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In light of the inevitable consensus costs incurred by preference adjustments of decision makers 
during the consensus reaching process (CRP), multiple minimum cost driven consensus models 
have been developed, which either prioritize the attainment of a high consensus degree, or focus 
on the consistency maintenance of individual opinions. However, the strategic equilibrium of 
consensus cost, consistency level and consensus degree, which shapes the cogency of the decision-

making outcome, becomes one of the main challenges which should be overcome in the CRP. 
To address this scenario, this study proposes three novel trust attitude-based consensus models 
to balance these three factors. These consensus models are implemented through optimization 
models, tailored to distinct primary objectives, resulting in outputs that encompass attitudinal 
parameters to realize the balance of consensus cost, consistency level and consensus degree. 
Correspondingly, the proposed consensus models have been applied to solve severe air pollution 
emergency management decision problems. Comparative analysis with existing works is provided 
to show the validity of the proposed models.

1. Introduction

In the context of real-world decision making, the results generated through group decision making (GDM) processes exhibit 
significantly greater reliability compared to those based on the preferences of a single individual. This is particularly true when 
decision makers exhibit insufficient domain-specific expertise or contextual awareness [1,2]. In a common GDM process, preferences 
collected from multiple decision makers are fused either to obtain the ranking of alternatives or choose the best alternative [3]. Most of 
GDM processes encompass three key stages: an information collection process, an aggregation process and an exploitation process [4]. 
The aggregation and exploitation processes are often collectively regarded as a selection process. However, direct aggregation of 
decision makers’ preferences tends to elicit dissent among group members, as some may feel that their opinions have been disregarded. 
To attain a decision result that is accepted by the group, there is a compelling need to integrate a consensus reaching process (CRP) into 
GDM [5,6], before the selection process. In essence, CRP can be regarded as a negotiation process wherein the opinions of decision 
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makers converge towards each other achieving a high consensus degree, aiming to balance multiple interests within the group, 
eliminate conflicts, improve the quality of GDM outcomes, and increase the satisfaction of decision makers with the final decision 
[7,8]. Implementing consensus models is of critical importance for augmenting decision making effectiveness [9]. In addition to 
consensus degree, consistency level and consensus cost are also two important factors that may influence the satisfaction of decision 
makers in CRPs. The consideration of consistency level is to ensure the preference expression is reasonable, while the consideration 
of consensus cost aids in reducing the interest loss for decision makers and maintain their willingness to cooperate in the CRP. Over 
recent decades, consensus models that have considered consensus cost or consistency level of preferences relations have been widely 
studied [10–12].

When decision makers adjust their preferences in CRP, they typically aim to preserve as much initial preference as possible. 
Consequently, consensus cost embedded in consensus models has garnered significant attention [13]. For instance, Guo et al. [14] ex-

plored minimum cost consensus models based on linear uncertainty distribution preferences. Wu et al. [15] proposed some minimum 
cost consensus models considering the trust relationship among decision makers and moderators. Ben-Arieh and Easton [16] applied 
the minimum distance between individual and the group opinion to measure the consensus degree, and proposed a minimum cost 
consensus model. Zhang et al. [17] presented a similar minimum cost consensus model, measuring group consensus degree based 
on different aggregation operators. Wu et al. [18] proposed an attitudinal trust recommendation mechanism to balance consensus 
degree and harmony degree, in which harmony degree is highly related to the cost and the concept of attitudinal parameter was first 
used to measure the trust relationship between decision makers.

Meanwhile, consensus models that address the consistency of preference relations have also been extensively studied in the liter-

ature. For instance, Herrera et al. [19] proposed a consensus model with consistency control, which consists of both an consistency 
enhancement process and a CRP. Chiclana et al. [20] developed a consistency-driven consensus model that generates recommen-

dations for modifying preferences of decision makers to improve consistency. Tang et al. [21] developed two consensus models by 
applying personalized numerical scales of linguistic terms, while the computation of personalized numerical scales are based on 
consistency-driven methodology. Wan et al. [22] established a personalized individual semantic-based consensus model to deal with 
large-scale GDM problem, which constructed several minimum-adjustment-based models and modeling personalized individual se-

mantics based on the consistency of a linguistic preference relation. Wu and Xu [23] proposed an automatic consensus enhancement 
process that considers individual consistency. Dong et al. [24] proposed two consistency-driven consensus models based on the ana-

lytic hierarchy process under the row geometric mean prioritization method. Leyva-López [25] proposed a sequence based consensus 
model that considers the consistency of preference relations while pursuing consensus.

Eventhough, consensus models considering consistency and cost have been independently and rigorously studied in the literature, 
the strategy to balance the consistency level, consensus cost, and consensus degree in CRPs is still limited. Some extant studies 
emphasized the significance of balancing two of these three factors in CRPs [18], nevertheless, they fail to furnish specific strategies 
to achieve such an objective. Building on the preceding analysis, the motivations of this study are:

(1) Intricate relationships exist between consistency levels, consensus degrees, and consensus costs, which stemming from the pref-

erence relation adjustments during the CRP. However, limited research has focused on exploring such relationships among these 
three factors, potentially leading to an inability to fully harness the underlying decision making information, and, consequently, 
affecting the rationality of decision result.

(2) An ideal automatic preference relation adjustment mechanism that cooperates with CRP should concurrently maximize the 
group consensus degree, minimize the consensus cost, and keeps or increases the level of consistency after preference relation 
adjustments. However, in real-world GDM processes, these three objectives are usually in conflict. There is a notable scarcity of 
effective strategies to balance consensus degree, consistency level and consensus cost.

(3) Existing consensus models that pursue high consistency levels usually fail to consider consensus cost, while minimum cost 
consensus model ignores the consistency of preference relation. There is a lack of research on consensus models that concurrently 
consider of consistency level, consensus degree, and consensus cost.

To address these research limitations, this study endeavors to leverage the concept of attitudinal parameter, as introduced by 
Wu et al. [18], to develop effective automated consensus models. This integration is designed to harmonize the interplay between 
consensus degree, consistency level and consensus cost, achieved by means of in-depth exploration of intricate relationships among 
these three factors, facilitated by the utilization of attitudinal parameters. The main contributions of the current research are stated 
as below.

(1) Intricate relationships between attitudinal parameter and consensus degree, consistency level, and consensus cost have been 
investigated, respectively. The linkage among consensus degree, consistency level, and consensus cost is explored based on the 
attitudinal parameter.

(2) Several automatic preference relation adjustment mechanisms are introduced, which offer a systematic approach to ascertain the 
optimal combination of attitudinal parameter and adjustment range, thereby facilitating the equilibrium of consensus degree, 
consistency level and consensus cost in the CRP.

(3) Three types of automatic consensus models are proposed to reduce consensus cost while striving for an elevated consistency level 
of preference relations. It provides flexibility to choose suitable consensus models based on the most urgent demands in different 
decision making scenarios.
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The remainder of this paper is structured of as follows. Section 2 reviews some basis knowledge related to this study. Section 3
presents the GDM framework and delineates the related formulations essential for the consensus models. Section 4 focuses on the 
automatic preference relation adjustment mechanisms to determine adjustment parameters and attitudinal parameters during the 
CRP, and establishes three novel automatic consensus models. In Sections 5 and 6, we provide a numerical example and conduct 
some simulation experiments to validate the proposed models. Section 7 concludes the paper.

2. Preliminaries

In this section, some knowledge pertinent to the subsequent study is revised, including the additive consistency of a fuzzy prefer-

ence relation (FPR), consensus cost, and attitudinal trust degree-based preference aggregation.

2.1. Additive consistency of an FPR

To standardize notational conventions and facilitate the discussion, the following definitions have been adapted to fit within the 
context of GDM. Let 𝐺 = {𝑔1, 𝑔2,… , 𝑔𝑓 } be the set of decision makers and 𝑔ℎ ∈𝐺.

Definition 1. [26,27] Let 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} be an alternative set, the FPR provided by decision maker 𝑔ℎ is defined as a matrix 𝑅ℎ =
(𝑟ℎ

𝑖𝑗
)𝑛×𝑛, such that

𝑟ℎ
𝑖𝑗
≥ 0, 𝑟ℎ

𝑖𝑗
+ 𝑟ℎ

𝑗𝑖
= 1, 𝑖, 𝑗 = 1,2,… , 𝑛, (1)

where 𝑟ℎ
𝑖𝑗

indicates the preference of 𝑥𝑖 over 𝑥𝑗 for 𝑔ℎ. In particular, 𝑟ℎ
𝑖𝑗
= 0.5 indicates that 𝑥𝑖 is indifferent to 𝑥𝑗 , 0 ≤ 𝑟ℎ

𝑖𝑗
< 0.5 indicates 

that 𝑥𝑗 is preferred to 𝑥𝑖, while 0.5 < 𝑟ℎ
𝑖𝑗
≤ 1 indicates that 𝑥𝑖 is preferred to 𝑥𝑗 .

To ensure the rationality of decision results, scholars have proposed numerous definitions of the consistency of FPRs [28], which 
can be primarily categorized into multiplicative consistency [29], ordinal consistency [30], and additive consistency [31]. In the 
current research, we embrace additive consistency without loss of generality.

Definition 2. [27] An FPR 𝑅ℎ = (𝑟ℎ
𝑖𝑗
)𝑛×𝑛 provided by 𝑔ℎ is additively consistent if 𝑟ℎ

𝑖𝑗
= 𝑟ℎ

𝑖𝑘
+ 𝑟ℎ

𝑘𝑗
− 0.5 for all 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛.

Definition 3. [32] Let 𝑅ℎ = (𝑟ℎ
𝑖𝑗
)𝑛×𝑛 be the FPR provided by 𝑔ℎ, then the additive consistency level of 𝑅ℎ is computed by

𝐶𝐼ℎ = 1 − 4 
𝑛(𝑛− 1)(𝑛− 2)

∑𝑛

𝑖=1

∑𝑛

𝑗=𝑖+1

∑𝑛

𝑘=𝑗+1
|𝑟ℎ

𝑖𝑗
+ 𝑟ℎ

𝑗𝑘
− 𝑟ℎ

𝑖𝑘
− 0.5|. (2)

2.2. Consensus cost

Consensus cost denotes the expenditure required to realign non-consensus decision makers’ perspectives with the group viewpoint. 
In existing literature, individual consensus cost is often directly proportional to, and sometimes directly measured by, the deviation 
between the individual viewpoint before and after the CRP [33,34]. In the current research, we employ the measure proposed in [33] 
without loss of generality.

Definition 4. [33] Let 𝐺 = {𝑔1, 𝑔2,… , 𝑔𝑓 } be the set of decision makers and 𝑅ℎ = (𝑟ℎ
𝑖𝑗
)𝑛×𝑛 be the preference relation provided by 𝑔ℎ

(ℎ = 1,2,… , 𝑓 ). If 𝑅ℎ = (𝑟ℎ
𝑖𝑗
)𝑛×𝑛 is adjusted to 𝑅

ℎ
= (𝑟ℎ

𝑖𝑗
)𝑛×𝑛 after the CPR, the consensus cost of 𝑔ℎ (ℎ = 1,2,… , 𝑓 ) is defined by

𝑇𝐶ℎ =
∑𝑛

𝑖=1
∑𝑛

𝑗=1 |𝑟ℎ𝑖𝑗 − 𝑟
ℎ

𝑖𝑗
|

𝑛(𝑛− 1) 
. (3)

It is evident that 𝑇𝐶ℎ ∈ [0,1].

2.3. Attitudinal trust model

To quantify the trust relationship among experts, attitudinal trust model was proposed in [18]. The core principle of this model 
posits that the degree of trust between two decision makers is commensurate with the proximity of their respective opinions. Trust 
relationship matrix is defined as follows.

Definition 5. [18] Suppose that 𝑅ℎ = (𝑟ℎ
𝑖𝑗
)𝑛×𝑛 is the preference relation provided by decision maker 𝑔ℎ, 𝑅𝑙 = (𝑟𝑙

𝑖𝑗
)𝑛×𝑛 is the preference 

relation provided by decision maker 𝑔𝑙, their trust relationship is described by

𝑇 𝑟ℎ𝑙 = 𝑆𝑖𝑚(𝑅ℎ,𝑅𝑙). (4)
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Here, 𝑆𝑖𝑚(𝑅ℎ,𝑅𝑙) = 1 − 1 
𝑛2

∑
𝑖,𝑗∈{1,2,⋯,𝑛} |𝑟ℎ𝑖𝑗 − 𝑟𝑙

𝑖𝑗
|. The trust relation matrix is constructed as 𝑇 𝑟= (𝑇 𝑟ℎ𝑙)𝑓×𝑓 .1

The attitudinal trust degree (ATD) was introduced in [35] to aggregate decision makers’ preferences, which allows their weights 
to be determined by attitudinal trust parameter.

Definition 6. [18] Suppose that the trust relationship degree of decision maker 𝑔ℎ to decision maker 𝑔𝑙 is {𝑇 𝑟ℎ𝑙|ℎ, 𝑙 = 1,2,⋯ , 𝑓}, 𝜎 ∶
{1,2,… , 𝑓}→ {1,2,… , 𝑓} is a mapping that satisfies 𝑇 𝑟ℎ𝜎(𝑓 ) < 𝑇 𝑟ℎ𝜎(𝑓−1) <⋯ < 𝑇 𝑟ℎ𝜎(1). The ATD is calculated using an OWA operator 
guided by a basic unit-monotonic function 𝑄 such that

𝑤𝐴𝑇𝐷
𝜎(𝑣) =𝑄

(
𝑣 
𝑓

)
−𝑄

(
𝑣− 1
𝑓

)
, 𝑣 = 1,2,… , 𝑓 . (5)

The parameterized family of regular increasing monotone quantifiers 𝑄(𝑟) = 𝑟𝜂 [36] is employed in the rest of the paper, with 
𝜂 ∈ [0,1] as an attitudinal parameter that reflects the decision maker’s attitude. Denote 𝑊 𝐴𝑇𝐷 = (𝑤𝐴𝑇𝐷

𝜎(1) ,… ,𝑤𝐴𝑇𝐷
𝜎(𝑓 ) ), if 𝜂 ∈ [0,1], we 

have 𝒐𝒓𝒏𝒆𝒔𝒔 (𝑊 𝐴𝑇𝐷)=1/(1 +𝜂) [37], a lower 𝜂 results in an aggregation guided by 𝑄(𝑟) closer to maximum aggregation operator. 
Chiclana et al. [38] demonstrated that 𝑤𝐴𝑇𝐷

𝜎(𝑓 ) <𝑤𝐴𝑇𝐷
𝜎(𝑓−1)⋯ <𝑤𝐴𝑇𝐷

𝜎(1) .

The collected preference relation is computed to ascertain the direction of adjustment, the ATD based OWA operator is utilized to 
allocate weights for decision makers, with different attitudinal parameters 𝜂. In particular, three types of trust policies were defined 
by Wu et al. [39], according to the attitude of non-consensus decision maker to others. 
(1) if 𝑄(𝑟) = 𝑟0, then 𝑊 𝐴𝑇𝐷 = (1,0,… ,0), which means that a non-consensus decision maker only trust decision maker with closest 
opinions, i.e., himself/herself. This strategy is termed “optimistic trust policy” in [18].2

(2) if 𝑄(𝑟) = 𝑟, then 𝑊 𝐴𝑇𝐷 = ( 1 
𝑓
,… ,

1 
𝑓
), which means that a non-consensus decision maker trusts all decision makers equally, that is 

“indifferent trust policy”, corresponding to arithmetic mean operator. 
(3) “bounded trust policy” pertains to a decision maker selecting an attitudinal parameter that ensures the consensus degree reaches 
the threshold value.

The ATD method can be considered a dependable technique here for aggregating individual preference relations into a collective 
preference relation, i.e.,

𝑅𝑐 =
𝑓∑

𝑣=1 
𝑤𝐴𝑇𝐷

𝜎(𝑣) 𝑅
𝑣. (6)

The weights 𝑤𝐴𝑇𝐷
𝜎(𝑣) (𝑣 ∈ {1,2,⋯ , 𝑓}) are computed by using the linguistic quantifier (see Eq. (5)), the mapping 𝜎 ∶ [1, 𝑓 ]→ [1, 𝑓 ]

is applied to carry out the mechanism that the more trusted decision maker (by non-consensus decision makers) gains the higher 
weight value.

Fig. 1 shows that 𝑊 𝐴𝑇𝐷 is influenced by both the attitudinal parameter 𝜂 and the number of decision makers, denoted as 𝑓 . 
Specifically, Figs. 1(a)-1(b) show how experts’ weights change as the number of decision-makers increases from 2 to 10, and then 
from 10 to 50, assuming a pre-determined attitudinal parameter of 7/8. Figs. 1(b)-1(f) further demonstrate how the weights vary 
with the number of decision-makers for different attitudinal parameters.

3. Consensus group decision making formulation

In this section, the consensus group decision making process is formulated, the measures to compute individual and group con-

sensus degree are introduced and the identification rule for non-consensus decision makers is presented.

3.1. The description of consensus group decision making

Usually, a consensus group decision making can be described by four stages: information collection stage, CRP, information 
aggregation stage, and exploitation stage. In the current research, an automatic consensus model is used in the CRP, prior to the 
information aggregation and exploitation stage. Specifically, the preference relations of non-consensus decision makers will be au-

tomatically adjusted during the CRP, in accordance with the preference relation adjustment mechanisms derived from the proposed 
optimal models. A set of alternatives is denoted by 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛}, a set of decision makers is denoted by {𝑔1, 𝑔2,… , 𝑔𝑓 }. Suppose 
that the preference of decision maker 𝑔ℎ on 𝑥𝑖 over 𝑥𝑗 is 𝑟ℎ

𝑖𝑗
, the preference relation is denoted by 𝑅ℎ = (𝑟ℎ

𝑖𝑗
)𝑛×𝑛.

For the sake of clarity, we present the list of mathematical notations in Table 1.

1 The definition has been refined from a decision matrix framework to a preference relation scenario.
2 Eq. (5) to compute ATD-OWA has been adjusted, from 𝑛−1 dimension in [18] to 𝑛 dimension in the current work. Correspondingly, the way to state trust policies 

have also been adjusted, from 𝑛− 1 dimension to n dimension computation. For instance, in [18], “optimistic trust” policy means that a decision maker only trust the 
decision maker with the most similar opinion, in the current proposal it is the decision maker only trust himself/herself.
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Fig. 1. 𝑊 𝐴𝑇𝐷 with various amounts of decision makers. 

3.2. Consensus degree measurement

We measure the consensus degree by computing the deviation between individual preference relation and group average prefer-

ence relation. The consensus degree of individual 𝑔ℎ is computed by:

𝐶𝐿ℎ = 1 − |𝑅ℎ −𝑅𝑎| = 1 −
∑

𝑖≠𝑗 |𝑟ℎ𝑖𝑗 − 𝑟𝑎
𝑖𝑗
|

𝑛(𝑛− 1) 
, ℎ = 1,2… , 𝑓 , (7)

where 𝑅𝑎 is the average of decision makers’ individual preference relations:

𝑅𝑎 = 1 
𝑓

𝑓∑
ℎ=1

𝑅ℎ (8)



Information Sciences 716 (2025) 122222

6

Y. Liu, Y. Wang, R.M. Rodríguez et al. 

Table 1
List of mathematical notations.

Mathematical symbol Meaning of symbols 
𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} alternative set 
𝐺 = {𝑔1, 𝑔2,… , 𝑔𝑓 } decision maker set 
𝑅ℎ preference relation of 𝑔ℎ before the CRP 
𝑅𝑐 collective preference relation before the CRP 
𝑅

ℎ
preference relation of 𝑔ℎ after the CRP 

𝜃 group consensus threshold 
𝜃′ individual consensus threshold 
𝐺1 = {𝑔ℎ ∈𝐺|𝐶𝐿ℎ < 𝜃′} decision makers with an unacceptable consensus level 
𝐺2 = {𝑔ℎ ∈𝐺|𝐶𝐿ℎ ≥ 𝜃′} decision makers with an acceptable consensus level 
𝐶𝐿 consensus degree of the group before CRP 
𝐶𝐼 consistency level of the group before CRP 
𝐶𝐿 consensus degree of the group after CRP 
𝐶𝐼 consistency level of the group after CRP 
𝑇𝐶 consensus cost of the group 
𝐶𝐿ℎ consensus level of 𝑔ℎ before CRP 
𝐶𝐼ℎ consistency level of 𝑔ℎ before CRP 
𝐶𝐿ℎ consensus level of 𝑔ℎ after CRP 
𝐶𝐼ℎ consistency level of 𝑔ℎ after CRP 
𝑇𝐶ℎ consensus cost of 𝑔ℎ
𝜂 attitudinal parameter 
𝛿 adjustment parameter 
𝛼, 𝛽 and 𝜇 the balance parameters to control the importance of two different factors 
𝛾1 flexible requirement for consensus degree 
𝛾2 holistic requirement for consensus degree and consensus cost 
𝛾3 holistic requirement for consistency level and consensus cost 
𝛾4 holistic requirement for consensus degree and consistency level 
𝑅∗ =

∑
𝑔ℎ∈𝐺1

𝑅ℎ∕#𝐺1 = (𝑟∗
𝑖𝑗
)𝑛×𝑛 the average preference relation of the non-consensus decision makers 

𝑅𝑎 = 1 
𝑓

∑𝑓

ℎ=1 𝑅
ℎ = (𝑟𝑎

𝑖𝑗
)𝑛×𝑛 the average preference relation of all the decision makers 

The consensus degree of the group is computed by

𝐶𝐿 = 1 
𝑓

𝑓∑
ℎ=1

𝐶𝐿ℎ. (9)

3.3. Non-consensus decision maker identification

The objective to identify the non-consensus decision makers is to determine the preference relation of whom to be adjusted in 
order to reach the consensus. The non-consensus decision makers are identified based on the following principles.

Identification Principle 1. If the consensus degree 𝐶𝐿 < 𝜃, then preference relation of every decision maker whose individual 
consensus degree satisfies 𝐶𝐿ℎ < 𝜃′ will be automatically adjusted.

Identification Principle 2. Threshold values 𝜃′ and 𝜃 could be different. Without loss of generality, we use 𝜃′ = 𝜃 in the current 
work (Some common methods to fix such thresholds can be found in [20][40], etc.).

Various automatic adjustment principles can be employed by decision makers during the CRP. Specific principles are outlined as 
below.

Adjustment Principle 1. It is assumed that the group consensus could be reached after automatic preference relations adjustments 
in accordance with the proposed optimal models.

Adjustment Principle 2. All the decision makers whose individual consensus degree fail to meet the threshold could be automat-

ically adjusted according to the proposed optimal models.

In future research, these principles could be relaxed by permitting only preference relations of a subset of decision makers, whose 
individual consensus degrees fall below the threshold, to be modified aimed at achieving the consensus, contingent upon decision 
makers’ respective consensus degrees.

3.4. Decision makers’ weights allocation with the ATD-OWA operator

Based on the principle “the greater the alignment in the viewpoints of two experts, the higher the degree of trust that will exist 
between them” [18], by quantifying the level of trust among experts, we can assign corresponding weights to each expert. Denote the 
average preference of the non-consensus decision makers by 𝑅∗ =

∑
𝑔ℎ1∈𝐺1

𝑅ℎ1∕#𝐺1, where #𝐺1 represents the number of decision 
makers in 𝐺1. The similarity between 𝑅ℎ and 𝑅∗ can be computed by

𝑆𝑖𝑚(𝑅ℎ,𝑅∗) = 1 − 1 
𝑛2

∑
𝑖,𝑗∈{1,2,⋯,𝑛}

|𝑟ℎ
𝑖𝑗
− 𝑟∗

𝑖𝑗
|, ℎ ∈ {1,2,⋯ , 𝑓}, (10)
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Fig. 2. Conflicts among CI, CL and TC for 𝑔3 and 𝑔4 . 

where 𝑟ℎ
𝑖𝑗

and 𝑟∗
𝑖𝑗

denote elements in the preference relation 𝑅ℎ and the average preference relation of non-consensus decision makers 
𝑅∗, respectively. 𝑅∗ can be regarded as the sub-group opinion of non-consensus decision makers, if 𝑆𝑖𝑚(𝑅𝑙,𝑅∗) > 𝑆𝑖𝑚(𝑅ℎ,𝑅∗) for 
𝑙, ℎ ∈ {1,2,⋯ , 𝑓}, then 𝑤𝐴𝑇𝐷

𝜎(𝑙) >𝑤𝐴𝑇𝐷
𝜎(ℎ) .

3.5. Automatic preference relation adjustment

With the weights allocation scheme introduced in Section 3.4, in the preference relation adjustment process, the preference 
relations of non-consensus decision makers should be modified according to the following rules to expedite the convergence of the 
consensus process.

𝑅
ℎ
= (1 − 𝛿)𝑅ℎ + 𝛿

𝑓∑
𝑣=1 

𝑤𝐴𝑇𝐷
𝜎(𝑣) 𝑅

𝑣, 𝑔ℎ ∈𝐺1. (11)

𝛿 ∈ [0,1] represents an adjustment parameter quantifying the change from original preference to preferences of other decision makers. 
The decision makers’ preference relations should be automatically adjusted according to the opinions of decision makers he/she trusts, 
to make the automatic adjustment mechanism more in line with expectations of participants in the GDM, avoiding the outcomes of 
automated adjustments that are too psychologically unpalatable to decision makers. The aggregation based on ATD-OWA is employed 
to address the trust difference among decision makers. To achieve this goal, the adjustment parameter will be determined based on 
the proposed optimal models in the current research.

3.6. The necessity to balance consensus degree, consistency level and consensus cost in CRP

In the following, an example is provided to illustrate the conflict among consensus cost, consistency level and consensus degree, 
emphasizing the critical need to balance these three factors.

Example 1. Suppose that the preference relations provided by decision makers 𝐺 = {𝑔1, 𝑔2,⋯ , 𝑔4} are provided as below, the decision 
makers 𝑔3 and 𝑔4 are identified as non-consensus individuals whose preference relations should be modified. If the attitudinal parameter is 
predetermined as 1∕8, Fig. 2 demonstrates the trends in consensus degree, consistency level and consensus cost for 𝑔3 and 𝑔4 under varying 
adjustment parameter. For 𝑔3, increasing the adjustment parameter from 0.2 to 0.4 demonstrates contrasting patterns: the consistency level 
enhances while the consensus degree declines, and the consensus cost escalates. For 𝑔4, raising the adjustment parameter from 0.2 to 0.4 
simultaneously elevates both consensus degree and consistency level, albeit accompanied by an increase in consensus cost.

𝑅1 =
⎡⎢⎢⎢⎣
0.5 0.3 0.8 0.6
0.7 0.5 0.6 0.4
0.2 0.4 0.5 0.3
0.4 0.6 0.7 0.5

⎤⎥⎥⎥⎦
,𝑅2 =

⎡⎢⎢⎢⎣
0.5 0.7 0.6 0.3
0.3 0.5 0.5 0.4
0.4 0.5 0.5 0.7
0.7 0.6 0.3 0.5

⎤⎥⎥⎥⎦
,

𝑅3 =
⎡⎢⎢⎢⎣
0.5 0.1 0.9 0.8
0.9 0.5 0.7 0.4
0.1 0.3 0.5 0.9
0.2 0.6 0.1 0.5

⎤⎥⎥⎥⎦
,𝑅4 =

⎡⎢⎢⎢⎣
0.5 0.4 0.3 0.9
0.6 0.5 0.4 0.8
0.7 0.6 0.5 0.2
0.1 0.2 0.8 0.5

⎤⎥⎥⎥⎦
.
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Fig. 3. Impacts of attitudinal parameter on consistency level, consensus cost and consensus degree. 

From this numerical example, the adjustment degree of preference relation influences consensus degree, consistency level and 
consensus cost of decision makers. Furthermore, it is challenging to prevent conflicts among such three factors during the CRP. 
Consequently, it is essential to develop effective mechanisms for determine the adjustments of preference relations, along with 
corresponding consensus models, to achieve a balance among these tree factors, tailored to the specific contexts of decision making 
situations.

4. ATD-based consensus models

In this section, the interrelationships among consistency level, group consensus degree, and consensus cost are discussed. Subse-

quently, three ATD-based consensus models are presented namely i) the consistency driven model, ii) the consensus driven model 
and iii) the cost-driven model, respectively.

4.1. Relationships between attitudinal parameter and three factors

The consensus degree of the decision maker 𝑔ℎ before and after adjustment is denoted by 𝐶𝐿ℎ and 𝐶𝐿ℎ, respectively. The group 
consensus degree before and after adjustment is denoted by 𝐶𝐿 and 𝐶𝐿, respectively. The preference relation provided by decision 
maker 𝑔ℎ before and after adjustment is denoted by 𝑅ℎ and 𝑅

ℎ
, respectively. The consensus cost for decision maker 𝑔ℎ and the group 

is denoted by 𝑇𝐶ℎ and 𝑇𝐶 , respectively. The consistency of preference provided by decision maker 𝑔ℎ before and after adjustment 
is denoted by 𝐶𝐼ℎ and 𝐶𝐼ℎ, respectively. The group consensus degree, consistency level, and consensus cost are connected by the 
attitudinal parameter, as described by Fig. 3. 

The relationships among attitudinal parameter and consistency level, consensus cost and consensus degree can be described as 
follows.

(1) An attitudinal parameter determines the weights assigned to decision makers, thereby influencing the collective preference, 
which in turn impacts the modified preference relation and the consistency of the modified preference relation.

(2) An attitudinal parameter determines the decision makers’ weights, thereby influencing the collective preference and the 
modified preference relation. This subsequently affects the average of the modified preference relations and ultimately impacts the 
degree of group consensus.

(3) An attitudinal parameter determines the decision makers weights, subsequently affects the collective preference, consequently 
affects the modified preference relation, ultimately affects the cost calculated from the discrepancy between the preference relations 
prior to and following the adjustment.3

For the sake of facilitating discussion, three additional indicators are introduced: 𝑇𝐶𝐿 (the combination of group consensus 
degree and consensus cost), 𝑇𝐶𝐼 (the combination of group consistency level and consensus cost), and 𝐶𝐿𝐼 (the combination of 
group consensus degree and consistency).

𝑇𝐶𝐿 = 𝛼𝐶𝐿+ (1 − 𝛼)(1 − 𝑇𝐶). (12)

𝑇𝐶𝐼 = 𝛽𝐶𝐼 + (1 − 𝛽)(1 − 𝑇𝐶). (13)

𝐶𝐿𝐼 = 𝜇𝐶𝐿+ (1 − 𝜇)𝐶𝐼. (14)

Here, 𝛼 ∈ (0,1)(or 𝛽, or 𝜇) are parameters to control the importance of different factors among consensus cost, consensus degree, 
and consistency of preference relation.

3 Quantitative analysis on these relationships can be found in Sections 6.4-6.5, shown by Fig. 9 and Fig. 11.
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4.2. A consistency driven consensus model: SIS-DRI model

In the real-life CRP, if the GDM problem demands higher reliability of the solution (reflected by consistency of adjusted prefer-

ence relation), rather than agreement among the group (reflected by consensus degree) and reduced consensus cost, the following 
preference relation adjustment mechanism is recommended. The optimization objective of this model is to achieve the highest level 
of consistency in all decision makers’ preference relations after reaching group consensus. At the same time, the consensus cost can 
be restricted to some extent to prevent excessive modification of preference relations during the consensus reaching process. Consis-

tency, consensus degree and consensus cost can be taken into account at the same time, with the balance among these three factors 
achieved by applying the attitudinal parameter as one of the outputs for the optimization model.

max
∑

𝑔ℎ∈𝐺1
𝐶𝐼ℎ

𝑠.𝑡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐶𝐼ℎ = 1 − 4 
𝑛(𝑛−1)(𝑛−2)

∑𝑛

𝑖=1
∑𝑛

𝑗=𝑖+1
∑𝑛

𝑘=𝑗+1 |𝑟ℎ𝑖𝑗 + 𝑟
ℎ

𝑗𝑘
− 𝑟

ℎ

𝑖𝑘
− 0.5|, ℎ = 1,2,… , 𝑓

𝐶𝐼 = 1 
𝑓

∑𝑓

ℎ=1𝐶𝐼ℎ

𝑇𝐶ℎ =
∑𝑛

𝑖=1
∑𝑛

𝑗=1 |𝑟ℎ𝑖𝑗−𝑟ℎ𝑖𝑗 |
𝑛(𝑛−1) , ∀𝑔ℎ ∈𝐺1

𝑇𝐶 =
∑

ℎ∈𝐺1
𝑇𝐶ℎ

#𝐺1

𝐶𝐿ℎ = 1 − |𝑅ℎ
−𝑅

𝑎| = 1 −
∑

𝑖≠𝑗 |𝑟ℎ𝑖𝑗−𝑟𝑎𝑖𝑗 |
𝑛(𝑛−1) , ℎ = 1,2,… , 𝑓

𝐶𝐿 = 1 
𝑓

∑𝑓

ℎ=1𝐶𝐿ℎ ≥ 𝛾1 ≥ 𝜃

𝑇𝐶𝐿 = 𝛼𝐶𝐿+ (1 − 𝛼)(1 − 𝑇𝐶) ≥ 𝛾2

𝑅
𝑎
= 1 

𝑓

∑𝑓

ℎ=1𝑅
ℎ

𝑅
ℎ
= (1 − 𝛿)𝑅ℎ + 𝛿

∑𝑓

𝑣=1𝑤
𝐴𝑇𝐷
𝜎(𝑣) 𝑅

𝑣, ∀𝑔ℎ ∈𝐺1

𝑅
ℎ
=𝑅ℎ, ∀𝑔ℎ ∈𝐺2

𝛿 ∈ [0,1], 𝜂 ∈𝑂,𝛼 ∈ (0,1)

(15)

In this optimization model, the existence of a value 𝛾1 demonstrates that the consensus can be reached. 𝛾2 serves as a threshold 
that encapsulates the holistic requirements for consensus degree and consensus cost, 𝜃 indicates the group consensus threshold. 
Parameter 𝛼 is employed to harmonize the significance of group consensus degree and consensus cost, which can be fine-tuned in 
accordance with the demanding of decision makers. The parameter 𝛼 can be predetermined or simply acknowledged as existent. 
Notably, a pre-set 𝛼 will yield a larger consensus cost compared to the scenario where 𝛼 merely exist. In detail, when 𝛼 is pre-set, the 
constraint 𝑇𝐶𝐿 = 𝛼𝐶𝐿+ (1 − 𝛼)(1 − 𝑇𝐶) ≥ 𝛾2 becomes more rigorous compared to the scenario where 𝛼 is allowed to vary flexibly 
within interval [0,1]. This requires more significant adjustments to non-consensus decision makers’ preference relations to meet the 
requirement, resulting in higher consensus costs. The model’s inputs are decision makers’ preference relations. Intermediate outputs 
include preference relations of decision makers with consensus degrees below the threshold. The ultimate outputs are the optimal 
adjustment parameter 𝛿 and the trust attitudinal parameter 𝜂, which maximize the consistency. Since the attitudinal parameter 
determines decision makers’ weights, it is discretized in this paper, assuming uniform distribution within (0,1), while the adjust 
parameter is a continuous variable in (0,1). Denote 𝑂 = {1∕𝑜,2∕𝑜,⋯ , 𝑜−1∕𝑜}, where 𝑜 denotes a positive integer, then 𝜂 ∈𝑂 ⊆ (0,1). 
This model is tailored for GDM problems in which the rationality of preference relations of decision makers are vital, and decision 
makers exhibit a pronounced inclination towards keeping the consistency of the preference relations during the CRP, significantly 
surpassing the requirements for consensus degree and consensus cost. Anyway, it is assumed that automatic preference relation 
adjustments can be implemented for consensus achievement. The CRP framework with this adjustment mechanism is named the 
SIS-DRI consensus model and is illustrated in Fig. 4. The corresponding pseudocode for the SIS-DRI consensus model is provided in 
Algorithm 1.

4.3. A consensus model aiming for maximum consensus degree: SEN-DRI model

In certain specific GDM scenarios, GDM problem needs more reliability on agreements, which can be reflected by consensus 
degree. To ensure decision result rationality, the consensus cost and the consistency level of preference relation after adjustment 
must also be considered in such cases. Therefore, the requirements for consistency level and consensus cost serve as constraints, 
whereas maximizing group consensus degree becomes the objective for optimization. In this way, an optimization model can be 
constructed to generate preference relation adjustment mechanisms. To achieve maximum group consensus, subject to the constraint 
that the consistency and the consensus cost are maintained within acceptable limits, it is recommended to employ the SEN-DRI 
consensus model, in conjunction with an adjustment mechanism, as delineated by Eq. (16).

In this model, the existence of a specific 𝛾1 value guarantees consensus attainment, ensures that the consensus can be reached. 
Hyper-parameter 𝛾3 serves as a threshold that encompasses the comprehensive demands for consistency level and consensus cost. The 
inputs of this model are the preference relations provided by decision makers. The output is the optimal adjustment parameter 𝛿 and 
trust attitudinal parameter 𝜂. Parameter 𝜂 controls the balance, and the adjustment parameter determines the adjustment degree for 
the non-consensus decision makers. This model is designed for GDM scenarios where maximal consensus attainment is imperative, 
significantly outweighing considerations of preference consistency and the associated costs of consensus. The consensus framework 
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Algorithm 1: The SIS-DRI consensus model.

1 Input: Decision makers’ preference relations 𝑅ℎ, where ℎ = 1,2,… , 𝑓 ; Consensus thresholds 𝜃 and 𝜃′ ; Holistic requirement for consensus degree and 
consensus cost 𝛾2 ; Balance parameter 𝛼.

2 Output: Optimal combination of adjustment parameter 𝛿 and trust attitudinal parameter 𝜂; Maximum consistency level; Adjusted preference relations of 
non-consensus decision makers.

3 begin

4 for 𝑔ℎ ∈𝐺 do

5 Compute: The consensus degree 𝐶𝐿ℎ for each decision maker 𝑔ℎ using Eq. (7). 
6 end 
7 Compute: The group consensus level 𝐶𝐿 using Eq. (9). 
8 if 𝐶𝐿 < 𝜃 then

9 for 𝑔ℎ ∈𝐺 with 𝐶𝐿ℎ < 𝜃′ do

10 Identify: Non-consensus decision makers whose preference relations need adjustment, i.e., 𝑔ℎ ∈𝐺1 . 
11 end 
12 end 
13 else

14 Terminate: End the algorithm. 
15 end 
16 for 𝜂 ∈ (0,1) do

17 Compute: Derive experts’ weights 𝑤𝐴𝑇𝐷
𝜎(𝑣) using Eq. (5). 

18 end 
19 Compute: The optimal adjustment parameter 𝛿 and attitudinal parameter 𝜂 using Eq. (15) to maximize consistency level. 
20 for 𝑔ℎ ∈𝐺1 do

21 Update: Adjust the preference relations of 𝑔ℎ using Eq. (11). 
22 end 
23 return The adjusted preference relations of non-consensus decision makers.

24 end

Fig. 4. The SIS-DRI, SEN-DRI and CO-DRI consensus models. 

for this maximum consensus degree driven adjustment generation model, the SEN-DRI consensus model, is presented in Fig. 4. To 
save space, the pseudocode for the SEN-DRI consensus model is provided in Appendix B.
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max
∑

𝑔ℎ∈𝐺1
𝐶𝐿ℎ

𝑠.𝑡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐶𝐿ℎ = 1 − |𝑅ℎ
−𝑅

𝑎| = 1 −

∑
𝑖≠𝑗

|𝑟ℎ𝑖𝑗−𝑟𝑎𝑖𝑗 |
𝑛(𝑛−1) , ℎ = 1,2,… , 𝑓

𝐶𝐿 = 1 
𝑓

∑𝑓

ℎ=1𝐶𝐿ℎ ≥ 𝛾1 ≥ 𝜃

𝑇𝐶ℎ =
∑𝑛

𝑖=1
∑𝑛

𝑗=1 |𝑟ℎ𝑖𝑗−𝑟ℎ𝑖𝑗 |
𝑛(𝑛−1) , ∀𝑔ℎ ∈𝐺1

𝑇𝐶 =
∑

ℎ∈𝐺1
𝑇𝐶ℎ

#𝐺1
𝐶𝐼ℎ = 1 − 4 

𝑛(𝑛−1)(𝑛−2)
∑𝑛

𝑖=1
∑𝑛

𝑗=𝑖+1
∑𝑛

𝑘=𝑗+1 |𝑟ℎ𝑖𝑗 + 𝑟
ℎ

𝑗𝑘
− 𝑟

ℎ

𝑖𝑘
− 0.5|, ℎ = 1,2,… , 𝑓

𝐶𝐼 = 1 
𝑓

∑𝑓

ℎ=1𝐶𝐼ℎ

𝑇𝐶𝐼 = 𝛽𝐶𝐼 + (1 − 𝛽)(1 − 𝑇𝐶) ≥ 𝛾3

𝑅
𝑎
= 1 

𝑓

∑𝑓

ℎ=1𝑅
ℎ

𝑅
ℎ
= (1 − 𝛿)𝑅ℎ + 𝛿

∑𝑓

𝑣=1𝑤
𝐴𝑇𝐷
𝜎(𝑣) 𝑅

𝑣, ∀𝑔ℎ ∈𝐺1

𝑅
ℎ
=𝑅ℎ, ∀𝑔ℎ ∈𝐺2

𝛿 ∈ [0,1], 𝜂 ∈𝑂,𝛼 ∈ (0,1)

(16)

4.4. A minimum consensus cost-driven consensus model: CO-DRI model

Although extensive literature focuses on minimum cost consensus model, there are few studies that consider consistency at the 
same time. If a GDM problem demands cost reduction beyond solution reliability and group agreement, yet still requires some 
preference relation consistency, the CO-DRI consensus model cooperates with the following adjustment mechanism is recommended 
for application.

min
∑

𝑔ℎ∈𝐺1
𝑇𝐶ℎ

𝑠.𝑡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑇𝐶ℎ =
∑𝑛

𝑖=1
∑𝑛

𝑗=1 |𝑟ℎ𝑖𝑗−𝑟ℎ𝑖𝑗 |
𝑛(𝑛−1) , ∀𝑔ℎ ∈𝐺1

𝑇𝐶 =
∑

ℎ∈𝐺1
𝑇𝐶ℎ

#𝐺1

𝐶𝐿ℎ = 1 − |𝑅ℎ
−𝑅

𝑎| = 1 −

∑
𝑖≠𝑗

|𝑟ℎ𝑖𝑗−𝑟𝑎𝑖𝑗 |
𝑛(𝑛−1) , ℎ = 1,2,… , 𝑓

𝐶𝐿 = 1 
𝑓

∑𝑓

ℎ=1𝐶𝐿ℎ ≥ 𝛾1 ≥ 𝜃

𝐶𝐼ℎ = 1 − 4 
𝑛(𝑛−1)(𝑛−2)

∑𝑛

𝑖=1
∑𝑛

𝑗=𝑖+1
∑𝑛

𝑘=𝑗+1 |𝑟ℎ𝑖𝑗 + 𝑟
ℎ

𝑗𝑘
− 𝑟

ℎ

𝑖𝑘
− 0.5|, ℎ = 1,2,… , 𝑓

𝐶𝐼 = 1 
𝑓

∑𝑓

ℎ=1𝐶𝐼ℎ

𝐶𝐿𝐼 = 𝜇𝐶𝐿+ (1 − 𝜇)𝐶𝐼 ≥ 𝛾4

𝑅
𝑎
= 1 

𝑓

∑𝑓

ℎ=1𝑅
ℎ

𝑅
ℎ
= (1 − 𝛿)𝑅ℎ + 𝛿

∑𝑓

𝑣=1𝑤
𝐴𝑇𝐷
𝜎(𝑣) 𝑅

𝑣, ∀𝑔ℎ ∈𝐺1

𝑅
ℎ
=𝑅ℎ, ∀𝑔ℎ ∈𝐺2

𝛿 ∈ [0,1], 𝜂 ∈𝑂,𝛼 ∈ (0,1)

(17)

In this model, 𝛾4 serves as a threshold that encapsulates the holistic requirements for consensus degree and consistency level. 
Consensus attainment requires the presence of 𝛾1. Parameter 𝜇 is utilized to harmonize the significance of consensus degree and 
consistency level, its value can be determined in accordance with other information in the decision making process. The parameter 
𝜇 may be predetermined or simply acknowledged as existent. The model inputs comprise decision makers’ preference relations. The 
intermediate outputs are preference relations of decision makers whose individual consensus degree cannot reach the threshold. The 
ultimate outputs are the optimal adjustment parameter 𝛿 and trust attitudinal parameter 𝜂. This model suits GDM scenarios where 
achieving the minimum consensus cost is crucial, surpassing preference consistency and consensus degree considerations. Nonetheless, 
there is a fundamental rule that the consensus must be achievable. The optimization model controls the balance between consistency 
level and group consensus degree by determining the optimal 𝜂. The consensus framework related to this optimization model, named 
CO-DRI consensus model, and it is presented in Fig. 4. The pseudocode for the CO-DRI consensus model is provided in Appendix B.

Remark 1. For the proposed optimization models (15)-(17), clearly, the parameter space is bounded and satisfies the compactness condition. 
The continuity of the objective functions ensures the convergence of the models and guarantees the existence of at least one global optimal 
solution. But the solution for each model is not restricted to be unique. The optimization models (15)-(17) can be easily transformed to linear 
programming models, which are shown in Appendix A.
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Fig. 5. Scalability Fitting Curve. 

4.5. Complexity analysis for the consensus models

The following presents the time and space complexity analysis of the ATD-based consensus models: In terms of time complexity, 
the time complexity for computing the degree of group consensus is 𝑂(𝑓 ⋅𝑛2), while the time complexity for automatically preferences 
adjustment generation mechanisms is 𝑂(𝑓 2 ⋅𝑛2). Therefore, the overall time complexity of the proposed consensus models is 𝑂(𝑓 2 ⋅𝑛2). 
Regarding the space complexity, the size of the preference relation 𝑅ℎ is 𝑛 × 𝑛, which results in a space complexity of 𝑂(𝑓 ⋅ 𝑛2) for 
all decision-makers. The size of the collective preference relation 𝑅𝑐 is also 𝑛 × 𝑛, and the space complexity is 𝑂(𝑛2). Considering 
both factors, the overall space complexity of the consensus models is 𝑂(𝑓 ⋅ 𝑛2 + 𝑛2). Because 𝑓 ≥ 1, the space complexity can be 
simplified as 𝑂(𝑓 ⋅ 𝑛2). Simulation experiments have been added to verify the growth of memory usage with varing 𝑓 (number 
of decision makers) and 𝑛 (matrix dimension), to demonstrate the computational performance of the algorithm. Since the SIS-DRI 
model, the CO-DRI model and SEN-DRI model share identical space complexity, we select the SIS-DRI model as the representative 
case for comparison with the theoretical memory consumption model derived from 𝑓 ⋅ 𝑛2, and the accuracy of memory consumption 
prediction is evaluated by examining the goodness-of-fit between predicted and actual values. The experimental data is presented as 
below.

(1) 𝑛=10, with varying number of decision makers 𝑓 = {10,20,30,⋯ ,100}, the change of space complexity is show by Fig. 5(a).

(2) 𝑓=10, with varying dimension of preference matrix 𝑛 = {10,20,30,⋯ ,100}, the change of space complexity is shown by 
Fig. 5(b). Here, without loss of generality, the complex numbers in matrices are random created.

From Fig. 5, the acceptable goodness-of-fit between the SIR model and the theoretical memory consumption model based on 𝑓 ⋅𝑛2

indicates that the SIR model is capable of accurately predicting memory usage, thereby validating its feasibility.

5. Applications in severe air pollution emergency management

Under severe air pollution conditions, the meticulous implementation of emergency management measures holds paramount 
importance for ensuring the quality of life of the population and the sustainable development of urban areas. A pivotal emergency 
strategy is to adopt production restriction measures for specific enterprises. Given the multi-stakeholder interests that this strategy 
encompasses, including enterprises, the government, and the general public, it is imperative to adopt a group consensus decision 
making model in selecting the appropriate production restriction mechanisms. The selection of emergency production restriction 
schemes in heavy air pollution weather requires consideration of the rationality of preference relations, the public satisfaction with 
the decision outcomes, the possible economic costs and emotional resistance caused by the automated change of opinions in emergency 
situations. Consequently, applying the proposed consensus models to balance preference consistency, consensus degree, and consensus 
costs is essential. Assume that there are four production restriction plans {𝑥1 , 𝑥2, 𝑥3, 𝑥4}. Representatives from the government, 
enterprises, environmental organizations, and the general public are {𝑔1 , 𝑔2, 𝑔3, 𝑔4}, they are requested to provide preferences on 
the plans, to determine the final strategy from the four alternative solutions. Suppose the decision makers’ preference relations are 
as follows:
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Table 2
Weights of decision makers with 
different parameter 𝜂.

𝜂 Decision maker weight 
1/8 (0.08, 0.03, 0.84, 0.05) 
2/8 (0.13, 0.07, 0.71, 0.09) 
3/8 (0.18, 0.1, 0.59, 0.13) 
4/8 (0.21, 0.13, 0.5, 0.16) 
5/8 (0.23, 0.16, 0.42, 0.19) 
6/8 (0.24, 0.19, 0.35, 0.22) 
7/8 (0.25, 0.22, 0.3, 0.23) 

𝑅1 =
⎡⎢⎢⎢⎣
0.5 0.3 0.8 0.6
0.7 0.5 0.6 0.4
0.2 0.4 0.5 0.3
0.4 0.6 0.7 0.5

⎤⎥⎥⎥⎦
,𝑅2 =

⎡⎢⎢⎢⎣
0.5 0.7 0.6 0.3
0.3 0.5 0.5 0.4
0.4 0.5 0.5 0.7
0.7 0.6 0.3 0.5

⎤⎥⎥⎥⎦
,

𝑅3 =
⎡⎢⎢⎢⎣
0.5 0.4 0.3 0.9
0.6 0.5 0.4 0.8
0.7 0.6 0.5 0.2
0.1 0.2 0.8 0.5

⎤⎥⎥⎥⎦
,𝑅4 =

⎡⎢⎢⎢⎣
0.5 0.1 0.9 0.8
0.9 0.5 0.7 0.4
0.1 0.3 0.5 0.9
0.2 0.6 0.1 0.5

⎤⎥⎥⎥⎦
.

5.1. The problem solving process by applying the SIS-DRI model

(1) Non-consensus decision maker identification. Prior to the CRP, the consensus degree of the decision makers is:𝐶𝐿1 =
0.891,𝐶𝐿2 = 0.825,𝐶𝐿3 = 0.767,𝐶𝐿4 = 0.783. The group consensus degree is 0.816. Given a consensus threshold of 0.8, some ex-

perts’ consensus degrees fall below this threshold. Therefore, it is necessary to adjust the preference relations of decision makers 
with lower consensus degrees. The decision makers with consensus degree less than 0.8 should be automatically adjusted. Thus, the 
preference relations of decision makers 𝑔3 and 𝑔4 are determined to be adjusted.

(2) Weight calculation for decision makers. To compute 𝑅∗ as the average of the preference relation of all non-consensus decision 
makers, and to measure the similarity between all decision makers and 𝑅∗ . 𝑅∗ is presented below.

𝑅∗ =
⎡⎢⎢⎢⎣
0.5 0.25 0.6 0.85
0.75 0.5 0.55 0.6
0.4 0.45 0.5 0.55
0.15 0.4 0.45 0.5

⎤⎥⎥⎥⎦
.

The similarity of decision makers to 𝑅∗ are 0.676, 0.618, 0.733, and 0.656, respectively. Based on 𝜂=7/8, the weights of the four 
decision makers can be obtained as (𝜔1, 𝜔2, 𝜔3, 𝜔4)=(0.25,0.22,0.3,0.23)(see Table 2).

(3) By solving the consistency driven optimization model with the parameters 𝛿=0.5 and 𝜂=7/8, the preference relation of 𝑔3
and 𝑔4 need to be modified.

𝑅
3
=
⎡⎢⎢⎢⎣

0.5 0.3895 0.4785 0.769
0.6105 0.5 0.4755 0.646
0.5215 0.5245 0.5 0.3545
0.281 0.554 0.6455 0.5

⎤⎥⎥⎥⎦
.

𝑅
4
=
⎡⎢⎢⎢⎣

0.5 0.2395 0.7785 0.719
0.7605 0.5 0.6255 0.446
0.2215 0.3745 0.5 0.7045
0.281 0.554 0.2955 0.5

⎤⎥⎥⎥⎦
.

The non-consensus decision makers 𝑔3 and 𝑔4 are identified. Without loss of generality, suppose that the threshold 𝛾2 for TCL is 0.5. 
The optimal attitudinal and adjustment parameters, 𝜂 = 7∕8, and 𝛿 = 0.143, are determined via a consistency-driven optimization 
model. At this moment, the individual consistency of 𝑔3 after modification is 0.904, the individual consensus level is 0.947, the 
individual consensus cost is 0.78. The individual consistency of 𝑔4 is 0.847, the individual consensus level is 0.947, the individual 
consensus cost is 0.82. The SIS-DRI model implementation ensures the highest consistency in preference relations for non-consensus 
decision makers.

5.2. The problem solving process by applying the SEN-DRI model

The non-consensus decision makers, denoted as 𝑔3 and 𝑔4, are identified following the same methodology delineated in Section 5.1. 
It is supposed that the threshold 𝛾3 for TCI is 0.5. By using the SEN-DRI model, the optimal combination for attitudinal parameter and 
adjust parameter is 𝜂 = 3∕8 and 𝛿 = 0.126. The individual consistency of 𝑔3 after modification is 0.894, the individual consensus level 
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Table 3
Consistency levels of decision makers after adjustments.

Model 𝐶𝐼2 𝐶𝐼3

The SIS-DRI model 0.967 0.957 
Chiclana et al’s model [20] 0.94 0.92 
Li et al’s model [41] 0.9 0.9 
Zhang et al’s model [42] 0.95 0.95 
Wu et al’s model [23] 0.907 0.9 

is 0.948, the individual consensus cost is 0.779. The individual consistency of 𝑔4 is 0.863, the individual consensus level is 0.960, the 
individual consensus cost is 0.802. The SEN-DRI consensus model ensures the highest level of group consensus while maintaining a 
high level of consistency in preference relations for non-consensus decision makers and a relatively low consensus cost.

5.3. The problem solving process by applying the CO-DRI model

The non-consensus decision makers are 𝑔3 and 𝑔4, identified in the same manner as in Section 5.1. It is assumed that the CLI 
threshold 𝛾4 is 0.8. By using the cost driven optimization model cooperates with the CO-DRI consensus model, the optimal attitudinal 
and adjustment parameters are 𝜂 = 1∕8, and 𝛿 = 0.1 determined by the optimization model related to the CO-DRI consensus model. 
The individual consistency of 𝑔3 after modification is 0.869, the individual consensus level is 0.948, the individual consensus cost 
is 0.768. The individual consistency of 𝑔4 is 0.85, the individual consensus level is 0.95, the individual consensus cost is 0.79. The 
CO-DRI model ensures the lowest consensus cost while achieving a high group consensus degree and a relatively high consistency 
level.4

6. Comparative study

This section compares the three different kinds of models presented in this paper with classical consensus models through some 
experimental studies. Simulation experiments are carried out to illustrate the performances of the proposed models.

6.1. Comparison on the SIS-DRI model and existing proposals

Existing consensus models, such as those [20,23,41,42], which consider not only consensus degree, but also consistency level, 
are compared with the proposed SIS-DRI model. The comparison is carried out based on the numerical example shared across these 
studies (Example 3 in [20], Example 1 in [41], Example 2 in [23] and [42]). The initial consistency levels of 𝐺 = {𝑔1,… , 𝑔4}
are 𝐶𝐼1 = 1,𝐶𝐼2 = 0.7667,𝐶𝐼3 = 0.65,𝐶𝐼4 = 0.8333, while the consensus degrees are 𝐶𝐿1 = 838,𝐶𝐿2 = 0.796,𝐶𝐿3 = 0.796,𝐶𝐿4 =
0.858. Multiple experiments are conducted using the SIS-DRI model, and the final results are presented using the data mean. The 
individual consensus degree of 𝑔2 and 𝑔3 cannot reach the threshold, therefore the preferences of decision makers 𝑔2 , and 𝑔3 should 
be adjusted. If the SIS-DRI model is applied, the consensus degree of 𝑔2 and 𝑔3 can reach the threshold after adjustments, while the 
consistency level also increases to 𝐶𝐼2 = 0.967,𝐶𝐼3 = 0.957. The comparison on different proposals is shown in Fig. 6, and the specific 
values are shown in Table 3. Multiple trials were carried out with different values of parameters 𝛾2 and 𝛼 when SIS-DRI is applied 
to deal with the problem (see Table 4), and the data presented in Table 3 is the average consistency level of 𝑔3 and 𝑔4 after the 
CRP. Through this numerical comparison, the proposed SIS-DRI model ensures the consistency level reaches a higher extent, while 
the group consensus degree is also relative higher. Among these models, the proposed SIS-DRI model is the only one accounts the 
consensus cost, which is also one of its major advantages. The proposed SIS-DRI model provides a way to achieve higher consistency 
without significantly compromising consensus degree and consensus cost.

6.2. Comparison on the SEN-DRI model and existing proposals

Continued from the numerical example in Section 6.1. Some existing consensus models such as [23,41] not only ensure the process 
of consistency improvement, but also the process of reaching consensus. The SEN-DRI model is compared with models in [23,41]. The 
comparison results on consensus degree of each decision maker are shown in Table 5. Multiple trials are carried out with different 
values of parameters 𝛾3 and 𝛼 when applying the SEN-DRI model to deal with the problem (see Table 6), and the data presented in 
Table 5 is the average consensus degree of decision makers after the CRP, i.e., 𝐶𝐿1 = 0.867,𝐶𝐿2 = 0.949,𝐶𝐿3 = 0.958,𝐶𝐿4 = 0.892, 
with the group consensus level being 𝐶𝐿𝑐 = 0.917. In contrast to the results of Li et al.’s model [41] and Wu et al.’s model [23], the 
SEN-DRI model can achieve a higher consensus degree while maintaining a relatively high consistency level (see Fig. 7). Through 
this numerical comparison, it is evident that if the consensus degree is the most urgent issue in a real-life GDM case, the SEN-DRI 
model can be considered to catch a higher consensus degree while keeping a relative higher level of consistency.

4 The code is accessible at the website: https://github.com/yayaliu-118/2024-CRP-LYY/blob/main/README.md.

https://github.com/yayaliu-118/2024-CRP-LYY/blob/main/README.md
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Table 4
Multiple trials with different 𝛼 and 𝛾2 when SIS-DRI model is applied.

𝛾2=0.1 𝛾2=0.2 𝛾2=0.3 𝛾2=0.4 𝛾2=0.5 𝛾2=0.6 𝛾2=0.7 𝛾2=0.8 𝛾2=0.9 mean standard deviation

𝛼=0.5
𝐶𝐼2 0.974 0.974 0.974 0.974 0.974 0.937 0.937 0.937 - 0.96 0.0374 
𝐶𝐼3 0.965 0.965 0.965 0.965 0.965 0.923 0.923 0.923 - 0.949 0.02 

𝛼=0.6
𝐶𝐼2 0.974 0.974 0.974 0.974 0.974 0.974 0.937 0.937 - 0.965 0.0289 
𝐶𝐼3 0.965 0.965 0.965 0.965 0.965 0.965 0.923 0.923 - 0.955 0.0038 

𝛼=0.7
𝐶𝐼2 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.937 - 0.969 0.00179 
𝐶𝐼3 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.923 - 0.96 0.02 

𝛼=0.8
𝐶𝐼2 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.937 - 0.969 0.00179 
𝐶𝐼3 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.923 - 0.96 0.02 

𝛼=0.9
𝐶𝐼2 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 - 0.974 0 
𝐶𝐼3 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 - 0.965 0 

“-” indicates that no combination of consensus degree and consensus cost can reach the holistic requirement 𝑟2, regardless of parameter adjustments.

Fig. 6. Comparison on consensus degree (and consistency level) between the SIS-DRI model and other proposals. 

Fig. 7. Comparison on consensus degree (and consistency level) between the SEN-DRI model and other proposals. 

6.3. Comparison on the CO-DRI model and existing proposals

The advantages of the CO-DRI model will be illustrated by comparing it with existing minimum-cost-driven consensus models 
[43–46]: by applying Zhang et al’s [43], Zhong et al.’s [45] and Yu et al.’s [46] models, all the decision makers’ preferences will be 
adjusted to reach the consensus. In contrast, the proposed CO-DRI model, only preference relations of non-consensus decision makers 
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Table 5
Comparison on consensus degree between the SEN-DRI model and other pro-

posals.

Model 𝐶𝐿1 𝐶𝐿2 𝐶𝐿3 𝐶𝐿4 𝐶𝐿

The SEN-DRI model 0.867 0.949 0.958 0.892 0.917 
Li et al’s model [41] 0.828 0.838 0.855 0.85 0.843 
Wu et al’s model [23] 0.906 0.902 0.907 0.901 0.904 

Table 6
Multiple trials with different 𝛼 and 𝛾3 when SEN-DRI model is applied.

𝛾3=0.1 𝛾3=0.2 𝛾3=0.3 𝛾3=0.4 𝛾3=0.5 𝛾3=0.6 𝛾3=0.7 𝛾3=0.8 𝛾3=0.9 mean standard deviation

𝛼=0.3

𝐶𝐿1 0.868 0.868 0.868 0.868 0.868 0.868 0.859 0.859 - 0.866 0.02135 
𝐶𝐿2 0.95 0.95 0.95 0.95 0.95 0.95 0.943 0.943 - 0.948 0.0154 
𝐶𝐿3 0.958 0.958 0.958 0.958 0.958 0.958 0.952 0.952 - 0.957 0.00468 
𝐶𝐿4 0.893 0.893 0.893 0.893 0.893 0.893 0.882 0.882 - 0.89 0.00859 

𝛼=0.4

𝐶𝐿1 0.868 0.868 0.868 0.868 0.868 0.868 0.859 0.859 - 0.866 0.02135 
𝐶𝐿2 0.95 0.95 0.95 0.95 0.95 0.95 0.943 0.943 - 0.948 0.0154 
𝐶𝐿3 0.958 0.958 0.958 0.958 0.958 0.958 0.952 0.952 - 0.957 0.00468 
𝐶𝐿4 0.893 0.893 0.893 0.893 0.893 0.893 0.882 0.882 - 0.89 0.00859 

𝛼=0.5

𝐶𝐿1 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.859 - 0.867 0.00323 
𝐶𝐿2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.943 - 0.949 0.00263 
𝐶𝐿3 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.952 - 0.957 0.00212 
𝐶𝐿4 0.893 0.893 0.893 0.893 0.893 0.893 0.893 0.882 - 0.892 0.00386 

𝛼=0.6

𝐶𝐿1 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.859 - 0.867 0.00323 
𝐶𝐿2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.943 - 0.949 0.00263 
𝐶𝐿3 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.952 - 0.957 0.00212 
𝐶𝐿4 0.893 0.893 0.893 0.893 0.893 0.893 0.893 0.882 - 0.892 0.00386 

𝛼=0.7

𝐶𝐿1 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.859 - 0.867 0.00323 
𝐶𝐿2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.943 - 0.949 0.00263 
𝐶𝐿3 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.952 - 0.957 0.00212 
𝐶𝐿4 0.893 0.893 0.893 0.893 0.893 0.893 0.893 0.882 - 0.892 0.00386 

𝛼=0.8

𝐶𝐿1 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 - 0.868 0 
𝐶𝐿2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 - 0.95 0 
𝐶𝐿3 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.958 - 0.958 0 
𝐶𝐿4 0.893 0.893 0.893 0.893 0.893 0.893 0.893 0.893 - 0.893 0 

𝛼=0.9

𝐶𝐿1 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 - 0.868 0 
𝐶𝐿2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 - 0.95 0 
𝐶𝐿3 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.958 - 0.958 0 
𝐶𝐿4 0.893 0.893 0.893 0.893 0.893 0.893 0.893 0.893 - 0.893 0 

“-” indicates that no combination of consistency level and consensus cost can reach the holistic requirement 𝑟3 , regardless of parameter adjustments.

should be adjusted. Consequently, the CO-DRI model is capable of circumventing certain redundant adjustments, thereby mitigating 
the need for consensus costs. This model is compared with the consensus model proposed by Herrera et al. [44], which estimated 
the missing elements in incomplete preference relation and proposed an indicator called consensus/consistency level (they named it 
as CCL) to balance group consensus degree and consistency. The CCL in Herrera et al.’s model is methodologically and conceptually 
equivalent to the CLI in this research, enabling direct comparative analysis between the two models. Calculating the consensus cost of 
Herrera et al.’s consensus model (see Eq.(3)), and applying the CO-DRI model to solve the Example 12 in [44], we compare the values 
of CI, CL, TC, and CLI under the same consensus cost (the results are shown in Fig. 8). The CO-DRI model yields a lower consensus 
cost than Herrera et al.’s model while maintaining similar CLI values. It indicates that with a similar comprehensive evaluation of 
consistency level and consensus degree, the consensus cost of CO-DRI model is lower.

The 𝐹 -test is carried out based on the data collected from multiple experiments. Consensus degree, consistency level, and consensus 
cost of individuals before and after the CRP are collected when three types of consensus models are applied, respectively, as shown 
in Table 7. Table 7 demonstrates that all 𝐹 values are lower than 𝐹0.05(3,3). As a result, it can be concluded that the SIS-DRI model, 
the SEN-DRI model and the CO-DRI model maintain stable data distributions for individual consistency level and consensus degree 
of decision makers.
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Fig. 8. Comparison on CO-DRI model and Herrera et al.’s model [44]. 

Table 7
𝐹 -test for SIS-DRI model, SEN-DRI model, and CO-DRI model.

Model Index 𝑔1 𝑔2 𝑔3 𝑔4 𝐹 value 𝐹0.05(3,3)

SIS-DRI model

𝐶𝐿ℎ 0.838 0.796 0.796 0.858 
1.3493 9.2766

𝐶𝐿ℎ 0.852 0.94 0.937 0.871 
𝐶𝐼ℎ 1 0.7667 0.65 0.8333 

0.4016 9.2766

𝐶𝐼ℎ 1 0.967 0.957 0.8333 

SEN-DRI model

𝐶𝐿ℎ 0.838 0.796 0.796 0.858 
2.0975 9.2766

𝐶𝐿ℎ 0.868 0.95 0.958 0.893 
𝐶𝐼ℎ 1 0.7667 0.65 0.8333 

0.3935 9.2766

𝐶𝐼ℎ 1 0.955 0.963 0.8333 

CO-DRI model

𝐶𝐿ℎ 0.838 0.796 0.796 0.858 
1.0825 9.2766

𝐶𝐿ℎ 0.845 0.936 0.919 0.862 
𝐶𝐼ℎ 1 0.932 0.907 0.8333 

0.2847 9.2766

𝐶𝐼ℎ 1 0.932 0.907 0.8333 

6.4. Theoretical comparison with proposals in the literature

To demonstrate the characteristics of the proposed models, the theoretical comparison will be conducted with existing consensus 
models, encompassing aspects such as consistency measurement, consensus degree computation, and the incorporation of consensus 
cost.

The comparison results are shown in Table 8. Among these models, only Rodríguez et al.’s model in [50] and the proposed three 
types of models can comprehensively consider consistency, consensus and consensus cost at the same time. Each of the proposed 
models shows superior performance in specific scenarios, therefore in practical GDM problem solving process, it is imperative to 
consider practical factors to select the most suitable model. Furthermore, through the application of the proposed models, the balance 
mechanisms are provided through the application of attitudinal parameter. By applying the current proposals, if the attitudinal 
parameter is determined in a prior, the proposed adjustment mechanism offers a method to achieve the balance of consistency level, 
consensus degree and consensus cost by determining optimal adjustment parameter. As depicted in Fig. 9, varying the attitudinal 
parameter results in the computation of diverse optimal adjustment parameter values, thereby influencing the performance of the 
consensus model, as evidenced by distinct consistency levels, group consensus degrees and consensus costs. The attitudinal parameter 
should not be confined a prior, the current proposals provide a more flexible method to determine both the optimal adjustment 
mechanism and attitudinal parameter, enabling the realization of various primary objectives in the CRP.
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Table 8
A comprehensive comparison of the consensus models.

Consensus models Consistency measure Consensus measure Consensus cost Optimized variables

The SIS-DRI model Additive (maximum 
value)

Distance between DMs Degree of deviation before 
and after the change of 
opinion

Attitudinal parameter and 
adjustment parameter

The SEN-DRI model Additive Distance between DMs Degree of deviation before 
and after the change of 
opinion

Attitudinal parameter and 
adjustment parameter

The CO-DRI model Additive Distance between DMs Degree of deviation before 
and after the change of 
opinion

Attitudinal parameter and 
adjustment parameter

Wu et al’s model [18] - Distance between DMs Degree of deviation before 
and after the change of 
opinion

Attitudinal parameter and 
adjustment parameter

Li et al’s model [41] Additive Distance between DMs - -

Wu et al’s model [47] - Distance to group matrix Harmony degree adjustment parameters

Labella et al’s model 
[48]

- Distance to group 
opinions

Distance to global opinion 
and consensus degree

Parameters for measuring 
the distance between 
decision maker and 
collective opinion

Zhang et al’s model [49] Multiplicative Distance between DMs - Adjusted preferences

Rodríguez et al’s model 
[50]

Multiplicative Distance to group 
opinion

Distance between decision 
makers and the collective 
opinion

-

Fig. 9. The influence of attitudinal and adjustment parameters on three factors in the proposed models. 

6.5. Sensitive analysis

This section will conduct a sensitivity analysis, the CI, CL and TC will be calculated and a sensitive analysis will be conducted on 
the impact of different parameters on the CI, CL, and TC. Without loss of generality, it is assumed that both the attitudinal parameter 
and the adjustment parameter are discretized. The values of the adjustment parameter range from 0.1 to 1 with an increment of 0.1, 
while the values of the attitudinal parameter span from 1/8 to 7/8, with a step size of 1/8.5 Figs. 10-11 illustrate the variations in CI, 
CL, and TC for non-consensus experts (𝑔3 and 𝑔4) as the attitude parameters and adjustment parameters vary. For the SIS-DRI model, 
if the attitudinal parameter 𝜂 is pre-determined as 7/8, the best choice for adjustment parameter 𝛿 is 0.1; and if 𝛿 is pre-determined as 
0.1, the best choice for 𝜂 is 6/8, with which the highest consistency level can be reached; for the SEN-DRI model, if 𝜂 is pre-determined 
as 3/8, the best choice for 𝛿 should be 0.1, if 𝛿 = 0.1, the best choice for 𝜂 is 3/8, with which the highest consensus degree can be 
achieved. For the CO-DRI model, if 𝜂 is pre-determined as 1/8, the best set for 𝛿 is 0.1, and if 𝛿 is 0.1, the best 𝜂 should be 1/8, with 

5 Previously mentioned were the scenarios where setting the value to 0 implies solely relying on the opinion of one individual, while setting it to 1 indicates that 
each individual’s opinion holds equal weight. To avoid these two extremes, we have chosen not to adopt either of these values.



Information Sciences 716 (2025) 122222

19

Y. Liu, Y. Wang, R.M. Rodríguez et al. 

Fig. 10. The influence of adjustment parameters on three factors (CI, CL and TC) in three models. 

Fig. 11. The influence of attitudinal parameters on three factors (CI, CL and TC) in three models. 

Fig. 12. TCL, TCI, and CLI with three proposed models under different adjustment parameters. 

which the lowest consensus cost can be reached (see Figs. 10-11). From the sensitivity analysis, it becomes evident that the impact on 
CI, CL, and TC varies with changes in the attitudinal and adjustment parameters. For different decision-makers, the changes in CI, CL, 
and TC caused by the same attitudinal or adjustment parameter can also be differentiated. The principal advantage of the proposed 
consensus models lies in their ability to determine an optimal combination of attitudinal and adjustment parameters, which presents 
a method to balance CI, CL and TC under different primary objectives.

Besides, Figs. 12-13 illustrate the evolving trends of TCL, TCI and CLI across varying adjustment and attitudinal parameters. In 
different decision making scenarios, the significance of consensus degree, consistency level, and consensus cost can be modulated by 
adjusting the values of 𝛼, 𝛽 and 𝜇, respectively, to achieve the most appropriate solutions.
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Fig. 13. TCL, TCI, and CLI with three proposed models under different attitudinal parameters. 

7. Conclusion

A desirable consensus mechanism is proposed to seek to maximize CL, minimize TC, and thereby achieve a high value for CI. 
However, the interrelations among these factors are non-linear and, to some extent, constitute a challenge in finding solutions to 
the game. Consequently, the challenge in developing consensus model resides in establishing an appropriate preference relation 
adjustment mechanism that can harmonize the balance among CI, CL and TC. Through investigation of the intrinsic relationships 
between attitudinal parameter and these three factors, this study has developed three preference relation adjustment mechanisms, 
to achieve this equilibrium and derive three distinct types of corresponding consensus models. These consensus models could be 
respectively applied to satisfy the diverse and most urgent expectations of decision makers. Comparative analysis with existing 
consensus models has been carried out to demonstrate the effectiveness of the proposed models.

In future research, more strategies to balance CL, CI and TC will be further explored, to fit for the demanding of GDM in different 
practical situations. Subsequently, the equivalence mechanism of CL, CI, and TC will be explored in more complex GDM scenarios, 
such as in large-scale GDM, linguistic GDM, multi-attribute GDM problems, etc. Furthermore, the proposed consensus models will be 
further extended or adapted to accommodate more intricate GDM scenarios.
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Appendix A. The transformed linear programming models for Eqs. (15)-(17)

The transformed linear programming model for Eq. (15):

Max
∑

𝑔ℎ∈𝐺1

𝐶𝐼ℎ

𝑠.𝑡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐶𝐼ℎ = 1 − 4 
𝑛(𝑛−1)(𝑛−2)

∑𝑛

𝑖=1
∑𝑛

𝑗=𝑖+1
∑𝑛

𝑘=𝑗+1 𝑧
ℎ
𝑖𝑗𝑘

, ℎ = 1,2,… , 𝑓

𝑧ℎ
𝑖𝑗𝑘

≥ 𝑟
ℎ

𝑖𝑗
+ 𝑟

ℎ

𝑗𝑘
− 𝑟

ℎ

𝑖𝑘
− 0.5, ∀𝑖, 𝑗, 𝑘, ℎ

𝑧ℎ
𝑖𝑗𝑘

≥ −(𝑟ℎ
𝑖𝑗
+ 𝑟

ℎ

𝑗𝑘
− 𝑟

ℎ

𝑖𝑘
− 0.5), ∀𝑖, 𝑗, 𝑘, ℎ

𝑇𝐶ℎ =
∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝑦
ℎ
𝑖𝑗

𝑛(𝑛−1) , ∀𝑔ℎ ∈𝐺1

𝑦ℎ
𝑖𝑗
≥ 𝑟ℎ

𝑖𝑗
− 𝑟

ℎ

𝑖𝑗
, ∀𝑖, 𝑗, ℎ

𝑦ℎ
𝑖𝑗
≥ −(𝑟ℎ

𝑖𝑗
− 𝑟

ℎ

𝑖𝑗
), ∀𝑖, 𝑗, ℎ

𝐶𝐿ℎ = 1 −
∑

𝑖≠𝑗 𝑥
ℎ
𝑖𝑗

𝑛(𝑛−1) , ℎ = 1,2,… , 𝑓

𝑥ℎ
𝑖𝑗
≥ 𝑟

ℎ

𝑖𝑗
− 𝑟

𝑎

𝑖𝑗
, ∀𝑖, 𝑗

𝑥ℎ
𝑖𝑗
≥ −(𝑟ℎ

𝑖𝑗
− 𝑟

𝑎

𝑖𝑗
), ∀𝑖, 𝑗

𝐶𝐿 = 1 
𝑓

∑𝑓

ℎ=1𝐶𝐿ℎ ≥ 𝛾1 ≥ 𝜃

𝑇𝐶𝐼 = 𝛼𝐶𝐿+ (1 − 𝛼)(1 − 𝑇𝐶) ≥ 𝛾2

𝑅
ℎ
= (1 − 𝛿)𝑅ℎ + 𝛿

∑𝑓

𝑣=1𝑤
𝐴𝑇𝐷
𝜎(𝑣) 𝑅

𝑣, ∀𝑔ℎ ∈𝐺1

𝑅
ℎ
=𝑅ℎ, ∀𝑔ℎ ∈𝐺2

0 ≤ 𝛿 ≤ 1, 1∕𝑜 ≤ 𝜂 ≤ (𝑜− 1)∕𝑜, 0 < 𝛼 < 1, ∀𝑜 ∈𝑁+

𝑥ℎ
𝑖𝑗
, 𝑦ℎ

𝑖𝑗
, 𝑧ℎ

𝑖𝑗𝑘
≥ 0, ∀𝑖, 𝑗, 𝑘, ℎ

(A.1)

The transformed linear programming model for Eq. (16):

Max
∑

𝑔ℎ∈𝐺1

𝐶𝐿ℎ

𝑠.𝑡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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𝑖≠𝑗 𝑥
ℎ
𝑖𝑗
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𝑎

𝑖𝑗
, ∀𝑖, 𝑗

𝑥ℎ
𝑖𝑗
≥ −(𝑟ℎ

𝑖𝑗
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𝑎

𝑖𝑗
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𝑓

∑𝑓

ℎ=1𝐶𝐿ℎ ≥ 𝛾1 ≥ 𝜃

𝑇𝐶ℎ =
∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝑦
ℎ
𝑖𝑗

𝑛(𝑛−1) , ∀𝑔ℎ ∈𝐺1

𝑦ℎ
𝑖𝑗
≥ 𝑟ℎ

𝑖𝑗
− 𝑟

ℎ

𝑖𝑗
, ∀𝑖, 𝑗, ℎ

𝑦ℎ
𝑖𝑗
≥ −(𝑟ℎ

𝑖𝑗
− 𝑟

ℎ

𝑖𝑗
), ∀𝑖, 𝑗, ℎ

𝐶𝐼ℎ = 1 − 4 
𝑛(𝑛−1)(𝑛−2)

∑𝑛

𝑖=1
∑𝑛

𝑗=𝑖+1
∑𝑛

𝑘=𝑗+1 𝑧
ℎ
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𝑅
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=𝑅ℎ, ∀𝑔ℎ ∈𝐺2
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𝑖𝑗
, 𝑦ℎ

𝑖𝑗
, 𝑧ℎ

𝑖𝑗𝑘
≥ 0, ∀𝑖, 𝑗, 𝑘, ℎ

(A.2)
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The transformed linear programming model for Eq. (17):

Min
∑

𝑔ℎ∈𝐺1

𝑇𝐶ℎ

𝑠.𝑡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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∑𝑛
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𝑖𝑗
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𝑖𝑗
− 𝑟

𝑎

𝑖𝑗
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𝑖𝑗
− 𝑟

𝑎

𝑖𝑗
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𝐶𝐿 = 1 
𝑓

∑𝑓
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𝑛(𝑛−1)(𝑛−2)

∑𝑛

𝑖=1
∑𝑛

𝑗=𝑖+1
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𝑘=𝑗+1 𝑧
ℎ
𝑖𝑗𝑘
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𝑖𝑗𝑘

≥ 𝑟
ℎ

𝑖𝑗
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ℎ

𝑗𝑘
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ℎ

𝑖𝑘
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𝑖𝑗𝑘
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𝑖𝑗
+ 𝑟

ℎ

𝑗𝑘
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ℎ

𝑖𝑘
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𝐶𝐿𝐼 = 𝛽𝐶𝐼 + (1 − 𝛽)(1 − 𝑇𝐶) ≥ 𝛾4

𝑅
ℎ
= (1 − 𝛿)𝑅ℎ + 𝛿

∑𝑓

𝑣=1𝑤
𝐴𝑇𝐷
𝜎(𝑣) 𝑅
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𝑅
ℎ
=𝑅ℎ, ∀𝑔ℎ ∈𝐺2

0 ≤ 𝛿 ≤ 1,1∕𝑜 ≤ 𝜂 ≤ (𝑜− 1)∕𝑜,0 < 𝛽 < 1, ∀𝑜 ∈𝑁+

𝑥ℎ
𝑖𝑗
, 𝑦ℎ

𝑖𝑗
, 𝑧ℎ

𝑖𝑗𝑘
≥ 0, ∀𝑖, 𝑗, 𝑘, ℎ

(A.3)

Appendix B. The pseudocodes for the SEN-DRI and CO-DRI consensus models

Algorithm 2: The SEN-DRI consensus model.

1 Input: Decision makers’ preference relations 𝑅ℎ, where ℎ = 1,2,… , 𝑓 ; Consensus thresholds 𝜃 and 𝜃′ ; Holistic requirement for consensus degree and 
consensus cost 𝛾3 ; Balance parameter 𝛽 .

2 Output: Optimal combination of adjustment parameter 𝛿 and trust attitudinal parameter 𝜂; Maximum consensus level; Adjusted preference relations of 
non-consensus decision makers.

3 begin

4 for 𝑔ℎ ∈𝐺 do

5 Compute: The consensus degree 𝐶𝐿ℎ for each decision maker 𝑔ℎ using Eq. (7). 
6 end 
7 Compute: The group consensus level 𝐶𝐿 using Eq. (9). 
8 end

9 if 𝐶𝐿< 𝜃 then

10 for 𝑔ℎ ∈𝐺 with 𝐶𝐿ℎ < 𝜃′ do

11 Identify: Non-consensus decision makers whose preference relations need adjustment, i.e., 𝑔ℎ ∈𝐺1 . 
12 end 
13 end 
14 else

15 Terminate: End the algorithm. 
16 end 
17 for 𝜂 ∈ (0,1) do

18 Compute: Derive experts’ weights 𝑤𝐴𝑇𝐷
𝜎(𝑣) using Eq. (5). 

19 end 
20 Compute: The optimal adjustment parameter 𝛿 and attitudinal parameter 𝜂 using Eq. (16) to maximize consensus level. 
21 for 𝑔ℎ ∈𝐺1 do

22 Update: Adjust the preference relations of 𝑔ℎ using Eq. (11). 
23 end 
24 return The adjusted preference relations of non-consensus decision makers.
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Algorithm 3: The CO-DRI consensus model.

1 Input: Decision makers’ preference relations 𝑅ℎ, where ℎ = 1,2,… , 𝑓 ; Consensus thresholds 𝜃 and 𝜃′ ; Holistic requirement for consensus degree and 
consensus cost 𝛾4 ; Balance parameter 𝜇.

2 Output: Optimal combination of adjustment parameter 𝛿 and trust attitudinal parameter 𝜂; Minimum consensus cost; Adjusted preference relations of 
non-consensus decision makers.

3 begin

4 for 𝑔ℎ ∈𝐺 do

5 Compute: The consensus degree 𝐶𝐿ℎ for each decision maker 𝑔ℎ using Eq. (7). 
6 end 
7 Compute: The group consensus level 𝐶𝐿 using Eq. (9). 
8 if 𝐶𝐿 < 𝜃 then

9 for 𝑔ℎ ∈𝐺 with 𝐶𝐿ℎ < 𝜃′ do

10 Identify: Non-consensus decision makers whose preference relations need adjustment, i.e., 𝑔ℎ ∈𝐺1 . 
11 end 
12 end 
13 else

14 Terminate: End the algorithm. 
15 end 
16 for 𝜂 ∈ (0,1) do

17 Compute: Derive experts’ weights 𝑤𝐴𝑇𝐷
𝜎(𝑣) using Eq. (5). 

18 end 
19 Compute: The optimal adjustment parameter 𝛿 and attitudinal parameter 𝜂 using Eq. (17) to minimum consensus cost. 
20 for 𝑔ℎ ∈𝐺1 do

21 Update: Adjust the preference relations of 𝑔ℎ using Eq. (11). 
22 end 
23 return The adjusted preference relations of non-consensus decision makers.

24 end

Data availability

Data will be made available on request.
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