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A B S T R A C T

Nowadays due to the social networks and the technological development, large-scale group decision making (LS-
GDM) problems are fairly common and decisions that may affect to lots of people or even the society are better
accepted and more appreciated if they agreed. For this reason, consensus reaching processes (CRPs) have at-
tracted researchers attention. Although, CRPs have been usually applied to GDM problems with a few experts,
they are even more important for LS-GDM, because differences among a big number of experts are higher and
achieving agreed solutions is much more complex. Therefore, it is necessary to face some challenges in LS-GDM.
This paper presents a new adaptive CRP model to deal with LS-GDM which includes: (i) a clustering process to
weight experts’ sub-groups taking into account their size and cohesion, (ii) it uses hesitant fuzzy sets to fuse
expert’s sub-group preferences to keep as much information as possible and (iii) it defines an adaptive feedback
process that generates advice depending on the consensus level achieved to reduce the time and supervision
costs of the CRP. Additionally, the proposed model is implemented and integrated in an intelligent CRP support
system, so-called AFRYCA 2.0 to carry out this new CRP on a case study and compare it with existing models.

1. Introduction

A recent and challenging problem in the decision making field,
driven by the current technological developments (social networks,
P2P) and societal demands (e-group shopping, group marketing), is the
engagement of a large number of people in different decision problems.
Consequently, large-scale group decision making (LS-GDM) is becoming
an important topic in the decision making field [26–28,47]. Unlike
classical GDM problems in which a decision framework with a few
number of experts is assumed, LS-GDM problems deal with a large
number of experts (in [10] was pointed out more than 20 experts, but
here we may assume several hundreds even thousands). This situation
implies new challenges pointed out in previous researches in this topic
[24,33,35], such as: (i) Scalability, (ii) Time cost, (iii) Constant pre-
ference supervision, iv) Stronger disagreement positions, v) Difficulties
to understand/visualize current state of agreement, etc.

The study of LS-GDM has been mainly focused on four major topics:

• Clustering methods in LS-GDM [26,53].

• Consensus reaching processes in LS-GDM [34,48,49].

• LS-GDM methods [27,28].

• LS-GDM support systems [8,35].

Due to the fact that, consensual decisions for conflicting problems
that may affect groups of people are better adopted and much more
appreciated [13], the study and development of consensus reaching
processes (CRPs) for GDM has been then a fruitful, interesting and
necessary area of research in recent years [16,33,36]. However, most of
results presented in this area are focused on GDM problems assuming
just a few number of experts involved in the decision process. Not-
withstanding, in LS-GDM this type of process seems to be even more
important, because opinions among a larger number of people tend to
be easily controversial and conflicting. Main shortcomings of classical
CRPs when they are applied to LS-GDM problems have been identified
[24] and initial CRP proposals for LS-GDM do not have overcame these
shortcomings yet [34,49].

In light of the multiple challenges and shortcomings of classical
CRPs for LS-GDM problems [24], this paper introduces a new adaptive
CRP model for LS-GDM to overcome scalability problems and experts’
preference supervision that is highly related to time cost. Therefore, to
achieve these goals, our proposal incorporates to the CRP applied to LS-
GDM the following novelties:

• Clustering process for weighting experts’ sub-groups: the large number
of experts in the LS-GDM problem are clustered into sub-groups
according to their preferences and the importance of each sub-group
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in the CRP that is computed considering two features such as its size
and its cohesion.

• Grouping Opinions: so far, most of CRPs aggregate experts’ pre-
ferences from early stages of the process, the aggregation may result
in a loss of important features of the information, such as distribu-
tion or shape [18]. In order to avoid such situations, our proposal
will model experts’ sub-group preferences by means of hesitant
fuzzy sets (HFS), introduced by Torra [45] for representing the ex-
pert’s hesitation to assign a degree of membership in a fuzzy set; so,
it will be assumed that experts’ preferences in a sub-group represent
the group hesitation to express its fuzzy preference [9,39,52].

• Adaptive feedback process: last but not least, the negotiation process
in a CRP is usually driven by a feedback mechanism [31] that is
often time consuming even more in LS-GDM [33]; therefore, our
proposal develops a new adaptive feedback mechanism process that
guides the consensus process according to the level of agreement
achieved by softening experts’ preference supervision and reducing
the time cost of the CRP.

Finally, the proposed CRP is implemented and integrated in the
intelligent CRP support system so-called AFRYCA 2.0 [23,33] to com-
pute the results of the case study, visualize the CRP and carry out a
comparison with other consensus models.

The remainder of this paper is structured as follows: Section 2 re-
vises some preliminary concepts about LS-GDM problems, CRPs and
hesitant fuzzy information. Section 3 presents a novel adaptive con-
sensus model based on clustering and hesitant fuzzy information to deal
with LS-GDM problems. Section 4 introduces a case study to show the
utility and applicability of the proposed model using an intelligent CRP
support system and presents a comparison with other models. Finally,
in Section 5 some concluding remarks are pointed out.

2. Preliminaries

This section revises different concepts about LS-GDM, CRPs and HFS
that will be used in the proposed consensus model for LS-GDM.

2.1. Large-Scale group decision making

Even though the concept of GDM has been widely studied in deci-
sion theory [4,6,19,29], recently the concept of LS-GDM has risen be-
cause of the societal demand of involving crowds in important decision
processes [12,13] that is facilitated by current technologies and tools
[43]. Hence, the concept of LS-GDM is quite similar to GDM, but differs
because in the former the number of experts eliciting their preferences
on a set of alternatives, X, is much greater than in the latter. Formally, a

LS-GDM problem consists of: (i) a set of alternatives = …X x x{ , , },n1
(n≥ 2), which can be selected as possible solutions for the problem,
and (ii) a set of experts = …E e e{ , , },m1 (m> > n), who express their
judgements on the set of alternatives X. Fuzzy preference relations [32],
= ⊂ × ∈×P p X X p( ) , [0, 1],ij n n ij are a common structure for eliciting

preferences in both types of group decision problems [7].
Due to its similar structure, LS-GDM can be solved by a selection

process similar to the one used in GDM [41] with an aggregation and
exploitation phase. In such a case, this selection process does not always
guarantee that the solution obtained would be accepted by all experts
involved in the decision problem, because several of them might con-
sider that their opinions were not taken sufficiently into account [42]. A
usual solution to overcome this drawback and obtain agreed decisions
accepted by the whole group is the application of a CRP [5,46]. In spite
of the existence of different interpretations of consensus [30], in this
paper it is understood as “a state of mutual agreement among members of a
group in which the decision made satisfies all of them” [42]. Usually,
achieving a consensus requires that experts modify their preferences
bringing them closer to each other toward a collective opinion which is
satisfactory for all of them [19,37].

A consensus process is an iterative and dynamic discussion process
that can be carried out in different ways, Palomares et al. introduced in
[33] a deep revision and a taxonomy of the different types of models for
performing it, and a general scheme of a CRP sketched in Fig. 1 that is
briefly described below:

• Framework configuration: it sets up the GDM problem determining
the set of alternatives, the set of experts engaged in the decision
making and fixing the consensus threshold to reach.

• Gathering preferences: the preferences provided by experts are gath-
ered.

• Computing the consensus degree: by using a consensus measure [17]
which is based on distance measures and aggregation operators
[2,15]. This degree reflects the level of agreement in the group.

• Consensus control: if the obtained consensus degree is greater than
the consensus threshold, a selection process is applied, otherwise
more discussion rounds are required.

• Feedback process: the preferences causing disagreement are identi-
fied and advice is generated to guide experts how to modify their
preferences and make them closer. Afterwards, another round starts
by gathering preferences again.

In order to cope with the necessity of achieving agreed solutions in
LS-GDM problems, several proposals have been introduced in the lit-
erature. Palomares et al. [34] proposed a consensus model to detect and
manage non-cooperative behaviors and developed a visual tool based
on self-organizing maps to facilitate the monitoring of the process

Fig. 1. General scheme of a consensus reaching process.
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performance [35]. Taking into account such a model, Xu et al. [49]
proposed a consensus model for multi-criteria LS-GDM dealing with
emergency problems that considers non-cooperative behaviors and
minority opinions. Quesada et al. [38] introduced a weighting method
for CRPs dealing with LS-GDM which includes the use of uninorm ag-
gregation operators to compute experts weights taking into account
their behaviors.

Previous proposals aggregate the experts’ preferences in early stages
of the decision process that may imply disregarding important in-
formation [18] and not considering the different levels of agreement
across the CRP that can provoke a high time cost due to a greater ex-
perts’ preference supervision during the feedback and discussion pro-
cesses.

Therefore, to overcome these drawbacks our proposed model first,
will include an approach to detect and weight sub-groups. Second, to
keep as much information and avoid the loss of information, the sub-
groups preferences will be fused by using HFS instead of aggregating
them. Finally, a new adaptive feedback process based on previous in-
puts will be defined.

2.2. Hesitant information

The concepts of HFS and hesitant fuzzy preference relation have
been widely applied to decision making [39], in this section these are
briefly reviewed to facilitate the understanding of their use in our
proposal for modelling experts sub-group preferences in order to keep
as much information as possible during the proposed CRP.

HFSs [45] are an extension of fuzzy sets with the aim at modelling
the uncertainty provoked by the doubt that an expert can have when
she/he wants to assign the membership degree of an element in a fuzzy
set. A HFS allows assigning several membership degrees of an element
to a fuzzy set. Formally, a HFS is defined in terms of a function that
obtains a set of membership degrees for each element in the domain.

Definition 1 ([45]). Let X be a reference set, a HFS on X is a function h
that returns a subset of values in [0,1]:

h → ℘X: ([0, 1]) (1)

Previous definition was completed with the following mathematical
representation of a HFS:

= ∈A x h x x X{ , ( ) : },A

where hA(x) is called Hesitant Fuzzy Element (HFE) that is a set of some
values in [0,1], denoting the possible membership degrees of the ele-
ment x∈ X to the set A. A HFS can also be seen as a mapping of HFEs,
one for each element in the reference set. Therefore, if h(x) is the HFE
associated to x, ∪ x∈ Xh(x) is then a HFS.

By using the concepts of fuzzy preference relation and HFS, the
concept of Hesitant Fuzzy Preference Relation (HFPR) was proposed
[56].

Definition 2 ([56]). Let X be a reference set, a HFPR on X is represented

by a matrix = ⊂ ××H h X X( ) ,ij n n where = ⎧
⎨⎩

= … ⎫
⎬⎭

h p s h h1, 2, ,# (#ij ij
s

ij ij

is the number of elements in hij) is a HFE that indicates the membership
degrees that denote to which extent xi is preferred to xj. Additionally, hij
should satisfy the following conditions: + =′p p 1,ij

σ s
ji
σ s( ) ( )

= = = …p h h i j n{0.5}, # # , , {1, 2, , }ii ij ji < +p p ,ij
σ s

ij
σ s( ) ( 1)

<′ + ′p p ,ji
σ s

ji
σ s( 1) ( ) where …σ σ h{ (1), , (# )}ij is a permutation of … h{1, ,# },ij

i.e., pij
σ s( ) is the smallest element in hij, and ′ … ′σ σ h{ (1), , (# )}ji is a

permutation of … h{1, ,# },ji i.e., ′pji
σ s( ) is the largest element in hji.

During the CRP in LS-GDM with HFSs, it might happen that the
cardinality of HFEs in HFPRs would be different, i.e, ∈ = ×h H h( )ij

a a
ij
a

n n

and ∈ = ×h H h( )ij
b b

ij
b

n n with ≠h h# #ij
a

ij
b (e.g., <h h# #ij

a
ij
b). In such a

case, it is necessary to normalize the hij
a with smaller cardinality until

both have the same cardinality to operate correctly between them. Xu
and Zhang [51] proposed the β-normalization, based on the optimiza-
tion parameter, η.

Definition 3 ([51]). Let hi be the HFE with the smaller cardinality and
= ∈−h min γ γ h{ }i i and = ∈+h max γ γ h{ },i i then the value γ′ to add in

the HFE hi, is computed as:

′ = + −+ −γ ηh η h(1 ) ,i i (2)

where η(0≤ η≤ 1).

The value of the optimization parameter, η, relies on experts’ risk
attitudes. If =η 1, the value added is ′ = +γ h ,i which indicates an op-
timistic point of view; if =η 0, the value added is ′ = −γ h ,i which in-
dicates a pessimistic point of view; and if =η 1/2, then
′ = ++ −γ h h1/2( ),i i which means that expert is neutral. Consequently,

by using η, <if h h# #ij
a

ij
b the HFPR, Ha, is normalized as:

Definition 4 ([55]). Let = ⊂ ××H h X X( )a
ij
a

n n be a HFPR and
η (0≤ η≤ 1) an optimization parameter to add values into <h i j( ),ij

a

moreover − η1 is used to add values into <h i j( ),ji
a a normalized HFPR

= ×H h( ) ,a a
ij n n is obtained satisfying the following

condi-
tions, = = … ≠h max h i j n i j# {# , 1, 2, , ; }a

ij ij
a

+ = =′γ γ h1, {0.5},ij
σ s

ji
σ s

ii
a( ) ( ) ≤ ≤+ ′ + ′γ γ γ γ, ,ij

σ s
ij
σ s

ji
σ s

ji
σ s( ) ( 1) ( 1) ( ) where

…σ σ h{ (1), , (# )}ij
a is a permutation of … h{1, ,# },ij

a i.e., γij
σ s( ) is the

smallest element in h ,ij
a and ′ … ′σ σ h{ (1), , (# )}ji

a is a permutation of
… h{1, ,# },ji

a i.e., ′γ ji
σ s( ) is the largest element in hji

a.

Even though, our proposal avoids aggregation operations in early
stages, there are several procedures in the CRP that need to aggregate
and compute distances with HFSs. Despite there exist multiple propo-
sals to carry out such operations [40]. Here, the Hesitant Fuzzy
Weighted Average (HFWA) operator and the Euclidean distance which
are used for sake of clarity in the proposed consensus model for LS-GDM
are just revised.

Definition 5 ([54]). Let H be a HFS and = …h i n( 1, , )i be a collection of
HFEs, hi∈H, the Hesitant Fuzzy Weighted Average operator is a
mapping Hn→H such that

∑… = ⊕ = ⋃ ⎧
⎨⎩

⎫
⎬⎭

=
∈ … ∈ =

HFWA h h w h w γ( , , ) ( ) ,n i
n

i i
γ h γ h i

n

i i
σ s

1 1
, , 1

( )

σ s
n
σ s n1

( )
1 ( ) (3)

where = …w w w w( , , , )n
T

1 2 is the weighting vector of = …h i n( 1, , )i with
wi∈ [0, 1] and ∑ == w 1i

n
i1 .

Definition 6 ([50]). Let H1 and H2 be two HFSs on = …X x x{ , , },n1 the
hesitant normalized Euclidean distance is defined as follows,

∑ ∑= ⎡

⎣
⎢

⎛

⎝
⎜ − ⎞

⎠
⎟
⎤

⎦
⎥

= =

d H H
n h

γ x γ x( , ) 1 1
#

( ) ( )hne
i

n

s

h
σ s

i
σ s

i1 2
1 1

#

2
( )

1
( ) 2

1/2

(4)

where h# is the cardinality of any HFE hi∈H1, H2, considering that all
of them are equal cardinality.

Additionally, during the CRP will be necessary to compare HFEs of
the HFS. Therefore, one suitable function will be the below one:

Definition 7 ([14]). Let h be a HFE, the score function of h is given by,

=
∑

∑
=

=

score h
γ τ s

τ s
( )

( )

( )
s

h s

s
h
1

#

1
#

(5)

where =τ s{ ( )}s
h

1
# is a positive-valued monotonic increasing sequence of

index s.
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3. An adaptive consensus model for large scale group decision
making based on group hesitation

The goal of this paper is to introduce a novel CRP for LS-GDM
problems able to tackle the scalability and time cost challenges of a CRP
in this type of decision problems.

• To cope with the former one, a clustering process to detect experts
sub-groups based on their preference similarity is done. And such
sub-groups’ preferences are modelled as the group’s hesitation by
means of HFSs; eventually the hesitant preferences are weighted
according to the size and cohesion of the group.

• On the other hand, the latter challenge is managed by an adaptive
process that varies the feedback procedure in the CRP between two
levels according to the level of consensus achieved at each discus-
sion round.

The proposed adaptive consensus model based on group hesitation
for LS-GDM extends the general scheme shown in Fig. 1 by introducing
two new phases:

• Sub-groups management that clusters similar experts’ opinions,
maintaining the maximum possible information by HFSs and com-
puting the relevance of the sub-groups.

• A new adaptive feedback process that adapts the feedback to the
current agreement among experts.

Besides, these new phases, other two of the general scheme are
modified (dashed lines):

• Framework configuration in which a new parameter to deal with the
adaptivity is introduced.

• Computing the consensus degree to deal with hesitant information.

So, the proposed model consists of six main phases (see Fig. 2), but
only the new and modified ones (previously enumerated) will be fur-
ther detailed below.

3.1. Framework configuration

In a LS-GDM problem there are two important elements (Section 2.1):
a set of alternatives = …X x x{ , , }n1 and a large number of experts
= …E e e{ , , }m1 who are involved in the problem, being m> > n.
Classically, two parameters are established, the consensus threshold

and the maximum number of discussion rounds. However, in our pro-
posal a new parameter is necessary to introduce the adaptivity during
the consensus process. Therefore, three parameters are defined in our
adaptive CRP:

• ϑ∈ [0, 1]: It is the consensus threshold established to achieve the
consensus among experts.

• δ∈ [0, 1], δ< ϑ: It is a parameter used in the adaptive feedback
process to determine the level of consensus reached (high or low),
such that different rules for the advice generation can be applied.

• Maxround: This parameter controls the maximum allowed number
of discussion rounds for the LS-GDM problem.

3.2. Sub-groups management: Managing scalability in LS-GDM

To tackle the scalability problem in LS-GDM, we consider that
among a large number of experts there will be sub-groups of them with
similar preferences. Therefore, with this idea in mind, this phase re-
duces the number of preferences to manage by means of a three-step
process (further detailed in the coming subsections):

1. Detection: A clustering process is applied to detect experts’ groups
with similar opinions.

Fig. 2. Scheme of the proposed consensus model.
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2. Hesitation modelling: The experts’ opinions in each sub-group are
modelled by means of a HFS that represents the hesitation of the group

3. Weighting: The importance of the sub-group’s opinion should reflect
its features, in our case the size and cohesion of a subgroup is
considered.

3.2.1. Sub-groups detection
To detect experts’ groups with similar opinions, an adapted fuzzy c-

means based algorithm [3] that assigns a membership degree to each
data object for each cluster according to the distance between the data
object and the corresponding centroid is presented. The nearer the data
object is to the centroid, the higher its membership degree with respect
to this centroid is. Both centroids and memberships degrees are itera-
tively updated until an optimal solution is found.

1. The number of clusters can be randomly selected, in this proposal,
the initial number of clusters is the number of different alternatives,
= …C C C{ , , },n1 because we want to find the clusters of experts

supporting each different alternative.
2. A centroid represents each cluster cl, ∈ …l n{1, , }. Centroids can be

either randomly initialized or assigned to a value from the dataset,
but their initialization is very sensitive to converging [1,21]. In this
case, as the problem is known, each centroid is initialized with a
fuzzy preference relation that ideally prefers the corresponding al-
ternative over all the others, i.e. for alternative xk, the centroid ck

contains = =c c1, 0kj jk ( ∈ …j n{1, , }) and for the remaining ones
the preference is 0.5 that representing indifference.
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3. Centroids are computed in each iteration t, and the membership
degree of each experts’ fuzzy preference relation Pr to each centroid
cl, t, ∈μ P( ) [0, 1],c

rl t, is calculated by:

=
∑

−

=
−μ P d P c

d P c
( ) (1/ ( , ))

(1/ ( , ))c
r

r l t b

u
n r u t b

, 1/( 1)

1
, 1/( 1)

l t,
(6)

where d(Pr, cl, t) is the Minkowski distance, t is the current iteration,
and b indicates the fuzziness degree of the clusters. The larger b, the
fuzzier the cluster [3]. A common value for this parameter is =b 2.

Definition 8 ([25]). Let Pr be a fuzzy preference relation provided by
the expert er, and cl, t be the centroid for the cluster Cl at iteration t, the
Minkowski distance is defined as follows,

∑ ∑=
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⎝
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λ λ

,

1 1,

,

1/

(7)

being λ>0.In our proposal, =λ 2 that is the Euclidean distance.
4. The preference relation Pr of expert er is assigned to the cluster for

which, the membership degree is maximum.

=C P μ P( ) argmax ( )l t r
l c

r, l t, (8)

5. New centroids are computed according to the experts preference
relations included in each cluster.

∑= ∈ ⋯+

∈

c
C

p i j n1 , , {1, , },ij
l t

l t
P C

ij
r, 1

,
r l t, (9)

where |Cl, t| is the number of preference relations that belong to the
cluster Cl at iteration t.

6. The algorithm stops when all clusters stabilize. This happens when
the variation of the membership degrees between two consecutive
iterations approaches to zero. Formally, the iterative process stops
when

∑ ∑ −
≤= = −μ P μ P

m n
( ) ( )
·

ϵr
m

l
n

c
r

c
r

1 1 l t l t, , 1

(10)

where ϵ is a threshold value that should be close to zero.

Algorithm 1 formalizes previous steps. The outcome provides clus-
ters, Cl, containing a sub-group of experts, Gl, with similar opinions.

3.2.2. Sub-groups hesitation modelling
The classification into sub-groups according to preferences simili-

tude aims at reducing scalability problems, however it is necessary to
establish how to model the sub-group preferences. There exist several
possibilities, from using the centroid that represents the sub-group’s
cluster to aggregate all the expert’s preferences in the sub-group. But
bearing in mind our goal of keeping as much information as possible in
the CRP, unlike of oversimplifying the preferences modelling with ag-
gregation procedures, our proposal considers that the different experts’
preferences elicited in the sub-group despite of being similar, show a
kind of hesitation in the group regarding such preferences.

Therefore, let = …G e e{ , , }l l
k
l

1 be the sub-group of experts belonging to

cluster, Cl, whose preference relations are, ⎜ ⎟= ⎛
⎝

⎞
⎠ ×

P plk
ij
lk

n n

. From such

preference relations a HFPR, = ×HP h( ) ,l
ij
l

n n ∈ …l n{1, , } is built, that
fuses all experts’ preferences in Gl such that, = = …h p k G{ 1, 2, , },ij

l
ij
lk l

|Gl| is the cardinality of Gl and will be the number of preferences in the
HFE h# ij

l which represents the sub-group’s preference over the pair of
alternatives (xi, xj) provided by all experts in Gl.

At this moment, the large number of experts = …E e e{ , , }m1 and their
respective preference relations, Pr, have been replaced by a smaller
number of sub-groups, Gl, and their respective HFPRs, HPl, that will be
the input for the CRP in the LS-GDM.

3.2.3. Sub-groups weighting
To conduct a fair CRP taking into account the previous elements, Gl

and HPl, it is necessary to characterize the sub-groups by computing
their importance. Our proposal takes into account their size and cohe-
sion [44] to reflect their weight:

• Size: number of experts in the sub-group.

• Cohesion: level of togetherness among the experts’ preferences in a
sub-group.

Therefore, the importance of the sub-groups is based on the two
following statements:

• The greater the group the more important.

• The more cohesive the more important.

Hence, the weight of a sub-group of experts will be based on the size
and cohesion. The former is directly obtained from the sub-group detec-
tion process, and the latter needs further computation. So, to obtain the
weights for all sub-groups of experts it is necessary to carry out three
steps: a) to compute the cohesion of each group, b) to compute the size
of each group and c) to obtain the group’s weight. These steps are
further detailed below:

(a) Computing the cohesion of a sub-group. For the sake of clarity, a
geometric description of the cohesion of experts’ preferences,

= ×HP h( ) ,l
ij
l

n n in a sub-group Gl is introduced. First, the area
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delimited by the maximum and minimum assessments in h ,ij
l over the

set of alternatives X is computed. For instance, let =G e e{ , }l
1 2 be a sub-

group of experts, =X x x x{ , , }1 2 3 a set of alternatives, and HPl the HFPR
representing the preferences of the sub-group Gl.

=
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⎜
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−
−

−

⎞
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⎟
⎟

HP
{0.3, 0.4} {0.3, 0.6}

{0.7, 0.6} {0.7, 0.9}
{0.7, 0.4} {0.3, 0.1}

l

The preference degrees in the HFE, h ,ij
l elicited by experts on (xi, xj)

are shown in Fig. 3. The X-axis represents a discrete set Z formed by all
pair of alternatives over X where each pair =z x x( , )t i j i, j∈ {1, 2, 3},
i≠ j is positioned equidistantly on the X-axis. In order to compute the
area, the maximum, +p ,ij and minimum, −p ,ij assessments, for each pair
of alternatives are obtained. To do so, it is necessary to establish the
order in which the pairs of alternatives are located across the X-axis. In
this approach, we have considered the minimum assessments in in-
creasing order.

The cohesion of, Gl, is related to the dark shadowed area, A (the
larger, A, the lower the cohesion), that is computed as follows:

(i) Let Tl be the total area of the rectangle formed by the points aT, bT,
cT and dT (see Fig. 3), i.e., = ×T g nl T T in which gT corresponds to
the height of the rectangle and = − −n n n( ) 1,T 2 corresponds to
the number of pairs of alternatives (considering pii is not assessed)
minus 1, because an area needs at least two pairs in A.

(ii) Let = ⋃ ∈ ≠I i j{( , )}i j n i j, , be the nT pairs over the set of alternatives
= …X x x{ , , }n1 . The +p ,ij and −p ,ij assessments for each pij taking into

account all the preferences in Gl are obtained as:

= ⎧
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s1 2

(12)

The first and last pair of alternatives considered in the X-axis are
obtained by,

= ⎧
⎨⎩

⎫
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(13)

= ⎧
⎨⎩

⎫
⎬⎭

∈+
∈

−p max p c d I, ( , )cd i j I ij,
(14)

A function f is defined to obtain the indexes of the pairs of alter-
natives.

Definition 9. Let f be a function that returns the indexes of a pair of
alternatives,

… →−f z z z I: { , , , }n n1 2 ( 1) (15)
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therefore, f = ∈−z c d I( ) ( , ) .n n( 1) The area Al, between the maximum
and minimum assessments ordered in the X-axis by the minimum is
computed by,
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where D is the distance between zi and +z ,i 1 that in our case it is 1.
(iii) Finally, the cohesion of a sub-group of experts Gl is given by,

= − ∈cohesion G A
T

( ) 1 [0, 1],l
l

l (17)

(b) Computing the size of a sub-group. The value of the size of the group,
Gl, is directly obtained from the sub-group detection process, but its
representation should be adjusted and adapted to the number of experts
involved in the LS-GDM problem. Therefore, a adaptation process based
on computing with words [38] is proposed in which, the size is
modelled by a fuzzy membership function μsize shown in Fig. 4, such
that the universe of discourse is the number of experts in a sub-group
and the membership degree reflects group’s influence regarding all the
experts involved in the LS-GDM.

The points a and b of this membership function depend on the
number of alternatives and experts in the LS-GDM problem, where the
highest membership degree is for values above b and the lowest
membership degree is for values below a and different importance is
assigned in between.

(c) Computing the relevance of a sub-group. Eventually, for weighting the
sub-groups, the values of their size and cohesion are aggregated, our
proposal defines a function to fuse both values making such a
computation more flexible according to the specific LS-GDM.

Definition 10. Let =Y y y{ , }G 1 2l be the values obtained for cohesion and
size, respectively, y1, y2∈ [0, 1], of the sub-group Gl which are
aggregated as follows,

= +φ Y y( ) (1 )G
y β

2l 1 (18)

being β>0 a parameter to increase/decrease the impact of the
cohesion in the computation of the sub-group’s weight.

The aggregated values, φ Y( ),Gl reflects the relevance of the sub-
group, Gl. Finally, such values are normalized.

=
∑

∀ ∈ …
=

w
φ Y

φ Y
l n

( )
( )

, {1, , }.l
G

z
n

G1

l

z (19)

Below, an example shows how the aggregation function performs
and the influence of parameter β on the computation of the sub-groups’
weight.

Let suppose a LS-GDM problem with 80 experts distributed into four
sub-groups, =G G G G G{ , , , }1 2 3 4 whose size, membership degree and

Fig. 3. Graphical representation for computing the cohesion of a sub-group.

Fig. 4. Membership function for the sub-group size.
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cohesion are depicted in Table 1. Different values for the parameter β
have been used to solve Eq. (18).

Note that the weights in Table 1 are already normalized. We can
observe that the sub-groups {G1, G2} have different size but equal co-
hesion, therefore, when the value of β increases, the sub-group’s weight
with higher size, G2, decreases slower than G1. On the other hand, sub-
groups {G3, G4} have the same membership degree, therefore, when the
value of β increases, the sub-group’s weight G3 increases more than the
sub-group G4, because its cohesion is higher. Thus, the parameter β
allows to increase/decrease the impact of the cohesion in the com-
puting weights.

3.3. Computing the consensus degree

Our CRP model modifies the way of computing the level of agree-
ment among experts shown in Fig. 1 by adapting the three-step process
introduced in [31], to deal with the HFSs obtained in the previous
phase.

1. Pairwise similarity matrix: For each pair of sub-groups Gl and Gk, a
similarity matrix = ×SM sm( )lk

ij
lk

n n is obtained, being ∈sm [0, 1]ij
lk the

similarity between hij
l and hij

k:

= −sm d h h1 ( , )ij
lk

ij
l

ij
k

(20)

being d a distance measure for HFEs [40] (see Remark 1). In this pro-
posal d is the Euclidean distance (see Def. 6).

Remark 1. The number of values in the HFEs of each HFPR, HPl, might
be different. In such a case, based on Definition 4 and using the
optimization parameter ηl, all HFPRs, ×HP h( ) ,l

ij
l

n n are normalized,

= ×HP h( ) ,l
ij
l

n n before carrying out the computations.

2. Consensus matrix: The similarity matrices are aggregated to obtain
a consensus matrix = ×CM cm( )ij n n. Though, different aggregation op-
erators may be used, without loss of generality in this proposal the
arithmetic mean is applied:

=
∑ ∑

−
=
−

= +cm
sm

l l( 1)/2ij
u
l

k u
l

ij
lk

1
1

1

(21)

with −l l( 1)/2 the number of pairwise sub-group comparisons.
3. The consensus degree is calculated at two different levels using the

consensus matrix CM:

• Level of alternatives (cai): the consensus degree of each alternative
xi∈ X is computed as,

∑=
− = ≠

ca
n

cm1
1i

j i j

n

ij
1, (22)

• Level of preference relation (cr): the consensus degree among all
experts participating in the LS-GDM problem is computed by,

∑=
=

cr
n

ca1

i

n

i
1 (23)

3.4. Adaptive feedback process: Time cost supervision

When the consensus degree, cr, achieved in a consensus round is not
high enough, i.e. cr< ϑ, another discussion round is necessary to in-
crease the agreement among experts. This new discussion round is
usually guided by a feedback process [33]. So far, CRPs introduced for
dealing with LS-GDM [34,49] do not consider the agreement achieved
in each round to adapt the feedback process making the expert’s pre-
ference supervision harder and the consensus process longer. Due to the
fact that, one goal of our proposal is to reduce the time cost and soften
the preference supervision, this CRP model for LS-GDM proposes an
adaptive procedure that adapts the feedback process according to the
rules for the advice generation based on the consensus level achieved
(see Algorithm 2). According to such a level, the generated feedback is
intended for the whole group or for several individuals. The adaptivity of
the feedback is based on the consensus threshold, ϑ, fixed to achieve the
consensus, and the parameter δ that distinguishes between the two
feedback processes. From this definition, the adaptive feedback process
consists of three steps:

1. A collective matrix that represents the collective opinion of the
experts involved in the LS-GDM problem is computed by aggregating
the normalized HFPRs …HP HP{ , , }n1 . Different hesitant fuzzy aggrega-
tion operators [40,54] can be used, here the Hesitant Fuzzy Weighted
Average operator is used. This operator is revised in Definition 5, and
adapted for our proposal.

Definition 11. Let = ×HP h( ) ,l
ij
l

n n = …l n( 1, , ), be the normalized
HFPRs of the n sub-groups Gl, and = …w w w w( , , , )n

T
1 2 the weighting

vector for those sub-groups (see Section 3.2.3), the collective HFPR,
= ×HP h( ) ,C

ij
C

n n is computed as,
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1
1

,

ij
l s

ij
l, (24)

being HPC a normalized HFPR.

2. The proximity between each sub-group represented by a nor-
malized HFPR …HP HP{ , , },n1 and the collective matrix HPC, is calcu-
lated by using a similarity measure like in Eq. (20).

= = −pr sim HP HP d HP HP( , ) 1 ( , )l C l
hne

C l (25)

Proximity values, prl, are used to identify the sub-groups that are
furthest from the collective opinion.

3. Adapting the feedback: depending on the consensus level reached
cr, the feedback process will be aimed at all experts of the furthest sub-
groups or just for several further experts. Both processes are explained
in more detail:

i) Group feedback process. Low consensus level
In this case cr< δ, that means the consensus level is “low” and

consensus is still far away, therefore quite a lot more changes are

Table 1
Weights for different values of β.

Weigths

Size Memb. Degree Coh. =β 1 =β 1.5 =β 2 =β 3

G1 11 0.25 0.55 0.219 0.205 0.191 0.166
G2 14 0.5 0.55 0.243 0.238 0.234 0.224
G3 23 1 0.49 0.273 0.284 0.295 0.318
G4 32 1 0.45 0.265 0.272 0.279 0.292

Require: cr
Require: δ
Require: ϑ

1: if cr > ϑ then
2: Consensus achieved
3: else
4: if cr ≥ δ then
5: Consensus level high
6: Individual feedback process
7: else
8: Consensus level low
9: Group feedback process

Algorithm 2. Adaptive feedback process.
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necessary, consequently all experts of the furthest sub-groups will ob-
tain suggestions for modifying their preferences over the pair of alter-
natives identified in disagreement. To identify the furthest sub-groups,
the proximity value of each sub-group prl is compared with the average
of the proximity values pr , such that,

∑=
=

pr
n

pr1

l

n
l

1 (26)

and to select the pair of alternatives to be changed, the proximity value
of each pair of alternatives, pr ,ij

l is compared with the average of the
proximity value for such an alternative pr ,i such that,

∑= = −
=

pr
n

pr with pr d h h1 , 1 ( , )i
j

n

ij
l

ij
l

ij
C

ij
l

1 (27)

where ∈h HPij
C C and ∈h HPij

l l.
Therefore,

1. If ≤pr prl then the sub-group Gl is selected.
2. If cai≤ ϑ then the alternative xi is selected and it is necessary to look

for the pair of alternatives,
(a) if ≤pr pr ,ij

l
i then the pair of alternatives (xi, xj) is selected.

Once the sub-groups and pair of alternatives have been identified, a
suggestion indicating the right direction of the preference changes
(increase or decrease) to improve the agreement among experts is
provided, according to the following direction rules:

• If <score h score h( ) ( ),ij
l

ij
C then all experts who belong to the sub-

group Gl should increase their preferences degrees for the pair of
alternatives (xi, xj).

• If >score h score h( ) ( ),ij
l

ij
C then all experts who belong to the sub-

group Gl should decrease their preferences degrees for the pair of
alternatives (xi, xj).

Being score h( )ij
l and score h( )ij

C the score function for the HFEs
∈h HPij

l l and ∈h HP ,ij
C C respectively (see Eq. (5)).

ii) Individual feedback process. High consensus level
In this case δ≤ cr< ϑ, that means the consensus level is “high” but

not enough yet. Therefore not many changes should be necessary,
hence those experts whose opinion differs most from the collective
opinion will obtain advice to modify their opinions. Thus, it would be
necessary to identify the sub-group, Gl, the pair of alternatives (xi, xj)
and experts er who should modify their preferences in disagreement:

1. If ≤pr prl then the sub-group Gl is selected.
2. If cai≤ ϑ then the alternative xi is selected and,

(a) If ≤pr pr ,ij
l

i then the pair of alternatives (xi, xj) is selected.

3. If ⎜ ⎟
⎛

⎝
⎜ − ⎛

⎝
⎞
⎠
≤ ⎞

⎠
⎟d h p pr1 , ,ij

C
ij
lr

i then the expert er is selected to change his/

her preference.

The direction in which the selected expert should change his/her pre-
ferences is determined as follows:

• If ⎜ ⎟
⎛
⎝

⎞
⎠
<p score h( ),ij

lr
ij
C then expert er∈Gl should increase his/her

preference degree for the pair of alternatives (xi, xj).

• If ⎜ ⎟
⎛
⎝

⎞
⎠
>p score h( ),ij

lr
ij
C then the expert er∈Gl should decrease his/her

preference degree for the pair of alternatives (xi, xj).

• If ⎜ ⎟
⎛
⎝

⎞
⎠
=p score h( ),ij

lr
ij
C then it is not necessary to make changes.

Being score h( )ij
C the score function of the HFE h ,ij

C in the collective
matrix HPC calculated by Eq. (5). After this process, the CRP will go to

the sub-groups management phase again.

4. Case study

This section presents a case study to show the usefulness of the
proposed CRP for LS-GDM. To do so, firstly the LS-GDM problem is
described. Afterwards, the problem is solved by means of the proposed
model which has been implemented and integrated into the intelligent
CRP support system, AFRYCA 2.0 [23,33]. A comparison with some
existing models is then shown, and finally an analysis to display dis-
tinctive characteristics regarding existing approaches is introduced.

4.1. Definition of the LS-GDM problem

The GDM problem is formulated as follows: let = …E e e e{ , , , },1 2 50 be
the students of the course of basic programming of Computer Science
degree. The professor asks them which programming language they
would like to use for the practices in the laboratory and he provides
four options, = + +X x C x C x Java x Python{ : , : , : , : }1 2 3 4 . The professor
wants an agreed solution because once the language is selected, they
cannot change it for another one. Students provide their preferences by
fuzzy preference relations over the four options. For the sake of space,
the preferences have been included as a supplementary material
document which is available at http://sinbad2.ujaen.es/afryca/sites/
default/files/app/computerScienceDegree-programmingLanguage.pdf.

Additionally to the experts and alternatives, it is necessary to es-
tablish the following parameters:

• Consensus threshold: ϑ = 0.85

• Level of consensus for the advice generation: =δ 0.7
• Maximum number of rounds allowed: max_round = 15

4.2. Resolution of the LS-GDM problem

In order to solve the problem and achieve the consensus, the new
adaptive CRP is applied and the intelligent CRP support system is used
to carry out the computations and visualize the CRP.

1. Framework configuration: all the parameters necessary in this
phase have been already defined previously.

2. Sub-groups management: The fuzzy c-means based algorithm ex-
plained in Section 3.2.1 is applied to obtain the clusters containing the
sub-groups of experts with similar opinions. Table 2 shows the sub-
groups of experts =G G G G G{ , , , }1 2 3 4 in the first round.

Afterwards, a HFPR for each sub-group of experts is built and they
are the input for the proposed CRP for LS-GDM.

The points a and b to define the membership function for the sub-
group size are computed according to the number of experts m involved
in the LS-GDM problem and the number of alternatives n. In this case
study, we have considered 10% of experts to define the point a and the
number of experts divided by the number of alternatives to define the
point b, i.e. experts are equally distributed in the clusters obtained, but
any other technique can be used.

= =a Round m b Round m n( ·10/100), ( / )

Therefore, the points are = =a Round (50·10/100) 5 and
= =b Round (50/4) 13, (see Fig. 5), where Round(·) is the round func-

tion.
The weights of each sub-group of experts considering its size and

Table 2
Sub-group of experts in the first round.

G1 e1, e9, e24, e27, e30, e32, e33, e37, e48
G2 e6, e8, e11, e21, e25, e28, e35, e47, e50, e39, e36, e4, e19
G3 e2, e12, e13, e15, e34, e40, e45, e5, e43, e46, e44, e29, e41, e3, e20, e26, e38
G4 e7, e10, e14, e16, e18, e22, e31, e42, e49, e23, e17
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cohesion are computed by using Eq. (18), in which the parameter β has
been established after several experiments as =β 3.0 to increase the
impact of the cohesion. Table 3 shows the size, cohesion and weight for
each sub-group of experts in the first round.

3. Computing the consensus degree: The consensus degree obtained
in the first round is =cr 0.64.

4. Adaptive feedback process: As the consensus degree achieved is
not enough, another discussion round is necessary. Applying the
Algorithm 2, it is easy to see that the consensus level is low, because

< =δ0.64 0.7, thus a group feedback process is carried out to identify
the furthest sub-groups and suggest them to modify their preferences
and increase the consensus degree in the next round.

This adaptive CRP is repeated until the consensus threshold is
achieved. Table 4 shows the consensus degrees obtained for each round
and indicates the consensus level reached in such rounds. Fig. 6 shows
the visualization of the CRP obtained by using the statistics tool im-
plemented in AFRYCA 2.0 that is able to carry out Multi-Dimensional
Scaling (MDS) [22] of preferences.

4.3. Comparison with previous CRP models

Even though, previous results provide a good performance ac-
cording to our goals. It should seem convenient to compare such results
with other previous proposals for CRP. First, we compare our model
with two well-known and widespread CRP proposals, Chiclana’s ap-
proach [11] and Kacprzyk’s approach [20]. Our hypothesis was that our

proposal should reduce the cost to achieve the consensus (rounds, su-
pervisions,...) and in both cases it is necessary to carry out more rounds
to achieve the consensus (see Table 5). Fig. 7 shows the visualization of
the CRP for each approach.

Second, a fairer comparison would consist of comparing our pro-
posal with other CRPs for LS-GDM [34,38,48,49], but most of them
[34,38,49] are focused on managing non-cooperative behaviours,
therefore the comparison with our proposal is not fair, because their
main feature is useless in our case study. And the CRP proposal in [48]
for LS-GDM is incomparable, because the constrains imposed in it (see
remark 2).

Remark 2. This approach represents the group preferences by using a
possibility distribution based on hesitant fuzzy elements. The use of this
type of information limits the elicitation of preferences, because experts
have to use a discrete scale such as {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
and in the feedback process, a set of values from the same scale is
computed as possible suggestions for experts to change their
preferences. This implies another limitation in the feedback process
because experts cannot change their preferences as they want, and the
minimum change is ± 0.1. It is remarkable that in the feedback
process the decision problem shows changes of 0.3 regarding the
original preference in just one round which is not realistic, because
usually experts do not want to make big changes in their preferences.
Additionally, we have found some errors in the resolution process of the
emergency decision making problem presented in the paper which
makes difficult a comparison.

4.4. Analyzing the results

As result of the previous sections the following points must be
highlighted:

• The proposed model performs effectively the CRP in LS-GDM as can
be seen in Fig. 7 by adapting the process to the consensus degree in
each round and reducing the preferences by a clustering process.

• Classical models compared, Chiclana’s approach and Kacprzyk’s
approach, obtain from the initial round a consensus degree lower
than the proposed model.

• The necessary number of rounds to achieve the required consensus
degree with classical approaches is greater than in our proposal,
therefore the latter reduces the time cost.

• The use of cohesion in the proposed model facilitates that experts
are close to each other in the solution achieved unlike Kacprzyk’s

Fig. 5. Membership function for the sub-group size.

Table 3
Weights of the sub-groups of experts in the first round.

Sub-groups G1 G2 G3 G4

Size 9 13 17 11
Membership degree sub-group size 0.5 1 1 0.75
Cohesion 0.51 0.49 0.44 0.59
Weights 0.19 0.29 0.25 0.27

Table 4
Consensus degree and consensus level for each round.

round 0 1 2 3 4 5 6 7 8

cr 0.64 0.66 0.69 0.72 0.74 0.75 0.79 0.83 0.85
level low low low high high high high high high

Fig. 6. MDS visualization of proposed CRP.

Table 5
Classical approaches.

Chiclana’s approach Kacprzyk’s approach

Initial consensus degree 0.63 0.53
consensus degree achieved 0.85 0.86
rounds l2 15
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approach and quicker than in Chiclana’s one.

• The proposed CRP does not need to impose any limitation regarding
the elicitation of preferences to achieve its goal, meanwhile others
in the literature as Wu and Xu’s approach limits the values of pre-
ferences elicited.

5. Conclusions and future research

Consensual decisions is a growing societal demand nowadays that
becomes harder and more challenging in those decision making pro-
blems that involve a large number of experts. Despite its importance,
most of current proposals in specialized literature are still focused on
group decision situations with a few number of experts that present
scalability and time cost limitations.

A novel CRP for LS-GDM based on a clustering process for weighting
experts’ preferences by using the size and cohesion of the clusters to-
gether a preference modelling with HFS and an adaptive feedback
process has been introduced and compared with previous CRPs models.
The results obtained show that the new CRP model for LS-GDM can
effectively deal with these types of problems overcoming challenges
proper of LS-GDM. This model has been implemented and integrated in
an intelligent CRP support system.

As future research, we will study how the minimum cost can be used
in the CRP to decrease the number of rounds to achieve the consensus
and how to manage experts’ behaviour that can make difficult to reach
the consensus.
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