making 

Definition 18. For a linguistic interval-valued spherical fuzzy soft set (𝐹̃, 𝐸) , 𝑈 =

{𝑥1, 𝑥2, … , 𝑥𝑛} , 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚} , 𝑆̅ = {𝑠𝛼|𝑠0 ≤ 𝑠𝛼 ≤ 𝑠ℎ , 𝛼 ∈ [0, ℎ]} , ω = {𝜔1, 𝜔2, … , 𝜔𝑚} 

contains the weighted values of every parameter 𝑒𝑗 . ∀𝑒𝑗 ∈ 𝐸 , 𝐹̃𝑥𝑖
(𝑒𝑗) = ([𝑠𝑎𝑗 , 𝑠𝑏𝑗], [𝑠𝑐𝑗 , 𝑠𝑑𝑗], 

[𝑠𝑒𝑗 , 𝑠𝑜𝑗] ), 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑚] , which represents the membership degree of object 𝑥𝑖  for 

parameter 𝑒𝑗. The linguistic weighted choice value (𝜔𝑐𝑖) for each object 𝑥𝑖 is defined as 

𝜔𝑐𝑖 = [𝜔𝑐𝑖
𝐿 , 𝜔𝑐𝑖

𝑈]

= [∑ 𝜔𝑗 (√
ℎ2 + (𝑎𝑗)2 − (𝑒𝑗)2

3
)

𝑚

𝑗=1

, ∑ 𝜔𝑗 (√
ℎ2 + (𝑏𝑗)2 − (𝑓𝑗)2

3
)

𝑚

𝑖=1

] 
(19) 

where 𝜔𝑐𝑖
𝐿  is the lower linguistic weighted choice value for 𝑥𝑖 and 𝜔𝑐𝑖

𝑈 is the upper linguistic 

weighted choice value for 𝑥𝑖. 

Definition 19. For a linguistic interval-valued spherical fuzzy soft set (𝐹̃, 𝐸) , 𝑈 =

{𝑥1, 𝑥2, … , 𝑥𝑛} , 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚} , 𝑆̅ = {𝑠𝛼|𝑠0 ≤ 𝑠𝛼 ≤ 𝑠ℎ , 𝛼 ∈ [0, ℎ]} . 𝜔𝑐𝑖 = [𝜔𝑐𝑖
𝐿 , 𝜔𝑐𝑖

𝑈]  is 

the linguistic weighted choice value for 𝑥𝑖. The linguistic weighted overall choice value 𝜔𝑐𝑖
𝑜𝑣𝑒𝑟𝑎𝑙𝑙  

for 𝑥𝑖 is defined as 

ωc𝑖
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  ωc𝑖

𝐿 + ωc𝑖
𝑈 (20) 

That is to say, ωc𝑖
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , as the linguistic weighted overall choice value for 𝑥𝑖 is the sum 

of the lower linguistic weighted choice value and the upper linguistic weighted choice value 

for 𝑥𝑖. 

Based on the above given definitions, we describe our proposed MADM Algorithm 

1 as follows. 

Algorithm 1: MADM algorithm based on LIVSFSS 

Step1: Input an LIVSFSS(𝐹̃, 𝐸) and ω= {ω1, ω2, … , ω𝑚}, ∑ ω𝑖
𝑚
𝑖=1 = 1. 

Step2: ∀𝑥𝑖 ∈ 𝑈 and ∀𝑒𝑗 ∈ 𝐴, compute the linguistic weighted choice value (ωc𝑖) for 

ℎ𝑖 by Formula (19). 

Step3: ∀𝑥𝑖 ∈ 𝑈, compute the linguistic weighted overall choice value ωc𝑖
𝑜𝑣𝑒𝑟𝑎𝑙𝑙  for 𝑥𝑖 

by Formula (20). 
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Step4: Obtain 𝑘 such that 𝑥𝑘 = 𝑚𝑎𝑥𝑥𝑖∈𝑈{ωc𝑖
𝑜𝑣𝑒𝑟𝑎𝑙𝑙}. 

Step5: Return 𝑥𝑘 ∈ 𝑈 as the best choice candidate. 

The flow chart of the MADM algorithm is shown in Figure 2. 

 

Figure 2. Flow chart of Algorithm 1. 

Example 2. We use (𝐹̃, 𝐸), 𝑈 = {ℎ1, ℎ2, ℎ3, ℎ4}, 𝐸 = {𝑒1, 𝑒2, 𝑒3} shown in Table 1 and set 𝜔 =

{𝜔1, 𝜔2, 𝜔3} = {1/3, 1/3,1/3}  to demonstrate how Algorithm 1 chooses the best teacher 

considering three parameters. For each 𝑥𝑖 ∈ 𝑈, the algorithm determines the linguistic weighted 

choice value using Formula (19), the linguistic weighted overall choice value using Formula (20). 

It then returns 𝑥𝑘 = {𝑥𝑘 ∈ 𝑈|𝑚𝑎𝑥𝑥𝑘∈𝑈{𝜔𝑐𝑖
𝑜𝑣𝑒𝑟𝑎𝑙𝑙}, 1 ≤ 𝑘 ≤ 𝑛} . Table 2 shows the results of 

Algorithm 1 based on the above settings. The algorithm returns 𝑥1 as the best teacher. 

Table 2. LIVSFSS (𝐹̃, 𝐸) of Example 2. 

𝑼 𝒆𝟏 𝒆𝟐 𝒆𝟑 𝛚𝐜𝒊 𝛚𝐜𝒊
𝒐𝒗𝒆𝒓𝒂𝒍𝒍 

𝑥1 ([𝑠3, 𝑠5], [𝑠0, 𝑠3], [𝑠2, 𝑠3]) [𝑠5, 𝑠6], [𝑠0, 𝑠2], [𝑠1, 𝑠2]) ([𝑠5, 𝑠6], [𝑠0, 𝑠2], [𝑠1, 𝑠2]) [4.214,4.562] 8.776 

𝑥2 ([𝑠3, 𝑠5], [𝑠0, 𝑠3], [𝑠2, 𝑠3] ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠2, 𝑠3]) ([𝑠2, 𝑠4], [𝑠0, 𝑠3], [𝑠3, 𝑠4]) [3.637,3.931] 7.568 

𝑥3 ([𝑠5, 𝑠6], [𝑠0, 𝑠2], [𝑠1, 𝑠2]) ([𝑠3, 𝑠4], [𝑠1, 𝑠3], [𝑠2, 𝑠3]) ([𝑠3, 𝑠4], [𝑠1, 𝑠3], [𝑠2, 𝑠3]) [3.955,4.111] 8.066 
𝑥4 ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠2, 𝑠3]) ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠2, 𝑠3]) ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠1, 𝑠3]) [4.040,4.164] 8.204 

4.2. Parameter Reduction 

In the process of decision making, some redundant parameters are not necessary. 

Thus, the parameter reduction becomes important. According to Algorithm 1, we can 

obtain a descending queue based on the linguistic weighted overall choice value. In real 

life, not all decision-making problems require only one choice, sometimes they require 

several choices. Therefore, it is necessary to consider multiple scenarios in the context of 

parameter reduction. 

Definition 20. Let (𝐹̃, 𝐸) be a linguistic interval-valued spherical fuzzy soft set over 𝑈, 𝑈 =

{𝑥1, 𝑥2, … , 𝑥𝑛} , 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚} , 𝑆̅ = {𝑠𝛼|𝑠0 ≤ 𝑠𝛼 ≤ 𝑠ℎ , 𝛼 ∈ [0, ℎ]} , 𝐷𝐸 = {𝑥𝑖 , . . . . . . 𝑥𝑗| 

𝑖, 𝑗 ∈ [1, 𝑛]} be the set of all objects sorted in descending order by linguistic weighted overall choice 

values, 𝜆 ∈ [1, 𝑛]  be called decision-making number, 𝐷𝐸
𝜆  be the set of 𝜆  objects sorted in 

descending order by linguistic weighted overall choice values. If a subset 𝐴={𝑒1
′ , 𝑒2

′ , … , 𝑒𝑛
′ } ⊂ 𝐸 

satisfies 𝐷𝐸−𝐴
𝜆 = 𝐷𝐸

𝜆 , 𝐴  is called the unnecessary parameter set in 𝐸  with 𝜆  candidates, 

otherwise 𝐴 is called the necessary parameter set in 𝐸 with 𝜆 candidates. 
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In other words, if A is the unnecessary parameter set with 𝜆 candidates, it means 

that A can be reduced, otherwise A cannot be reduced. Based on the above definition, the 

parameter reduction algorithm of keeping 𝜆  candidates (PRKAC) (Algorithm 2) is 

proposed as follows. 

Algorithm 2: PRAKC 

Step1: Input an LIVSFSS(𝐹̃, 𝐸), ω= {ω1, ω2, … , ω𝑚}, ∑ ω𝑖
𝑚
𝑖=1 = 1, and 𝜆 ∈ [1, n]. 

Step2: ∀𝑥𝑖 ∈ 𝑈 and ∀𝑒𝑗 ∈ 𝐴, compute the linguistic weight choice value (ω𝑐𝑖) for ℎ𝑖 

by Formula (19). 

Step3: ∀𝑥𝑖 ∈ 𝑈, compute the linguistic weighted overall choice value ωc𝑖
𝑜𝑣𝑒𝑟𝑎𝑙𝑙  for 𝑥𝑖 

by Formula (20). 

Step4: Obtain a descending set 𝐷𝐸
𝜆 according to the ωc𝑖

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 . 

Step5: Find 𝐴, where 𝐴={𝑒1
′ , 𝑒2

′ , … , 𝑒n
′ } ⊂ 𝐸 ∧ 𝐷𝐸−𝐴

𝜆 = 𝐷𝐸
𝜆 . 

Step6: Return 𝐸 − 𝐴 as the parameter reduction with 𝜆 candidates. 

The flow chart of the PRAKC algorithm is shown in Figure 3. 

 

Figure 3. Flow chart of Algorithm 2. 

Example 3. We use (𝐹̃, 𝐸), 𝑈 = {ℎ1, ℎ2, ℎ3, ℎ4}, 𝐸 = {𝑒1, 𝑒2, 𝑒3}, 𝜔 = {𝜔1, 𝜔2, 𝜔3} = {1/3, 1/

3,1/3}  shown in Table 2 and set 𝜆  = 4 to demonstrate how PRAKC reduces unnecessary 

parameters whilst maintaining the four candidates as invariable. We obtain that 𝑥1, 𝑥4, 𝑥3, 𝑥2 are 

the four choice candidates from Example 2. So, 𝐷𝐸
4 = {𝑥1, 𝑥4, 𝑥3, 𝑥2} . We can find 𝐴 = {𝑒1} 

satisfies 𝐷𝐸−𝐴
2 = 𝐷𝐸

2. Therefore, 𝐸 − 𝐴 = {𝑒2, 𝑒3} is the parameter reduction with two candidates, 

which is given in Table 3. 
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Table 3. LIVSFSS (𝐹̃, 𝐸) of Example 3. 

𝑼 𝒆𝟐 𝒆𝟑 𝛚𝐜𝒊 𝛚𝐜𝒊
𝒐𝒗𝒆𝒓𝒂𝒍𝒍 

𝑥1 ([𝑠5, 𝑠6], [𝑠0, 𝑠2], [𝑠1, 𝑠2]) ([𝑠5, 𝑠6], [𝑠0, 𝑠2], [𝑠1, 𝑠2]) [2.981,3.174] 6.155 
𝑥2 ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠2, 𝑠3]) ([𝑠2, 𝑠4], [𝑠0, 𝑠3], [𝑠3, 𝑠4]) [2.405,2.543] 4.948 
𝑥3 ([𝑠3, 𝑠4], [𝑠1, 𝑠3], [𝑠2, 𝑠3]) ([𝑠3, 𝑠4], [𝑠1, 𝑠3], [𝑠2, 𝑠3]) [2.465,2.524] 4.989 
𝑥4 ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠2, 𝑠3]) ([𝑠4, 𝑠5], [𝑠0, 𝑠2], [𝑠1, 𝑠3]) [2.707,2.776] 5.483 

4.3. Comparative Analysis 

In this subsection, we compare the MADM algorithms presented by Yang et al. [23] 

and Ma et al. [32]. for an interval-valued fuzzy soft set with our proposed algorithm. In 

[23], Yang selected the best choice by calculating the score. The idea of our MADM 

algorithm is similar to [32]. We use Example 1 to demonstrate how these three MADM 

algorithms choose the best choice. Since each parameter is weighted equally, it does not 

affect the results. Orderings of the alternatives for each method are given in Table 4. 

Table 4. Orderings of the alternatives according to four MADM algorithms. 

MADM Algorithms Orderings of the Alternatives 

Yang et al. [23] 𝑥1 > 𝑥4 > 𝑥3 > 𝑥2 

Ma et al. [32] 𝑥1 > 𝑥4 > 𝑥3 > 𝑥2 

Our proposed algorithm 𝑥1 > 𝑥4 > 𝑥3 > 𝑥2 

We see that the proposed algorithm is comparable to other algorithms in terms of the 

selection of optimal elements, which illustrates the rationality and effectiveness of our 

proposed algorithm. The main difference between the proposed algorithm and previous 

algorithms is the use of linguistic interval-valued spherical fuzzy numbers to evaluate 

parameters. And we also consider the influence of parameter weight. Hence, in real life, 

we can deal with MADM problems described by linguistic interval-valued spherical fuzzy 

numbers according to our proposed algorithm. 

Since the goal of parameter reduction algorithms based on different fuzzy soft set 

models is to maintain the decision results unchanged, we compare with the parameter 

reduction algorithms presented by Ma et al. [31]. Ma proposed the Keeping optimal choice 

parameter reduction algorithm (KOCPR), the Keeping top three choice parameter 

reduction algorithm (KTTCPR) and the Standard parameter reduction algorithm (SPR) to 

reduce parameters. We also compare our proposed PRAKC with the above three 

algorithms in terms of the number of objects that keep the decision choice result 

unchanged (KDCRU) and the case of retaining parameters after reducing (RPR) using 

Example 1. The comparison results are shown in Table 5. 

Table 5. Comparison of four parameter reduction algorithms. 

Algorithms KDCRU RPR 

KOCPR 
keep the decision result of the 

top choices 
{𝑒2}, {𝑒3}, {𝑒1, 𝑒2}, {𝑒1, 𝑒3},{𝑒2, 𝑒3}; 

KTTCPR 
keep the decision result of the 

top three choices 
{𝑒3}, {𝑒2, 𝑒3}; 

SPR 
keep the decision result of all 

objects choices 
{𝑒2, 𝑒3}; 

PRAKC 
keep the decision result of the 

top 𝜆 choices, 𝜆 ∈ [1,4] 

𝜆 = 1, we can obtain {𝑒2}, {𝑒3}, 

{𝑒1, 𝑒2}, {𝑒1, 𝑒3},{𝑒2, 𝑒3}; 

𝜆 = 2, we can obtain {𝑒3}, {𝑒2, 𝑒3}; 

𝜆 = 3, we can obtain {𝑒3}, {𝑒2, 𝑒3}; 

𝜆 = 4, we can obtain {𝑒2, 𝑒3}. 
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In real life, not all decision-making problems require a certain number of choices, but 

sometimes different numbers are required according to different problems. We find that 

PRAKC can deal with parameter reduction more flexibly than other algorithms by setting 

a different 𝜆. 

5. Conclusions 

The soft set theory is a general mathematical tool to deal with uncertainty. In this 

paper, firstly, we have proposed the concept of the linguistic interval-valued spherical 

fuzzy soft set. It is a combination of a linguistic interval-valued spherical fuzzy set and a 

soft set. It optimizes the problem where the linguistic interval-valued spherical fuzzy set 

is tedious due to the lack of parameterization tools in the decision process. Then, we have 

defined the basic concepts and discussed various operational laws, related properties and 

their proofs. In addition, in order to deal with multi-attribute decision-making problems, 

we have proposed a multi-attribute decision-making algorithm and a parameter 

reduction algorithm. Finally, the effectiveness and rationality of the algorithms have been 

verified and illustrated by examples and comparisons with some existing algorithms. 

The method proposed in this paper favors theoretical research. In the future, we 

intend to further explore not only the application of the linguistic interval-valued 

spherical fuzzy soft set in group decision making, but also its practical applications in 

combination with machine learning and deep learning such as forecasting and data 

analysis. 
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