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a b s t r a c t 

Agreement in Group Decision-Making problems has recently been tackled through the use of Minimum 

Cost Consensus (MCC) models, which are associated with solving convex optimization problems. Such 

models minimize the cost of changing experts’ preferences towards reaching a mutual consensus, and es- 

tablish that the distance between the modified individual preferences and the collective opinion must be 

bounded by the threshold ε > 0 . A recent MCC-based model, called the Comprehensive Minimum Cost 

Consensus (CMCC) model, adds another constraint related to a parameter γ ∈ [0 , 1] to the above con- 

straint related to the parameter ε to enforce modified expert preferences in order to achieve a minimum 

level of agreement dictated by the consensus threshold 1 − γ ∈ [0 , 1] . This paper attempts to analyze the 

relationship between the aforementioned constraints in the CMCC models from two different perspec- 

tives. The first is based on inequalities and allows simple bounds to be determined to relate the parame- 

ters ε and γ . The second one is based on Convex Polytope Theory and provides algorithms that compute 

more precise bounds to relate these parameters, and could also be applied to other similar optimization 

problems. Finally, several examples are provided to illustrate the proposal. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

Group Decision-Making (GDM) problems are those situations in 

hich a group of individuals or experts should decide, from a col- 

ective point of view, which alternative is the most suitable to solve 

 problem. Even though different rules such as majority, unanim- 

ty, or Borda count, among others, have been proposed in the clas- 

ic literature to model these situations ( Butler & Rothstein, 2006 ), 

he use of these rules in the formation of group opinions could 

eave some Decision Makers (DMs) feeling dissatisfied by not tak- 

ng their opinions sufficiently into account in group opinion for- 

ation ( Palomares, Estrella, Martinez, & Herrera, 2014 ). Therefore, 

t is of utmost interest to resolve conflicts among decision mak- 

rs before forming a collective opinion to ensure that everyone is 

atisfied with unanimous acceptance. 
∗ Corresponding author. 
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Consensus Reaching Processes (CRPs) have been proposed 

 Labella, Liu, Rodríguez, & Martínez, 2018; Zhang, Dong, Chiclana, 

 Yu, 2019 ) to deal with conflicts between DMs’ opinions in GDM. 

hey consist of iterative discussion processes, usually coordinated 

y a human figure, called a moderator, which aim to smooth out 

onflicts in a GDM situation ( Palomares et al., 2014 ). This itera- 

ive process is controlled by the measure of the level of agreement 

mong decision makers, which we refer to as consensus measure . 

f the value obtained from this measure in a given round exceeds 

he consensus threshold set μ ∈ [0 , 1] , or the number of iterations 

xceeds the maximum number of rounds allowed MaxRounds ∈ N 

the set of natural numbers), the CRP ends ( Palomares et al., 2014 ).

ften, these CRPs (we also refer to them as consensus models ) are 

ime-consuming as they require several discussion rounds among 

xperts. Consequently, other consensus models have been pro- 

osed that aim to achieve agreement among experts quickly and 

utomatically ( Gong, Zhang, Forrest, Li, & Xu, 2015; Zhang, Dong, & 

u, 2012 ). 
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Minimum Cost Consensus (MCC) models ( Ben-Arieh & Easton, 

007; Zhang, Dong, Xu, & Li, 2011 ) stand out from other automatic 

RPs because they express GDM problems in terms of an optimiza- 

ion model based on minimizing a cost function in the space of 

references ( Ben-Arieh & Easton, 2007; Zhang et al., 2011 ). These 

odels consider that the constraints defining the feasible region of 

he minimization problem are given by a maximum distance ε > 0 

etween the DMs and the collective opinion ( Gong et al., 2015; 

hang, Dong, & Xu, 2013 ), but neglect the minimum level of agree- 

ent that characterizes classical CRPs ( Zhang et al., 2012; Zhang, 

ong, & Chiclana, 2017 ). To overcome this drawback, Comprehen- 

ive MCC (CMCC) models were introduced ( Labella, Liu, Rodríguez, 

 Martínez, 2020; Rodríguez, Labella, Dutta, & Martínez, 2021 ) to 

eneralize previous MCC approaches by including a constraint in- 

olving a consensus measure that enforces adjusted preferences to 

nsure a consensus degree 1 − γ ∈ [0 , 1] . However, the inclusion of

uch an additional inequality presents a major drawback in terms 

f redundancy, in some situations, of both types of constraints. 

Rodríguez et al. (2021) observed that for a given fixed value of ε
ome constraints of the γ values become redundant and vice versa. 

urthermore, the calculations shown by Labella et al. (2020) indi- 

ate that the parameters ε and γ could be related to one another. 

oncretely, one of the proposed examples shows that, for a fixed 

alue of the parameter γ , the value of the cost of modifying the 

riginal preferences remains the same for several values of ε. Sim- 

larly, for certain fixed values of ε, the value of the cost function 

lso remains invariant for some specific values of γ . 

Although there are some initial observations on the dynamics of 

he relationship of the parameters ε and γ and their corresponding 

nequalities, a proper understanding of the behavior of the param- 

ters with respect to the optimal solutions and specific theoretical 

esults are yet to be established. From a practical application point 

f view, it is of utmost interest to understand the proper relation- 

hip between these parameters, since if the redundant constraints 

an be identified a priori, they can be suppressed in the compu- 

ational resolution of the CRP. This simplification can be especially 

elevant when the number of DMs involved in the GDM is high be- 

ause CMCC models are based on solving mathematical program- 

ing problems that can be especially slow in these situations. 

Therefore, this paper is devoted to analyzing the relationship 

etween the two parameters of the CMCC models. In particular, 

e attempt to explore the structure of such a relationship in light 

f the following research questions. 

• RQ1: For a fixed value of γ (resp. ε), which values of ε
(resp. γ ) imply that the ε (resp. γ ) constraint is redundant 

in CMCC? 
• RQ2: For a fixed value of γ (resp. ε), which values of ε

(resp. γ ) imply that the γ (resp. ε) constraint is redundant 

in CMCC? 

To answer these questions, this proposal studies the influence 

f the parameters γ and ε on the CMCC model using two differ- 

nt approaches. We will start with an inequality-based approach, 

hich allows us to derive approximate bounds to relate the param- 

ters that are very simple to calculate. The second approach relies 

n Convex Polytope Theory ( Henk, Richter-Gebert, & Ziegler, 2018; 

iegler, 1995 ) to determine more precise bounds for these param- 

ters. In addition, this polytope-based approach also provides a 

eneric solution to the abstract problem of establishing a relation- 

hip between any linear constraints that define the feasible region 

f a convex minimization problem. In summary, the main novelties 

f this contribution are: 

• The interactions between the consensus measure and the 

maximum distance between experts and the group in CMCC 

are formally analyzed from two different perspectives, one 
765 
based on inequalities and the other on Polytope Theory, to 

explore the full potential of CMCC models in practice by pro- 

viding a comprehensive view of parameter dynamics. 
• A generic polytope-based algorithm is proposed to analyze 

the relationship between linear constraints in convex min- 

imization problems, i.e., whether some of them are redun- 

dant and, consequently, determine the same feasible region. 

A deeper understanding of the relationship between parameters 

n CMCC has the following main implications: 

• It provides an explanation of certain peculiarities of the be- 

havior of the cost function in the CMCC models that have 

been pointed out in the literature ( Labella et al., 2020; Ro- 

dríguez et al., 2021 ). 
• It simplifies CMCC models by eliminating redundant con- 

straints. 
• It helps the moderator to conduct the CRP more efficiently 

by explicitly detecting unnecessary consensus conditions 

and understanding possible changes in cost and solutions for 

different parameters configurations. 
• It can significantly reduce the computational cost of generat- 

ing experts’ modified preferences in CMCC, which implies an 

immediate improvement in the total time required for the 

CRP. 

The remainder of this contribution is set out as follows. 

ection 2 provides the necessary background on GDM, CRPs, MCC 

odels, CMCC models, and Polytope Theory to easily understand 

his proposal. In Section 3 , the minimization problem is refor- 

ulated by using a novel notation to simplify this proposal. 

ection 4 provides several relationships between the parameters γ
nd ε which have been obtained by chaining inequalities, and in 

ection 5 a novel approach based on Polytope Theory is developed 

o obtain more precise relationships between these parameters. In 

ection 6 several examples are proposed to illustrate this research. 

inally, Section 7 concludes the paper. 

. Preliminaries 

This section provides the background required to fully under- 

tand this proposal and introduces basic concepts about GDM and 

RPs. In addition, a brief review of the historical evolution of MCC 

odels is developed to emphasize the link between the various 

ormulations. Finally, we provide a brief introduction to the funda- 

ental concepts of convex polytopes. 

.1. Group decision-making 

GDM problems are those situations in which several individu- 

ls or experts have to decide which alternative, out of a given set 

f possible solutions to a given problem, is the most appropriate 

 Butler & Rothstein, 2006; Kacprzyk, 1986 ). Formally, a GDM prob- 

em consists of: 

• A set X = { x 1 , x 2 , . . . , x n } of possible solutions to the prob- 

lem. 
• A set E = { e 1 , e 2 , . . . , e m 

} of experts who express their pref- 

erences about the alternatives in X through a certain prefer- 

ence structure. 

For the sake of simplicity, in this work, we restrict our in- 

estigation to two preference elicitation approaches, namely, nu- 

erical scale and Fuzzy Preference Relation (FPR). In numeri- 

al scale settings, experts evaluate the alternatives by using a 

umber from [0 , 1] . On the other hand, in the FPR setting, it

s assumed that preferences are elicited from experts by us- 

ng Fuzzy Preference Relations (FPRs), a widely used structure 
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Fig. 1. Scheme of a CRP. 
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hat has been shown to be effective in dealing with uncertainty 

 Bryson, 1996; Herrera-Viedma, Herrera, & Chiclana, 2002 ). These 

PRs are obtained by asking the expert e k to assess how much 

hey prefer the alternative x i to the alternative x j using a value 

p k 
i, j 

in the interval [0 , 1] . The FPR associated with the expert e k is

he matrix P k = (p k 
i, j 

) ∈ M n ×n ([0 , 1]) , whose elements must satisfy

he symmetry condition p k 
i, j 

+ p k 
j,i 

= 1 . 

The classical scheme for a GDM problem consists of two 

hases: 

• Aggregation. An aggregation operator is used to fuse the 

preferences elicited from the experts. 
• Exploitation. The best alternative is selected taking into ac- 

count the results of the previous phase. 

Based on this scenario for a GDM problem, we will illustrate the 

ey elements for carrying out the GDM process in the following 

ubsection. 

.2. Consensus reaching processes and consensus measures 

Classically, several rules have been used to select the best al- 

ernative in a GDM problem, such as the majority rule, the mi- 

ority rule, or unanimity ( Butler & Rothstein, 2006 ) but, when us- 

ng these classic rules in the GDM solving process, some experts 

ay disagree with the solution chosen by the group ( Labella et al., 

018; Palomares et al., 2014 ). 

A Consensus Reaching Process (CRP) is an iterative discussion 

rocess in which experts must modify their initial opinions to 

each a collective agreement. CRPs have been developed to avoid 

isagreements and reach a collective opinion that satisfies all indi- 

iduals who participate in the GDM problem. 

Several consensus models have been proposed in the literature 

 Palomares et al., 2014 ). The general scheme for these models (see 

ig. 1 ) is: 

• Consensus Measurement . The preferences elicited from the 

experts are gathered and the level of agreement is computed 

using consensus measures ( Beliakov, Calvo, & James, 2014 ). 
• Consensus control . The obtained level of agreement is com- 

pared with a fixed consensus threshold μ ∈ [0 , 1] . If the level

of agreement is greater than this threshold, a selection pro- 

cess is applied. Otherwise, another round of discussions is 

conducted. In order to avoid an endless process, a maximum 

number of rounds, MaxRounds ∈ N , must be established be- 

forehand. 
• Consensus Progress . A moderator identifies experts’ prefer- 

ences that are difficult for the agreement process and gener- 
ates recommendations for the experts to consider. 

766 
According to the taxonomy developed in Palomares et al. 

2014) , the consensus measures can be classified into two groups: 

• Consensus measures based on the distance between each 

expert and the collective opinion, 
• Consensus measures based on distances between experts. 

Based on this background on the elements of the GDM process, 

n the following we will describe the automatic cost-based consen- 

us models, which are the type of models for which we will study 

he relationships between parameters in this proposal. 

.3. Minimum cost consensus models 

To study the cost of modifying experts’ preferences, Ben-Arieh 

 Easton (2007) proposed the notion of MCC and introduced a 

odel that considers consensus as being the minimum distance 

etween each expert and the collective opinion, which is calcu- 

ated using a weighted mean. This model aims to minimize the 

ost of moving preferences using a linear function. Specifically, for 

 set of experts E = { e 1 , e 2 , . . . , e m 

} who express the preferences 

 = (o 1 , o 2 , . . . , o m 

) over a certain alternative, the proposed opti- 

ization model is as follows: 

min 

x 1 , ... ,x m ) 

m ∑ 

i =1 

c i | x i − o i | 

.t. 

{ 

x = 

m ∑ 

i =1 

w i x i 

| x i − x | ≤ ε, i = 1 , 2 , . . . , m 

( M-1) 

where the parameter c i ∈ R + models the cost of moving the opin- 

on of the expert e i one unit and w i ∈ [0 , 1] , 
∑ m 

i =1 w i = 1 , is the

mportance of the expert e i when aggregating the preferences. 

By solving the non-linear programming problem defined in (M- 

), a vector of optimal preferences ˆ o = ( ̂  o 1 , ̂  o 2 , . . . , ̂  o m 

) is obtained

hat satisfies that the distance between its coordinates and the col- 

ective opinion ˆ o = 

∑ m 

i =1 w i ̂  o i is bounded by ε. 

Zhang et al. (2011) improved this previous proposal by consid- 

ring that collective opinion could be calculated using different ag- 

regation operators. To do so, the previous model was modified as 

ollows: 

min 

x 1 , ... ,x m ) 

m ∑ 

i =1 

c i | x i − o i | 

.t. 

{
x = F (x 1 , x 2 , . . . , x m 

) 
| x i − x | ≤ ε, i = 1 , 2 , . . . , m 

( M-2) 

where F is an aggregation operator. 

.4. Comprehensive minimum cost consensus 

Recent studies ( Gong et al., 2015; Zhang et al., 2013; 2012; 

hang et al., 2017 ) have introduced new MCC approaches based 

n the original model proposed in Ben-Arieh & Easton (2007) , but 

hey all consider the distance of each expert from the collective 

pinion, ignoring a minimum level of agreement among experts, 

hich is a milestone for CRPs ( Chiclana, Mata, Martinez, Herrera- 

iedma, & Alonso, 2008; Kacprzyk & Zadro ̇zny, 2010 ). In order to 

eal with this shortcoming, Comprehensive MCC (CMCC) models 

ere developed ( Labella et al., 2020 ). 

A CMCC model is a modification of the model (M-2) which in- 

ludes a new constraint related to preferences holding a minimum 

onsensus level: 
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min 

x 1 , ... ,x m ) ∈ [0 , 1] m 

m ∑ 

i =1 

c i | x i − o i | 

.t. 

{ 

x = F (x 1 , . . . , x m 

) 
| x i − x | ≤ ε, i = 1 , 2 , . . . , m 

consensus (x 1 , . . . , x m 

) ≥ μ, 

( M-3) 

where the function consensus : [0 , 1] m → [0 , 1] measures the level

f consensus reached by experts, μ ∈ [0 , 1] is a consensus thresh- 

ld that is fixed a priori, F : [0 , 1] m → [0 , 1] is an averaging aggre-

ation operator, and ε is a parameter that measures the distance 

etween each expert’s adjusted opinion and the collective opinion. 

.4.1. MCC models dealing with numerical values 

The model (M-3) was first adapted to two possible types of 

onsensus measures ( Palomares et al., 2014 ): those based on the 

istance between experts and collective opinion are modeled us- 

ng (M-4) and those based on the distance between experts are 

odeled using (M-5), both of which are detailed below: 

min 

x 1 , ... ,x m ) ∈ [0 , 1] m 

m ∑ 

i =1 

c i | x i − o i | 

.t. 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

x = 

m ∑ 

i =1 

w i x i 

| x i − x | ≤ ε, i = 1 , 2 , . . . , m 

m ∑ 

i =1 

w i | x i − x | ≤ γ , 

( M-4) 

min 

x 1 , ... ,x m ) ∈ [0 , 1] m 

m ∑ 

i =1 

c i | x i − o i | 

.t. 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

x = 

m ∑ 

i =1 

w i x i 

| x i − x | ≤ ε, i = 1 , 2 , . . . , m 

m −1 ∑ 

i =1 

m −1 ∑ 

j= i +1 

w i + w j 

m −1 
| x i − x j | ≤ γ . 

( M-5) 

where γ = 1 − μ and w i ∈ [0 , 1] ( 
∑ m 

i =1 w i = 1 ) are the importance

alues of the expert e i . 

.4.2. MCC models dealing with FPRs 

The models provided in the previous section were also adapted 

or FPRs. Model (M-4) was rewritten as (M-6), while model (M- 

) becomes (M-7). Given the fuzzy preference relations P k = (p k 
i j 
) ∈ 

 ([0 , 1]) n ×n , (k = 1 , . . . , m ) , the model (M-6) is defined as follows:

min 

x k 
i j 
) ∈M n ×n ([0 , 1]) 

m ∑ 

k =1 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

c k | x k i j − p k i j | 

.t. 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

x i j = 

m ∑ 

k =1 

w k x 
k 
i j 

| x k 
i j 

− x i j | ≤ ε, k = 1 , . . . , m, i = 1 , . . . , n − 1 , j = i + 1 , . . . , n 

2 
n (n −1) 

m ∑ 

k =1 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

w k | x k i j 
− x i j | ≤ γ , 

( M-6) 

where p k 
i j 

is the original preference of the expert e k for the pair 

f alternatives x i and x j . Following the same scheme, the model 

M-7) was defined as: 
767
min 

x k 
i j 
) ∈M n ×n ([0 , 1]) 

m ∑ 

k =1 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

c k | x k i j − p k i j | 

.t. 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

x i j = 

m ∑ 

k =1 

w k x 
k 
i j 

| x k 
i j 

− x i j | ≤ ε, k = 1 , . . . , m, i = 1 , . . . , n − 1 , j = i + 1 , . . . , n 

2 
n (n −1) 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

m −1 ∑ 

k =1 

m ∑ 

l= k +1 

w k + w l 

m −1 
| x k 

i j 
− x l 

i j 
| ≤ γ . 

( M-7) 

.5. Polytopes 

In this subsection, some basic notions about the Convex Poly- 

ope Theory are introduced. Convex Polytopes are the general- 

zation of the 2-dimensional notion of convex polygon or the 3- 

imensional concept of polyhedron. After introducing two differ- 

nt definitions for the concept of Polytope that are present in the 

iterature ( Henk et al., 2018; Ziegler, 1995 ), the Main Theorem of 

olytope Theory, which unifies these two definitions, is stated. 

efinition 1 (V-Polytope) . R ⊂ R 

m is said to be a V-polytope 

f R can be expressed as the convex hull of a finite set V =
 

v 1 , v 2 , . . . , v n } ⊂ R 

m , i.e.: 

 = 

{ 

n ∑ 

k =1 

λk v k : λk ≥ 0 ∀ k = 1 , 2 , . . . , n and 

n ∑ 

k =1 

λk = 1 

} 

he set V is called the set of vertices of R . 

efinition 2 (H-Polytope) . R ⊂ R 

m is said to be a H-polytope if 

 can be expressed as the bounded solution set of a finite sys- 

em of q linear inequalities, i.e., we can find A ∈ M q ×m 

(R ) and

 ∈ M q ×1 (R ) : 

 = { x ∈ R 

m : Ax ≤ B } ⊂ B (0 , r) for a certain r > 0 , 

here B (0 , r) denotes the ball of center 0 ∈ R 

m and radius r > 0 . 

The following fundamental theorem on the representation of 

olytopes ( Henk et al., 2018; Ziegler, 1995 ), which relates the no- 

ions of V-polytope and H-polytope representations, forms the ba- 

is of our polytope-based analysis of the relationship between the 

nequalities involving the parameters μ and γ and the finding of 

ight bounds. 

heorem 1 (Main Theorem of Polytope Theory) . The definitions 

f V-polytopes and of H-polytopes are equivalent. That is, every V- 

olytope has a description by a finite system of inequalities, and every 

-polytope can be obtained as the convex hull of a finite set of points 

its vertices). 

efinition 3 (Convex Polytope) . R ⊂ R 

m is said to be a convex 

olytope if R ⊂ R 

m is an H-polytope or a V-polytope. 

From the computation point of view, it is important to un- 

erstand how to switch between polytope representations. It was 

ointed out in Henk et al. (2018) , Ziegler (1995) that there are 

hree types of algorithms that allow us to transform one repre- 

entation of a convex polytope into the other, namely, inductive 

lgorithms (inserting vertices), projection algorithms and reverse 

earch methods. Irrespective of the merits and demerits of the al- 

orithms for numeric computations, this work will use the popular 

ackage vertexenum Robere (2018) developed for the software R 

 R Core Team, 2017 ), which allows us to transform the inequality- 

ased representation of a convex polytope (H-polytope) into the 

ertex-based representation (V-polytope). 
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. Problem description 

This section is devoted to establishing a common notation to 

implify the study of the relationships between the constraint in- 

uced by the consensus measure and the constraints involving 

he distances between preferences and collective opinion in CMCC 

odels. 

First, note that all models proposed in Section 2.4 can be de- 

cribed as follows. 

in 

∑ m 

k =1 c k | x k − o k | 
.t. 

{
(x 1 , x 2 , . . . , x m 

) ∈ R ε , 

(x 1 , x 2 , . . . , x m 

) ∈ R γ , 

( M-G) 

where 

• R ε and R γ are the sets of points in [0 , 1] m that satisfy cer-

tain constraints related to the parameters ε and γ , respec- 

tively, that is, 

R ε : = { x ∈ [0 , 1] m : g k (x ) ≤ ε ∀ k = 1 , 2 , ..., m } , 
R γ : = { x ∈ [0 , 1] m : g 0 (x ) ≤ γ } , 
where g 0 , g 1 , . . . , g m 

: [0 , 1] m → R + are defined as the com-

position of a linear function with the absolute values of 

some other linear combination of variables, that is, 

g k ( x 1 , x 2 , . . . , x m 

) = 

m ∑ 

i =1 

w 

k 
i | L i ( x 1 , . . . , x m 

) | , 

∀ ( x 1 , x 2 , . . . , x m 

) ∈ R 

m , (1) 

for all k = 0 , 1 , . . . , m , where L i : R 

m → R is a linear function

for all i = 1 , 2 , ..., m and w 

k 
i 

≥ 0 . 
• (c 1 , c 2 , . . . , c m 

) ∈ R 

m + are the constant values for the cost of

moving the opinion of each expert one unit, 
• (o 1 , o 2 , . . . , o m 

) ∈ [0 , 1] m are the initial values for experts’

preferences. 

As mentioned earlier, the experimental results conducted in 

abella et al. (2020) suggest that the parameters γ and ε appear- 

ng in the models (M-4), (M-5), (M-6) and (M-7) could be related. 

ere, we are interested in exploring the relationships of these pa- 

ameters by analyzing the containment relationship between the 

egions R γ and R ε that involve the inequalities corresponding to 

he parameters γ and ε, which attempt to restrict the adjusted 

references. 

In light of the inclusion relationships of these regions, we first 

ttempt to study if, given a value for γ ∈ [0 , 1] , certain values of

exist for which the region R γ is encapsulated in R ε . In other 

ords, we want to find a value ε 1 ∈ [0 , 1] such that R γ ⊆ R ε ∀ ε ≥
 1 . This setup leads to some interesting consequences in the geom- 

try of the regions that we describe in the following. 

Denote R γ ,ε := R γ ∩ R ε � = ∅ ( 0 ∈ R γ ,ε ). Note that for a fixed

alue of γ , the following statements are equivalent: 

• R γ ⊆ R ε ∀ ε ≥ ε 1 . 
• R γ ,ε = R γ ∀ ε ≥ ε 1 . 
• The constraints associated with ε, that is, | x k − x | ≤ ε, k = 

1 , 2 , ..., m , do not affect the shape of R γ ,ε ∀ ε ≥ ε 1 . 
• The values of the preferences that satisfy the constraint of 

R γ also satisfy the constraints of R ε for all ε ≥ ε 1 . 

emark 1. The notation R 

i 
γ , R 

i 
ε and R 

i 
γ ,ε , i = 4 , 5 , 6 , 7 will be

sed to relate these regions with the models (M-4), (M-5), (M-6) 

nd (M-7). When referring to the generic model (M-G) the nota- 

ion R γ , R ε and R γ ,ε is kept for the sake of simplicity. 

Keeping these consequences in mind, one can observe that for 

 fixed γ , studying the shape of the region R γ ,ε is equivalent to 
768 
nding if a maximum value for the distance between the experts’ 

pinions and the respective collective opinion ε is guaranteed. This 

act leads to the following definitions: 

efinition 4. ( ε 1 (γ ) ) For a fixed γ ∈ [0 , 1] we will denote by

 1 (γ ) , or simply ε 1 if no confusion is possible, the infimum value

f ε such that R γ ⊆ R ε . 

efinition 5. ( γ1 (ε) ) For a fixed ε ∈ [0 , 1] , we will denote by

1 (ε) , or simply γ1 if no confusion is possible, the infimum value 

f γ such that R ε ⊆ R γ . 

The purpose of ε 1 (γ ) and γ1 (ε) is to detect when the region 

 γ ,ε starts to differ from the region R γ or R ε , respectively. Note 

hat finding the values ε 1 (γ ) and γ1 (ε) is equivalent to providing 

n answer to RQ1. However, a change in the region does not neces- 

arily imply a change in the solution of the minimization problem. 

n order to control this change, we introduce the following alterna- 

ive definition for the notion of boundary, which is more suitable 

or the problem that we are dealing with in this study: 

efinition 6. Let R := { x ∈ [0 , 1] m : g(x ) ≤ r } , for some g : R 

m → 

 and r > 0 , be a region in the unit hypercube. Then, the modified

oundary of R , Bound ∗(R ) , is defined as follows: 

ound ∗(R ) := ((R 

′ ) c \ (R 

′ ) ◦) ∩ [0 , 1] m 

here R 

′ := { x ∈ R 

m : g(x ) ≤ r } and c and ◦ denote, respectively, 

he standard closure and interior of a set. 

The point of this definition is to avoid the interference of val- 

es such as (0 , 0 , . . . , 0) or (1 , 1 , . . . , 1) in the computation of the

oundaries of the regions R γ and R ε . 

Based on this notion of a modified boundary, we propose the 

ollowing definitions in order to find the values of the parameters 

and γ for which a change in the solution is ensured when the 

ther parameter is fixed. 

efinition 7. ( ε 2 (γ ) ) For a fixed γ ∈ [0 , 1] , we will denote by

 2 (γ ) , or simply ε 2 if no confusion is possible, the supremum 

f the values of ε such that Bound ∗(R γ ) ∩ Bound ∗(R γ ,ε ) = ∅ , or

quivalently R ε ⊂ R γ . 

efinition 8. ( γ2 (ε) ) For a fixed ε ∈ [0 , 1] , we will denote by

2 (ε) , or simply γ2 if no confusion is possible, the supremum 

f the values of γ such that Bound ∗(R ε ) ∩ Bound ∗(R γ ,ε ) = ∅ , or

quivalently R γ ⊂ R ε . 

Note that if these boundaries have no points in common, the 

olution will inevitably change. In addition, by finding these val- 

es, an answer to RQ2 would be provided. To clarify this, consider 

 fixed value γ ∈ [0 , 1] and the sequence { ε n } = { 1 n } , n ∈ N . Note

hat for ε 1 = 1 , the constraints related to ε 1 in the region R γ ,ε 1 
re always satisfied and consequently R γ ,ε 1 = R γ . If we increase 

he value of n , we will find some n 1 such that ε n 1 < ε 1 (γ ) , which

eans that for n ≥ n 1 , there is at least one point in R γ which

oes not belong to R ε n . However, the solution will not necessar- 

ly change until a value n 2 ≥ n 1 such that ε n 2 < ε 2 (γ ) is found

nd consequently Bound ∗(R γ ) ∩ Bound ∗(R γ ,ε n ) = ∅ for any value

 ≥ n 2 (see Fig. 2 ). 

Based on this formalization of our research questions in the 

orm of the definitions mentioned above, we attempt to find rough 

ounds for the parameters in the next section. 

. An approach based on inequalities 

In this section, we provide rough bounds for the values of 

 1 (γ ) and γ1 (ε) for each CMCC model. Specifically, we obtain the 

alues ε ′ 1 and γ ′ 
1 such that ε ′ 1 ≥ ε 1 (γ ) and γ ′ 

1 ≥ γ1 (ε) for every 

odel. 
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Fig. 2. A sketch of ε 1 (γ ) and ε 2 (γ ) for a fixed value of γ ∈ [0 , 1] . 
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.1. The model (M-4) 

Adopting our earlier introduced notations, the regions associ- 

ted with the consensus model (M-4) can be written as follows: 

R 

4 
ε := { x ∈ [0 , 1] m : | x i − x | ≤ ε, ∀ i = 1 , 2 , . . . , m } , 

R 

4 
γ := 

{ 

x ∈ [0 , 1] m : 

m ∑ 

i =1 

w i | x i − x | ≤ γ

} 

, 

 

4 
γ ,ε := R 

4 
ε ∩ R 

4 
γ . 

The rough bound of γ for a given ε > 0 in terms of Definition

 is illustrated in the following proposition. 

roposition 1. For a given ε > 0 in the consensus model (M-4), the 

alue of γ that ensures the satisfaction of the constraints of R 

4 
γ is 

′ 
1 
(ε) = ε, that is, R 

4 
ε = R 

4 
γ ,ε ∀ γ ≥ ε. 

roof. Suppose that x ∈ R 

4 
ε . Then | x i − x | ≤ ε and 

 m 

k =1 w k | x i − x | ≤ ε. Therefore, if γ ≥ ε, R 

4 
ε ⊆ R 

4 
γ ,ε and conse- 

uently R 

4 
ε = R 

4 
γ ,ε . �

The opposite case is described in the following proposition. 

roposition 2. For a given γ > 0 in the consensus model (M-4), the 

alues of ε that ensure the satisfaction of the constraints in R 

4 
ε are 

 

′ 
1 
(γ ) = 

γ

min k =1 , 2 ,...,m { w k } , that is, 

 

4 
γ = R 

4 
γ ,ε ∀ ε ≥ γ

min k =1 , 2 ,...,m 

{ w k } 

roof. Let us suppose that x ∈ R 

4 
γ . Then 

∑ m 

i =1 w i | x i − x | ≤ γ and

 i | x i − x | ≤ γ ∀ i = 1 , 2 , ..., m . Therefore, 

 x i − x | ≤ γ

min k =1 , 2 ,...,m 

{ w k } ∀ i = 1 , 2 , ..., m. 

o, if ε ≥ ε ′ 
1 

:= 

γ

min k =1 , 2 ,...,m { w k } , x ∈ R 

4 
γ ,ε and consequently, R 

4 
γ = 

 

4 
γ ,ε . �

.2. The model (M-5) 

The regions associated with the consensus model (M-5) can be 

ast as follows: 

R 

5 
ε := { x ∈ [0 , 1] m : | x i − x | ≤ ε, ∀ i = 1 , 2 , . . . , m } , 

R 

5 
γ := 

{ 

x ∈ [0 , 1] m : 

m −1 ∑ 

i =1 

m ∑ 

j= i +1 

w i + w j 

m − 1 

| x i − x j | ≤ γ

} 

, 

 

5 
γ ,ε := R 

5 
ε ∩ R 

5 
γ . 

imilarly, rough bounds for the parameters ε and γ when one of 

hem is given can be obtained for (M-5) and are given in the fol-

owing propositions. 
769 
roposition 3. For a given ε > 0 in the consensus model (M-5), the 

alues of γ that ensure the satisfaction of the constraint of R 

5 
γ is 

′ 
1 
(ε) = 2 ε, that is, R 

5 
ε = R 

5 
γ ,ε ∀ γ ≥ 2 ε. 

roof. First, note that 

m −1 ∑ 

i =1 

m ∑ 

j= i +1 

w i + w j 

m − 1 

= 

1 

m − 1 

( 

m −1 ∑ 

i =1 

(m − i ) w i + 

m ∑ 

i =2 

(i − 1) w i 

) 

= 

1 

m − 1 

( 

(m − 1) w 1 + 

m −1 ∑ 

i =2 

(m − i ) w i 

+(m − 1) w m 

+ 

m ∑ 

i =2 

(i − 1) w i 

) 

= 

1 

m − 1 

( 

(m − 1)(w 1 + w m 

) + 

m −1 ∑ 

i =2 

(m − 1) w i 

) 

= 1 . 

or an arbitrary x ∈ R 

5 
ε , we have 

 −1 ∑ 

i =1 

m ∑ 

j= i +1 

w i + w j 

m − 1 

| x i − x j | ≤
m −1 ∑ 

i =1 

m ∑ 

j= i +1 

w i + w j 

m − 1 

(| x i − x | + | x − x j | 
)

≤ 2 ε 
m −1 ∑ 

i =1 

m ∑ 

j= i +1 

w i + w j 

m − 1 

= 2 ε 

ence, x ∈ R 

5 
γ ,ε ∀ γ > 2 ε. �

roposition 4. For a given γ > 0 in the consensus model (M-5), the 

alues of ε that ensure the satisfaction of the constraints in R 

5 
ε are 

 

′ 
1 (γ ) = (m − 1) γ , that is, 

 

5 
γ = R 

5 
γ ,ε ∀ ε ≥ (m − 1) γ

roof. Let x ∈ R 

5 
γ . Then 

 x i − x | = | x i 
m ∑ 

j=1 

w j −
m ∑ 

j=1 

w j x j | ≤
m ∑ 

j =1 , j � = i 
w j | x i − x j | 

≤
m −1 ∑ 

i =1 

m ∑ 

i = j+1 

(w i + w j ) | x i − x j | ≤ γ (m − 1) . 

o, if ε ≥ (m − 1) γ , R 

5 
γ = R 

5 
γ ,ε . �

.3. The model (M-6) 

Let us define M n ×n ([0 , 1]) m := M n ×n ([0 , 1]) × m times. . . 

M n ×n ([0 , 1]) , whose elements are vectors of n -dimensional 

quare matrices. With this notation, the regions associated with 

M-6) can be represented as follows: 

R 

6 
ε : = 

{
X ∈ M n ×n ([0 , 1]) m : | x k i j − x i j | 

≤ ε, k = 1 , . . . , m, i = 1 , . . . , n − 1 , 

j = i + 1 , . . . , n } , 
R 

6 
γ : = { X ∈ M n ×n ([0 , 1]) m : 

2 

n (n − 1) 

m ∑ 

k =1 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

w k | x k i j − x i j | ≤ γ

} 

, 

 

6 
γ ,ε : = R 

6 
ε ∩ R 

6 
γ . 

imilar results for the rough bounds for the parameters can also 

e obtained for (M-6) and are given in the following propositions. 
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roposition 5. For a given ε > 0 in the consensus model (M-6), the 

alues of γ that ensure the satisfaction of the constraint of R 

6 
γ is 

′ 
1 
(ε) = ε, that is, R 

6 
ε = R 

6 
γ ,ε ∀ γ ≥ ε. 

roposition 6. For a given γ > 0 in the consensus model (M-6), the 

alues of ε that ensure the satisfaction of the constraints in R 

6 
ε are 

 

′ 
1 
(γ ) = 

γ (n −1) n 

2 min k =1 , 2 ,...,m { w k } , that is, 

 

6 
γ = R 

6 
γ ,ε ∀ ε ≥ γ (n − 1) n 

2 min k =1 , 2 ,...,m 

{ w k } . 

.4. The model (M-7) 

Analogously, we can cast the attached regions to the model (M- 

) and find the results of the rough bounds for the parameters as 

ollows: 

 

7 
ε : = 

{
X ∈ M n ×n ([0 , 1]) m : | x k i j − x i j | 

≤ ε, k = 1 , . . . , m, i = 1 , . . . , n − 1 , j = i + 1 , . . . , n } , 

 

7 
γ : = { X ∈ M n ×n ([0 , 1]) m 

: 
2 

n (n − 1) 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

m −1 ∑ 

k =1 

m ∑ 

l= k +1 

w k + w l 

m − 1 

| x k i j − x l i j | ≤ γ

} 

, 

R 

7 
γ ,ε := R 

7 
ε ∩ R 

7 
γ . 

The proof for the following results is analogous to some of 

hose given previously, and is therefore omitted. 

roposition 7. For a given ε > 0 in the consensus model (M-7), the 

alues of γ that ensure the satisfaction of the constraint of R 

7 
γ is 

′ 
1 (ε) = 2 ε, that is, R 

7 
ε = R 

7 
γ ,ε ∀ γ ≥ 2 ε. 

roposition 8. For a given γ > 0 in the consensus model (M-7), the 

alues of ε that ensure the satisfaction of the constraints in R 

7 
ε are 

 

′ 
1 
(γ ) = (m − 1) n (n − 1) γ2 , that is, 

 

7 
γ = R 

7 
γ ,ε ∀ ε ≥ (m − 1) n (n − 1) 

γ

2 

. 

Therefore, we have obtained rough bounds for the parameters ε
nd γ that correspond to the different consensus models by treat- 

ng regions R γ and R ε as abstract spaces. Although these rough 

ounds are very easy to obtain and provide an immediate idea 

f the variations and a partial answer to RQ1 and RQ2, they are 

ot very precise. In the following, we attempt to find more precise 

ounds for these parameters. 

. Approach based on polytopes 

In this section, we further explore the geometry of the regions 

o obtain more precise bounds of the parameters ε and γ . We start 

y characterizing the regions R γ and R ε as convex polytopes. Sub- 

equently, the properties of convex polytopes are used to derive 

he numerical bounds of the parameters along with the connection 

o the optimal solution of the models. 

.1. Properties of the regions R γ and R ε 

In this subsection, we show that both regions R γ and R ε in the 

eneric model (M-G) are convex polytopes. 

The first result proves that any system of inequalities involv- 

ng compositions of linear functions with absolute values can be 

educed to a system of linear inequalities. 
770 
roposition 9. Let w = (w 1 , w 2 , . . . w m 

) ∈ R 

m and μ ∈ R , and con-

ider the function g : R 

m → R defined as 

 ( x 1 , x 2 , . . . , x m 

) = 

m ∑ 

k =1 

w k | x k | ∀ ( x 1 , x 2 , . . . , x m 

) ∈ R 

m . 

hen, for any x = (x 1 , x 2 , . . . , x m 

) ∈ R 

m , the following relations are

quivalent: 

• g(x ) ≤ μ, 
• < w σ , x > ≤ μ for every σ = (σ1 , . . . , σm 

) ∈ { −1 , 1 } m . 

where < ·, · > denotes the standard dot product and w σ = 

w 1 σ1 , w 2 σ2 , . . . , w m 

σm 

) . 

roof. For m = 1 , the statement is an immediate consequence of 

he properties of the absolute value function. Consider the case 

 = 2 . Thus, w 1 , w 2 ≥ 0 and g : R 

2 → R is defined as g(x 1 , x 2 ) =
 1 | x 1 | + w 2 | x 2 | , for all (x 1 , x 2 ) ∈ R 

2 . Note that 

w 1 | x 1 | + w 2 | x 2 | ≤ μ ⇐⇒ w 1 | x 1 | ≤ μ − w 2 | x 2 | ⇐⇒ 

w 1 x 1 ≤ μ − w 2 | x 2 | 
−w 1 x 1 ≤ μ − w 2 | x 2 | 

⇐⇒ 

w 2 | x 2 | ≤ μ − w 1 x 1 
w 2 | x 2 | ≤ μ + w 1 x 1 

⇐ ⇒ 

w 2 x 2 ≤ μ − w 1 x 1 
−w 2 x 2 ≤ μ − w 1 x 1 
w 2 x 2 ≤ μ + w 1 x 1 

−w 2 x 2 ≤ μ + w 1 x 1 

⇐ ⇒ 

w 1 x 1 + w 2 x 2 ≤ μ
w 1 x 1 − w 2 x 2 ≤ μ

−w 1 x 1 + w 2 x 2 ≤ μ
−w 1 x 1 − w 2 x 2 ≤ μ

.

herefore, this is also true for m = 2 . The rest of the proof is an

bvious induction. �

Note that the resulting linear inequalities are those obtained by 

onsidering all possible combinations of the different signs for the 

eights w 1 , . . . , w m 

, as shown in the proof of Proposition 9 . 

This representation of inequalities involving absolute values al- 

ows us to characterize regions R γ and R ε as polytopes as stated 

n the following corollary. 

orollary 1. Let n ∈ N and consider a set of m -dimensional weighting 

ectors { w 

1 , w 

2 , . . . , w 

n } , i.e., w 

k = (w 

k 
1 
, w 

k 
2 
, . . . w 

k 
m 

) ∈ [0 , 1] m such

hat 
∑ m 

i =1 w 

k 
i 

= 1 , ∀ k = 1 , 2 , ..., m , and μ1 , . . . , μm 

∈ R + . Consider

he functions g k : R 

m → R defined as 

 k ( x 1 , x 2 , . . . , x m 

) = 

m ∑ 

i =1 

w 

k 
i | x i | , ∀ ( x 1 , x 2 , . . . , x m 

) 

∈ R 

m , k = 1 , 2 , ..., m. 

hen, the region R = { x ∈ [0 , 1] m : g k (x ) ≤ μk ∀ k = 1 , 2 , ..., m } is a 
on-empty polytope. 

emark 2. Note that the point (0 , 0 , . . . , 0) ∈ R 

m always satisfies

he conditions that define R . 

Furthermore, we can assure that the obtained polytope is con- 

ex, even if the arguments of the absolute values are replaced with 

inear combinations of the variables. 

orollary 2. Let n ∈ N and consider a set of m -dimensional weighting 

ectors { w 

1 , w 

2 , . . . , w 

n } , i.e., w 

k = (w 

k 
1 
, w 

k 
2 
, . . . w 

k 
m 

) ∈ [0 , 1] m , such

hat 
∑ m 

i =1 w 

k 
i 

= 1 ∀ k = 1 , 2 , . . . , n , and μ1 , . . . μm 

∈ R + . Consider

he functions g k : R 

m → R defined as 

 k ( x 1 , x 2 , . . . , x m 

) = 

m ∑ 

i =1 

w 

k 
i | L i (x 1 , . . . , x m 

) | , ∀ (x 1 , x 2 , . . . , x m 

) 

∈ R 

m , k = 1 , 2 , . . . , n. 

here L i : R 

m → R is a linear function for every i = 1 , 2 , ..., m . Then,

he region 

 = { x ∈ [0 , 1] m : g k (x ) ≤ μk ∀ k = 1 , 2 , . . . , n } 
s a convex non-empty polytope. 
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roof. Since the linear function L i does not alter the linearity of 

he equations obtained by using Corollary 1 , it is clear that the 

egion R is a nonempty polytope. To show that R is convex, let 

s pick any x, y ∈ R . By definition of R , we have g k (x ) ≤ μk and

 k (y ) ≤ μk for all k = 1 , 2 , ..., n . Now, we observe that for any t ∈
0 , 1] 

 k ((1 − t) x + ty ) = 

m ∑ 

i =1 

w 

k 
i | L i ((1 − t) x + ty ) | 

= 

m ∑ 

i =1 

w 

k 
i | (1 − t) L i (x ) + tL i (y ) | 

≤
m ∑ 

i =1 

w 

k 
i ((1 − t) | L i (x ) | + t| L i (y ) | 

= (1 − t) g k (x ) + tg k (y ) ≤ μk . 

herefore, (1 − t) x + ty ∈ R and, consequently, R is convex. �

The following result provides the sufficient and necessary con- 

itions for a convex polytope to be contained in a fixed convex set. 

roposition 10. Let S ⊂ R 

m be a convex set, and consider a convex 

olytope R ⊂ R 

m . Then R ⊆ S if and only if all the vertices of R be-

ong to S . 

roof. The proof of the sufficient condition is straightforward. 

o prove the necessary condition, suppose that all vertices, say 

 v 1 , v 2 , . . . , v n } , of R are contained in S . As R is a convex poly-

ope, any point x ∈ R can be expressed as a convex combination 

f its vertices x = 

∑ n 
k =1 a k v k for certain scalars a 1 , a 2 , . . . , a n , such

hat a k ≥ 0 ∀ k = 1 , 2 , ..., n and 

∑ n 
k =1 a k = 1 . Since S is convex and

 v 1 , v 2 , . . . , v n } ∈ S , then x ∈ S . Hence, R ⊆ S . �

Note that the constraints which define the feasible region in 

he models (M-4), (M-5), (M-6), and (M-7) are similar to the 

ypothesis constraints in Corollary 2 . Based on Corollary 2 and 

roposition 10 , we can establish the containment relationship be- 

ween regions R γ and R ε in terms of vertex representation, and 

hat result is outlined in the following theorem. 

heorem 2. The regions R 

i 
γ and R 

i 
ε ( i = 4 , 5 , 6 , 7 ) which appear in

he models (M-4), (M-5), (M-6) and (M-7) are convex nonempty poly- 

opes. Furthermore, for any of these models, the region R 

i 
γ is con- 

ained in R 

i 
ε if and only if all the vertices of R 

i 
γ belong to the region

 

i 
ε . In the same way, the region R 

i 
ε is contained in R 

i 
γ if and only if

ll the vertices in R 

i 
ε belong to the region R 

i 
γ . 

Although Theorem 2 sketches the condition for the containment 

etween the regions R γ and R ε , it does not make any comment 

n the behavior of the optimal solution of the consensus model. 

elow, we take a closer look at this issue. 

.2. Existence of solution to (M-G) 

In this section, we investigate the existence of a solution to the 

eneral optimization model (M-G). To do so, the link between this 

ptimal solution and the region R γ ,ε is analyzed from a theoretical 

oint of view. 

roposition 11. The regions R γ ,ε , R γ and R ε are compact subsets 

f the Euclidean spaces in which they are defined for any values of 

, ε ∈ [0 , 1] . 

roof. Note that all of these regions are contained in the unit hy- 

ercube of their respective Euclidean spaces, and therefore they 

re bounded. In addition, due to the fact that all of them are con- 

ex polytopes, they are also closed subsets in their respective Eu- 

lidean spaces. �
771 
roposition 12. The function c : [0 , 1] m → [0 , 1] defined as

(x 1 , x 2 , . . . , x m 

) := 

∑ m 

i =1 c i | x i − o i | , for all (x 1 , x 2 , . . . , x m 

) ∈ [0 , 1] m ,

here o = (o 1 , o 2 , . . . , o m 

) ∈ [0 , 1] m are the original preferences, is

onvex. 

roof. Let us consider x, y ∈ [0 , 1] m . Then, for any α ∈ [0 , 1] 

(αx + (1 − α) y ) = 

m ∑ 

i =1 

c i | αx i + (1 − α) y i − o i | 

= 

m ∑ 

i =1 

c i | αx i + (1 − α) y i − (αo i + (1 − α) o i ) | 

≤
m ∑ 

i =1 

c i | α(x i − o i ) + (1 − α)(y i − o i ) | 

≤ αc(x ) + (1 − α) c(y ) 

hich proves the convexity of c. �

roposition 13. (Corollary 2.8.1 in Giorgi, Guerraggio, & (Eds) 

2004) ) Let A ⊂ R 

m be a nonempty convex subset and consider a con- 

ex function f : A → R . Then, if f reaches a local minimum at the

oint x 0 ∈ A , x 0 is also a global minimum for f . 

Based on the above results, we establish a link between the op- 

imal solution and the region R γ ,ε in the following theorem. 

heorem 3. The model (M-G) always has a solution. If the origi- 

al preferences o = (o 1 , . . . , o m 

) satisfy o ∈ R γ ,ε , the solution to the

inimization problem is the original preference vector o. Otherwise, 

he solution for the minimization problem is always obtained in the 

oundary of the region R γ ,ε . 

roof. Since c is a continuous function defined in the compact 

ubset R γ ,ε , it will always reach its maximum and minimum value 

ithin the region R γ ,ε , so a solution for the (M-G) model always 

xist. 

Suppose that the solution x 0 for the (M-G) model is an inte- 

ior point of the region R γ ,ε . Then, x 0 is a local minimum for the

unction c and according to Proposition 13 it is a global minimum. 

ut it is obvious that the global minimum of c is the original pref- 

rences o = (o 1 , o 2 , . . . , o m 

) , so it must be x 0 = o. Otherwise, if x 0 
s not an interior point, then it must belong to the boundary of 

 γ ,ε . �

So far, we have theoretically established the proper geometry of 

he regions associated with consensus models and the link of the 

ptimal solution to these regions in light of the convex polytope- 

ased analysis. We will further explore this theoretical foundation 

o compute more precise bounds for the parameters ε and γ . 

.3. Algorithms used to establish the relationship between γ and ε

In this section, we develop several generic algorithms to find 

umeric approximations for the bounds of the parameters when 

ne is determined based on the key results of Theorems 2 and 3 . 

.3.1. Obtaining ε 1 and γ1 

In this section, we take advantage of the fact that the con- 

ainment relationship between the R ε and R γ regions is based 

n the vertex representation of convex polytopes in order to de- 

isively find the value of the parameters. The idea is to first gener- 

te the vertex representation of a region for which the parameter 

alue is given via successive applications of Proposition 9 and the 

ertexenum algorithm. We then successively reduce the value of 

he parameter we are looking for from the initialized level with 

 constant step-size until the containment relationship between 

egions holds. This principle of finding the parameters has been 
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Algorithm 1: Find γ1 (ε) , when ε is given. 

Input : ε-related constrains R γ , γ -related constraint R ε , 

threshold ε > 0 , step-size δ > 0 . 

1 find the linear inequality-based representation of R ε of the 

form Az ≤ ε using Proposition 9; 

2 obtain vertices of R ε as V = vertexenum ( Az ≤ ε); 

3 initialize: γ1 = 1 ; 

4 while V ⊆ R γ do 

5 γ := γ − δ; 

6 end 

7 Return γ1 (ε) := γ ; 

Output : γ1 (ε) up to a precision equal to the step-size δ. 

Algorithm 2: Find ε 1 (γ ) , when γ is given. 

Input : ε-related constrains R γ , γ -related constraint R ε , 

threshold γ > 0 , step-size δ > 0 . 

1 find the linear inequality-based representation of R γ of the 

form Az ≤ ε using Proposition 9; 

2 obtain vertices of R γ as V = vertexenum ( Az ≤ γ ); 

3 initialize: ε 1 = 1 ; 

4 while V ⊆ R ε do 

5 ε := ε − δ; 

6 end 

7 Return ε 1 (γ ) := ε; 

Output : ε 1 (γ ) up to a precision equal to the step-size δ. 
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Algorithm 3: Find γ2 (ε) , when ε is given. 

Input : ε-related constrains R γ , γ -related constraint R ε , 

threshold ε > 0 , step-size δ > 0 . 

1 find the linear inequality-based representation of R ε of the 

form Az ≤ ε using Proposition 9; 

2 obtain vertices of R ε as V = vertexenum ( Az ≤ ε) 

3 construct refinement of V , say, V ′ by removing vertices of V 

which automatically satisfy γ constraints; 

4 initialize: γ = 1 ; 

5 while V ′ ∩ R γ � = ∅ do 

6 γ := γ − δ
7 end 

8 Return γ2 (ε) := γ ; 

Output : γ2 (ε) up to a precision equal to the step-size δ. 

Algorithm 4: Find ε 2 (γ ) , when γ is given. 

Input : ε-related constrains R γ , γ -related constraint R ε , 

threshold γ > 0 , step-size δ > 0 . 

1 find the linear inequality-based representation of R γ of the 

form Az ≤ γ using Proposition 9; 

2 obtain vertices of R γ as V = vertexenum ( Az ≤ γ ) 

3 construct refinement of V , say, V ′ by removing vertices of V 

which automatically satisfy ε constraints; 

4 initialize: ε = 1 ; 

5 while V ′ ∩ R ε � = ∅ do 

6 ε := ε − δ; 

7 end 

8 Return ε 2 (γ ) := ε; 

Output : ε 2 (γ ) up to a precision equal to the step-size δ. 
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ummarized in Algorithms 1–2 . Theorem 2 guarantees the proper 

unctioning of the algorithms. 

If these algorithms are applied, for each parameter ε and γ
he guaranteed value of the other parameter, i.e., γ1 and ε 1 , is 

btained. Note that the algorithms estimate ε 1 and γ1 with the 

aximum error bounded by δ > 0 . Depending on the precision re- 

uirement, the value of δ > 0 may be adjusted. This algorithm pro- 

ides a clear answer to RQ1. As long as the containment relation- 

hip is maintained, the region associated with one parameter be- 

omes redundant and there is no change to the optimal solution. 

ow the question is: What parameter values would make changes 

o the optimal solution? We attempt to answer this question be- 

ow by developing algorithms to find such parameter values using 

heorem 3 . 

.3.2. Obtaining ε 2 and γ2 

To develop the algorithms of this subsection, we have taken 

nto account that Theorem 3 guarantees that the solution of the 

inimization problem is always reached in the boundary of R γ ,ε 

henever the solution is not trivial. For example, if γ is fixed, 

hen ε is decreased so that none of the vertices of R ε belong 

o the boundary of R γ (with the exception of those vertices like 

0 , 0 , . . . , 0) , which always satisfy the constraints), we can ensure

hat the solution of the minimization problem will change. Based 

n this idea, we summarize the steps for computing ε 2 and γ2 in 

lgorithms 3–4 . 

When using these algorithms, for each parameter ε or γ the 

uaranteed value of the other parameter, resp. γ2 and ε 2 , is ob- 

ained. Again, the error is given by the value δ > 0 . These algo-

ithms give the answer to RQ2. We propose a generalization of 

hese algorithms below for the more generic case of the (M-G) op- 

imization model. 

emark 3. It must be highlighted that the output of these algo- 

ithms does not depend on the values of the preferences given by 

he experts, but on the weights that have been assigned to them. 

n other words, if such weights are fixed, we can determine the re- 
772 
ationship between γ and ε and, consequently, whether it is possi- 

le to simplify the CMCC model for any of their preference values 

y only running the algorithm once. 

.3.3. Generalizing the algorithm 

To end this section, a generalization of this algorithm is pro- 

ided to compare the constraints that define the feasible region of 

 minimization problem. 

heorem 4. Let P ⊂ R 

m be a convex polytope in R 

m and consider 

 continuous convex function c : P → R . Consider two compact in- 

ervals I 1 and I 2 in R and the linear functions g 1 
k 

: R 

m → R , for

 = 1 , 2 , . . . , n 1 and g 2 
k 

: R 

m → R for k = 1 , 2 , . . . , n 2 . For α ∈ I 1 and

∈ I 2 define the polytopes 

 α : = 

{
x ∈ P : g 1 k (x ) ≤ α ∀ k = 1 , 2 , . . . , n 1 

}
, 

 β : = 

{
x ∈ P : g 2 k (x ) ≤ β ∀ k = 1 , 2 , . . . , n 2 

}
. 

hen: 

• The optimization problem 

min 

x ∈P 
{ c(x ) } 

s.t. 

{
x ∈ P α

x ∈ P β

always has a solution. 
• For any values α ∈ I 1 and β ∈ I 2 , P α ⊆ P β if and only if the

vertices set of the polytope P α is contained in the polytope P β

Given the hypotheses of the previous theorem, Algorithms 5 

nd 6 determine respectively when the feasible region changes and 

hen the solution changes. 
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Algorithm 5: Algorithm for obtaining β1 (α) , the infimum 

value of β such that P α ⊆ P β . 

Input : Problem defined in Theorem 4, a fixed α ∈ I 1 and 

step-size δ > 0 . 

1 find the linear inequality-based representation of P α of the 

form Az ≤ α using Proposition 9; 

2 obtain vertices of P α as V = vertexenum ( Az ≤ α); 

3 Initialize β := max I 2 ; 

4 while V ⊂ P β do 

5 β := β − δ
6 end 

7 Return β1 (α) := β; 

Output : β1 (α) up to a precision equal to the step-size δ. 

Algorithm 6: Algorithm for obtaining β2 (α) , the supremum 

value of β such that the solution of the optimization problem 

has changed. 

Input : Problem defined in Theorem 4, a fixed α ∈ I 1 and step 

size δ > 0 . 

1 find the linear of the form representation of P α of the form 

Az ≤ α using Proposition 9; 

2 obtain vertices of P α as V = vertexenum ( Az ≤ α) 

3 construct refinement of V , say, V ′ by removing vertices of V 

which automatically satisfy β constraints; 

4 initialize: β = 1 ; 

5 while V ′ ∩ Bound ∗(P β ) � = ∅ do 

6 β := β − δ; 

7 end 

8 Return β2 (α) := β; 

Output : β2 (α) up to a precision equal to the step-size δ. 
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Table 1 

The costs with different values of ε and γ of (M-5) in Example 1. 

γ = 0 . 3 γ = 0 . 25 γ = 0 . 2 γ = 0 . 15 γ = 0 . 1 γ = 0 . 05 

ε = 0 . 30 1.01 1.20 1.60 2.14 2.69 3.24 

ε = 0 . 25 1.13 1.20 1.60 2.14 2.69 3.24 

ε = 0 . 20 1.32 1.32 1.60 2.14 2.69 3.24 

ε = 0 . 15 1.81 1.81 1.81 2.14 2.69 3.24 

ε = 0 . 10 2.47 2.47 2.47 2.47 2.69 3.24 

ε = 0 . 05 3.13 3.13 3.13 3.13 3.13 3.24 

Table 2 

Different bounds for ε when γ is fixed in (M-5) in Example 1. 

γ = 0 . 3 γ = 0 . 25 γ = 0 . 2 γ = 0 . 15 γ = 0 . 1 γ = 0 . 05 

ε ′ 1 (γ ) 1.2 1 0.8 0.6 0.4 0.2 

ε 1 (γ ) 0.94 0.79 0.64 0.48 0.32 0.16 

ε 2 (γ ) 0.23 0.19 0.15 0.11 0.07 0.03 
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. Illustrative examples 

In this section, a couple of examples are proposed to show the 

erformance of the polytope-based algorithms developed in the 

revious section. 

.1. Example 1: Labella et al. (2020) GDM problem 

The first illustrative example is related to one of the GDM prob- 

ems with five experts provided by Labella et al. (2020) when they 

efined CMCC models for the first time, which has motivated this 

tudy. 

Labella et al. considered a set of experts E = { e 1 , e 2 , e 3 , e 4 , e 5 }
hose weights were 

 = (0 . 375 , 0 . 1875 , 0 . 25 , 0 . 0625 , 0 . 125) , 

nd their preferences were (o 1 , o 2 , o 3 , o 4 , o 5 ) =
0 , 0 . 09 , 0 . 36 , 0 . 45 , 1) . The values of the costs of moving experts’

pinions were established as (c 1 , c 2 , c 3 , c 4 , c 5 ) = (6 , 3 , 4 , 1 , 2) . The

alues obtained by Labella et al. (2020) for the cost function for 

ifferent values of ε and γ when using the model (M-5) are 

ummarized in Table 1 . 

Note that Table 1 clearly suggests that the relationship between 

he parameters γ and ε exists. For instance, if we compare the 

alues of the cost function for γ = 0 . 1 and the different values

f ε, we can see that all of them, except the one obtained when

 = 0 . 05 , are the same. 

When CMCC models were first proposed, the authors were un- 

ble to provide any explanation for this phenomenon. In fact, exist- 

ng studies do not offer any insight into the relationship of these 

arameters, how it influences the minimum consensus cost, and 
773 
ow one parameter could be computed when the other is given. 

ithout such knowledge of the proper dynamics of CMCC models, 

he moderator, in practice, is forced to choose the other parameter 

n a hit and trial basis and cannot take advantage of computa- 

ional cost reduction, which results in inefficiency when conduct- 

ng the CRP. However, using the results of our study and the devel- 

ped algorithms, it is not only possible to explain the rationale be- 

ind the behavior of the cost function, but we are also able to get 

 complete picture of how different parameter configurations will 

mpact the cost of reaching consensus, which can help the moder- 

tor manage the CRP more efficiently. To explore this fact, we as- 

ume here that the parameter γ is given at the beginning for the 

roblem described above, and the moderator wants to know how 

he values of the parameter ε impact the cost of solving the CMCC 

odel. Therefore, we are going to use the results of our proposal to 

btain the different bounds of the parameter ε for different values 

f γ (see Table 2 ). Specifically, the following values are collected: 

• ε ′ 
1 
(γ ) : The upper bound for ε 1 provided by the results 

presented in Section 4 , which are based on inequalities 

( Proposition 4 ). This value represents an easy-to-compute 

rough bound for which the constraints provided by ε in the 

optimization problem are guaranteed by the γ condition. 
• ε 1 (γ ) : An estimate for ε 1 (up to a precision δ = 0 . 01 ) cal-

culated using the algorithms in Section 5 ( Algorithm 2 ). Al- 

though this threshold also stands for a bound for the values 

of ε whose constraints are redundant with the one related 

to γ , this value is more accurate than the previous one. 
• ε 2 (γ ) : An estimation for ε 2 (up to a precision δ = 0 . 01 )

computed using the algorithms in Section 5 ( Algorithm 4 ). 

This threshold for ε indicates when the feasible region re- 

lated to ε is strictly contained in the one related to γ . In 

other words, if the moderator chooses a value of ε lower 

than this bound, the γ constraint is always guaranteed and 

the DMs will move their opinions just to satisfy the ε con- 

ditions. 

If we look at the column γ = 0 . 1 , we can deduce that the feasi-

le region will not change until ε < ε 1 (0 . 1) = 0 . 32 and we cannot

nsure that the solution of the optimization problem changes un- 

il ε < ε 2 (0 . 1) = 0 . 07 . In fact, Table 1 shows that the values of the

ost function are the same for all ε > 0 . 07 . 

Furthermore, the inequality-based approach reveals that for ε > 

 

′ 
1 
(0 . 1) = 0 . 4 the constraints related to the distance between ex-

erts’ opinions and collective opinions are guaranteed by the con- 

traint corresponding to the parameter γ and therefore they could 

e omitted in the resolution of the mathematical programming 

odel, resulting in an immediate reduction of the computational 

osts. In fact, if more precision was necessary, the polytope-based 
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Table 3 

The costs with different values of ε and γ of (M-5) in Example 2. 

γ = 0 . 3 γ = 0 . 25 γ = 0 . 2 γ = 0 . 15 γ = 0 . 1 γ = 0 . 05 

ε = 0 . 30 0.19 0.26 0.32 0.39 0.46 0.53 

ε = 0 . 25 0.19 0.26 0.32 0.39 0.46 0.53 

ε = 0 . 20 0.21 0.26 0.32 0.39 0.46 0.53 

ε = 0 . 15 0.30 0.30 0.33 0.39 0.46 0.53 

ε = 0 . 10 0.40 0.40 0.40 0.40 0.46 0.53 

ε = 0 . 05 0.50 0.50 0.50 0.50 0.50 0.53 

Table 4 

Different bounds for ε when γ is fixed in (M-5) in Example 2. 

γ = 0 . 3 γ = 0 . 25 γ = 0 . 2 γ = 0 . 15 γ = 0 . 1 γ = 0 . 05 

ε ′ 1 (γ ) 0.60 0.50 0.40 0.30 0.20 0.10 

ε 1 (γ ) 0.55 0.46 0.37 0.28 0.19 0.10 

ε 2 (γ ) 0.19 0.16 0.13 0.09 0.06 0.03 
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Fig. 3. The change of the region R γ ,ε for γ = 0 . 2 in Example 2. 

Fig. 4. The change of the region R γ ,ε and its solutions for γ = 0 . 2 in Example 2. 

The blue dot represents the original preferences and the red dot the solution for the 

given value of ε. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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lgorithm guarantees that it is possible to ignore all the constraints 

btained when ε > ε 1 (0 . 1) = 0 . 32 . In other words, if the modera-

or considers that a maximum distance between DMs and the col- 

ective equal to 0.35 is sufficient when γ = 0 . 1 , all the constraints

elated to ε could be erased from the optimization model when 

mplementing it in a numerical solver because they are already 

ranted by the consensus constraint. In fact, we have used the Clp 

olver with the Julia programming language ( Bezanson, Edelman, 

arpinski, & Shah, 2017 ) to implement the linearized version of 

M-5) with and without ε constraints when ε = 0 . 3 and consider- 

ng the threshold γ = 0 . 1 . While the first model takes around 300

illiseconds to be solved, the second one only needs around 200 

illiseconds, yet both provide the same solution as guaranteed by 

ur algorithms. 

Similarly, since for ε < 0 . 07 = ε ′ 
2 
(0 . 1) the feasible region related

o ε is strictly contained in the one determined by γ = 0 . 1 , the

onstraints associated with the latter parameter could be omitted 

n the resolution of the model. In this case, we have also solved the 

ptimization model in both scenarios: considering both γ = 0 . 1 

nd ε = 0 . 05 constraints and only taking into account the ε = 0 . 05

onstraints. As before, deleting the γ = 0 . 1 constraints has also im- 

lied accelerating the model by about 50%. 

.2. Example 2: The 3-dimensional GDM problem 

This second GDM situation aims at explaining the relationship 

etween the parameters ε and γ from a geometrical point of view. 

o do so, a consensus process involving three experts has been 

tudied. Note that if three experts are considered, their preferences 

an be represented as a point in a 3-dimensional space (o 1 , o 2 , o 3 ) .

his makes it possible to provide a graphical visualization of the 

elationship between the parameters γ and ε. 

In this case, we consider a set of experts E = { e 1 , e 2 , e 3 } whose 

eights are given by W = (0 . 5 , 0 . 05 , 0 . 45) . Their initial preferences

re (o 1 , o 2 , o 3 ) = (0 . 3 , 0 . 6 , 0 . 9) and the cost vector is (c 1 , c 2 , c 3 ) =
1 , 1 , 1) . The optimization problem (M-5) has been solved for dif-

erent values of ε and γ , and the values obtained for the cost func- 

ion have been compiled in Table 3 . 

Let us compare these results with the bounds obtained by the 

lgorithms proposed in this paper. To do so, we have compiled in 

able 4 the different bounds for ε obtained when γ is fixed and 

he step-size δ = 0 . 01 is considered. 

We provided a graphical analysis of these values by taking ad- 

antage of the 3-dimensional nature of this decision problem be- 

ow. Let us fix γ = 0 . 2 . According to Table 4 , the region will not

hange for ε ∈ [0 . 4 , 1] , and we are sure that it changes when

 < 0 . 37 . Fig. 3 , which has been plotted using the Mathematica

oftware, shows the evolution of the corresponding feasible region 
774 
 0 . 2 ,ε for some values of ε. Note that the plots obtained for ε = 1

nd ε = 0 . 4 are the same. However, the one obtained for ε = 0 . 34

s slightly different from the previous plots, and the plot corre- 

ponding to ε = 0 . 24 is completely different. 

However, a change in the region does not necessarily imply a 

hange in the solution. Fig. 4 shows the feasible region R 0 . 2 ,ε , the 

osition of the original preferences (blue dot), and the correspond- 
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Table 5 

Computational time required for each GDM problem. 

Decision-makers 5 10 50 100 

M − 7 10.0 ms 46.0 ms 16947.0 ms 480451.0 ms 

M − 7 ′ 3.0 ms 7.0 ms 132.0 ms 531.0 ms 
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ng modified preferences obtained by solving the CMCC model (red 

ot). According to Table 4 , we cannot guarantee that the solu- 

ion will change until ε < 0 . 13 , and this is exactly what the fig-

re shows. Note that even though the values of ε are lower than 

 1 (0 . 2) = 0 . 37 and we know that the feasible region is changing,

he solution of the optimization problem is the same for ε = 0 . 3 ,

 = 0 . 2 and ε = 0 . 15 . In contrast, the solution obtained for ε =
 . 1 < ε 2 (γ ) = 0 . 13 changes. 

.3. Example 3: Simplifying CMCC in large-scale GDM 

The following example is intended to show how the appropri- 

te use of the relationship between the parameters ε and γ can 

e applied when solving a GDM problem to considerably improve 

omputational time costs. 

Let us consider a GDM problem which is going to be resolved 

y using the consensus model M-7. For a value ε > 0 , Proposition

 guarantees that, for any γ ≥ 2 ε, the model M − 7 is equivalent to

he following simplified version, which does not depend on the γ
onstraint: 

min 

x k 
i j 
) ∈M n ×n ([0 , 1]) 

m ∑ 

k =1 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

c k | x k i j − p k i j | 

.t. 

⎧ ⎨ 

⎩ 

x i j = 

m ∑ 

k =1 

w k x 
k 
i j 

| x k 
i j 

− x i j | ≤ ε, k = 1 , . . . , m, i = 1 , . . . , n − 1 , j = i + 1 , . . . , n 

( M- 7 

′ ) 

Note that, even though this model does not require the γ con- 

traint, any solution for M- 7 ′ ( ε > 0 ) is also a solution for M-7

 ε > 0 , γ ≥ 2 ε) and vice-versa. 

To analyze the computational cost of using M-7 or M- 7 ′ , we 

mplemented their respective linearized versions ( Rodríguez et al., 

021 ) in the Julia 1.6 programming language ( Bezanson et al., 2017 )

n the Google Colaboratory cloud service ( Bisong, 2019 ) (2.20GHz 

ntel(R) Xeon(R) CPU and 13 GB RAM). 

Four GDM problems were solved, each considering a different 

umber of experts. For these scenarios, the experts’ preferences 

ere randomly generated, and the consensus parameters were set 

o ε = 0 . 1 , γ = 0 . 2 . We obtained the consensus solution to the dif-

erent GDM situations for both M-7 and M- 7 ′ by using the solver 

LPK (GNU Linear Programming Kit) and we then measured the 

ime required for the solver to compute the optimal solution in 

illiseconds (ms) (see Table 5 ). 

The results show that the resolution of the M-7 model is much 

ore time-consuming than the resolution of its modified version 

- 7 ′ . While the former considerably increases the time cost when 

he number of experts also increases, the latter requires less than 

 second to provide a solution to optimization problems with the 

ame characteristics as the former. In this case, understanding of 

he relationship between the parameters γ and ε has been key 

o shortening the computational time when dealing with many 

ecision-makers. 
775 
. Conclusions 

CRPs, specifically MCC models, have been widely applied to 

DM problems to achieve consensus solutions. Classical CRPs and 

CC models fix different constraints using parameters specifically 

ssociated with the consensus level ( γ = 1 − μ) and the absolute 

istance ( ε), to obtain a more general consensus solution. CMCC 

odels include both types of constraints to obtain the agreed so- 

ution for the GDM problems. Nevertheless, the values of these 

arameters in CMCC have been traditionally fixed a priori by the 

oderator of the decision process according to the desired level of 

greement among the stakeholders. However, our study shows that 

ome configurations of such parameters may imply redundant con- 

traints in the mathematical programming model, which, in prac- 

ice, leads to higher computational costs. In this regard, our pro- 

osal defines a method to identify for which parameter pairs the 

ptimization model can be simplified by removing such redundant 

nequalities. Understanding the proper dynamics of these parame- 

ers and corresponding constraints over the optimal consensus so- 

ution is key to applying these models in real-life large-scale group 

ecision-making scenarios. 

This paper has analyzed the relationship between both param- 

ters γ and ε, and the associated constraints that determine the 

easible region of the CMCC models. The use of inequalities for this 

nalysis provides simple and straightforward relationships that are 

ot very precise, but the analysis based on polytopes has provided 

 novel algorithm that relates the parameters of the linear con- 

traints of any convex optimization problem, providing an accurate 

elationship between them. Based on the point of view of decision 

upport in CMCC-based CRPs, the proposed algorithms could help 

he moderator set these parameters when one is given, and pro- 

ide information on the impact of different configurations of these 

arameters in optimal solutions. Furthermore, understanding the 

elationship between these parameters also implies an immediate 

omputational improvement because it allows redundant inequali- 

ies to be neglected and thus a better performance is achieved. 

In the future, it would be interesting to analyze CMCC mod- 

ls that not only consider the minimization of the cost of chang- 

ng opinions, but also attempt to minimize the number of opinion 

hanges in light of the machinery developed in this work. Further- 

ore, investigations could be oriented to apply this algorithm to 

ther optimization problems. For example, it would be interest- 

ng to develop a deeper analysis of the computational impact of 

emoving the corresponding constraints when dealing with large- 

cale GDM problems where hundreds or thousands of DMs are 

onsidered. In this regard, such research could also highlight any 

ifferences when applying our algorithms to different preferences 

tructures, such as utility vectors or FPRs. 
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