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Abstract: Knowledge reduction is a crucial topic in formal concept analysis. There always exists
uncertain, symmetric linguistic-evaluation information in social life, which leads to high complexity
in the process of knowledge representation. In order to overcome this problem, we are focused
on studying the linguistic-concept-reduction methods in an uncertain environment with fuzzy
linguistic information. Based on three-way decisions and an attribute-oriented concept lattice, we
construct a fuzzy-object-induced three-way attribute-oriented linguistic (FOEAL) concept lattice,
which provides complementary conceptual structures of a three-way concept lattice with symmetric
linguistic-evaluation information. Through the granular concept of the FOEAL lattice, we present the
corresponding linguistic concept granular consistent set and granular reduction. Then, we further
employ the linguistic concept discernibility matrix and discernibility function to calculate the granular
reduction set. A similar issue on information entropy is investigated to introduce a method of entropy
reduction for the FOEAL lattice, and the relation between the linguistic concept granular reduction
and entropy reduction is discussed. The efficiency of the proposed method is depicted by some
examples and comparative analysis.

Keywords: concept lattice; fuzzy formal context; granular reduction; three-way concept lattice;
linguistic term set; symmetry and asymmetry; machine learning

1. Introduction

Formal concept analysis, which was originally proposed by Wille [1], has proven to be
a powerful tool for data analysis and knowledge processing. Its fundamental concept is to
study the relationships between objects and attributes in a formal context, and to represent
the implicit relationships between conceptual knowledge through the creation of a visual
lattice structure. The concept lattice, as the core data structure of formal concept analysis,
has been widely utilized in various fields with significant potential applications, including
software engineering [2], data mining [3], knowledge discovery [4], and others [5–7].

The extension of formal concept analysis and its integration with other theories have
seen significant research. Duntsch and Gediga [8] employed modal-style operators to
propose an attribute-oriented concept lattice, and then Yao [9] gave an object-oriented
concept lattice. Aiming at the data structure in a fuzzy environment, fuzzy concept lattices
were also proposed [10,11]. In view of the advantage of three-way decisions that can give
decisions with delayed decision making in the context of incomplete information, Qi and
Yao et al. [12,13] proposed a three-way concept lattice that can express not only the case
where objects share attributes, but also the case where objects do not share attributes. Based
on that, researchers have achieved many goals. Qian et al. [14] investigated the connections
between the object-oriented concept lattice, property oriented concept lattice, three-way
object-oriented concept lattice, and three-way property oriented concept lattice. Hu and
Wang et al. [15,16] proposed an algorithm for constructing a multi-granularity concept
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lattice and discussed the relationship between types of operators under multi-view data
based on three-way concept analysis. Singh [17] discussed the incompleteness of fuzzy
attribute set to generate a wise three-way fuzzy concept with a neutrosophic graph and a
neutrosophic lattice. Xu et al. [18] designed a dynamic learning mechanism for processing
continuous fuzzy data using a three-way concept lattice, which can update the concept
information faster and effectively improve classification accuracy.

Knowledge reduction is an indispensable technique for improving the efficiency
and effectiveness of concept lattice construction. The current main types of reduction
can be divided into concept-lattice reduction, attribute reduction, and object reduction,
whose primary purpose is to eliminate redundant information while keeping a condition
unchanged. Making use of a discernibility matrix to obtain reduction is widespread
due to the high compatibility of discernibility functions [19–21]. Meanwhile, types of
attribute reduction methods were discussed by preserving the lattice structure, join(meet)-
irreducible elements, and granular consistent set, respectively [22–24]. In addition, some
scholars have extended attribute reduction methods to the formal decision context [25–27].
Chen et al. [28,29] investigated granular reduction and attribute reduction to overcome the
limitations of large-scale data sets in terms of excessive spatial complexity. Qin et al. [30]
used the equivalence relation to explore an attribute reduction of attribute (object)-oriented
concept lattices. However, there always exists fuzzy and uncertain information in real life.
How to deal with fuzzy data has always been an essential issue in machine learning [31–35].
Thus, studying knowledge reduction in a fuzzy formal context is necessary. In order to
avoid distorting the knowledge structure during the reduction process, Zhai et al. [36]
presented fuzzy-attribute reduction based on Lukasiewicz adjoint operators and hedge.
Singh et al. [37] calculated fuzzy concept weights based on Shannon entropy to propose a
concept-reduction method with less complexity. Further studies [38,39] on matrix-based
fuzzy attribute reduction were put forward in consistent formal fuzzy decision contexts,
which provide a new direction for fuzzy three-way concept analysis.

In real-life applications, it is often challenging to provide precise values for evaluation
due to the presence of uncertainty and complexity in the environment. Instead, evaluation
information in natural language is often more relevant to human cognition. As a result,
the decision problem of using symmetric and asymmetric linguistic variables for qualitative
assessment has become a topic of significant interest [40–45]. Furthermore, taking advan-
tage of natural language and formal concept analysis, Yang et al. [46] and Zou et al. [47,48]
analyzed formal contexts with symmetric linguistic-evaluation information. However,
from the analysis mentioned above, we can observe that there are still some challenges in
linguistic formal concept analysis.

• The formal concepts in classical formal concept analysis only express whether objects
share attributes or whether attributes are shared by objects. In real life, it is not enough
to study only these two relations between objects and attributes. Likewise, formal
contexts with linguistic information face the same problem. Thus, other relationships
that may exist between objects and linguistic concepts need to be discussed as well.

• The construction of conceptual knowledge is inherently a complex challenge. There
is easily a large amount of redundant information in the process of knowledge pro-
cessing, resulting in a high amount of computational complexity. Therefore, there
is an urgent need to propose a reduction method that can reduce the complexity of
linguistic concept knowledge.

• Scholars have achieved many results in fuzzy formal concept analysis. A large amount
of fuzzy information can exist in a linguistic environment, so studying the fuzzy
linguistic concept formal context is necessary based on the challenges presented above.

In order to overcome the challenges, this paper investigates two linguistic concept
reduction methods in a fuzzy linguistic concept formal context, and the main contributions
are listed below.

• Based on three-way concept lattice and modal operators with possibilities and neces-
sity, a fuzzy-object-induced three-way attribute-oriented linguistic (FOEAL) concept
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lattice is proposed to express more information in a fuzzy linguistic concept formal
context.

• A novel linguistic-concept granular-reduction method based on the FOEAL lattice
is designed to preserve granular concept information, which reduces the scale of
conceptual knowledge in a linguistic environment.

• In order to highlight the importance of linguistic-concept information, an entropy-
reduction method based on the FOEAL lattice is also presented. We further verified
that the set of this entropy reduction is consistent with those of the granular reduction.

• The examples of the student-debate competition can confirm the rationality, and the
comparative analysis provides strong evidence for the effectiveness of the proposed
method.

The remainder of this paper is structured as follows. In Section 2, we review some basic
notions of concept lattices and linguistic-term sets. In Section 3, we present a fuzzy-object-
induced three-way attribute-oriented linguistic concept lattice and study the linguistic-
concept granular-reduction method based on it. In Section 4, an entropy reduction method
of a fuzzy-object-induced three-way attribute-oriented linguistic-concept lattice is pre-
sented, and its relationship to granular reduction is discussed. Section 5 provides a com-
parative analysis that demonstrates the superiority of our proposed method over other
techniques. Finally, this paper is completed with a conclusion in Section 6.

2. Preliminaries

This section gives some basic notions on concept lattices and linguistic-term sets, then
introduces some related work on linguistic-concept reduction.

2.1. Basic Notions on Concept Lattice

Definition 1. [9]. Let K = (G, M, I) be a formal context, where G = {xi|i ∈ 1, 2, . . . , n} is a set
of objects and M = {aj|j ∈ 1, 2, . . . , m} is a set of attributes. I is a subset of Cartesian products
G×M, which represents the binary relation between G and M. I(x, a) = 1 denotes that the object
has the attribute, and I(x, a) = 0 denotes that the object does not have the attribute.

Definition 2. [12]. Let K = (G, M, I) be a formal context. Given X ⊆ G and B ⊆ M, a pair of
operators, ∗ : P(G)→ P(M) and ∗ : P(M)→ P(G), are defined by:

X∗ = {a ∈ M|∀x ∈ G, xIa}, (1)

B∗ = {x ∈ G|∀a ∈ M, xIa}. (2)

If X∗ = B, B∗ = X, then we call (X, B) a formal concept. Here, X is called an extent, and B is
called an intent of the concept (X, B).

The set of all the formal concepts forms a complete lattice called the concept lattice
is which denoted by L(G, M, I). For any (X1, B1), (X2, B2) ∈ L(G, M, I), the partial order
relation “≤”, infimum and supremum are given as follows:

(X1, B1) ≤ (X2, B2)⇔ X1 ⊆ X2(⇔ B2 ⊆ B1), (3)

(X1, B1) ∧ (X2, B2) = (X1 ∩ X2, (B1 ∪ B2)
∗∗), (4)

(X1, B1) ∨ (X2, B2) = ((X1 ∪ X2)
∗∗, B1 ∩ B2). (5)

Definition 3. [12]. Let K = (G, M, I) be a formal context. Given X ⊆ G and B ⊆ M, a pair of
negative operators, ∗ : P(G)→ P(M) and ∗ : P(M)→ P(G), are defined by:

X∗ = {a ∈ M|∀x ∈ X,¬(xIa)} = {a ∈ M|∀x ∈ X, xIca}, (6)

B∗ = {x ∈ G|∀a ∈ B,¬(xIa)} = {x ∈ G|∀a ∈ B, xIca}. (7)

Here, Ic = (G×M)− I. If X∗ = B, B∗ = X, then we call (X, B) an N-concept.
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NL(G, M, I) denotes a complete lattice formed by all the N-concepts, in which the
partial order relations, infimum and supremum are analogous to the L(G, M, I).

The attribute-oriented concept lattice was proposed by employing modal-style opera-
tors as follows [8].

Definition 4. [9,49]. Let K = (G, M, I) be a formal context, X ⊆ G, B ⊆ M. Operators
� : P(M)→ P(G) and � : P(G)→ P(M) are defined as follows:

X� = {a ∈ M|a∗ ∩ X 6= ∅}, (8)

B� = {x ∈ G|x∗ ⊆ B}. (9)

Definition 5. [9,49]. Let K = (G, M, I) be a formal context. For (X ⊆ G, B ⊆ M), (X, B) is
called an attribute-oriented concept if X� = B and X = B�. X and B are called the extent and
intent of the attribute-oriented concept, respectively.

The set of all the attribute-oriented concepts, denoted by LA(G, M, I), forms a com-
plete lattice and is referred to as an attribute-oriented concept lattice. The meet “∧”, join
“∨” and partial order relation “≤” are given by:

(X1, B1) ∧ (X2, B2) = (X1 ∩ X2, (B1 ∩ B2)
��), (10)

(X1, B1) ∨ (X2, B2) = ((X1 ∪ X2)
��, B1 ∪ B2), (11)

(X1, B1) ≤ (X2, B2)⇔ X1 ⊆ X2(⇔ B1 ⊆ B2). (12)

Motivated by the idea of three-way decision, Qi and Yao et al. [12] put forward
three-way concept lattices from the two aspects of objects and attributes. The following is
an object-induced three-way concept lattice.

Definition 6. [12]. Let K = (G, M, I) be a formal context. Given X ⊆ G and B ⊆ M, a pair of
object-induced three-way operators, l : P(G)→ DP(M) and m : DP(M)→ P(G), are defined
by: Xl = (X∗, X∗̄), (B, C)m = {x ∈ G|x ∈ B∗andx ∈ C∗̄} = B∗ ∩ C∗̄.

Definition 7. [12]. Let K = (G, M, I) be a formal context. A pair (X, (B, C)) of an object subset
X ⊆ G and two attribute subsets B, C ⊆ M is called an object-induced three-way concept, or an
OE-concept of (G, M, I), if and only if Xl = (B, C) and (B, C)m = X. X is called the extent, and
(B, C) is called the intent of the OE-concept, respectively.

The OE-concepts (X1, (B1, C1)) and (X2, (B2, C2)) are ordered by:

(X1, (B1, C1)) ≤ (X2, (B2, C2))⇔ X1 ⊆ X2(⇔ (B1, C1) ⊇ (B2, C2)⇔ B1 ⊇ B2, C1 ⊇ C2).

All OE-concepts are denoted by OEL(G, M, I); then a complete lattice called a object-
induced three-way concept lattice(OE-lattice) is formed. The infimum and supremum on
OEL(G, M, I) are given by:

(X1, (B1, C1)) ∧ (X2, (B2, C2)) = (X1 ∩ X2, ((B1, C1) ∪ (B2, C2)))
ml), (13)

(X1, (B1, C1)) ∨ (X2, (B2, C2)) = ((X1 ∪ X2)
lm, (B1, C1) ∩ (B2, C2))). (14)

2.2. Linguistic Term Set

In complex environments, due to the fact that some problems are difficult to be
concretely expressed by fuzzy sets, Zadeh [50] proposed linguistic variables with symmetric
evaluation information such as “good”, “very good”, “bad” and “very bad”. Furthermore,
Herrera [51] proposed a linguistic-term set S = {sα|α = 0, 1, ..., g} to describe all the discrete
linguistic variables, where sα denotes a possible value for a linguistic variable, and it also
satisfies the following characteristics:
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(1) order relation: sα ≥ sβ, if α ≥ β,
(2) negation operator: Neg(sα) = sβ, where β = g− α,
(3) maximization operator: max{sα, sβ} = sα, if α ≥ β,
(4) minimization operator: min{sα, sβ} = sβ, if α ≥ β.

It can be seen from the above that the linguistic-term set has an odd number of
linguistic terms. If the middle evaluation value represents “medium”, then the rest of the
linguistic labels are replaced symmetrically around it. For example, a linguistic-term set
with five terms can be defined as S = {s0 = very bad, s1 = bad, s2 = medium, s3 = good,
s4 = very good}.

2.3. Linguistic Concept Lattice

Zou et al. [48] presented a linguistic concept lattice by introducing symmetric linguistic-
evaluation information into formal concept analysis as follows.

Let S = {sα|α ∈ 0, 1, 2, . . . , g} be a linguistic-term set and L = {l j|j ∈ 1, 2, . . . , m} be
an attribute set. Then, we can get the set Lsα = {l j

sk |j ∈ 1, 2, . . . , m, k ∈ 0, 1, 2, . . . , g} defined
on S and L, which is called the linguistic concept set. For example, a linguistic concept ls0

means that attribute l is evaluated as a linguistic term s0. Based on that, we give a linguistic
concept formal context.

Definition 8. [48]. A linguistic concept formal context is defined as a triple (G, Lsα , I), where
G = {xi|i ∈ 1, 2, . . . , n} is a non-empty finite object set and Lsα = {l j

sk |j ∈ 1, 2, . . . , m, k ∈
0, 1, 2, . . . , g} is a non-empty finite linguistic concept set. I is the binary relationship from G to
Lsα ; i.e., I ⊆ G× Lsα . (x, lsk ) ∈ I indicates that the object can be described by a linguistic concept
lsk . (x, lsk ) /∈ I indicates that the object x cannot be described by a linguistic concept lsk .

Let (G, Lsα , I) be a linguistic concept formal context. For X ⊆ G and Bsα ⊆ Lsα , we
define a pair of operators on “′” as follows:

X′ = {lsk ∈ Lsα |∀x ∈ X, (x, lsk ) ∈ I} , (15)

B′sα
= {x ∈ G|∀lsk ∈ Bsα , (x, lsk ) ∈ I}. (16)

If X′ = Bsα and B′sα
= X, then a pair (X, Bsα) is called a linguistic concept knowledge.

The partial order relation “≤” for linguistic concept knowledge (X1, B1
sα
) and (X2, B2

sα
) is

defined as follows:

(X1, B1
sα
) ≤ (X2, B2

sα
)⇔ X1 ⊆ X2(⇔ B2

sα
⊆ B1

sα
).

The family of all the linguistic concept knowledge of (G, Lsα , I) forms a complete
lattice, which is referred to as a linguistic concept lattice [48]. The infimum and supremum
are given by:

(X1, B1
sα
) ∧ (X2, B2

sα
) = (X1 ∩ X2, (B1

sα
∪ B2

sα
)′′), (17)

(X1, B1
sα
) ∨ (X2, B2

sα
) = ((X1 ∪ X2)

′′, B1
sα
∩ B2

sα
). (18)

2.4. Linguistic Concept Reduction

Knowledge reduction can reduce the complexity of concept generation in concept
lattice theory. Aiming at different formal contexts, there are many reduction models,
most of which are based on a classical concept lattice [52,53], fuzzy concept lattice [54],
rough concept lattice [55], three-way concept lattice [56,57], etc. [58,59]. However, most
of these models are based on either the binary or fuzzy relationships between objects and
attributes. In real-life situations, people often prefer to use linguistic values to express these
relationships, which cannot be accommodated by the existing conceptual models. Suppose
now that there is the following practical problem.
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As the country’s economy and society continue to develop, people are paying more
and more attention to education. Education at school is one of the essential components
of a person’s life, so parents are cautious when choosing schools. In order to evaluate
the following five schools, several experts were invited to assess the three aspects of
teaching facilities, teaching quality, and school environment, which can be formulated
in mathematical language as five objects, X = {x1, x2, x3, x4, x5}; and three attributes,
B = {a = teaching facilities, b = teaching quality, c = school environment}, respectively.
Obviously, the binary relation of whether the object has attributes or whether the attributes
can be possessed by the object cannot describe the factual background of the instance in
detail. Moreover, since experts sometimes prefer to use natural language such as “well”,
“bad” and “somewhat good” to evaluate things, information loss will inevitably occur
when fuzzy sets are used to deal with the relationship between objects and attributes,
which highlights the advantage of linguistic variables that can handle discrete linguistic
information. Zou et al. [48] embedded linguistic-term sets with symmetric linguistic
variables into formal contexts and used linguistic information to describe attributes directly;
e.g., if the semantic evaluation base for school evaluations by experts is the linguistic-
term set S = {s0 = extremely poor, s1 = very poor, s2 = medium, s3 = very good,
s4 = extremely good}, then the teaching facility is very good, which can be represented
by the linguistic concept as3 , and each attribute value can generate the corresponding
five linguistic concepts. Therefore, instead of using the traditional formal concept analysis
model, we can represent the relationship between objects and attributes using a binary table
between objects and linguistic concepts, as demonstrated in Table 1, where I(x1, as2) = 1
indicates that the teaching facilities of school x1 are rated as medium.

Table 1. Linguistic concept formal context (G, Lsα , I).

a b c

as0 as1 as2 as3 as4 bs0 bs1 bs2 bs3 bs4 cs0 cs1 cs2 cs3 cs4

x1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0
x2 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0
x3 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0
x4 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
x5 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0

Generating concept lattices is a computationally complex problem that falls under the
category of NP-hard problems, and therefore, reduction techniques are essential. It is also
important to investigate reduction methods that are specifically designed for symmetric
linguistic information. As a crucial component of the linguistic concept formal context,
reducing linguistic concepts holds great potential for practical applications. However,
previous research, such as that described in reference [48], has only focused on studying
reduction methods for linguistic concept formal contexts and incomplete linguistic concept
formal contexts. When making decisions based on multiple expert evaluations, it is common
for opinions to differ, which can result in vague and uncertain information. To address this
issue, we decided to investigate the method of reducing linguistic concepts while taking
ambiguity into consideration.

3. Fuzzy-Object-Induced Three-Way Attribute-Oriented Linguistic Concept Lattice

In this section, from the perspective of linguistic concepts, we first construct a fuzzy-
object-induced three-way linguistic concept lattice. Subsequently, a reduction method for
linguistic concepts is studied in the fuzzy linguistic concept formal context, based on the
principles of granular computing.
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3.1. The Construction of a Fuzzy-Object-Induced Three-Way Attribute-Oriented Linguistic
Concept Lattice

Definition 9. Let (G, Lsα , Ĩ) be a fuzzy linguistic concept formal context, where G = {xi|i ∈
1, 2, . . . , n} is a non-empty finite object set and Lsα = {l j

sk |j ∈ 1, 2, . . . , m, k ∈ 0, 1, . . . , g} is a non-
empty finite linguistic concept set. For µ Ĩ(x, lsk ) : G× Lsα → [0, 1], Ĩ = {< (x, lsk ), µ Ĩ(x, lsk ) >

|(x, lsk ) ∈ G× Lsα} is the fuzzy relationship from G to Lsα . Ĩ(x, lsk ) = γ denotes that the object x
has the linguistic concept lsk to degree γ, where γ ∈ [0, 1].

Definition 10. Let (G, Lsα , Ĩ) be a fuzzy linguistic concept formal context and λ ∈ [0, 1] be a
fuzzy credibility threshold. For X ⊆ G and B̃sα ⊆ F(Lsα), the operators are defined as follows:

x̃′ = {< lsk , µX(lsk ) > |∀x ∈ G, Ĩ(x, lsk ) ≥ λ} (19)

l′sk
= {x ∈ G|∀lsk ∈ Lsα , Ĩ(x, lsk ) ≥ λ} (20)

X�̃ = {< lsk , µX(lsk ) > |l
′
sk
∩ X 6= ∅} (21)

B̃�̃sα
= {x ∈ G|x̃′ ⊆ B̃sα}. (22)

where µX(lsk ) =
∨

x∈X
Ĩ(x, lsk ), x̃′ ⊆ B̃sα means that the set of linguistic concepts x′ is contained in

Bsα under a fuzzy credibility threshold λ, and the membership degree of linguistic concepts within
x′ is less than or equal to the corresponding membership degree of linguistic concepts within Bsα .

Definition 11. Let (G, Lsα , Ĩ) be a fuzzy linguistic concept formal context; Ic = 1− G × Lsα .
For X ⊆ G and B̃sα ⊆ F(Lsα), the operators are defined as follows:

x̃′ = {< lsk , µc
X(lsk ) > |∀x ∈ G, Ĩc(x, lsk ) ≥ λ} (23)

l′sk
= {x ∈ G|∀lsk ∈ Lsα , Ĩc(x, lsk ) ≥ λ} (24)

X�̃ = {< lsk , µc
X(lsk ) > |l

′
sk
∩ X 6= ∅} (25)

B̃�̃sα
= {x ∈ G|x̃′ ⊆ B̃sα} (26)

where µc
X(lsk ) =

∨
x∈X

Ĩc(x, lsk ).

Definition 12. Let (G, Lsα , Ĩ) be a fuzzy linguistic concept formal context. For X ⊆ G and
B̃sα , C̃sα ⊆ F(Lsα), the fuzzy-object-induced three-way attribute-oriented linguistic operators,

or FOEAL-operators, are defined by X� = (X�̃, X�̃) and (B̃sα , C̃sα)
�= B̃�̃sα

∩ C̃�̃sα
, respectively.

Definition 13. Let (G, Lsα , Ĩ) be a fuzzy linguistic concept formal context. For X ⊆ G and
B̃sα , C̃sα ⊆ F(Lsα), a pair (X, (B̃sα , C̃sα)) is called a fuzzy-object-induced three-way attribute-
oriented linguistic concept, or a FOEAL-concept of (G, Lsα , Ĩ) if X = (B̃sα , C̃sα)

� and X� =
(B̃sα , C̃sα) are satisfied, where X is the extent and (B̃sα , C̃sα) is the intent of the FOEAL-concept.

For two FOEAL-concepts (X1, (B̃1
sα

, C̃1
sα
)) and (X2, (B̃2

sα
, C̃2

sα
)), we define the partial

order relation as follows:

(X1, (B̃1
sα

, C̃1
sα
)) ≤ (X2, (B̃2

sα
, C̃2

sα
))⇔ X1 ⊆ X2 ⇔ (B̃1

sα
, C̃1

sα
) ⊆ (B̃2

sα
, C̃2

sα
),

where (B̃1
sα

, C̃1
sα
) ⊆ (B̃2

sα
, C̃2

sα
) ⇔ B̃1

sα
⊆ B̃2

sα
(⇔ C̃1

sα
⊆ C̃2

sα
, B̃1

sα
⊆ B̃2

sα
) means that B1

sα
⊆ B2

sα

and µX1(B1
sα
) ≤ µX2(B2

sα
), so (X1, (B̃1

sα
, C̃1

sα
)) is called a sub-concept of (X2, (B̃2

sα
, C̃2

sα
)),

and (X2, (B̃2
sα

, C̃2
sα
)) is called a super-concept of (X1, (B̃1

sα
, C̃1

sα
)).
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The set of all FOEAL-concepts, denoted by FOEAL(G, Lsα , Ĩ), forms a complete
lattice which is called a fuzzy-object-induced three-way attribute-oriented concept lattice
(FOEAL-lattice). The infimum and supremum are given by:

(X1, (B̃1
sα

, C̃1
sα
)) ∧ (X2, (B̃2

sα
, C̃2

sα
)) = (X1 ∩ X2, ((B̃1

sα
, C̃1

sα
) ∩ (B̃2

sα
, C̃2

sα
))��), (27)

(X1, (B̃1
sα

, C̃1
sα
)) ∨ (X2, (B̃2

sα
, C̃2

sα
)) = ((X1 ∪ X2)

��, (B̃1
sα

, C̃1
sα
) ∪ (B̃2

sα
, C̃2

sα
)). (28)

Example 1. Suppose that Table 2 is a fuzzy linguistic concept formal context, denoted by (G, Lsα , Ĩ),
which describes the level of student debate in a classroom setting. The object set G consists of five
students, represented as x1, x2, x3, x4 and x5. The attribute set L includes three skills: language
skills (a), debating skills (b) and personal image (c). We use the linguistic-term set S = {s0 =
low, s1 = medium, s2 = high} to evaluate the attributes a, b, and c. Thus, the generated linguistic
concept set is Lsα = {as0 , as1 , as2 , bs0 , bs1 , bs2 , cs0 , cs1 , cs2}. For instance, Ĩ(x1, as2) = 0.7 implies
that the membership degree of student x1 in the high language skills category is 0.7.

Table 2. Fuzzy linguistic concept formal context (G, Lsα , Ĩ).

G/M
a b c

as0 as1 as2 bs0 bs1 bs2 cs0 cs1 cs2

x1 0.1 0.2 0.7 0.2 0.2 0.6 0.7 0.2 0.1
x2 0.7 0.1 0.2 0.2 0.2 0.6 0.4 0 0.6
x3 0.3 0.2 0.5 0.4 0.5 0.1 0.1 0.6 0.3
x4 0.1 0.2 0.7 0.3 0.2 0.5 0.8 0 0.2

We can obtain the complementary formal context of (G, Lsα , Ĩ) in Table 3 and generate the
FOEAL-concepts in Table 4 with a fuzzy credibility threshold of λ = 0.6. Taking the FOEAL-
concept ({x1, x3}, ({(as2 , 0.7), (bs2 , 0.6), (cs0 , 0.7), (cs1 , 0.6)}, {(as0 , 0.9), (as1 , 0.8), (bs0 , 0.8),
(bs1 , 0.8), (bs2 , 0.9), (cs0 , 0.9), (cs1 , 0.8), (cs2 , 0.9)})) as an example, this FOEAL-concept indi-
cates that the highest level of {x1, x3} as a whole can reach a membership degree with high
language skills for 0.7, a membership degree with high debating skills for 0.6, a membership
degree with low personal image for 0.7 and a membership degree with medium personal
image for 0.6 from positive information. At the same time, it also shows that except for these
four indicator levels, none of the other indicator levels can reach 0.6. From the perspective
of negative information, it expresses two possibilities, one of which is that at least one
of these two objects {x1, x3} can reach 0.6 for linguistic concept as2 . The other is that the
membership degrees for as2 of the two objects {x1, x3} do not reach 0.6 in both the original
and complementary fuzzy linguistic concept formal contexts. We can determine which
of these two cases the concept belongs to is directly from the positive information of the
FOEAL-concept. In this case, it belongs to the first possibility.

Table 3. The complementary fuzzy linguistic concept formal context (G, Lsα , Ĩc).

G/M
a b c

as0 as1 as2 bs0 bs1 bs2 cs0 cs1 cs2

x1 0.9 0.8 0.3 0.8 0.8 0.4 0.3 0.8 0.9
x2 0.3 0.9 0.8 0.8 0.8 0.4 0.6 1 0.4
x3 0.7 0.8 0.5 0.6 0.5 0.9 0.9 0.4 0.7
x4 0.9 0.8 0.3 0.7 0.8 0.5 0.2 1 0.8

3.2. The Granular Reduction of Fuzzy Linguistic Concept Formal Context

In order to reduce the scale of the fuzzy linguistic concept formal context and the
complexity of constructing the FOEAL lattice, we present a linguistic-concept granular
reduction that preserves the granular concept information of the FOEAL lattice.
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Definition 14. Let (G, Lsα , Ĩ) be a fuzzy linguistic concept formal context, ∀x ∈ G; the granular

concept of FOEAL-concept is defined by (x�̃�̃ ∩ x�̃�̃, (x�̃, x�̃)).

Definition 15. Let (G, Lsα , Ĩ) be a fuzzy linguistic concept formal context, ∀x ∈ G. A linguistic
concept subset Dsα ⊆ Lsα is called a fuzzy-object-induced three-way attribute-oriented linguistic
granular (FOEALG)-consistent set if x�Lsα�Lsα = x�Dsα�Dsα . If there is no proper linguistic
concept subset Esα ⊂ Dsα such that Esα is a FOEALG-consistent set, then Dsα is called a FOEALG
reduction of (G, Lsα , Ĩ).

Table 4. FOEAL concepts of Table 2.

Extent Intent

{x1} ({(as2 , 0.7), (bs2 , 0.6), (cs0 , 0.7)}, {(as0 , 0.9), (as1 , 0.8), (bs0 , 0.8), (bs1 , 0.8), (cs1 , 0.8), (cs2 , 0.9)})
{x2} ({(as0 , 0.7), (bs2 , 0.6), (cs0 , 0.6)}, {(as1 , 0.9), (as2 , 0.8), (bs0 , 0.8), (bs1 , 0.8), (cs0 , 0.6), (cs1 , 1)})
{x3} ({(cs1 , 0.6)}, {(as0 , 0.7), (as1 , 0.8), (bs0 , 0.6), (bs2 , 0.9), (cs0 , 0.9), (cs2 , 0.7)})
{x4} ({(as2 , 0.7), (cs0 , 0.8)}, {(as0 , 0.9), (as1 , 0.8), (bs0 , 0.7), (bs1 , 0.8), (cs1 , 1), (cs2 , 0.8)})

{x1, x2}
({(as0 , 0.7), (as2 , 0.7), (bs2 , 0.6), (cs0 , 0.7)}, {(as0 , 0.9), (as1 , 0.9), (as2 , 0.8), (bs0 , 0.8), (bs1 , 0.8),
(cs0 , 0.6), (cs1 , 1), (cs2 , 0.9)})

{x1, x3}
({(as2 , 0.7), (bs2 , 0.6), (cs0 , 0.7), (cs1 , 0.6)}, {(as0 , 0.9), (as1 , 0.8), (bs0 , 0.8), (bs1 , 0.8), (bs2 , 0.9),
(cs0 , 0.9), (cs1 , 0.8), (cs2 , 0.9)})

{x1, x4} ({(as2 , 0.7), (bs2 , 0.6), (cs0 , 0.8)}, {(as0 , 0.9), (as1 , 0.8), (bs0 , 0.8), (bs1 , 0.8), (cs1 , 1), (cs2 , 0.9)})

{x2, x3}
({(as0 , 0.7), (bs2 , 0.6), (cs0 , 0.6), (cs1 , 0.6)}, {(as0 , 0.7), (as1 , 0.9), (as2 , 0.8), (bs0 , 0.8), (bs1 , 0.8),
(bs2 , 0.9), (cs0 , 0.9), (cs1 , 1), (cs2 , 0.7)})

{x2, x4}
({(as0 , 0.7), (as2 , 0.7), (bs2 , 0.6), (cs0 , 0.8)}, {(as0 , 0.9), (as1 , 0.9), (as2 , 0.8), (bs0 , 0.8), (bs1 , 0.8),
(cs0 , 0.6), (cs1 , 1), (cs2 , 0.8)})

{x3, x4}
({(as2 , 0.7), (cs0 , 0.8), (cs1 , 0.6)}, {(as0 , 0.9), (as1 , 0.8), (bs0 , 0.7), (bs1 , 0.8), (bs2 , 0.9), (cs0 , 0.9),
(cs1 , 1), (cs2 , 0.8)})

{x1, x2, x3}
({(as0 , 0.7), (as2 , 0.7), (bs2 , 0.6), (cs0 , 0.7), (cs1 , 0.6)}, {(as0 , 0.9), (as1 , 0.9), (as2 , 0.8), (bs0 , 0.8),
(bs1 , 0.8), (bs2 , 0.9), (cs0 , 0.9), (cs1 , 1), (cs2 , 0.9)})

{x1, x2, x4}
({(as0 , 0.7), (as2 , 0.7), (bs2 , 0.6), (cs0 , 0.8)}, {(as0 , 0.9), (as1 , 0.9), (as2 , 0.8), (bs0 , 0.8), (bs1 , 0.8),
(cs0 , 0.6), (cs1 , 1), (cs2 , 0.9)})

{x1, x3, x4}
({(as2 , 0.7), (bs2 , 0.7), (cs0 , 0.8), (cs1 , 0.6)}, {(as0 , 0.9), (as1 , 0.8), (bs0 , 0.8), (bs1 , 0.8), (bs2 , 0.9),
(cs0 , 0.9), (cs1 , 1), (cs2 , 0.9)})

{x2, x3, x4}
({(as0 , 0.7), (as2 , 0.7), (bs2 , 0.6), (cs0 , 0.8), (cs1 , 0.6)}, {(as0 , 0.9), (as1 , 0.9), (as2 , 0.8), (bs0 , 0.8),
(bs1 , 0.8), (bs2 , 0.9), (cs0 , 0.9), (cs1 , 1), (cs2 , 0.8)})

{x1, x2, x3, x4}
({(as0 , 0.7), (as2 , 0.7), (bs2 , 0.6), (cs0 , 0.8), (cs1 , 0.6)}, {(as0 , 0.9), (as1 , 0.9), (as2 , 0.8), (bs0 , 0.8),
(bs1 , 0.8), (bs2 , 0.9), (cs0 , 0.9), (cs1 , 1), (cs2 , 0.9)})

∅ (∅, ∅)

Theorem 1. Given a fuzzy linguistic concept formal context (G, Lsα , Ĩ), ∀x ∈ G, Dsα ⊆ Lsα ,

(x�̃�̃ ∩ x�̃�̃) = (x�̃Dsα �̃Dsα ∩ x�̃Dsα �̃Dsα ) if and only if Dsα is a FOEALG-consistent set.

Proof. Definition 15 provides immediate proof for this theorem.

Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), denote all FOEALG
reductions by Red(KAG). Then, the linguistic concept set can be divided as follows:

(1) core linguistic concept set Cr: Cr = ∩Red(KAG),
(2) relatively necessary linguistic concept set Kr: Kr = ∪Red(KAG)−∩Red(KAG),
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(3) unnecessary linguistic concept set Ir: Ir = G−∪Red(KAG).

Definition 16. Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), ∀x, y ∈ G,
we define

DISFOEALG(x, y) = {lsk ∈ Lsα | Ĩλ(x, lsk ) > Ĩλ(y, lsk ) or Ĩc
λ(x, lsk ) > Ĩc

λ(y, lsk )}, (29)

where DISFOEALG(x, y) is referred to as the FOEALG discernibility linguistic concept set of K,
and Ĩλ denotes the fuzzy relationship under fuzzy credibility threshold λ.

We denote ΛFOEALG = (DISFOEALG(x, y)) as the FOEALG discernibility matrix.

Definition 17. Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), we define the
FOEALG-discernibility function as follows:

fFOEALG =
∧ ∨

x,y∈G
DISFOEALG(x, y). (30)

Theorem 2. Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), Dsα ⊆ Lsα . For any

x ∈ G, we have (x�̃�̃ ∩ x�̃�̃) ⊆ (x�̃Dsα �̃Dsα ∩ x�̃Dsα �̃Dsα ).

Proof. ∀y ∈ G. Suppose that y ∈ (x�̃�̃ ∩ x�̃�̃); then, y�̃ ⊆ x�̃, which implies that y�̃Dsα =

y�̃ ∩ Dsα ⊆ x�̃ ∩ Dsα = x�̃Dsα . Then, y ∈ x�̃Dsα �̃Dsα ; likewise, y ∈ x�̃Dsα �̃Dsα . Therefore, y ∈
(x�̃Dsα �̃Dsα ∩ x�̃Dsα �̃Dsα ). Thus, we conclude (x�̃�̃ ∩ x�̃�̃) ⊆ (x�̃Dsα �̃Dsα ∩ x�̃Dsα �̃Dsα ).

Example 2. Continuing considering the fuzzy linguistic concept formal context in Table 2, we can
calculate granular reduction based on the FOEAL lattice to simplify the formal context as follows.
Firstly, the granular concepts of FOEAL-concepts can be obtained: ({x1}, ({(as2 , 0.7), (bs2 , 0.6),
(cs0 , 0.7)}, {(as0 , 0.9), (as1 , 0.8), (bs0 , 0.8), (bs1 , 0.8), (cs1 , 0.8), (cs2 , 0.9)})), ({x2}, ({(as0 , 0.7),
(bs2 , 0.6), (cs0 , 0.6)}, {(as1 , 0.9), (as2 , 0.8), (bs0 , 0.8), (bs1 , 0.8), (cs0 , 0.6), (cs1 , 1)})), ({x3},
({(cs1 , 0.6)}, {(as0 , 0.7), (as1 , 0.8), (bs0 , 0.6), (bs2 , 0.9), (cs0 , 0.9), (cs2 , 0.7)})), ({x4}, ({(as2 ,
0.7), (cs0 , 0.8)}, {(as0 , 0.9), (as1 , 0.8), (bs0 , 0.7), (bs1 , 0.8), (cs1 , 1), (cs2 , 0.8)}))

Then, we can get the FOEALG-discernibility matrix, as shown in Table 5, and calculate
the FOEALG-discernibility function as follows:

Table 5. FOEALG-discernibility matrix of (G, Lsα , Ĩ).

x1 x2 x3 x4

x1 ∅ as0 as2 cs0 cs2 as0 as2 bs0 bs1 bs2 cs0 cs1 cs2 bs0 bs2 cs2

x2 as0 as1 as2 cs0 cs1 cs2 ∅ as0 as1 as2 bs0 bs1 bs2 cs1 cs2 as0 as1 as2 bs0 bs2 cs0 cs2

x3 bs2 cs0 cs1 as0 bs2 cs0 cs1 cs2 ∅ bs2 cs0 cs1

x4 cs0 cs1 as0 as2 cs0 cs2 as0 as2 bs0 bs1 cs0 cs1 cs2 ∅

fFOEALG =
∧ ∨

x,y∈G
DISFOEALG(x, y)

= (cs0 ∨ cs1) ∧ (as0 ∨ as2 ∨ cs0 ∨ cs2) ∧ (bs0 ∨ bs2 ∨ cs2)
= (bs0 ∧ cs0) ∨ (bs2 ∧ cs0) ∨ (cs0 ∧ cs2) ∨ (cs1 ∧ cs2) ∨ (as0 ∧ bs0 ∧ cs1)
∨(as2 ∧ bs0 ∧ cs1) ∨ (as0 ∧ bs2 ∧ cs1) ∨ (as2 ∧ bs2 ∧ cs1)

Therefore, we have eight FOEALG reductions from (G, Lsα , Ĩ), which are {bs0 , cs0},
{bs2 , cs0}, {cs0 , cs2}, {cs1 , cs2}, {as0 , bs0 , cs1}, {as2 , bs0 , cs1}, {as0 , bs2 , cs1} and {as2 , bs2 , cs1},
respectively. In addition to the fact that as1 and bs1 are unnecessary linguistic concepts,
the other linguistic concepts are all relatively necessary linguistic concepts.
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4. The Relation between Granular Reduction and Entropy Reduction in the Fuzzy
Linguistic Concept Formal Context

Information entropy is an essential method for measuring the importance of attributes
in rough set theory. This section proposes entropy reduction in a fuzzy linguistic concept
formal context by combining necessity and possibility operators and then studies its
relationship with granular reduction.

Definition 18. Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), for Bsα , Csα ⊆
Lsα , we define the information entropy of the FOEAL lattice as follows:

H(Lsα) = −
1
|G| ∑

x∈G
log2
|x�Lsα�Lsα |
|G| ,

and the conditional information entropy of Bsα with respect to Csα is as follows:

H(Bsα /Csα) = −
1
|G| ∑

x∈G
log2
|x�Bsα�Bsα

⋂
x�Csα�Csα |

|x�Csα�Csα |
,

where | · | indicates the number of elements in the object set.

Theorem 3. Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), for any x ∈ G,
Csα ⊆ Bsα ⊆ Lsα , the two information entropies H(Csα) and H(Bsα), based on the FOEAL
lattice, satisfy:

1. H(Csα) ≤ H(Bsα) and x�Csα�Csα ⊇ x�Bsα�Bsα ;
2. if H(Csα) = H(Bsα), then x�Csα�Csα = x�Bsα�Bsα .

Proof. This can be easily proved by Theorem 2.

Definition 19. Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), ∀x ∈ G, a lin-
guistic concept subset Dsα ⊆ Lsα is called an entropy consistent set of the FOEAL lattice if
H(Dsα) = H(Lsα). If there is no proper linguistic concept subset Esα ⊂ Lsα such that Esα is
an entropy consistent set of the FOEAL lattice, then Dsα is called an entropy reduction of the
FOEAL lattice.

Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), denote all entropy
reductions of the FOEAL lattice by Red(KAE). Similarly, the linguistic concept set can be
divided as follows:

(1) core linguistic concept set Ct: Ct = ∩Red(KAE),
(2) relatively necessary linguistic concept set Kt: Kt = ∪Red(KAE)−∩Red(KAE),
(3) unnecessary linguistic concept set It: It = G−∪Red(KAE).

Theorem 4. Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), ∀lsk ∈ Lsα , lsk ∈ It
if and only if H({lsk}|Lsα − {lsk}) = 0.

Proof. (⇒) Since lsk ∈ It, we have H(Lsα − {lsk}) ≤ H(Lsα) according to the Theorem 3.
Assume that H(Lsα − {lsk}) < H(Lsα); obviously, Lsα − {lsk} is not a consistent

set. It follows that lsk ∈ Ct, which contradicts lsk ∈ It. Therefore, H(Lsα − {lsk}) =

H(Lsα), ∀x ∈ G, x�Lsα�Lsα = x�Lsα−{lsk }�Lsα−{lsk } is held; i.e., H({lsk}|Lsα − {lsk}) =

− 1
|G| ∑

x∈G
log2

|x�{lsk }�{lsk }
⋂

x�Lsα−{lsk }�Lsα−{lsk } |
|x�Lsα−{lsk }�Lsα−{lsk } |

= − 1
|G| ∑

x∈G
log2

|x�{lsk }�{lsk }
⋂

x�Lsα�Lsα |
|x�Lsα�Lsα |

= 0.

(⇐) Since H({lsk}|Lsα − {lsk}) = 0, ∀x ∈ G, log2
|x�{lsk }�{lsk }

⋂
x�Lsα−{lsk }�Lsα−{lsk } |

|x�Lsα−{lsk }�Lsα−{lsk } |
≤ 0,

we have H({lsk}|Lsα − {lsk}) ≥ 0. Suppose that ∃x0 ∈ G, s.t. x
�{lsk }�{lsk }
0

⋂
x
�Lsα−{lsk }
0
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�Lsα−{lsk } ⊂ x
�Lsα−{lsk }�Lsα−{lsk }
0 ; then log2

|x�{lsk }�{lsk }
⋂

x�Lsα−{lsk }�Lsα−{lsk } |
|x�Lsα−{lsk }�Lsα−{lsk } |

< 0; i.e., H({lsk}
|Lsα − {lsk}) > 0, which contradicts H({lsk}|Lsα − {lsk}) = 0. Therefore, ∀x ∈ G,
x�{lsk }�{lsk }

⋂
x�Lsα−{lsk }�Lsα−{lsk } = x�Lsα−{lsk }�Lsα−{lsk }, and then x�Lsα−{lsk }�Lsα−{lsk }

= x�Lsα�Lsα , so we conclude that lsk ∈ It.

Theorem 5. Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), ∀lsk ∈ Lsα , lsk ∈ Ct
if and only if H({lsk}|Lsα − {lsk}) > 0.

Proof. This is easy to prove by Theorem 4.

Remark 1. We can obtain the method to calculate the core linguistic concept set and unnecessary
linguistic concept set according to the above theorems; therefore, we can also find the linguistic
concept’s reduction by calculating the relatively unnecessary linguistic concept set indirectly through
these two theorems.

Theorem 6. Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), Dsα ⊆ Lsα , for any
lsk ∈ Dsα , Dsα is an entropy reduction of the FOEAL lattice if and only if H(Dsα) = H(Lsα) and
H({lsk}|Lsα − {lsk}) > 0.

Proof. (⇒) Since Dsα is an entropy reduction of the FOEAL lattice, we have H(Dsα) =

H(Lsα). Obviously, for any lsk ∈ Dsα , it satisfies log2
|x�{lsk }�{lsk }

⋂
x�Dsα−{lsk }�Dsα−{lsk } |

|x�Dsα−{lsk }�Dsα−{lsk } |
≤ 0;

then, H({lsk}|Dsα − {lsk}) = − 1
|G| ∑

x∈G
log2

|x�{lsk }�{lsk }
⋂

x�Dsα−{lsk }�Dsα−{lsk } |
|x�Dsα−{lsk }�Dsα−{lsk } |

=− 1
|G| ∑

x∈G
log2

|x�Dsα�Dsα |
|x�Dsα−{lsk }�Dsα−{lsk } |

≥ 0. Suppose that ∃hsk ∈ Dsα , s.t. H({hsk}|Dsα − {hsk}) = 0. Then,

hsk ∈ It, x�Dsα�Dsα = x�Dsα−{hsk }�Dsα−{hsk }. It follows that H(Dsα − {hsk}) = H(Dsα),
which contradicts that Dsα is an entropy reduction of the FOEAL lattice. Therefore, ∀lsk ∈
Dsα , H({lsk}|Lsα − {lsk}) > 0 holds.

(⇐) Assume that H(Dsα) = H(Lsα) and H({lsk}|Lsα − {lsk}) > 0 for any lsk ∈ Dsα .

Then, H({lsk}|Dsα − {lsk}) = − 1
|G| ∑

x∈G
log2

|x�Dsα�Dsα |

|x�Dsα−{lsk }�Dsα−{lsk } |
> 0; i.e., x�Dsα�Dsα ⊆

x�Dsα−{lsk }�Dsα−{lsk }. According to Definition 18, H(Dsα) = − 1
|G| ∑

x∈G
log2

|x�Dsα�Dsα |
|G| >

− 1
|G| ∑

x∈G
log2

|x�Dsα−{lsk }�Dsα−{lsk }|

|G| = H(Dsα −{lsk}). Therefore, Dsα −{lsk} is not an entropy-

consistent set of the FOEAL lattice. We can conclude that Dsα is an entropy reduction of the
FOEAL lattice.

Theorem 7. Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), Dsα ⊆ Lsα , Dsα is
an entropy consistent set of the FOEAL lattice if and only if Dsα is a FOEALG consistent set.

Proof. (⇒) Assume that Dsα is an entropy consistent set. We obtain H(Dsα) = H(Lsα).
∀x ∈ G, x�Dsα�Dsα = x�Lsα�Lsα ; therefore, Dsα is a FOEALG-consistent set.

(⇐) Analogously to the necessity, it follows easily.

Theorem 8. Given a fuzzy linguistic concept formal context K = (G, Lsα , Ĩ), Dsα ⊆ Lsα , Dsα is
an entropy reduction of the FOEAL lattice if and only if Dsα is a FOEALG reduction.

Proof. Analogously to Theorem 7, it follows easily.

Example 3. Continuing considering the fuzzy linguistic concept formal context in Table 2. From
Example 2, it is clear that x�Lsα�Lsα

1 = x1, x�Lsα�Lsα
2 = x2, x�Lsα�Lsα

3 = x3 and x�Lsα�Lsα
4 = x4.

We can get H(Lsα) = − 1
|G| ∑

x∈G
log2

|x�Lsα�Lsα |
|G| = 2 according to the Definition 18. By taking the
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linguistic concept Dsα = {as0 , bs0 , cs1} as an example, the calculation yields H(Dsα) = 2; however,
if D1

sα
= {as0 , bs0}, then H(D1

sα
) = 7

4 ; if D2
sα
= {as0 , cs1}, then H(D2

sα
) = 3

2 ; if D3
sα
= {bs0 , cs1},

then H(D3
sα
) = 2− 1

4 log23. Therefore, we can conclude that H(Lsα) = H(Dsα), {as0 , bs0 , cs1} is
an entropy reduction of the FOEAL lattice. Similarly, {bs0 , cs0}, {bs2 , cs0}, {cs0 , cs2}, {cs1 , cs2},
{as2 , bs0 , cs1}, {as0 , bs2 , cs1} and {as2 , bs2 , cs1} are also entropy reductions of the FOEAL lattice.

From the above analysis, we confirm that the entropy reduction is equal to the granular
reduction based on the FOEAL lattice, and we can obtain the granular concept information
through the information entropy. In practical applications, the desired FOEAL-concept
information can also be selected by setting the parameter λ.

5. Comparative Analysis

We compare our methods with other knowledge reduction methods in six aspects:
the type of concept lattice that the paper can handle, the expression form of the concept,
how many reduction methods the paper actually proposes, which conditions are preserved
during reduction and whether the reduction method can handle linguistic information and
fuzzy information. Table 6 displays the comparison results for the corresponding methods.

• In Ref. [30]: Utilizing the object-oriented concept lattice LO(G, M, I) and the attribute-
oriented concept lattice LA(G, M, I), Qin et al. introduced a technique for attribute
reduction that maintains decision rules.

• In Ref. [39]: Zhang et al. put forward a new fuzzy three-way concept lattice, denoted by
OFTL(G, M, Ĩ) and AFTL(G, M, Ĩ), which takes into account the fuzziness of objects
and attributes, respectively. Furthermore, they presented a granular matrix-based
reduction method to handle fuzzy data in a fuzzy formal context.

• In Ref. [22]: Ren et al. developed four techniques for attribute reduction that preserve
lattice structure, granular information and join (meet)-irreducible elements, utilizing
three-way concept lattices OEL(G, M, I) and AEL(G, M, I).

• In Ref. [48]: Zou et al. presented a linguistic concept lattice LL(G, Lsα , I), and further
studied a multi-granularity linguistic-concept reduction algorithm based on the simi-
larity relations in an incomplete linguistic concept formal context, which can deal with
different types of linguistic information.

Remark 2. Even though the concept lattices examined in references [22,39,48] pertain to knowledge
reduction of the two concept lattices analyzed from the viewpoints of objects and attributes, their
techniques essentially share the same nature. Therefore, only one of them is displayed in Table 6.

Table 6. Comparison of other reduction methods.

Methods The Type of
Concept Lattice

Concept
Extent

Concept
Intent

Reduction
Methods

Reduction Conditions
for Preservation

Linguistic
Information

Fuzzy
Information

Ref. [30] LO(G, M, I) X B 1 decision rules × ×

Ref. [39] OFTL(G, M, Ĩ) X (B̃, C̃) 1 granular matrix × X

Ref. [22] OEL(G, M, I) X (B, C) 4
lattice structure/
granular information/
join (meet)-irreducible elements

× ×

Ref. [48] LL(G, Lsα , I) X Bsα 2 multi-granularity similarity relations/
binary relation X ×

Our methods FOEAL(G, Lsα , Ĩ) X (B̃sα , C̃sα ) 2 granular concept/
entropy information X X

Since people are always accustomed to evaluating things in natural language, the com-
bination of linguistic-term sets and formal concept analysis plays a significant role. In light
of the above analysis, we summarize some merits of our proposed approach:

(1) To accurately represent the uncertainty and complexity of real-world situations, we
introduced a fuzzy linguistic concept formal context that establishes a fuzzy relation
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between objects and linguistic concepts. This approach generates a FOEAL lattice that
aligns more closely with human cognition.

(2) By combining the advantages of OEL(G, M, I) and LA(G, M, I), we propose a FOEAL
lattice in a fuzzy linguistic concept formal context, which can not only show the
idea of three divisions in three-way decisions, but also express the complementary
structure of a linguistic concept lattice compared with symmetric linguistic-evaluation
information.

(3) In view of the validity and simplicity of granular reduction in formal concept analy-
sis, two linguistic-concept-reduction methods preserving granular information and
information entropy, granular reduction and entropy reduction based on the FOEAL
lattice, are given to reduce the scale of linguistic concepts.

6. Conclusions

We have discussed the linguistic-concept-reduction methods combining granular
computing with information entropy in a fuzzy linguistic concept formal context. A fuzzy-
object-induced three-way attribute-oriented linguistic-concept lattice has been proposed,
which describes the possible fuzzy relations between objects and linguistic concepts in terms
of both positive and negative information. We have given a granular reduction method
of the FOEAL lattice to preserve the fuzzy, granular concept information. In addition, we
have also presented an entropy reduction method of the FOEAL lattice and discussed its
relationship with the granular reduction mentioned above, which further enhances our
understanding of the decision-making problem in artificial intelligence.

In future research, we intend to investigate different reduction methods in the fuzzy
linguistic concept formal decision context and apply them to practical problems. Moreover,
we will further employ fuzzy learning techniques to improve the effectiveness of the
FOEAL concept lattice.
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