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Abstract The term “g-Rung orthopair fuzzy sets
(¢"OFSs)” refers to the collection of the most differentiated
ideas for expressing fuzzy data in decision-making rules.
The ¢g"OFSs can gradually adapt the region of information
by adjusting the parameter g > 1 in response to the fluc-
tuation degree, so assisting in the generation of more
numerous possibilities. Aczel-Alsina triangular norm and
conorm are superior operations that may create general and
adaptable working principles for aggregating arguments.
To make use of g"OFSs and Aczel-Alsina triangular norms
in “multiple attribute decision-making (MADM)” issues, a
few g-rung orthopair fuzzy (¢"OF) Aczel-Alsina aggrega-
tion operators: ¢"OF Aczel-Alsina weighted average
(¢ OFAAWA) operator, ¢"OF Aczel-Alsina order weigh-
ted average (¢"OFAAOWA) operator, g"OF Aczel-Alsina
hybrid average (¢"OFAAHA) operator for aggregating
q"OFSs are exhibited in this article to fix the MADM issues
based on ¢"OFSs. Some significant properties are addi-
tionally demonstrated. A technique for taking care of the
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MADM issues is proposed based on these created opera-
tors. The adequacy of the suggested technique is shown by
means of a numerical example on enterprise partner
selection, a lot of investigations and correlations with other
existing strategies. The sensitivity of the proposed aggre-
gation operators to decision-making findings is investi-
gated. The demonstration outcomes suggest that the
suggested technique has fulfilling universality and adapt-
ability in aggregating ¢"OF data and acquiring the corre-
lations of criteria and the attitudes of “decision-makers
(DMs)” and is doable and compelling for taking care of the
MADM issues dependent on g" OFSs.

Keywords Aczel-Alsina operations - ¢"OFNs - ¢"OF
Aczel-Alsina averageaggregation operators - MADM

1 Introduction

While Zadeh [62] initiated the classic fuzzy set (FS) as a
way of expressing the vulnerability of choice data, a large
number of research accomplishments have been made in
this area. With the expanding complexity of decision-
making concerns in real-life, the outflow of decision-
making data turns out to be more and more diversified. As
a speculation of FS, “Atanassov’s intuitionistic fuzzy set
(AIFS)” [5] presented by Atanassov is a viable apparatus to
communicate complex fuzzy data since it has “member-
ship degrees (MDs)” and “non-membership degrees
(NMDs)” simultaneously; along these lines, it has higher
adaptability in fuzziness and uncertainty. Be that as it may,
the scope of utilizations of AIFS is narrow in light of the
fact that DMs may confront circumstances in which the
sum of MD and NMD by DMs is bigger than one. Under
these conditions, some assessment data cannot be actually
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communicated by the AIFS. To tackle the circumstance,
Yager [57] proposed the Pythagorean fuzzy sets (PFS) in
which the sum of the squares of both MD and NMD is less
than or equal to one.

On the other hand, the increasing volatility of decision-
making concerns and the contrasting attitudes of DMs con-
tinue to make it difficult for PFS to provide pertinent data.
Along these lines, the jobs of AIFSs and PFSs are con-
strained. To deal with it, in recent times, Yager presented
q"OFSs [58] in which the sum of the ¢”* power of MD and the
¢" power of NMD is equal to or less than 1. AIFSs and PFSs
are particular instances of ¢"OFSs when fixing ¢ = 1 and
g = 2individually. As g-rung expands, the scope of handling
fuzzy data increases. ¢"OFSs permits the DMs to freely
relegate the values to MD and the NMD, which gives the
DMs more opportunities to communicate the inclination.

1.1 Research Gap and Motivation of the Study

Liang et al. [24] defined ¢"OF entropy, ¢"OF cross-entropy
and ¢"OF Choquet integral and based on these they proposed
a generalized model for the two-sided matching. On the basis
of the power mean operator, Ju et al. [17] proposed a few
q'OF power mean aggregation operators. By utilizing
Dombi triangular norms with ¢"OFSs, Jana et al. [16]
introduced ¢q"OFDWA operator, ¢"OFDWG operator,
q"OFDOW A operator, g"OFDOWG operator, ¢ OFDHWA
operator and ¢ OFDHWG operator. Peng together with
colleagues [37] proposed a ¢"OF decision-making technique
on the basis of the weighted distance-based approximation
strategy. ¢"OFS has also been extended to accommodate
uncertain linguistic contentions [26], interval values [18].
Liu and Wang [28] proposed for the first time ¢ OF
weighted (average, geometric) operator to handle the
decision data. On the basis of these operators, they deliv-
ered two novel techniques to handle the MADM issues
under the fuzzy conditions. Some “g"OF Bonferroni mean
(BM) operators” have been provided in [29]. Liu et al. [27]
developed several power BM operators with linguistic
q"OF data such as the “4"OF BM (¢"OFBM) operator”, the
“q"OF weighted BM operator”, the “g"OF geometric BM
operator”, and the “q"OF weighted geometric BM opera-
tor”. On the basis of these operators the authors developed
several MAGDM techniques. Wei et al. [54] combined
q'OFS with Heronian mean and provided a few ¢ OF
Heronian mean operators. Wei et al. [55] additionally
prolonged the MSM operator into the ¢g"OFS situation and
defined some ¢"OF MSM operators. Likewise, Du [7]
proposed the weighted power by utilizing ¢"OF values to
improve and develop aggregations on ¢"OFVs. Yang
together with Pang [59] developed a few ¢"OF partitioned
BM operators. They defined several new ¢"OF BM Dombi
operators [60] and applied them to MADM issues. Wang
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et al. [51] investigated four types of data aggregation
operators, for instance, the HM operator, DHM operator,
WHM operator, and WDHM operator with the ¢g"OFNs.

In terms of the cosine function, Wang together with
colleagues [53] suggested the similarity measures of ¢"OFS
and utilized them in MADM issues. Peng and Liu [36]
developed the organized transformation of distance mea-
sure, similarity measure, inclusion measure, and entropy
for ¢"OFSs. In order to extend the ¢"OF calculus to a wider
area, Ai et al. [2] systematically discussed the ¢"OF double
integrals within the context of Archimedean triangular
norms and conorms. Combining the idea of soft set and
q"OFS, Hussain et al. [14] initiated ¢"OF soft set and
applied it to MADM issues. Since ¢"OFs have points of
interest over existing FSs, ¢"OF values are considered as
assessment values in this article.

q'OF MADM has seen considerable use in a wide
variety of domains, including, but not limited to, supplier
selection [38], investment project selection [52], potential
assessment of appearing technology development [55],
renewable energy sources evaluation [20], assessment of
classroom teaching quality [35], stock investment evalua-
tion [47], online shopping [61], credit risk assessment [30],
selection of green suppliers [51], smart phone selection
[63] and enterprise resource planning systems selection
[50]. For different investigates on ¢"OFSs, we would like to
refer [3, 13, 25, 31, 32, 34].

In Menger’s theory of stochastic topological spaces, the
concept of triangular norms [33] was originally introduced.
In the course of research, it became evident that the
t-norms with their associated t-conorms are important
operations in PFSs and qrOFSs, for example, the “Einstein
t-norm and #-conorm” [39], “Archimedean t-norm and ¢-
conorm”  [2], “Hamacher f-norm and f-conorm”
[6], “Lukasiewicz t-norm and #-conorm” [48]. Klement
et al. [19] have carried out considerable research in recent
years on the features and process of achieving triangular
norms, and their findings have been published in a well-
organized manner. It was in 1982 that Aczel-Alsina [1]
introduced two new operations, which are referred to as
Aczel-Alsina t-norm and Aczel-Alsina t-conorm, and
which have a high priority of variability in conjunction
with the activities of variables. Based on the Aczel-Alsina
triangular norm (AA #-norm), Wang et al. [49] devised a
score level hybrid method. In recent times, Senapati et al.
[42-45] have developed “(interval-valued) intuitionistic
fuzzy Aczel-Alsina aggregation operators” and imple-
mented them to MADM technique.

After looking at these examples and talking about them,
we’ve come to the conclusion that the ¢g"OFS is effective
and reliable enough to show the credible and debatable data
that comes up in real-world situations. The previously
stated decision-making challenges in various fuzzy
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aggregation environments under triangular norm and con-
orms motivated us to a substantial expanse to produce our
present paper. The mathematical procedures that make up
the Aczel-Alsina working laws are essential and allow for
an advantage to be gained when dealing with faulty and
ambiguous information. As a result of these ideas, we
decided to implement Aczel-Alsina operations on ¢"OFNs
and build certain ¢"OF Aczel-Alsina aggregation operators
in order to tackle various ¢"OF MADM problems.

1.2 Contributions of This Study

The purpose of this investigation is to develop a strategic and
insightful recommendation technique that will enable the
choice of the alternative approach that represents the most
appropriate alternative among a repository of alternatives.
This will be accomplished by establishing a strategy that will
allow for such a preference of the alternative approach that it
will enable us to choose the most reasonable alternative. The
efficacy of the proposed framework would be ascertained
through the use of a ¢"OF AA weighted average aggregation
operator, which would be attained via the incorporation of
AA working rules into a ¢"OF context. In other words, the
effectiveness of the proposed framework would be affirmed
through the incorporation of AA operating laws into a ¢"OF
context. This is a list of a few of the most important things
that have been done as part of this research:

(1)  For the g"OFSs, new AA operational rules have been
developed and implemented.

(2) These unique operations have led to the development
of various useful aggregation operators, which
include the ¢"OF Aczel-Alsina weighted average
(¢"OFAAWA) operator, the ¢"OF Aczel-Alsina
order weighted average (¢"OFAAOWA) operator,
and the ¢ OF Aczel-Alsina hybrid average
(9"OFAAHA) operator.

(3) Examine the properties of such unique operators, as
well as specific examples of their application.

(4) Construct an algorithm that can deal with MADM
issues while also making use of ¢"OF data.

(5) Create a brand-new MADM method that employs
the g"OFAAWA operator.

(6) Comparative and sensitivity assessments are done to
show that the approach is strong and reliable.

1.3 Organization of This Work

One may find the information listed below in the article: In
Sect. 2, we discuss some preliminary information con-
cerning ¢"OFSs and the Aczel-Alsina operator. This
information includes definitions, features, and operating
rules. In Sect. 3, we propose Aczel-Alsina operations with

respect to ¢"OFNs. We talk about the g"OFAAWA oper-
ator, ¢ OFAAOWA operator and ¢"OFAAHA operator in
Sect. 4. In Sect. 5, we take into consideration a MADM
strategy while keeping in mind the g"OFAAWA operator.
In Sect. 6, we demonstrate the proposed method using a
real-world scenario. In Sect. 7, we conduct an analysis of
the effect that parameters have on the outcomes of deci-
sion-making. In Sect. 8, we look at how the weights of the
criteria affect the order in which they are ranked. Section 9
provides a relative investigation of other appropriate
methodologies to endorse the sufficiency of the proposed
method. In Sect. 10, we give the conclusions.

2 Preliminaries

In this section, we acquaint some essential ideas related
with #-norm, t-conorm, Aczel-Alsina -norm and g"OFSs.

2.1 t-Norms, #-Conorms, Aczel-Alsina -Norms

Definition 1 [19] “A f-norm is a rational function on the
unit interval [0,1], that is, a function T : [0,1] x [0,1] —
[0, 1] designed in such a way the following four axioms are
fulfilled,, for all g,v,w € [0,1]:

(1) Symmetric: T(o,v) = T (v, 0);

(i) Monotonic: T(g,v) <T(g,w) if v < w;
(ili)  Associative: T(9,T(v,w)) = T(T(g,v), ®);
(iv)  Identity element 1: T(g,1) = 0.”

Example 1 [19] “Few prominent examples of #-norms are

(i) Tr(e,v) = g.v (product f-norm)
(i) Tum(o,v) = min(e,v) (minimum #-norm)
(i)  Tp(o,v) = max(¢ + v — 1,0) (Lukasiewicz t-norm)

0, ifo=1
@iv) Tp(e,v) =< v, if o =1 (Drastic t-norm)
0, otherwise

for all g,v € [0, 1].”

Definition 2 [19] “A t-conorm is a rational function on
the unit interval [0,1], that is, a function S:[0,1] x
[0,1] — [0, 1] designed in such a way the following four
axioms are fulfilled, for all o,v,® € [0, 1]:

(i) Symmetric:  S(g,v) = S(v,0);

(i) Monotonic: S(g,v) < S(g,w) if v < w;

(ili)  Associative:  S(g,S(v, w)) = S(S(g,v), w);
(iv)  Identity element 0: S(g,0) = o.”

Example 2 [19] “Few prominent examples of -conorms are

(1)  Sp(g,v) = @ + v — g.v (probabilistic sum)
(i) Swm(e,v) = max(g,v) (maximum f-conorm)
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(i)  Sp(e,v)

= min(g + v, 1) (Lukasiewicz #-conorm)
0, ifv=20

@iv)  Sp(o,v) =< v, if 0 =0 (Drastic t-conorm)

1, otherwise

for all g,v € [0,1].”

Definition 3 [1, 4] “The Aczel-Alsina f-norms (77)
is ascertained by

n€[0,00]

TD(Q7U)7 lf;’I:O
T!(g,v) = { min(g,v), if n=o00
e—((—ln@)"+<—1n”)">1/”, otherwise

The Aczel-Alsina t-conorms (S} ), (o, is ascertained by

SD(Q) U)v
max(g, D)v

1 — (= In(1=0)’

if =20

Si(e.n) = =

+(=In(1—-v)))'/"

“Limiting values: 75° =min, T9=7Tp, Ti=Tp,
ST = max, Sg =Sp, S}{ = Sp.

The r-norm 7} and r-conorm S} are dual with regard to
each other for all 5 € [0,00]. The Aczel-Alsina f-norms
family and Aczel-Alsina f-conorms family are strictly
increasing and strictly decreasing, respectively.

It is worth noting that Aczel-Alsina f-norms family are
really the only #-norms that satisfy the equivalence

T(o*,v*) =T (o, v))' for any A > 0 and ¢,v € [0, 1].”
2.2 g-Rung Orthopair Fuzzy Sets

Basic concepts of g"OFSs are concisely presented in Sect.
[10, 12].

Definition 4
preted as

l// = {<X, Cl//(x)7 (Pl//(x)>|x € X}

where (,, and ¢,, are functions from X to the closed interval
[0, 11, such that 0 < (x) + ¢y, (x) <1, for all x € X and
they represent the MD and NMD of x to set , respectively.

)= -G -
the indeterminacy degree of the member x to set . It is
clear that 0 <7, (x) <1, for all x € X.

For benefit, we called ¥ = {(x, {,(x), ¢, (x))|x € X} as
g-rung orthopair fuzzy number (¢"OFN) denoted by

Y= (CI/M (psz)'”

[58] “A ¢"OFS s over a fixed set X inter-

The value 7y (x @},(x) is generally called
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, otherwise’’

For contrasting two ¢"OFNs, score function and accu-
racy function is ascertained as

Definition 5 [28] “The score function Z (1) and accuracy
function L() of a ¢"OFN =
as:

L) =5 + g,

(¢y, @) can be computed

where Z() € [-1,1] (1)

where L(y) € [0,1].” (2)

Liu and Wang [28] introduced comparison method on
the basis of score and accuracy function for ranking the
q"OFNs, that is represented as
Definition 6 [28] “Assume that y/; = ({y,, @y, ) and ¥, =
(Cy,» @y,) are any two g"OFNs. Let Z(W,). Z(1,) be score
functions and L(y,), L(},) be accuracy functions of

and /,, respectively. Then
@) if Z(Y1) <Z(hy). then ¥, <
(i) if Z(y) > Z(,), then v, -y,
Gii) if Z(y,) = Z(,), then
a)fQW (1), then Yy < .
2 fl:(ll/l) LA( 2)s then y <.
(3) if L(yy) = L(,), then y ~,.”

Definition 7 [58] Let Y = ({y, 0y), ¥, = (Cl/,l,q)wl) and
¥, = ({y,, @y,) be three g"OFNs. The fundamental oper-
ations among them are outlined in the subsequent way:

(1) l//1 v WZ = (IIlaX{Cl//] ) C\bz}v min{gowl ) QDII/Z})
(i) ‘//1 A '702 = (min{cwl ) Clﬁz}’ max{qol/ll ) ¢¢2})

i) vivn = (Y1-8, — ¢, 00,94,

@) 9@ = (L, G /1= 0§, — 4

W oy =({1-0-0)" L) 0>0

i) §® @$ﬂ1—0—¢w) ®>0

i) ¥ = (g, )

3 Aczel-Alsina Operations on ¢"OFNs

In view of Aczel-Alsina t-norm furthermore Aczel-Alsina
t-conorm, we explained Aczel-Alsina operations in rela-
tion to g"OFNs.
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Definition 8 Lety = ({,, q)w), vy =y, (pwl), and Y, =
(o ‘/’1112) be three ¢"OFNs, 0 >1 and 9 > 0. Then, the

Aczel-Alsina -norm and t-conorm operations of ¢"OFNs
are assigned as:

(=In(1={g )*)'"°

W B, - W RGO

al 1 a1 a \ON1/D
{f (el <o) >

(i) %@‘pz

_ <(/e‘“"“ciil>5+<““4i2>5>'/6,
\/1_e ~In(1-g5, ) +(~In(1=3, )) >‘/">

iy oy = <\q/1 =g \"/e—<19<—1nfp;>f‘>”f’>7
(iv) W:W N 1 - et

Example 3 Let = (0.67,0.34), ¢, = (0.27,0.82) and
W, = (0.45,0.65) be three ¢"OFNs, then based on above-
mentioned Aczel-Alsina operation on ¢"OFNs for 0 = 4,
¥ =6and g =5, we get

0 DY,
<\/1—e -

¥/ o—((~1n(0.82)°)* +(— In(0.65)"))/* >

—(0.27)°))*+(= In(1—(0.45)°))H) /*

)

= (0.450000787,0.646906518).

(i) Xy
<\/e —1n(0.27)°)*+(~ In(0.45)°))

V1 — e—((—In(1-(0.82)°)) +(— 1n(1—(o.65)5>)4)‘/4>
= (0.258609103, 0.820161579).

(i) gy — <\/1 e —(0.67)))"
N 67(6(—ln(0434)5)4)1/4>
= (0.726997934, 0.184809749).

@iv)

Yo = < V e (6(=n(0.67)))"*

\/1—6

= (0.534308835,0.371770418).

1-(034) >>4)““>

Theorem 1 Let vy = ({y, 9y), Wi = ({y,, 0y,) and ¥, =
(Cy,» ®y,) be three q"OFNs, then we have

1) ‘//16‘)‘//2 = ‘ﬁz@%i

(i) i QP = &y,
(i) YW, BW,) = I, Py, I > 0;
@iv) (191 + 192)[# = 191!#@192!#, 191, % > 0;

™ W) =Ry, 9 > 0;
vi) YRy = Y g, 9, > 0.

Proof For the three ¢"OFNs , ¥, and ,,
9,91,9, > 0, as stated in Definition 8, we can get

O v Py,

<\/ | (- I01=g )P+ In(1-g], )
(/e—«—lw';]>°+<—1n<p;;2>5>‘/5>
<\/1 —In(1-21 )™+~ In(1-21, )"

(’/ e_((_'““"iz)aﬂ—l“ﬁ])5)1/5> =P,

(i) It is straightforward.

—((~1n( In(1— /
(i) Lett_\/l (=11 )+ m01-E ) gy
In(1 =) = —((=In(1 = £ ))° + (= In(1 = ¢4 ))°)"/°. Using this,
we get
V(D)

—19<\/1 ~In(1=g) )’ =15} )%
(/e—«—lnw:g,)“’+<—lnw;2>6)”ﬂ>
<\/1 = In(1=5 )P +H(=In(1=g), )°N"°
{/e*w((fln W;I)ﬂ+(fln(p;’,/z)b))'/“>
= <\/1 _ OGN ¢ e—<ﬁ<—lnwzl>°>'/’°>
<\/1 e s 2 07 </ ~ e, ) > = 0, DY,
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(=N 4] (=)'
n(1=E)""° {f (=g

‘ o 4 (7) lmp ) 1/“>

(iV) DD = <\/1

<{'/1 —(92(—n(1

<\/1 ((r+92)(— (1 '>>5>'/"°’7 e Oreni-me)”)

= (V1 + 92)y.

v In{ Ing? Y8)1/
(v) (w1®lﬂ2) = <\/ —((= g )+( i )) ’
{I/l - e‘((—ln(l—(/ﬂ,]))5+(—ln(l_(p;1‘2>)5)1/5>19

= <</e_(19<< I )*+(=Ingj ) ))l/a

i1 o 06} 1=, )1

_< o= )

Y

\/1 ~In(1-¢} )) )1/6><_D<"

—(@(=In(1—g? NH/? 9 .
\/l—e m-e )Y _ iRl

i) Wh@wﬁz _ <(/e—(1’1(—]n;:£)5)1/67 (/l
®<</e*(192(*1"51)6)”67 i/
_ <\q/e*((dHr'ﬂz)(*lné”;',)é)l/é7 {/1 _

_ l//(ﬁﬁrl’z).

_ e‘(l’l(-]n(l—(/)l»ﬁ)l/a>

_ e—(ﬁz<—ln<1—w:;>)5>”5>

e—((mﬂz)(—ln(l—w:;))6>'/*’>

4 ¢"OF Aczel-Alsina Average Aggregation
Operators

In this section, we suggest Aczel-Alsina average aggre-
gation operators with ¢"OFNs, for example, ¢ OFAAWA
operator, ¢"OFAAOWA operator, and ¢'O- FAAHA
operator.

Definition 9 Let y. = ({y.,0,.) ((=1,2,...,7) be
several ¢"OFNs. Then ¢"OF Aczel-Alsina weighted aver-
age (¢"OFAAWA) operator is a function g"O— FAAWA :
q"OFN® — q"OFN such that

o OFAAWA, (Y, iy, 1)) = ,Gi?(“/:%)
= V1¢1®V2W2@ s @%Wr
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where y = (91,72, - - yT)T be the weight vector of 1 (&=
1,2,...,7) with y, >0and >3%_, 7. = L.

We develop the succeeding theorem that follows the
Aczel-Alsina operations on ¢"OFNs.

Theorem 2 Let - = ({y,, ¢y.) (E=1,2,...,7) be sev-

eral q"OFNs, then their values aggregated by q"OFAAWA
operator is also a q"OFN, and

quFAAWAV(lplvlpZa . '7‘701)

:_Eb(“/cjlﬁg)
=1

:<</1—e (2/

- )" \/ (et )”"’>

(3)

where y = (71,72, -.,7.) be the weight vector of y. (¢ =
1,2,...,7) so that y; >0, and Y °:_;7: = L.

Proof Using the mathematical induction method, we can
show that Theorem 2 is true in the following way:
(I) When t =2, we get by applying the Aczel-Alsina
operations to the q’OFNs
(1= )0 () >'/°>’

Ny = <\/1
2l = <\/1 ~lal= (1=, )" (/e*<v2<flnmlz>“>'/a>.

Based on Definition 8, we obtain

quFAAWA (W1, ¥,) = ’/1‘#1@7’2W2
- (-
(/ g~ (n(=Ingf ) ‘/5> <\/1 ~In(1-) ) )‘/6’

= <1n<o,/,7>>‘/5>

I

< (12 )+ In(1-)°)
1/0

\/e (=Ingy ) (- In ¢y, )) >

—In(1-¢3 ) )1/5

1/8

2
< . ~(Rmo-g)r)

Hence, (3) is right for 7 = 2.
(ID) If (3) holds true for T = k, then we have
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k
quFAAWAV(wlvl//b >lpk) @( lpé)

Now for t = k + 1, then

k
quFAAWAy(llfplpz, .. 'vl//kalpk+l) @(V&P )@

(Vk+1 ‘//k+1)

k /i k /
<\/ ~(Cnt-ma-g )" \/ ~(Ct-map, )’ a>
= l—e = , Ve !
178 . 178
<\/ | o (rnt=ma-zg, 1)) ’(/e—(vkv.vln%k“)ﬁ) >

K+l

<\,/ 7(§”L(’l“<‘*5§,’u:))°)m \/ (Z?l(lﬂwi)o)l/a>
= 1—e <! : Ve ! ) .

Thus, (3) is true for T = k + 1.
On the basis of (I) and (II), we have come to the
realisation that (3) is correct for any 7. O

We prove easily the subsequent properties using the
q"OFAAWA operator.

Theorem 3 (Idempotency Property) If : = (C%,qo,/,f)

(& =1,2,...,7) be several equal q"OFNs, i.e., - = for
all &, then

quFAAWA"/(Wl?lp27 RS lpr) = l//

Proof Since Y = (Cn//g(/’m//f) =y (¢=1,2,...,1), then

we have Dby

"vl//r)

equation (3), ¢ OFAAWA,(Y, ¥,

T

= @(”/5'//5)

el

<\"/1

({54

Thus, " OFAAWA, (1, Y5, . .

n(1— Cw \/eln(p(u’/>
va(pl// lp
wYe) =

Theorem 4 (Boundedness Property) Let \j: =
(¢=1,2,...,

¥ holds. O

(Cl/zgw (pl/’c)
1) be several ¢"OFNs. Let Yy~ = min(yr, 5,

o) and Yt =max(Yy, ¥, Then,
U~ <q OFAAWA, (Y, 1y, - ) <Y

Proof Let y: = (é,‘lfs’(pl//z) (¢=1,2,...,1) be a number
of ¢"OFNs. Let = = min(y, Y5, .., ¥;) = ({,, @,) and
Y =max(yy, ¥, .. 0) = (), @), We have, (, =

min{ly }. ¢y = max{py }, (= max{{y, }, and ¢ =

co W)

méin {qowi}. As a consequence of this, there are now addi-

tional inequities,

N 1/8
V N
1/8
\/1 D( In(1-f >>)
<
1/
\/ . (—In(1-(¢; >">f‘)
. 1/6
(/—(Zv»(—lan )6)
i Ve
e <! )
. 1/8
\ 7(275(71n<<0;,>q)6)
<Ve ! .

Therefore, Y~ < q"OFAAWA, (Y, 5, ..

$ IN
/—\
lM“
=
’€
\—/_
IN

s <yt O
Theorem 5 (Monotonicity Property) Suppose that | - and
Y (E=1,2,...,1) are two sets of ¢"OFNs, if - <\ for
every €, then

g OFAAWA, (Y, Wrs,.... ) <q¢" OFAAWA, (Y| W), . YL).

(4)

Now, we introduce g"OF Aczel-Alsina ordered weigh-
ted averaging (¢"OF- AAOWA) operator.

10 Assume that .= ({y.,0y,) (€=

1,2,...,7) are an arrangement of ¢"OFNs. A 7-dimensional
q' OFAAOWA operator is a mapping g"OFAAOWA :
q'OFN* — q"OFN along with associated vector @ =

Definition

(91,92, - .., 9:)" in order to allow p; > 0, and 3 s = 1.
=1

Therefore,

quFAAOWAgJ(le‘pZa"'7l// ) @(@g% )

= o1y D2ty D - @pr%)

where (¢(1),p(2),...,¢(r)) are the permutation of
(¢=1,2,...,7), with the property that ¥ y:_1) > 4 for
allé=1,2,...,1
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Review the basic concepts of t-norm, t-conorm, Aczel-Alsina t-
norm and q'OFSs

v" The score function
v The accuracy function

Presenting q'OF Aczel-Alsina average aggregation operators

~
v Idempotence property

v" Boundedness property
¥v" Monotonicity property y

Constructing a new MADM decision framework based on
the q'OFAAWA operator

(/ Determine the alternatives \

v' Determine the attributes
v/ Determine attribute weights

|
— “ /
< v' Aggregate all attribute values
v/ Compute the novel score values
v Order all the alternatives

v Construct the g'OF decision matrix
Normalize the attribute values

\ v' Rankand select the best alternatives ‘

Analysing case on selection of appropriate global partner for companies

/ v Research and

technological
development capability
Business operation level
International
cooperation level
Credit level

<

Fig. 1 The framework of the study

The Aczel-Alsina product operation on ¢"OFNs is used
as the basis for building the following theorem.

Theorem 6 Suppose that . = (., (p,,,é) (¢E=1,2,...,1)
is arrangement of q"OFNs. A t-dimensional q"OF Aczel—
Alsina ordered weighted average (¢"OFAAOWA) operator
is a mapping q OFAAOWA : g OFN® — q"OFN with
associated vector p = (p1, 02, ..., )" such that p; >0,
and Zé:l@é = 1. Then,

@ Springer

q" OFAAOWA, (Y1, Y3, - - ) = D0ty e)
Pt}

_ <¢1 RGN ye-<;m<_%r>w>

(5)

where (¢(1),(2),...,¢(t)) are the permutation of
(€=1,2,...,7), with the property that y,:_j) > ) for
all ¢ =1,2,... 7.
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The subsequent properties may be
q"OFAAOWA operator without any problem.

shown by

Theorem 7 (Idempotency Property) If ;= (Cl/,i,q)d,i)
(& =1,2,...,7) are all equal, i.e. Y: = for all &, then
q’OFAAOWAp(lﬂl, oyl =

Theorem 8 (Boundedness Property) Let {y: = (Q//;a q),/,é)
(& =1,2,...,7) be a number of ¢"OFNs. Let y~ = min .,
Ve

and y* = max ;. Then
sa Ve

l//_ S quFAAOWAg)(wlv l//27 RS lpr) S lp+'

Theorem 9 (Monotonicity Property) Let - = ({y., ¢y.)
and lVE = (C:ﬁé’ (pf//i) ((=1,2,...,1) be two sets of
q"OFNs, if . < t///g Sfor all &, then

qVOFAAOWAgJ(l//h l//27 e l//'r) S quFAAOWAp(d/l ’ 'J/Zv RS l///r)

Theorem 10 Ve =
(y.r @y,) and Y = (Ci/’;’ @y,) (E=1,2,....7) be two sets
of q"OFNs, then q OFAAOWA,(Y,, Y, ...Y,.)=
q’OFAAOWAp(WI,WZ, oo UL) where tpé is any permuta-
tion of Y (£ =1,2,...,7).

In Definition 9, we observe that g"OFAAWA operator
weights ¢"OF values. At the same time from Definition 10,
we get ¢’ OFAAOWA operator weights ordered positions of
the g"OF values. In such a way, weights indicate in these two
operators " OFAAWA and g"OFAAOW A have been in two
different situations. However, they can be represented by a
single operator. To avoid this difficulties, we exhibit g"OF
Aczel—-Alsina hybrid averaging (¢"OFAAHA) operator.

(Commutativity  Property) Let

Definition 11 Let y; (( =1,2,...,7) be an arrangement
of ¢"OFNs. A t-dimensional ¢"OF Aczel-Alsina hybrid
average (q'OFAAHA) operator is a mapping ¢’ OFA—
AHA : ¢’ OFN® — q"OFN, in such a way as to allow

‘]rOFAAHAT,g)(Wla ¢27 s %) = @2:1 (pi‘//gb(cf))
= @1%(1)@@2%(2)@ T @@r%m

where p = (1,2, ..., p:) would be the weighted vector
directly related to ¢"OFAAHA operator, and where p¢ €

0,1 (¢=1,2,...,7) and 22:1 o =1, t/}g» =)W
E=1,2,..,1, (lﬂqﬁ(l),lﬁd,@), . .,tﬁ(bm) is any permutation
of a number of the weighted ¢"OFNs (Y, ¥,, ..., ¥.), so as
Vo 2Vg (=121 9=
(71,72, - - »7.)" is the weight vector of e, with p: € [0, 1]

to allow

and 22:1 7e = 1, and 7 is the balancing coefficient, which
has played a significant role in maintaining balance.

Using Aczel-Alsina operations on ¢"OFNs data, it is
possible to prove the underlying theorem.

Theorem 11 Let v ((=1,2,...,7) be the number of
q"OFNs. Their values combined by the g"OFAAHA oper-
ator remain a q¢"OFN, and

T

q OFAAHA, (.- b ) =D (e ()

i1
¢

_<(/1_e@""c(un(lsz,,,m))a)”i(/e(;,.f(]n%)a).,ra>'

(6)

Proof Similar to Theorem 2, Theorem 11 can be easily
derived. O

Theorem 12 The q"OFAAWA and q"OFAAOWA opera-
tors are special cases of the g OFAAHA operator.

Proof (1) Let p = (1/t,1/1,...,1/7)". Then
quFAAHAV,KJ(lpla lp27 RS lrbr)
= 1) DV 50D - Doty

1. ) )
=2 W) DV D Diyir)
= ylWl@VZ‘/jZ@ e @y‘cl/jr

= quFAAWA;y(lpl»lpZa e ‘/j‘r)?

(2) Let y=(1/t,1/x,..., l/r)T. Then l//g =y (€=
1,2,...,7) and
q' OFAAHA, ,(Yr, sy .. 00,)

=M lﬁd)m@@zl%(z)@ o @pfl%(f)

= P11 D2V 0D - Doty

= ¢"OFAAOWA, (Y, 5, - - s 12,

which concludes the proof. O

5 MADM Method Based on the ¢ ”OFAAWA
Operator

In the following part, we will apply the recommended
operators to a MADM issue while operating in a ¢"OF

environment.

5.1 Mathematical Formulation of MADM Utilizing
q"OFNs

MADM issues are substantial in real-life choice circum-
stances [9, 15]. A MADM issue is to obtain the most
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attractive alternative from a lot of achievable alternatives
based on the decision data about attribute values and
attribute weights supplied by DMs. The estimation of the
attribute values plays a significant role in MADM. In the
technique of decision-making, the information about attri-
bute values is normally fuzzy or uncertain because of the
expanding intricacy of the financial and social condition
and the ambiguity of intrinsic abstract nature of human
reasoning. This reality has driven numerous authors to use
FS hypothesis to demonstrate the vulnerability and ambi-
guity in decision procedures.

Here, we may recommend a MADM procedure con-
trolling ¢"OF Aczel-Alsina aggregation operators where
attribute values are in terms of ¢"OFNs and attribute
weights are organized as real numbers. Assume that W =
Wi, Wa, ..., W,,} are the discretely arrangements of
alternatives, o = {0,0,, ...,0;} are the discretely
arrangements of attributes and 7y = (y;,7,,...,7,) are
weight vector of the attribute o (£ =1,2,...,7) such that
7:6>0 and % ,7: = 1. Suppose that R = ({¢),., =

(s Py ) is the g"OF decision matrix, as appeared in
Fig.b 2, where Cy,. denote MD by which alternative W;
satisfies the attribljte O¢, and Py, denote NMD by which
alternative W, does not satisfies the attribute J:, where
{y,. € [0,1], and ¢, . C [0, 1] permitting 0 <(f + ¢ <
I, (s=1,2,....,m)and (¢ = 1,2,...,7). ' '

5.2 Algorithmic Formulations of the Developed
Model

In the following algorithm, we develop a methodology for
selecting the best alternative(s) for the MADM problem,
taking into account the ¢"OFAAWA operators. This
method includes the steps listed below, and Fig. 3 shows a
complete flowchart of the method:

Step I The ¢"OF decision matrix R = (), is
constructed for a MADM problem involving ¢"OFNs,
where the entries : (s =1,2,...,m; {=1,2, ...,1)
represent the evaluations of the option W, with respect
to the criterion J,.

Step II The ¢"OF decision matrix R = (y

transformed into the normalised one R = (g‘yé)m

sé )mxr is
when

XT

there are two types of criterion, such as benefit (B) and

cost (C), by solving the following equation:
wxb é S B
gé‘f = { ¢
sér

¢ecC,
where V. is the complement of V..

(7)
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Fig. 2 ¢ OF decision matrix

<=

[ Determine the alternatives ]

[ Determine the attributes ]

Rank the given
Construct the q-rung orthopair alternatives based on
fuzzy decision matrix score values

Compute the score values
No of the aggregate number
by Eq. (1)

Aggregate the given
information using
proposed operators

Convert into benefit
type by taking
complement
Obtain the normalized
decision matrix

Fig. 3 Flow chart of the proposed MADM algorithm

Step Il Based on the decision matrix ﬁ, which was
found in step 2, the ¢"OFAAWA operator is used to find
the total aggregated value of the alternative W, (s =
1,2,...,m) under the different criteria d:. This gives the
general decision values G; (s=1,2,...,m) for every
alternative W, that is, G, = ¢ OFAAWA(G,, Gy,

T

cosGsr) = (‘D(Vggsé)

é=1

T

= < </1 —67 (g},i(iln(ligzﬁ ))6) ) 5 </€7 (5:1 }’i(ilnq’zmi )6) ]/6 > .

Step 1V: Based on the overall ¢'OF data G

(s=1,2,...,m), we calculate the score values Z(G,)
(s =1,2,...,m) so that we can rate all possible W; (s =
1,2,...,m) and select the best one. If the score functions

Z(G,) and Z(G;) are the same, we keep going to start
figuring out the accuracy degrees of L(G,) and L(G:)
from the overall ¢"OF data of §; and G¢, and we rank the
choices W, based on these accuracy degrees.

Step V We order all of the potential alternatives W
(s=1,2,...,m) according to the descending value of
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their score values, and then we choose the one that
comes out on top as the most viable option.
Step VI End.

6 Numerical Experiment

In this section, we will introduce a MADM issue to exhibit
the implementation and adaptability of the suggested
technique.

As globalization of the world economy makes companies
face more complicated external and internal environment,
finding a suitable partner is a significant way to steadfastly
keep up its competitiveness, which can be influenced by
numerous factors. With the intension of choosing an appro-
priate global partner, a company has chosen five candidate
enterprises in the global scope. The arrangement of alternative
enterprises is W = {W, W,, W5, W4, W5}, and four attri-
butes are considered, namely, J;: “research and technolog-
ical development capability”; ,: “business operation level”
03: “international cooperation level”; and d4: “credit level”.
Note that all the attributes presented here are benefit type
attributes. The attribute set 6 = {dy, 2, d3, 04} is provided,
and their relating weight vector is y = (0.30,0.20,0.15,
0.35)T. On the basis of decision data, a decision matrix with

the notation R = (Gy:)s,., is generated. The notation for this
matrix may be found in Table 1.

Table 1 ¢"OF decision matrix

We use the ¢"OFAAWA operator to build a MADM
approach with ¢"OF data in order to find the appropriate
global partner W, (where £ =1,2,...,1). This approach
can be assessed in the following manner:

— Step 1 Onthe assumption that 0 = 1 and ¢ = 4. Engaging
the ¢"OFAAWA operator to compute the perfect deci-
sion values G; of each alternatives W; (s = 1,2,...,5)
Gy = (0.617508,0.496757),

G, = (0.555684,0.452754),
Gs = (0.741877,0.343146),
G4 = (0.508392,0.518331),
Gs = (0.560468,0.478098).

—  Step 2 Calculate the score values Z(G,) (s = 1,2,...,5)
of the entire ¢"OFNs G, (s = 1,2, .. .,5) in the following
way: Z(Gi) = 0.084507, Z(G,) = 0.053328, Z(G3) =
0. 289056, Z(G,4) = —0.005379, Z(Gs) = 0.046426.

— Step 3 Since Z(g3) > Z(gl) > Z(gg) > Z(gj) >
Z(G4) thus we have W3>=W;=W,>Ws>Wy,. Hence,
the suitable global partner is Ws.

7 Analysis of the Influence of Parameters ¢ and 0
in Decision-Making Consequences

To explain the impact of the working parameters ¢ and 0
on MADM results, we will utilize various estimations of g
and 0 to rank the alternatives. Here we discuss three cases:

Case I: (When only parameter 0 changes) Suppose
g = 4. Table 2 illustrates the results of the score function

Wi Wa Ws Ws Ws as well as the preference ordering of the options We
5, (072.034) (052.0.52) (0.13.0.54) (028.0.72) (0.62.042) (lé =1,2,...,5) in the interim 1 <8 <10 based on the
5, (049,0.80) (0.36,0.60) (0.72,0.30) (0.38,0.52) (0.58,0.47) 4'OFAAWA operator. .
55 (071.027) (043.046) (0.75.029) (0.69.032) (0.27.0.73) Itr is observed that when the value of O is varied for
5 (0.380.68) (0.65034) (0.84027) (0.51,048) (0.54,0.45) ¢'OFAAWA “operator, the order of preferences are
different, and the relating best alternatives continue as
before. When, 8 = 1,2, order of preference is W5>W; >
;?:rfatzivgr(\iirtlﬁl%aoéing ) Z(Gy) 7(G,) Z(Gs) Z(Ga) Z(Gs) Order of preferences
parameter values 8 executed by 1 0084507  0.053328 0289056  — 0.005379  0.046426  Wi=Wi= W= Ws=W,
q"OFAAWA operator
2 0.149549 0.079968 0.354051 0.043735 0.061201 Wi =W =W =Ws>=Wy4
3 0.182619 0.098455 0.386139 0.080331 0.069785 Wi=Wi =W =Wy>=Ws
4 0.200883 0.111276 0.406737 0.106269 0.075819 Wi=Wi=Wa=Wa>=Ws
5 0.212167 0.120418 0.421161 0.124857 0.080427 Wi =W =Wa=Wo>=Ws
6 0.219794 0.127142 0.431722 0.138568 0.084097 Wi =W = Wi =W >=Ws
7 0.225304 0.132232 0.439708 0.148981 0.087093 Wis=Wi=Wa=W)r>=Ws
8 0.229488 0.136186 0.445911 0.157092 0.089583 Wi =W =Was=Wr>Ws
9 0.232784 0.139330 0.450842 0.163548 0.091683 Wi =W =Was=Wr>Ws
10 0.235458 0.141880 0.454843 0.168786 0.093477 Wi=Wi=Was=Wo>=Ws
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W»=Ws=W,, and best choice are WW3. When, 0 = 3,4,
order of preference is Wi >W; =W, >W4>Ws, and best
choice are W3. When 5 <0 < 10, corresponding ranking
is Wi =W =Ws>=W->>=Ws, but best one is W5.

Case II: (When only parameter q changes) Suppose 0 = 4.
Then using g"OFAAWA operator, the score values and
preference order of the alternatives W; (¢ =1,2,...,5)
in the interim of 1 <¢ < 10 are exhibited in Table 3.

It has noted that when the value of g is varied for g"OFAAWA
operator, the preference orders are different, and the
relating best alternatives continue as before. When, g = 1,
order of preference is Wi >=W; =W, >Ws>=W,, and best
choice are W;. When, 2 < ¢ <5, order of preference is
Wi =W =W-r=W4=Ws, and best choice are VV3. When
6<g<10, corresponding ranking is Wi3>=W >
Wa=W>o=Ws, but best one is W;.

Case III: (When both parameter q and & changes) We
calculate score values and preference order of the
alternatives We (£ =1,2,...,5) for arbitrary values of
g and 0 based on ¢"OFAAWA operator. The results are
exhibited in Table 4. From Table 4, we get different
types of preference order, such as Ws>W;>W,

=Wa-Ws and Wi>=W>W4>=W,r>Ws but in every
type the corresponding best alternative is Wj.

8 Sensitivity Analysis (SA) of Criteria Weights

We suggest conducting a sensitivity analysis so as to investigate
how the weighting of the criteria affects the final ranking. This is
achieved using 24 distinct weight sets, specifically S1, S2, . . ., $24
(Table 5), that are formed by assessing all conceivable
configurations of the criteria weights ¥, = 0.3, ¥, = 0.2,
W3 = 0.15, and , = 0.35. When determining the impact
that the developed model has, this is an important step to take
in order to obtain a wider variety of criterion weights. Fig-
ure 4 illustrates the total scores earned by each option, while
Table 6 lists the choices in the order of their respective rel-
ative ranking. When the ¢’OFAAWA operator (assuming
p = 5 and g = 3) is used, it is clear from an examination of
the sequence in which the alternatives are ranked that Wj is
in first place in each and every one of the possible outcomes.
Therefore, the credibility of the alternatives’ precedence that
was achieved using our proposed technique may be proven.

=Ws=Wy4, Wi=Wi=Wi=-Wor=Ws5, Wi3=W =W,

;?:rfagvgrizrg%;;mg q Z(G1) Z(G,) Z(G3) Z(Gs) Z(Gs) Order of preferences

parameter values g executed by 0266597  0.159658 0464467  0.092824  0.113198  Wi=W,=W)r=Ws=W,

q"OFAAWA operator
2 0300885  0.178972 0526182  0.133668  0.125549  W3=W;=Wr=Wy=Ws
3 0257995  0.149373 0476919  0.128580  0.103380  Wi:=Wi=Wo=W,=Ws
4 0.200883  0.111276 0406737  0.106269  0.075819  W3= W= W= Wy=Ws
5 0.149924  0.078347 0340546  0.081524  0.052397  Wi=W;=Wo=Wy=Ws
6 0.109650  0.053460  0.283775  0.060017  0.034969  W3=W;=Wy=W,=Ws
7 0.079401  0.035812 0236403  0.043124  0.022824  W3=W;=Wy=W,=Ws
8 0057217 0.023721  0.197141  0.030530  0.014678  W3=W;=Wy=W,=Ws
9 0041134 0015604  0.164604  0.021415  0.009342  W3=W;=Wy=W,=Ws
10 0029541 0010219  0.137591  0.014933  0.005903 W3- W= Wy=W,=Ws

of the altemtives for sepmrme 01 260 AG@) A% 4Gy 26 Order of preferences

values of parameter g and 9 by 5 4 0.149549  0.079968  0.354051  0.043735 0.061201  Wi=W;=Ws=Ws=W,

q"OFAAWA operator
2 9 0033220 0.011796 0.133541  0.012241 0.007392  Wi=Wi=Wy=Wy=Ws
3 5 0137710 0.069901 0321500  0.063796 0.048182  Wi=Wi=W,=W,=Ws
5 20325245  0.197712 0542277  0.169241 0.133287  Wis=Wi=Wo=W,=Ws
5 5 0157437 0.084180 0353731  0.093907 0.055610  Wi=Wi=W4=Ws=Ws
7 7 0087120 0.040932  0.259727  0.055262 0.026166  Wi=Wi=Wy=Ws=Ws
15 10 0.034723 0012516 0.164105  0.021544 0.007472  Wi=W;=W4=Ws=Ws
126 0127347 0.066683 0326747  0.089997 0.043983 Wi Wi =Wy=W,=Ws
100 3 0348550 0.231534  0.568360  0.288523 0.159411  Wi=Wi=Wy=Ws=Ws
100 15 0.007158 0.001546  0.072410  0.003754  — 0.000003  Ws=W;=Wy=W,=Ws
50 20 0.001368 0.000177 0.029964  0.000576 0.000069  Wi=W;=Wy=Wy=Ws
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Table 5 Various weight sets of

- Weight sets ¥ 2 U3 Yy Weight sets 12 2 U3 vy
criteria

S1 0.3 0.2 0.15 0.35 S13 0.15 0.2 0.3 0.35
S2 0.3 0.15 0.35 0.2 S14 0.15 0.3 0.35 0.2
S3 0.3 0.35 0.2 0.15 S15 0.15 0.35 0.2 0.3
S4 0.3 0.2 0.35 0.15 S16 0.15 0.2 0.35 0.3
S5 0.3 0.35 0.15 0.2 S17 0.15 0.35 0.3 0.2
S6 0.3 0.15 0.2 0.35 S18 0.15 0.3 0.2 0.35
S7 0.2 0.3 0.15 0.35 S19 0.35 0.2 0.3 0.15
S8 0.2 0.15 0.35 0.3 S20 0.35 0.3 0.15 0.2
S9 0.2 0.35 0.3 0.15 S21 0.35 0.15 0.2 0.3
S10 0.2 0.3 0.35 0.15 S22 0.35 0.2 0.15 0.3
S11 0.2 0.35 0.15 0.3 S23 0.35 0.15 0.3 0.2
S12 0.2 0.15 0.3 0.35 S24 0.35 0.3 0.2 0.15

S16 S10

S14 S12
S13

Fig. 4 Final utility values of alternatives for various criteria weight
sets

9 Comparative Analysis

In this section, we evaluate our improved approaches to
those of the “q"OF weighted averaging (¢"OFWA) opera-
tor” [28], the “4"OF weighted geometric (¢"OFWG)
operator” [28], the “q"OF Einstein weighted averaging
(¢"OFEWA) operator” [39], the “q"OF Einstein weighted
geometric (¢"OFEWG) operator” [39], the “4q"OF Hama-
cher weighted averaging (¢"OFHWA) operator” [6], the
“g"OF Hamacher weighted geometric (¢"OFHWG) oper-
ator” [6], the “g"OF Dombi weighted averaging
(¢ OFDWA) operator” [16] and the “q"OF Dombi
weighted geometric (¢"OFDWG) operator” [8]. The results
are displayed in Table 7, and represented graphically in
Fig. 5.

These kinds of outcomes are conclusive evidence that
the suggested operators and approach are effective. Also,
unlike the operators and methods that other researchers use,
our operators and methods have a number of important
advantages, such as:

(i) In the entirety of the study [28], the ¢g"OFWA
operator is derived from “algebraic #-norm and #-

Table 6 Priority order of alternatives for diverse weight sets

Ranking order Ranking order

S1 Wi=Wi=Wo=Wy=Ws  S13
S2 Wi=Wi=Was=Wr>=Ws5 S14
S3 Wi=-Wi=Wa=Ws>=W,  S15
S4 Wi=W=Wy=Wr>=Ws  S16
S5 Wi=-Wi=Wa=-Wr>=Ws  S17
S6 Wi=W=Wy=Wr=Ws  S18
S7 Wi=Wi=Wr=Ws=Ws  S19
S8 Wi=Wi=Wy=Wr>=Ws  S20
S9 Wi=Wi=Wi=W,r>=Ws  S21
S10 Wi=Wi=Wy=Wr>=Ws S22
S11 Wss=Wi=Wa=Wr>=Ws  S23
S12 Wss=Wi=Wa=Wr>=-Ws  S24

Wi =Wi=Wa=W,r=Ws
W3 =Wi=Wai=Wr=Ws
Wi =W =Ws=Wr=Ws
W3 =W =Ws=Wr=W;s
Wi =W =Wyi=Wr =W
Wi3=Wi=Wi=Wr =W
Wis=Wi=Wy=Ws=Wj5
Wi =W =Wa=Wr=Ws
Wi =W =Wa=W,r=Ws
W3 =Wi=Wai=Wr=Ws
Wi =W =Wys=Wr=Ws
Wis=Wi=Was=Ws=W,

conorm”. However, the ¢"OFAAWA operator is
derived from “AA #-norm and #-conorm” in this
paper. The ¢"OFWA operator that was established
in the literary works [28] is a specific case of our
recommended g"OFAAWA operator, that happens
when 0 = 1, as shown in Tables 2 and 7. Because
of this, the operators and methods suggested in
this work are much more general and adapt-
able than those that have been shown before [28].
(ii) The parameters O and g reflect the preferences of
the DMs, as indicated in Tables 2 and 3, and the
DMs can pick the optimal values for § and ¢
depending on their preferences to choose the most
suitable result. We are able to design a variety of
scoring functions, and consequently a variety of
ranks for the alternative, by adjusting the values of
the parameters & and g. When employed in
conjunction with parameters, the developed aggre-
gation operators concentrate on providing us with
a greater number of possibilities and a greater
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Table 7 Comparison with alternative methods that are already in use

Techniques Z(G)) Z(G>) Z(Gs) Z(G4) Z(Gs) Preference order

q"OFWA operator [28] 0.084507 0.053328 0.289056 — 0.005379 0.046426 Wi=Wi =W =Ws>=Wy
q¢"OFWG operator [28] — 0.096632 0.006208 0.013082 — 0.090475 — 0.010689 Wi=Wsr=Ws>=Wy>=W),
q"OFHWA operator [6] 0.069254 0.049158 0.261960 — 0.017288 0.043654 Wis=Wi =W >=Ws =W,
¢"OFHWG operator [6] — 0.075068 0.009087 0.022960 — 0.081364 — 0.002952 Wi =W =Ws=W1 =W,y
q"OFEWA operator [39] — 0.014522 — 0.012673 0.075481 — 0.033686 — 0.017268 Wis=Wo =W =Ws=W,4
q"OFEWG operator [39] 0.014942 0.030630 0.037488 0.002476 0.030110 Wi =Wo=Ws>=W =Wy
q"OFDWA operator [16] 0.226808 0.133470 0.439912 0.151869 0.086666 Wis=Wi=Wy=W,r=Ws
q"OFDWG operator [8] — 0.309720 — 0.075581 — 0.067710 — 0.216327 — 0.205712 Wi =W = Ws>=Wy>=W),
Proposed method 0.364236 0.233476 0.570999 0.237041 0.148794 Wi=Wi=Was=Wy>=Ws

q"OFWA operator [26]
q"OFWG operator [26]
q"OFHWA operator [6]
q"OFHWG operator [6]
q"OFEWA operator [39]
q"OFEWG operator [39]
q"OFDWA operator [16]
q"OFDWG operator [8]
—8— Proposed ¢"OFAAWA operator
T T T
0.6 - -

fteot

0.2 - -

OM

| | | | |
Z(G1) Z(Ga) Z(Gs) Z(Ga) 2(9s)

Fig. 5 Comparative analysis employing a few prevalent methods

degree of adaptability than the existing aggrega-
tion operators [6, 28, 39]. This is due to the fact
that they provide us with the ability to have
positive variants for the parameters that emphasis
various real-life events. This is an intriguing issue
that warrants further investigation.

The key benefit of the optimization technique is
that the ¢"OFAAWA operator has two different
characteristics, which outperform all the previous
methods [6, 8, 16, 28, 39]. It increases monoton-
ically in respect of the parameter § and decreases
monotonically in respect of the parameter g. This
gives DMs the right value based on how they feel
about risk. If the individual making the selection

(iii)

@ Springer

has a certain level of comfort with risk, we can
adjust the parameters of 0 to be as low as possible.
If the person making the decision is concerned
about taking risks, we can adjust the parameters of
0 such that they are as large as possible. On the
other hand, if the person making the decision has a
predilection for risk, we have the option of making
the parameters ¢ as large as possible. If the person
making the decision is concerned about taking
risks, we can adjust the parameters ¢ to be as low
as reasonably practicable. So, the person in charge
of making the choice is the one who can decide
what the right parameter value is based on how
much risk they are willing to take and what they
need.

Based on evaluations and studies that have already been
done, the method presented in this work is better than other
methods that focus on the Hamacher operations, the Ein-
stein operations, the algebraic operations, and the Dombi
operations.

10 Conclusions

Information aggregation is one of the core issues of
MADM problems. This paper suggests a few novel oper-
ational rules for ¢"OFNs by virtue of Aczel-Alsina t-norm,
and Aczel-Alsina ¢-conorm. Based on these new opera-
tional laws, we have produced number of new information
aggregation operators, including ¢"OFAAWA operator,
q"OFAAOWA operator, and ¢ OFAAHA operator. The
important features of these developed operators are studied.
Next, we have proposed ¢g"OFAAWA operator-based
method to address the MADM process with ¢"OF infor-
mation. A numerical instance is presented to demonstrate
the developed techniques. By systematic comparison
between the proposed methods in this paper with previ-
ously proposed ¢"OF MADM methods, some advantages of
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the proposed ¢"OF MCDM methods are shown. The
developed approach consists of two general parameter g
and 0. The DMs can set the values of the parameters based
on what they need in real-life. This requirement gives the
suggested technique a lot of flexibility and reliability. In
our ongoing investigation, we plan to develop these
aggregation operators further so that they can be used to the
“probabilistic uncertain linguistic term set”
[41, 46, 56, 64], ELICIT information [22] and Consensus
Reaching Processes [11, 21, 23, 40].
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