
Computer Vision-Based Gait Velocity from
Non-Obtrusive Thermal Vision Sensors

1st Javier Medina-Quero
Department of Computer Science

University of Jaén
Jaén, Spain

jmquero@ujaen.es

2nd Colin Shewell
Connected Health Innovation Centre

Ulster University
Jordanstown, U.K.

cp.shewell@ulster.ac.uk

3rd Ian Cleland
Connected Health Innovation Centre

Ulster University
Jordanstown, U.K.

i.cleland@ulster.ac.uk

4th Joseph Rafferty
Connected Health Innovation Centre

Ulster University
Jordanstown, U.K.

j.rafferty@ulster.ac.uk

5th Chris Nugent
Connected Health Innovation Centre

Ulster University
Jordanstown, U.K.

cd.nugent@ulster.ac.uk

6th Macarena Espinilla Estévez
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Abstract—Gait velocity is an important measure of indepen-
dence and functional ability to those within the older popu-
lation. Detecting changes in gait velocity can aid to provide
interventions to avoid hospitalisation, currently gait velocity is
assessed in a clinical setting, where the patient is timed over a
measured distance between 3–6 metres by a clinician, however,
this is time consuming, subjective, and not possible to carry
out frequently over time. An unobtrusive method of monitoring
gait velocity, frequently, over extended periods of time, would
therefore be advantageous when developing interventions. This
paper proposes an unobtrusive computer vision-based method
of continuously monitoring an occupants gait velocity within
their own home. This is achieved through the use of a low cost
thermal vision sensor. The system was benchmarked against the
clinical standard method of being timed by a stopwatch. Results
show a high correlation between the gait velocity measured by
the thermal vision sensor and the measured stopwatch velocity
(R=0.941, p=0.02).

Index Terms—Thermal vision sensors, Ambient assisted living,
Smart homes, Gait recognition

I. INTRODUCTION

Mobility is a key aspect of keeping independence and
functional ability within the elderly population [1], as well as
being a general indicator of their health [2], [3]. Gait velocity
in particular can aid to predict multiple conditions that may
lead to hospitalisation, such as chronic obtrusive pulmonary
disease, congestive heart failure [4], [5], fall risk likelihood
[6], and even a predictor of the onset of cognitive decline [1].

The traditional approach to measure gait velocity involves
the patient walking over a set distance while being timed by
a clinician [7]; however, there are limitations to this method.
Walking in a clinic based environment while under observation
may not be an accurate representation of how the patient would
walk in a general day-to-day manner at home [8]. There is
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also the issue that these clinic tests will only be administered
at a time were the patient is available to attend the clinic.
At the most frequent this would still only dictate that the
measurement is carried out at a frequency of three to six
months. This scenario does not provide enough granularity
to monitor trends in their gait velocity in order to provide any
responsive intervention, nor does it offer opportunity to rapidly
change a patients medication/treatments in response to how it
is effecting their mobility.

Multiple attempts have been made to design a system that
will allow gait analysis to be performed within the occupant’s
own home on a continuous basis [10]. Many of these systems
require the occupant to carry or wear a device at all times.
Doing so, they can be unreliable as older adults may feel
uncomfortable and encumbered by wearable devices [9], [11].
This can result in the devices being used either incorrectly
or not at all. This is further compounded by the fact that
off-the-shelf wearable devices, such as FitBit, are not able
to capture gait velocity. Other solutions, such as smartphone
enabled GPS, are not accurate enough to work indoors [12].
Camera systems mounted in the occupant?s home have also
been considered, however, traditional cameras often have a
limited field of view, suffer from occlusions, and raise privacy
concerns from the occupant and their families perspective.

This paper proposes a method of computing the gait velocity
of an inhabitant through the use of a non-obtrusive device:
a Thermal Vision Sensor (TSV). The proposed method does
not require that the inhabitant to carry a wearable sensor or
device. The TSV used in this approach is a Heimann HTPA
32x31 [13], its low resolution offers a degree of privacy not
offered by traditional camera methods as occupants cannot be
identified providing a more positive acceptance than standard
vision cameras [14].

The remainder of the paper is structured as follows: in Sec-
tion II, previous related works are presented; in Section III, we
detail a computer vision-based methodology to compute the
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gait velocity of an inhabitant using a TSV; in Section IV, a case
study and related evaluation and results are presented; finally,
in Section V, conclusions and future work are proposed.

II. RELATED WORK

This Section presents a summary of the current state-of-the-
art of gait analysis within the home. A number of studies are
reviewed, which utilise diverse approaches based on sensor
technologies to obtain a gait analysis. While the findings are
promising, there exists a number of challenges which hope to
be addressed within the proposed work.

Hayes et al. [1] propose the use of passive infrared sensors
(PIR) within an occupant’s home to measure gait velocity
on a regular basis. They evaluated their system against a
GAITRite gait mat using a timed walk test with 18 subjects,
they found the velocity measured by their system was highly
correlated to the measured walking velocity in all cases, using
two sensors they achieved R=0.93, three sensors R=0.96, four
sensors R=0.97, and five sensors R=0.99. While these results
are encouraging there are limitations encountered with this
system. The main one being the number of sensors that are
required in order to get an accurate reading, with six sensors in
total being used, thus driving up cost and complexity of install
and maintenance, which requires an expensive calibration each
time it is installed in a new location.

Hsu et al. [15] developed a system to measure gait velocity
within the home using radio signals to continuously measure
gait velocity. Their WiGait system uses a sensor which is
placed on a wall within the room and does not require any
device to be worn on the occupant’s person. They compared
their system against the VICON system using 18 subjects,
the average error rates of 1.9% and 4.2% for gait velocity
and stride length respectively. A further study was carried
out with 25 participants, they were asked to walk along
a seven metre line with their gait velocity being measured
over the central five metre section, allowing one metre at
the start and end for acceleration/deceleration time. WiGait’s
accuracy in determining gait velocity varied between 85.9%
and 99.8%. However, their system requires a large amount of
effort in installing and any movement in the occupants limbs
is measured as a movement of the whole body thus it can give
false readings of movement/velocity.

McGinnis et al. [16] proposed a system to estimate gait
velocity using an array of skin mounted, conformal accelerom-
eters. They tested this system on both subjects with normal
gait and those with gait impairments induced by multiple
sclerosis. For normal gait the system overestimates by 0.01
m/s and achieves a root mean square error of 0.12 m/s. Results
of a Bland-Altman analysis showed results within a 95%
confidence interval. The main limitation of this system is the
requirement of the occupant to wear multiple sensors on their
person, particularly as members of the older population do
not feel comfortable wearing wearable devices [9], [11], this
is further compounded in this case as the sensors have to be
worn next to the skin thus increasing the discomfort.

The proposed system in this paper attempts to avoid the
limitations found in this Section. Through the use of a single
low cost, easy to install ceiling mounted TSV aims to: i)
achieve performance on par with the reviewed systems, ii)
remove the requirement of the inhabitant to have to wear
any wearable device in order for the system to function.
Furthermore, the low resolution from the TSV provides a
degree of privacy which is not offered by traditional camera
based systems, while still providing the accuracy for computer
vision processing in order to perform gait analysis.

III. METHODOLOGY

As discussed in Section I, this paper presents an computer
vision-based gait velocity estimation of inhabitants using a
TSV. In order to provide a clear field of view in the frame,
the TSV is located in the room roof collecting an aerial view
of the occupants, this also offers the advantage of reducing
occlusions. For each frame, the data collected by TVS are
defined by a 32x31 matrix, where each pixel value is in the
range between 0 and 255.

The main steps for generating the computer vision-based
gait velocity are:

• Analysing distortion and calibrating the TVS in order to
calculate the affine transformation, which relates the pixel
coordinates from the TSV to the real world.

• Processing of the thermal frames to detect the central
location of inhabitants blob in the scene.

• Real-time tracking of the location of an occupant while
they are walking in the scene from the sequence of frames
collected by TVS.

These stages are further detailed in the following section.

A. Distortion and Affine Transformation

To evaluate the potential distortion from TVS, an initial
calibration procedure was carried out. A symmetrical grid of
points were mapped out as references in the real world loca-
tion, these have been measured by TVS for further evaluation.

The grid of points has been deployed by thermal markers on
the floor of the scene under the TVS. They were located in a
symmetrical grid of points separated by 0.5 metres, as shown
in Figure 1. It should be noted that avoiding the angle rotation,
between field of view from TSV and the symmetrical grid,
helps in evaluating the distortion and the affine transformation
to real world.

Firstly, in order to evaluate the potential distortion, the
coordinates of measured points in the image from TVS were
related the coordinates in the real world location of the grid
points. A constant linear progression was obtained (see Figure
1) from measured coordinates in the centre, where the TVS
is located in a aerial view, to the measured coordinates in
peripheral points within the symmetrical grid of points. The
results from this showed an effective factory calibration, with
no distortion by the fish-eye lens.

Secondly, in order to calculate the affine transformation
from the TVS to real world using homogeneous coordinates,
the following equation is used:
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Fig. 1. A) Symmetrical grid of points in the floor and TSV cenital location
in roof. B) Relation in X axis between real-world location of grid points and
affine transformation of grid-coordinate pixels.

(
x∗

y∗

)
= H × ( xy ) +B

where x∗, y∗ are the real-world coordinates, x, y the TSV co-
ordinates, H a matrix transformation and B and offset vector.
In the case of the implemented TVS, the affine transformation
is computed using a linear regression which translates the
thermal coordinates from the pixel in the frame of the TVS
in regard to the real world location. It has been defined by
a straightforward scale operation due to: i) avoiding rotation
between TVS and grid of points in the real world, and ii) the
centred and aerial view from the roof, obtaining a pure scale
transformation:(

x∗

y∗

)
=

[
Sx 0
0 Sy

]
× ( xy ) , Sx = Sy = 0.1352

The relation in the X axis between the straightforward
transformation of coordinate pixels from the TVS and the real
world location, is show in Figure 1.

B. Detecting Central Location of an Inhabitant

In order to detect the location of an inhabitant from the
aerial view of the TVS, a real-time processing of frames based
on computer vision has been developed. The computer vision-
based process includes next consecutive steps to compute each
single frame:

• Thresholding binarization [17]. A segmentation of frames
based on a minimal threshold minv is included. The noise
values, which are lower than the threshold and not related
to an inhabitant detection are set to zero; in another case,

Fig. 2. Right) Original frame from TVS. Left) Minimal enclosing circle as
output from the computer vision process (ratio in blue and centre).

they are set to 1. An empirical value of minv = 50 was
defined.

• Gaussian blur. A smoothing filtering to reduce the salt-
and-pepper noise is included.

• The well-known algorithm to find contours [18] is applied
to detect the presence of an inhabitant. A minimal size
of the object 2x2 is required to filter small or isolated
objects, such as lamps, hands or feet.

• Due to the shape of the aerial view of inhabitants, a
minimal circle is proposed to enclose the points of the
contour detected in previous step.

This minimal enclosing circle (MEC) represents the output
of the single-frame processing. In figure 2, an example of
original frame and MEC is shown.

C. Real-Time Tracking of the Inhabitant Location

For each image collected by the TSV, computer vision
tracking was developed to trace the inhabitant between frames
in real-time in order to generate the tracking history and
compute the gait velocity. This tracking enables the collection
of the distance, time, and path of the inhabitant while they are
walking in the scene.

A lightweight real-time tracking for a single inhabitant
is proposed, as the aim is analysing the gait velocity in a
controlled context. This algorithm tracks the inhabitant when
he/she appears in the scene and it shows the walking metrics
of the inhabitant when he/she disappears from the scene.

For that, the proposed tracking collects and processes in
real-time the frames from the TVS applying the process
described in Section III-B in a first step. Secondly, while
the inhabitant is walking in the scene, the real-time tracking
obtains the central location of the inhabitant and the timestamp
of the frame, which are recorded in the tracking history. At
the end, this is when the inhabitant is not detected in the
current frame, the time and straight distance is computed (as
the difference between entry point and the exit point, and
first and last time respectively). Both are the key metrics for
analysing the gait velocity in Section IV. Finally, the Kalman
filter [19] is applied to the path in order to compute an smooth
approximation of the walking path of the inhabitant. Algorithm
1, details the pseudo-code of the real-time tracking of the
occupant location.

Figure 3, presents an example of real-time tracking collected
by the TVS.
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Data: newFrame,history
Result: updated history or metrics
object=MEC(newFrame);
if object =∅ then

if history 6= ∅ then
Time = timestamp(history[0])−
timestamp(history[−1]));
StraightDistance =
Distance(history[0], history[−1]);
velocity = straightDistance/time;
Path = kalman(history);

else
history = ∅;

end
else

history[timestamp] = center(object);
end

Algorithm 1: Real-time tracking algorithm.

Fig. 3. Left) In yellow and green lines, the path from tracking history and
Kalman filtered path are plotted respectively. The distance, time, and velocity
are detailed as output in the bottom of the figure. Right) Original frame from
TVS at the end of the path.

IV. EXPERIMENTAL SETUP AND RESULTS

This section describes a case study where 42 tests of gait
velocity where carried out by seven participants. The aim of
the study was to compare the gait velocity metrics obtained for
the approach in regard to an human observer with a stopwatch.

For that, a straight line of 3.1 metres was mapped out on
the floor within the field of view area of the TVS installed in
an aerial view. In each case, the participants walked across the
straight line at different velocities (low, normal, and fast). A
human observer collected the time they spent walking using
a stopwatch, which provides the velocity as a quotient of the
length of the line (3.1 metres) and the collected time.

The case study was carried out by seven participants (one
female, six male). The averages and standard deviations of
the height and age of the participants are µ = 175.57cm,
σ = 10.60cm and µ = 31.6y, σ = 6.2y, respectively. In
order to provide a range of situations regardless of the age
and vitality of the participants, they walked at slow, normal
and, fast velocity along the straight line. Each velocity was
repeated twice resulting in 42 independent gait velocity tests.

The stopwatch collected velocity has been compared with
the TSV based velocity obtained using the methodology de-
scribed in Section III. We note that the distance and time

Fig. 4. Comparison between the stopwatch-collected velocity and the TSV-
based velocity in the 42 cases.

TABLE I
MAE AND RMSE FROM CASE STUDY.

Error Value
MAE 0.0897 m
RMSE 0.1031 m2

collected by the TSV do not require to be similar to the
stopwatch because of the reference line is only partially
included within the vision area of the TSV. Due to this,
the real-time tracking, from the first-entrance to the last-exit
points of the inhabitant, could provide a higher distance and a
longer time than stopwatch but keeping the constant relation
of velocity closely related.

A. Evaluation

Figure 4 presents a visual comparison between the stop-
watch velocity and the TSV based velocity in the 42 cases.

For a further evaluation, a statistical analysis was performed
using SPSS (IBM, SPSS Statistics, Version 22). Statistical
significance was set to p < 0.05. Initially a one sample T-
test was computed to detect statistical significant differences
in gait velocity measured by the human observer (stopwatch)
and the TVS. Bland-Altman [20] plots were constructed to
examine the level agreement between the two measures. The
Bland-Altman limits of agreement (mean ± 1.96SD) for the
difference between measurement techniques which provides
an indication of the minimal detectable difference in the
estimated velocity. To further assess the level of agreement
and to identify any underlying bias in the measurement, linear
regression analysis was undertaken. The intercept (b) indicates
the systematic difference between measurement techniques,
and the slope (m) indicates how closely one measurement
technique is able to detect changes in the other.

B. Results

The Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) from the 42 cases are shown in Table I, which
indicates a good performance of the approach.
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One sample T-test showed no statistically significant differ-
ence between the two velocity measurements (p=0.05). The
Bland-Altman and regression plots 5, highlight the unbiased
velocity estimate provide by the TVS. Each point of the Bland-
Altman plot represents a single walking velocity test, where
the y-coordinate is the difference in the velocity estimate
between the two methods and the x-coordinate is the average
of the two methods. The dashed red line indicates the mean
difference in the velocity estimate, and the dashed black lines
indicate the limits of agreement. The difference in gait velocity
detected by the human observer and the TVS all lie within
the limits of agreement. This signifies good stability of the
gait velocity detection from the TVS across all velocities.
Similarly, each point of the regression plot represents a single
walking velocity test, where the y-coordinate is the estimated
velocity and the x-coordinate is the true velocity. The line of
best fit is plotted as a dashed red line. This shows a high
correlation between the 2 measurements (R=0.941, p=0.02).

V. CONCLUSIONS

In this work, a real-time gait velocity estimation based on
computer vision from a TSV is detailed. The main key points
of the approach are: i) using a low-cost TSV which guarantees
the user privacy, ii) a aerial location for a straightforward affine
calibration, iii) a single frame processing based on computer
vision, iv) a real-time tracking for analysing gait velocity
metrics.

A study with 42 cases shows the encouraging performance
for analysing the gait velocity in regard to an human ob-
server with a stopwatch. The one sample T-test showed no
statistically significant difference between the two velocity
measurements.

Future works will be focused on including real-time tracking
with several TSV with overlapping areas of vision, as well
as, designing and evaluating a real-time multiple-occupancy
tracker. Moreover, the detection of fall by means of Convolu-
tional Neural Networks will be analysed.
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