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 A B S T R A C T

Blockchain technology has become a trusted method for establishing secure and transparent transactions 
through a distributed, encrypted network. The operation of blockchain is governed by consensus algorithms, 
among which Proof of Stake (PoS) is popular yet has its drawbacks, notably the potential for centralising 
power in nodes with larger stakes or higher rewards. Our proposed novel solution, Fuzzychain, leverages 
fuzzy sets to define stake semantics, introducing a degree of softness in validator selection. This approach 
mitigates rigid threshold-based decision-making by allowing gradual transitions between stake levels, reducing 
sharp disparities among validators. By incorporating this enhanced stake evaluation, Fuzzychain promotes a 
more adaptive and distributed selection process, ensuring a fairer and more inclusive blockchain network. A 
thorough assessment of a real-time multi-agent blockchain system to examine validator selection and reduce 
inequality, promoting a more equitable distribution of stakes among validators compared to other consensus 
mechanisms. This fosters a more inclusive selection process and a more equitably distributed network.
1. Introduction

The transition to digital business models highlights a key challenge: 
establishing trust among stakeholders in a virtual environment. Sev-
eral strategies, including using trusted third parties, digital signatures, 
distributed systems, and peer-to-peer networks  Sankar et al. (2017), 
have been explored to address this issue. However, these methods 
have limitations, steering focus towards blockchain technology as a 
promising solution to build and maintain trust in digital transactions. 
Unlike conventional distributed systems, blockchain is a specialised de-
centralised system that offers various properties such as immutability, 
transparency, integrity, and privacy, among others.

Blockchain, a decentralised, secure, and peer-to-peer network, ad-
dresses the challenges of trust and secure transactions in digital ecosys-
tems (Swan, 2015; Zheng et al., 2018; Pérez et al., 2022; Jahid et al., 
2023). It links blocks through cryptographic mechanisms, each one con-
taining transaction data among network participants or nodes. These 
transactions are recorded and formed into new blocks, then validated 
by specialised nodes like miners, validators, or delegates and added to 
the blockchain Panda et al. (2021). Blockchains are classified as either 
public (permissionless), allowing open access and participation, or pri-
vate (permissioned), with restricted access (Xu et al., 2023a). However, 
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hybrid and consortium blockchains combine features of both public and 
private models to balance transparency, control, and scalability.

Public blockchains, such as Bitcoin Pilkington (2016) and Ethereum
(Ethereum, 2023a), stand out for their decentralised structure, offer-
ing transparency, security, and immutability, suitable for applications 
including smart contracts (Wang et al., 2019; Górski, 2024; Bartoletti 
et al., 2025). The decentralised nature of these systems requires con-
sensus algorithms to maintain trust and proper network functioning. A 
consensus algorithm establishes rules for nodes in a distributed network 
to agree on the system’s state. In blockchain, these algorithms are cru-
cial for verifying and validating transaction blocks, ensuring network 
integrity and trust. Common consensus algorithms include Proof of 
Work (PoW) (Dwork and Naor, 1992; Back et al., 2002; Nakamoto, 
2008), Proof of Stake (PoS) (Ethereum, 2023b), and Delegated Proof 
of Stake (DPoS) (Larimer, 2014; BitShares Documentation, 2018). The 
selection of an algorithm is influenced by security, scalability, energy 
efficiency, and desired decentralisation level in a blockchain network.

The widely recognised PoW algorithm selects miners by requir-
ing nodes to solve complex mathematical puzzles and submit solu-
tions swiftly. Solving these puzzles demands substantial computational 
power, with the node that successfully solves the puzzle being the 
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first to gain the privilege of mining the next block. However, PoW 
exhibits a significant limitation, as it consistently favours nodes with 
the highest computational power, thus challenging the achievement of 
a truly decentralised and equitable system.

To address the shortcomings of PoW, the PoS consensus algorithm, 
as referenced in Saleh (2021), Nguyen et al. (2019), Maung Maung Thin 
et al. (2018), was introduced. PoS chooses validators based on their 
staked utility tokens, ensuring they do not manipulate the blockchain 
for personal gain. Validators confirm blocks and stake bets on them, 
with rewards proportional to their stakes. PoS operates on a staking-
based incentive model. DPoS differs from PoS by having network 
users vote for delegates to validate blocks, enhancing democracy but 
potentially affecting decentralisation (Liu and Xu, 2021). While PoS and 
DPoS improve upon PoW by not requiring extensive hardware for block 
validation, they still face particular challenges.

One of the key limitations of PoS stems from the subjective and 
imprecise nature of stake values. While stake values are expressed 
numerically, their interpretation is influenced by human perception, 
resulting in inherent vagueness and uncertainty. For instance, if a group 
of individuals were surveyed about their perception of a monetary 
amount, whether in cryptocurrencies or traditional forms, they would 
provide a range of responses such as ‘very low,’ ‘low,’ ‘moderate,’ ‘high,’ 
or ‘very high.’ This diversity of responses underscores the intrinsic 
uncertainty and vagueness within human perception. Additionally, PoS 
confronts the challenge of nodes with higher stake values exerting 
undue control over the blockchain, echoing the centralisation issues 
of PoW. This power imbalance stifles the growth and participation of 
smaller stakeholders within the network.

Regardless of the limitations facing each consensus algorithm, there 
is one common challenge: diversification to choose miners, validators 
or delegates. Diversification is a crucial characteristic in the blockchain 
environment because it helps prevent the centralisation of power within 
the network. When a small group of entities controls the majority 
of mining or validation power, they can potentially manipulate the 
network for their own gain, violating the principles of decentralisation 
and trustlessness that are key to blockchain technology. From a security 
standpoint, a diverse set of miners, validators, or delegates enhances 
the network’s resilience to attacks. By diversifying the selection of 
miners or validators, consensus algorithms make it more challenging 
for attackers to amass enough influence to execute attacks, such as the 
Sybil attack (Chen et al., 2022), successfully. Furthermore, a diverse set 
of participants in the validation process brings different perspectives 
and transparency, leading to a more dynamic and resilient ecosystem.

In response to these identified limitations, we propose an innovative 
blockchain protocol named Fuzzychain. Fuzzychain introduces a novel 
concept by incorporating Fuzzy Sets (FSs) theory to represent stake val-
ues, thereby introducing a degree of fuzziness into stake-based consen-
sus mechanisms. This pioneering approach aims to enhance the equity 
and security of blockchain networks. By incorporating FSs, Fuzzychain 
offers validators with diverse stake amounts more opportunities for 
periodic selection, fostering a more inclusive and equitable system. 
This unique contribution aims to mitigate the challenges associated 
with the imprecise nature of stake values in traditional PoS consen-
sus algorithms, ultimately promoting a more robust and participatory 
blockchain network.

The contributions of this paper are the following:

• An innovative consensus algorithm enabling stake selection
through the soft association of a validator with multiple fuzzy 
groups, rather than relying solely on the conventional mean crisp 
value of the stake, as typically used in PoS.

• A soft categorisation and reputation-based validator selection 
approach that ensures validators are chosen based on both stake 
and reputation rather than solely on stake.

• A function that models the behaviour of reputation is incor-
porated to enhance the consensus algorithm in the selection 
phase.
2 
Table 1
This table shows the nomenclature used in this article.
 Nomenclature
 PoW Proof of Work  
 PoS Proof of Stake  
 DPoS Delegated Proof of Stake  
 PBFT Practical Byzantine Fault Tolerance  
 PoR Proof of Reputation  
 PoCC Proof of Contribution  
 FSs Fuzzy Sets  
 RSA Rivest, Shamir and Adleman  
 ECC Elliptic Curve Cryptography  
 CCW Computing With Words  
 LL Linguistic Label  
 MF Membership Function  
 T1-MFs type-1 fuzzy membership functions  
 𝐻𝑀𝐷𝐹 (𝑥) Highest Membership Degree Function 
 𝜇𝑖 Fuzzy membership function  
 𝑇𝑖 Set of fuzzy sets  
 𝑡𝑖 Participants in 𝑇𝑖  
 𝑗 Round  
 𝑟𝑒𝑝(𝑡𝑖 , 𝑗) Reputation of 𝑡𝑖 at the round 𝑗  
 𝐸(𝑡𝑖) Expulsion rate of 𝑡𝑖  

• A novel penalisation mechanism where validators who perform 
incorrect validations face a rapid decrease in their reputation, 
while reputation recovery is harder and gradual.

and the finding highlights:

• This method surpasses contemporary leading consensus algo-
rithms in ensuring broader stake distribution while maintaining 
the same functionality.

• A security assessment was conducted with favourable outcomes to 
verify the proposed approach’s resilience against potential threats 
and its ability to preserve network integrity. 

Finally, an illustrative example is presented to show the perfor-
mance of the equitable consensus algorithm, as well as its advantages 
concerning other consensus algorithms such as PoW, PoS, and DPoS, 
PBFT, and PoR.

The paper is structured as follows: Table  1 displays the nomencla-
ture used in this work. Section 2 gives a background on blockchain 
and fuzzy logic. Section 3 reviews related work. Section 4 details the 
methodology of the proposed ’Fuzzychain’ and its consensus algorithm. 
Section 5 analyses the security of the proposed algorithm. Section 6 
discusses implementation features and key results. Section 7 examines 
the advantages, disadvantages, and challenges of the algorithm. The 
paper finishes with the conclusions and future work in Section 8.

2. Background

This section provides concepts focusing mainly on block- chain tech-
nology and fuzzy sets, which have been used to develop this proposed 
work. Section 2.1 defines blockchain, public blockchain (permission-
less), and elliptic curve cryptographic. Section 2.2 describes the fuzzy 
sets, triangular fuzzy sets, and finally, linguistic variables.

2.1. Blockchain technology

Blockchain technology is a decentralised and distributed ledger 
system that records and verifies transactions across multiple computers 
or nodes in a network (Zhang et al., 2024a). A public blockchain is 
a type of blockchain network known as a permissionless blockchains. 
This kind of blockchain is open to anyone and is maintained by a 
decentralised network of nodes (computers), where the nodes can 
validate transactions and contribute to the census mechanism (Ferdous 
et al., 2021). To add a new block to the blockchain, nodes must agree 
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Fig. 1. The figure depicts the elliptic curve defined by 𝑦2 = 𝑥3 − 𝑥.

on the validity of the transactions through a consensus mechanism. 
Various consensus mechanisms, such PoW (Dwork and Naor, 1992; 
Back et al., 2002; Nakamoto, 2008) and PoS (Ethereum, 2023b), are 
used to achieve this agreement.

Blockchain often has high levels of security due to its decentralised 
nature and the use of cryptography. Cryptography plays a critical 
role in blockchain technology, which is applied to secure transac-
tions, protect data, and control access to the blockchain. Specifically 
asymmetric cryptography is used to generate two keys: a public key 
and a private key, these keys are occupied to authenticate users and 
sign transactions, among others (Menezes et al., 1996). There are 
different asymmetric encrypted algorithms. The most popular are El-
Gamal (Elgamal, 1985), RSA (Rivest et al., 1978), and Elliptic Curve 
Cryptography (ECC) (Koblitz, 1994). ECC has been widely used because 
it uses smaller parameters but with equivalent levels of security than 
other algorithms, obtaining advantages such as faster computations and 
smaller keys (Johnson et al., 2001). According to Koblitz (1994), an 
elliptic curve is defined as follows and depicted in Fig.  1.

Definition 1.  Let 𝐾 be a field of characteristic ≠ 2, 3, and let 𝑥+𝑎𝑥+𝑏 be 
a cubic polynomial with no multiple roots, where 𝑎, 𝑏 ∈ 𝐾. An elliptic 
curve over 𝐾 is the set of points (𝑥, 𝑦) with 𝑥, which satisfy the equation:
𝑦2 = 𝑎3 + 𝑎𝑥 + 𝑏

with a single element denoted by ⊙ and is called the point at infinity.
Blockchain offers multiple properties such as transparency and secu-

rity, among others, nevertheless, still it faces challenges like scalability 
limitations (Sanka and Cheung, 2021) due to the high computational 
requirements and efficient consensus mechanisms (Pérez et al., 2022).

2.2. Fuzzy sets

Fuzzy sets theory, introduced by Zadeh in 1965 (Zadeh, 1965), 
extends the classical set theory to handle uncertainty and vagueness by 
allowing elements to have degrees of membership rather than just being 
either fully in or out of a set. This extension is particularly valuable in 
situations where precise classification is difficult due to ambiguity or 
imprecision in the data.

A fuzzy set is a collection of items where each element has a 
membership value that represents the degree to which it belongs to the 
set. These membership values range between 0 and 1, where 0 indicates 
no membership (completely outside the set) and 1 indicates full mem-
bership (completely inside the set). Values between 0 and 1 represent 
partial membership, indicating varying degrees of belongingness. The 
next paragraph provides a formal definition of a fuzzy set according 
to Aisbett et al. (2010), Mendel (2017).
3 
Fig. 2. The figure depicts six parametric membership functions.

Definition 2.  Let 𝑋 be a universe set. 𝐴 is a fuzzy set if exist a function 
𝜇𝐴 ∶ 𝑋 → [0, 1] such that
𝐴 = {(𝑥, 𝜇𝐴(𝑥)) ∶ 𝑥 ∈ 𝑋}.

where 𝜇𝐴 denotes the membership function of 𝐴 and 𝜇𝐴(𝑥) is called the 
degree of membership, or membership grade, of 𝑥 in 𝐴.

Different membership functions have been used to represent fuzzy 
sets. For instance, parametric and non-parametric membership func-
tions. Parametric functions are suitable for scenarios where data dis-
tributions exhibit uniformity (Mendel, 2017; Jain and Sharma, 2020). 
Examples include triangular, trapezoidal, Gaussian, sigmoidal, bell-
shaped, and Super-Gaussian functions, as illustrated in Fig.  2. Non-
parametric membership functions are often derived from data-driven 
methods and provide greater adaptability in representing gradual or 
abrupt changes. The use of approximated assessments, such as fuzzy 
values, has shown that very accurate values are unnecessary (Delgado 
et al., 1998). Therefore, using triangular fuzzy membership functions 
is common and simpler. Consequently, for the development of experi-
ments and testing the performance of the proposed consensus algorithm 
(see Section 6), the triangular fuzzy membership function is employed, 
as defined below (Mendel, 2017):

𝜇𝐴(𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0  if 𝑥 < 𝑎
𝑥−𝑎
𝑏−𝑎  if 𝑎 ≤ 𝑥 ≤ 𝑏
𝑐−𝑥
𝑐−𝑏  if 𝑏 ≤ 𝑥 ≤ 𝑐

0  if 𝑥 > 𝑐

One of the most interesting uses of fuzzy logic and fuzzy sets theory 
was given by Zadeh (Zadeh, 1999) when he proposed the idea of 
computing with words (CWW), ‘‘a methodology in which the objects of 
computation are words and propositions drawn from a natural language’’. 
The words in this paradigm CWW may be modelled using linguistic 
variables. According to Mendel (2017), a linguistic variable is a variable 
whose values can take words or sentences in a natural language and 
may be represented by fuzzy sets.

Definition 3.  A linguistic variable is characterised by a quintuple 
(𝐿, 𝑇 ,𝑋,𝐺, 𝜇), where:

– 𝐿 is the name of the variable,
– 𝑇  is the set of linguistic terms of 𝐿,
– 𝑋 is the universe of discourse,
– 𝐺 is a syntactic rule that generates linguistic terms of 𝐿, and
– 𝜇 is a semantic rule that associates each linguistic term 𝑡 ∈ 𝑇  its 
meaning, 𝜇(𝑡), which is a fuzzy set on 𝑋.

Notice that, 𝜇 can be seen as a function 𝜇 ∶ 𝑇 → 𝐹 (𝑋), where 𝐹 (𝑋)
denotes the set of fuzzy sets of 𝑋, one fuzzy set for each 𝑡 ∈ 𝑇 .



B. Ramos-Cruz et al. Journal of Network and Computer Applications 241 (2025) 104204 
Table 2
This table summarises the related work where the reputation-based consensus algorithms for blockchain networks are proposed.
 Author Year Algorithm Technique Implementation tool Type  
 Padma and Ramaiah 2025 Adaptive PoW Genetically Modified Swarm NS-3 –  
 Optimisation (SSO)  
 Wang et al. 2025 Dynamic Grouping-based PBFT Weighted Federal Average Python Consortium 
 Chen et al. 2025 Hybrid Multi-layer BFT Commitee Election Hyperledger Fabric Consortium 
 Jia et al. 2025 Reputation-Weighted Filtering Go Hybrid  
 Asynchronous BFT  
 Hussain et al. 2025 Reputation-Based Leader Selection Vote-based Method Hyperledger Fabric Consortium 
 Su et al. 2025 Proof of Contribution (PoCC) Federated Learning C++, Python –  
 Gan et al. 2025 Proof of Reputation (PoR) Tripartite Evolutionary Game Model Python –  
 Li et al. 2025 Game PBFT Gaming Go –  
 Singh et al. 2025 Fair PoR Variational Onsager Matlab Consortium 
 Neural Networks (VONN)  
 Zhang et al. 2024 PoW,PBFT Commitee Election Python –  
 Wen and Yang 2024 Multilevel Adaptive Practical BFT Discourse Power Mechanism – Private  
 Wu et al. 2024 Reputation RAFT, Multiparty Master-Slave Blockchain (MSB) – –  
 Optimised PBFT  
 Deng et al. 2024 PoS, PBFT Bottom-up Hierarchical architecture Matlab Private  
 Hu et al. 2024 Hierarchical Delegated Proof of Multi-weight Subjective Logic Matlab Hybrid  
 Reputation (hDPoR) Model  
 Ye et al. 2024 Lightweight adaptive BFT (LA-BFT) Consensus Committee OpenJDK –  
 Rui et al. 2024 Distributed Authentication DPoS Smart Contracts Java –  
 Li et al. 2024 Layered Cross-Chain PBFT PageRank algorithm Python Hybrid  
 Tang et al. 2024 Threshold Proxy Signature PBFT Two Step Clustering – Hybrid  
 (TP-PBFT)  
 Du et al. 2024 Affinity-Propagation PBFT Affinity-Propagation PBFT Python –  
 Hao et al. 2024 Reputation PoS Deep Reinforcement Learning Python –  
 Chen et al. 2024 Reputation Slice PBFT (RSPBFT) Slicing Approach – Consortium 
 Zhang et al. 2024 PoR Short-term Pseudo-Identity Algorithm – Consortium 
 Zhang et al. 2024 Raft, PoA Identity Information NS-3 –  
 Liu et al. 2024 Improved PBFT Improved PBFT Python Consortium 
 Yang et al. 2024 PoS and hybrid BFT (SG-FCB) Stackelberg game-based – Hybrid  
 Li et al. 2024 Reputation Regression Raft R-Logistic Regression Go, Python –  
 Xu et al. 2023 Efficient and Scalable PBFT (Me-PBFT) Sigmoid Function – –  
 Du et al. 2023 Calculate Reputation MWSL-PBFT Multi-weighted Subjective Logic Go –  
 Dehez-Clementi et al. 2023 Privacy-Preserving PoR Ring Signatures and Dlog-based Python Private  
 Zero-knowledge proof  
 Zhou et al. 2023 Proof of Training Quality (PoQ) Bayesian Theory and Multiple Python Consortium 
 Subjective Logic Models  
 Zhu et al. 2023 DPoS and PoW Logistic Regression Model Hyperledger Fabric Public  
3. Related work

Both in the domain of blockchain technology and others (Liu et al., 
2021), numerous studies have underscored the pivotal role played by 
consensus algorithms in shaping the success and viability of blockchain. 
The comparative analysis of PoW and PoS conducted in Vashchuk 
and Shuwar (2018) highlights the sustainability concerns associated 
with PoW-based blockchains. The sheer energy consumption of PoW, 
which in 2019 equated to the energy requirements of an entire coun-
try like Denmark, accentuates the urgency of exploring more energy-
efficient alternatives. PoS, with its focus on stake rather than computa-
tional power, presents a greener and more environmentally responsible 
approach. However, the transition to a PoS-based model introduces 
unique challenges, particularly regarding centralisation risks and the 
potential for stake concentration among a small group of participants.

One of the primary advantages of PoS over PoW is its inherent 
security against certain attack vectors. In PoS, users aiming to become 
validators must commit a portion of their stake as collateral, thereby 
subjecting their potential gains to risk. However, a well-recognised defi-
ciency of PoS systems is their vulnerability to scenarios in which a mali-
cious user, through legitimate investment or illicit means such as secret 
block creation (Eyal and Sirer, 2018) or selfish mining (Gemeliarana 
and Sari, 2018), amasses enough stake to control a majority (51% or 
more) of the PoS blocks. This level of control not only jeopardizes the 
integrity of the blockchain but can also disrupt its operations, as vividly 
described by Larimer in Larimer (2013). The deterministic nature of 
stake-based selection in PoS increases the risk of centralisation, as 
participants with a consistently higher stake are more likely to be 
chosen repeatedly, reinforcing their control over time.
4 
To mitigate these centralisation risks, reputation-based consensus 
mechanisms have been explored as an alternative. Table  2 presents an 
overview of recent reputation-based consensus mechanisms, categoris-
ing them based on the algorithm, selection technique, implementation 
tools, and blockchain type. These models integrate trustworthiness as a 
selection criterion alongside financial stake, aiming to foster a more 
balanced validator selection process. Various studies have proposed 
reputation-driven consensus mechanisms, leveraging techniques such 
as vote-based selection, machine learning models, and federated learn-
ing. For instance, Reputation-Based Leader Selection (Hussain et al., 
2025) employs a voting mechanism to determine validators, while Rep-
utation PoS (Hao et al., 2024) incorporates deep reinforcement learning 
to dynamically adjust validator weights. Other models, such as Proof 
of Contribution (PoCC) (Su et al., 2025), use federated learning tech-
niques to aggregate distributed node behaviours and enhance fairness 
in validator selection. Hybrid architectures, such as Hybrid Multi-Layer 
BFT (Chen et al., 2025), combine reputation scoring with committee-
based election strategies to achieve a balance between fairness and 
efficiency.

Despite their improvements, reputation-based models still suffer 
from key drawbacks. One major issue is that long-term participation 
biases the system in favour of experienced validators, limiting op-
portunities for new participants. Many reputation mechanisms rely 
on static penalty models, which fail to dynamically adjust to real-
time validator behaviour, making them vulnerable to manipulation or 
collusion. Furthermore, deterministic reputation-based selection meth-
ods create predictability in validator selection, allowing adversarial 
actors to exploit the system. Although, reputation models provide 
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additional security layers compared to traditional PoS, they often strug-
gle to balance fairness, decentralisation, and resilience against Sybil 
attacks (Kumar et al., 2023).

To address these challenges, we propose Fuzzychain, a novel con-
sensus mechanism that integrates stake values, reputation, and a de-
gree of randomness in the validator selection process. Unlike existing 
PoS and reputation-based models, Fuzzychain introduces a ‘‘halo of 
fuzziness’’ into the evaluation of stake and reputation, ensuring that 
the selection process is not entirely deterministic. By incorporating 
randomness alongside stake and reputation, Fuzzychain reduces the 
likelihood that the same high-stake or long-standing participants will 
be continuously selected, thereby mitigating centralisation risks and 
ensuring a more equitable selection process. This randomness pre-
vents adversarial entities from precisely predicting or manipulating 
the validator selection process, making the network more resistant 
to collusion and attacks. Additionally, Fuzzychain allows for adaptive 
reputation scoring, enabling participants to recover from penalties and 
dynamically adjust their standing based on real-time behaviour.

The evolution of consensus mechanisms in blockchain has evolved 
from computational power-based models (PoW) to financial stake-
driven approaches (PoS) and, more recently, to reputation-based al-
gorithms. While reputation-based consensus models introduce fairness 
and security improvements, they still suffer from deterministic selec-
tion biases and centralisation risks. Fuzzychain represents a significant 
advancement by introducing controlled randomness into stake and 
reputation-based selection, enhancing fairness, decentralisation, and 
security. This approach strengthens the resilience of blockchain net-
works, ensuring a more adaptive, sustainable, resilient, and equitable 
consensus mechanism that mitigates the pitfalls of existing models.

4. Fuzzychain: equitable consensus algorithm

In this section, we propose the Fuzzychain: an equitable consensus 
algorithm. A general description is given in Section 4.1 and the specific 
details are further explained in Section 4.2.

4.1. General description

In order to provide a clearer explanation of Fuzzychain, it has been 
segmented into three distinct stages, as depicted in Fig.  3.
Stage 1: Transaction initialisation and block creation

This stage considers the client nodes and the validators. The former 
generates transactions and the latter collects and aggregates these 
transactions to form a potential block for validation. These transactions 
represent digital agreements, exchanges of value, or any form of data 
that participants within the blockchain network wish to record. Each 
transaction contains details such as the sender, recipient, the amount 
involved, and a digital signature to ensure its integrity and authenticity. 
Once these transactions are collected and validated, a new block is 
generated. This block acts as a container, grouping a set of transactions. 
The creation of a new block involves cryptographic processes that 
secure the data within it, making it tamper-proof. After the new block 
is constructed, it is disseminated across the network to all participating 
nodes. This stage establishes the foundation for blockchain operations 
as it assembles the transactions and prepares them for validation.
Stage 2: Block validation and consensus

The second stage of Fuzzychain is the block validation process. In 
this critical phase, a consensus algorithm comes into play to determine 
the authenticity and validity of the transactions included within the 
newly created block. Consensus is a fundamental concept in blockchain 
technology, as it ensures that all participants in the network agree 
on the order and content of transactions. Various consensus algo-
rithms can be employed, such as PoW, PoS or DPoS, depending on 
the blockchain’s design. The consensus algorithm checks the transac-
tions for compliance with the network’s rules and validates that the 
5 
Fig. 3. The figure shows the blockchain process explained in three stages. Stage 1: 
Initialise the transaction, generate a new block, and send it to the participating network. 
Stage 2: Block validation and consensus process. In this stage, three phases are executed: 
scaling, selection and voting. Stage 3: The new block was added to the blockchain and 
transaction finalisation.

participants involved have the necessary permissions and resources. 
Once consensus is achieved, a collective decision is made on which 
participants (often referred to as miners, validators, or delegates) will 
have the responsibility to add the new block to the blockchain. This 
phase is essential for maintaining the integrity and security of the 
blockchain, preventing fraudulent or erroneous transactions from being 
added.

Stage 3: Block addition and transaction finalisation
The final stage, Stage 3, marks the process of adding the newly 

validated block to the blockchain, thus finalising the transactions it 
contains. Once the consensus algorithm has verified the transactions 
and designated the responsible participants, they undertake the task 
of appending the new block to the existing blockchain. This process 
ensures that the transactions are immutably recorded sequentially and 
chronologically. The added transactions are considered complete, and 
the agreed-upon changes to the blockchain state take effect. The added 
block becomes a permanent part of the blockchain’s history, forming a 
secure and transparent ledger of all network activities. The blockchain’s 
value lies in this stage, as it guarantees the reliability and trustworthi-
ness of the recorded transactions, enabling the blockchain network to 
maintain its integrity and functionality.

General performance of Fuzzychain
These three stages collectively form the core of the Fuzzychain 

protocol, providing a systematic and secure approach to handling trans-
actions within a blockchain network. By breaking down the process 
into these distinct stages, Fuzzychain enhances the transparency and 
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Fig. 4. The figure illustrates an overview of the scaling, selection, and voting phases 
employed in the development of the equitable consensus algorithm. These phases are 
applied during the second stage, where block validation and consensus occur.

reliability of blockchain operations, offering a practical solution to the 
challenges associated with trust, stake value, and control.

This research work will focus on Stage 2, a pivotal step in the 
functioning of a blockchain network. During this stage, a consensus al-
gorithm is employed to ensure the integrity and security of the network. 
Through this intricate process, various nodes or validators participate 
in verifying the transactions and aiming to validate the block. This 
verification process is critical as it enhances the transparency and im-
mutability of the blockchain, ensuring that only legitimate transactions 
are added to the distributed ledger. Once a consensus is reached among 
the participating nodes, the network can collectively decide on the next 
valid block to be added, thereby reinforcing the decentralised nature of 
the blockchain ecosystem.

Fuzzychain employs an equitable consensus algorithm based on 
proof of stake to validate block transactions. In the proposed algorithm, 
a numerical value representing a participant’s stake is scaled into a set 
of fuzzy sets by using a membership function. Each numerical value is 
then assigned to an associated linguistic label, introducing an element 
of fuzziness to the stake representation. Fig.  4 illustrates an overview 
of the proposed equitable consensus algorithm. Subsequently, a set of 
participants is chosen based on their reputation from each fuzzy set. 
From each set of participants, selected randomly one or two validators, 
engage in the validation process and indicate whether the block should 
be accepted or rejected.

To determine the block’s validity, a voting mechanism is employed, 
with consensus reached based on the majority of participants’ deci-
sions. If the majority indicates acceptance, the block is added to the 
Fuzzychain; otherwise, it is rejected. Subsequently, from the successful 
participants, one is randomly chosen to add the new block to the 
blockchain. These successful participants maintain their reputations 
and the selected participant who added the block receives a commission 
for completing the validation process. Conversely, unsuccessful partic-
ipants are penalised, decreasing their reputation. Consequently, in the 
next round, they will be less likely to be chosen. A detailed descrip-
tion is provided in the following section for a more comprehensive 
understanding of the proposed equitable consensus algorithm.
6 
4.2. Equitable consensus algorithm: design and specifications

Our proposal introduces an equitable consensus algorithm based on 
the proof of stake and fuzzy set theory to validate and verify block 
transactions, thus giving rise to the first Fuzzychain. Moreover, our 
method can be adapted and extended to other consensus mechanisms 
that rely on stake-based validator selection, such as DPoS, hybrid 
PoS/PoW system, and other approaches that incorporate stake and 
reputation in the validator selection process.

The proposed equitable consensus algorithm is composed by three 
phases: scaling, selection and voting phase, depicted in Fig.  4 and 
further detailed below.

Scaling phase
In this phase, the procedure entails scaling a participant’s stake, 

represented by the numerical value into a set of fuzzy sets through the 
application of a membership function (MF) (in our case a triangular 
fuzzy membership). Therefore, it is defined the linguistic variable used 
by the consensus algorithm. 

Definition 4.  Let 𝐿 be the linguistic variable defined by the Partici-
pant’s stakes. The set of linguistic terms of 𝐿 is 𝑇 = {𝑇1, 𝑇2, 𝑇3,… , 𝑇𝑛}
and the universe of discourse is the interval 𝑋 = [𝑙, 𝑟] with 𝑙 < 𝑟 and 
𝑟, 𝑙 ∈ N.

According to Zadeh in Zadeh (1975), the set T, in principle, could 
have an infinite number of linguistic terms. For practical purposes, and 
based on Miller’s observation regarding the fact that human beings can 
reasonably manage to bear in mind seven or so items (Miller, 1994). 
Therefore, a few number of terms may suffice for broad distinctions, 
while finer categories (e.g., Very Low, Low, Medium, High, Very High) 
provide more detail. The chosen number should balance precision and 
usability, ensuring that stakeholders can easily differentiate between 
categories without excessive complexity.

For the linguistic variable L, one example of the set of linguistic 
terms, T, could be 𝑇 = {𝑉 𝑒𝑟𝑦 𝐿𝑜𝑤,𝐿𝑜𝑤, 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒,𝐻𝑖𝑔ℎ, 𝑉 𝑒𝑟𝑦 𝐻𝑖𝑔ℎ}. 
The terms in 𝑇 , for instance, Very low, Low, Moderate, etc. can be called 
linguistic labels (LL).

The first step of this phase is to divide the universe of discourse 
𝑋 into 𝑛 uniformly spaced and distributed type-1 fuzzy membership 
functions (T1-MFs), where each T1-MF is related with a corresponding 
fuzzy set. In the next step, any user’s stake’s numeric value 𝑥 is 
scaled and located in a fuzzy set defined on 𝑋, and each stake value 
is identified by a linguistic label. Since the value 𝑥 may belong to 
different fuzzy sets with different degrees of membership, the following 
definition is presented.

Definition 5.  Highest membership degree function . Let 𝑥 be a 
stake value and let 𝑇1, 𝑇2, 𝑇3,… , 𝑇𝑛 be fuzzy sets defined on the scale 𝑙
to 𝑟. The highest membership degree function (HMDF) of the element 
𝑥 across these fuzzy sets is defined as:
𝐻𝑀𝐷𝐹 (𝑥) = max{𝜇𝑇1 (𝑥), 𝜇𝑇2 (𝑥), 𝜇𝑇3 (𝑥),… , 𝜇𝑇𝑛 (𝑥)}

where

– 𝜇𝑇𝑖 (𝑥) represents the degree of membership of the element 𝑥 in 
fuzzy set 𝑇𝑖.

According to Definition  5, the numeric value 𝑥 of the participant’s 
stake corresponds to a unique fuzzy set assigned through the highest 
membership degree function. Furthermore, each fuzzy set is identified 
with a unique linguistic label. At this moment, the items 𝑥′𝑠 in the 
set of participant’s stake values have been scaled into fuzzy sets 𝑇𝑖, 
each bearing the appropriate linguistic label (Very low, Low, Moderate, 
among others), using the adequate fuzzy membership function 𝜇𝑇𝑖 (𝑥). 
The scaling phase can be visualised in Fig.  5 and is computed in 
Algorithm 1. Continuously with the proposal, the selection phase is 
described as follows.
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Fig. 5. The figure displays the scaling phase in the equitable consensus algorithm used 
in Stage 2. The items 𝑥 in the set of Participant’s stakes are scaled through the fuzzy 
membership function 𝜇𝑇𝑖 (𝑥) into fuzzy sets 𝑇𝑖 on the universe of discourse defined from 
𝑙 to 𝑟 for the linguistic variable ‘‘Participant’s stake’’. The degree of membership for 𝑥
is the highest membership degree function (HMDF).

Algorithm 1 ScalingPhase (x)
 Input  : Stake value 𝑥 ;
 Output  : Assigning 𝑇𝑖 ;
1: function SP(𝑥)
2:  for 𝑗 = 1  to 𝑛𝑢𝑚𝑏𝑒𝑟𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡′𝑠𝑆𝑡𝑎𝑘𝑒 do
3:  𝑀𝐷𝐹 [];
4:  𝐻𝑀𝐷𝐹 [];
5:  𝐿 = 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡′𝑠 𝑠𝑡𝑎𝑘𝑒 ;
6:  𝑇 (𝐿) = [𝑇1, 𝑇2, 𝑇3,… , 𝑇𝑛] ;
7:  for 𝑖 = 1  to 𝑛 do
8:  𝑀𝐷𝐹 ← 𝜇𝑇𝑖 (𝑥𝑗 ) ;
9:  end for
10:  𝐻𝑀𝐷𝐹 ← max(𝑀𝐷𝐹 );
11:  𝑇𝑖 ← 𝑆𝑐𝑎𝑙𝑒𝑆𝑡𝑎𝑘𝑒(𝑥𝑗 ,𝐻𝑀𝐷𝐹 ) ;
12:  end for
13:  return 𝑇𝑖 ;
14: end function

Selection phase
This phase aims to choose participants 𝑡𝑖 from each fuzzy set 𝑇𝑖. To 

achieve it, the phase involves two selection algorithms

(i) validator random selection and
(ii) validator selection according to the reputation.

The former is an algorithm that randomly chooses the participants, and 
the latter is then used to select participants based on their reputation 
from each fuzzy set. Reputation is a key concept in the development of 
this proposed algorithm, therefore the following definition is presented.

Definition 6 (Reputation Range). Let 𝑡𝑖 be a participant in the fuzzy set 
𝑇𝑖. For all 𝑡𝑖 ∈ 𝑇𝑖, the reputation 𝑟𝑒𝑝(𝑡𝑖, 𝑗) at the round 𝑗, is defined on 
interval [0, 1].

Each participant 𝑡𝑖 entering a specific fuzzy set starts with an 
initial reputation set to 1 (maximum reputation). Subsequently, their 
reputation may be maintained or decreased contingent upon their 
performance, i.e., success or failure in their validation and verification 
tasks. To model the behaviour of the reputation when the validator’s 
reputation differs from 1 the following function is defined.
7 
Fig. 6. This figure displays the selection phase during the first round, where the 
validator random selection algorithm is applied to choose the participants from the 
fuzzy sets 𝑇𝑖, respectively.

Definition 7.  Let 𝜂 be the decrease rate and let 𝜂𝑙 , 𝑙 ∈ N be the increase 
rate. If 𝑟𝑒𝑝(𝑡𝑖, 𝑗) is the reputation for the validator 𝑡𝑖 in the round 𝑗, then 
𝑟𝑒𝑝(𝑡𝑖, 𝑗 + 1) for the round 𝑗 + 1 is defined by

𝑟𝑒𝑝(𝑡𝑖, 𝑗 + 1) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if 𝑡𝑖 is a successful validator
and 𝑟𝑒𝑝(𝑡𝑖, 𝑗) = 1

𝑟𝑒𝑝(𝑡𝑖, 𝑗) +
𝜂
𝑙 if 𝑡𝑖 is a successful validator

𝑟𝑒𝑝(𝑡𝑖, 𝑗) − 𝜂 if 𝑡𝑖 is a unsuccessful
validator

where 0 ≤ 𝑟𝑒𝑝(𝑡𝑖, 𝑗 + 1) ≤ 1.

In order to choose the participants 𝑡𝑖, in the first round (to validate 
the first block), when all the participants have the same reputation, 
the validator random selection algorithm is applied to select one par-
ticipant from each fuzzy set 𝑇1, 𝑇2,… , 𝑇𝑛−2 and two participants from 
each fuzzy set 𝑇𝑛−1 and 𝑇𝑛. Fig.  6 shows the selection process for the 
first round. 

Remark 1.  This selection is based on the assumption that partici-
pants in fuzzy sets with the highest stake percentages have a greater 
interest in ensuring the network functions effectively and securely. 
Consequently, these participants are more trusted than those with lower 
stake percentages in the verification and validation process. Therefore, 
selecting an additional participant from the fuzzy sets with the highest 
stakes helps prevent participants with lower stakes from gaining control 
of the network, decreasing the risk of the 51% attacks. Moreover, this 
selection ensures an odd number of participants, which is crucial for 
the voting phase because, in the voting process is not possible to get a 
tie, Section 5 will explain it in more detail.

For the next 𝑗𝑡ℎ rounds, to select the participants 𝑡𝑖 the reputation 
is considered, viz., the participants that have the highest reputation in 
each fuzzy set 𝑇𝑖 have more probability of being chosen than partic-
ipants with a lower reputation. The candidates are selected using the 
validator selection algorithm according to their reputation, which will 
explain to continue. This algorithm generates two subsets 𝐴𝑖 and 𝐵𝑖
from each fuzzy set 𝑇𝑖 and both are defined as follows:
𝐴𝑖 = {𝑡𝑖 ∈ 𝑇𝑖 ∶ 𝑟𝑒𝑝(𝑡𝑖, 𝑗) = 1},

𝐵𝑖 = {𝑡𝑖 ∈ 𝑇𝑖 ∶ 𝑟𝑒𝑝(𝑡𝑖, 𝑗) ≤ 1}.

Notice that the subset 𝐴𝑖 contains only participants with the reputation 
set to 1, while the subset 𝐵𝑖 includes participants with reputations less 
than 1 as well as those with a reputation of 1, hence 𝐴𝑖 ⊆ 𝐵𝑖. These 
sets are designed with the intention that participants with the highest 
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Fig. 7. The figure depicts the validator selection algorithm according to the reputation 
to choose the participants 𝑡𝑖 from each fuzzy set 𝑇𝑖 during the 𝑗th round.

reputation (set to 1) are more likely to be chosen than those with a 
lower reputation.

Once the subsets are defined, the random selection algorithm
chooses two participants from subset 𝐴𝑖 and one from subset 𝐵𝑖. In 
this way, the participants with the highest reputation have a higher 
probability of being chosen compared to the participants with a lower 
reputation. While participants with lower reputations may have fewer 
opportunities, but they still can excel in subsequent tasks and improve 
their reputations. Hence, they may ascend to the group with the highest 
reputation. Nevertheless, if one participant continues incorrectly doing 
the tasks, they will be expelled from the group of validators or even 
from the network. To manage this case, the validators have an error 
rate based on their reputation, which is presented in the following 
definition.

Definition 8.  Expulsion rate. Let 𝑟𝑒𝑝(𝑡𝑖, 𝑗) be the reputation of the 
validator 𝑡𝑖. The expulsion rate of 𝑡𝑖, 𝐸(𝑡𝑖), is defined by:

𝐸(𝑡𝑖) =
{

0 𝐼𝑓 𝑟𝑒𝑝(𝑡𝑖, 𝑗) = 1
1 − 𝑟𝑒𝑝(𝑡𝑖, 𝑗) 𝐼𝑓 𝑟𝑒𝑝(𝑡𝑖, 𝑗) ≠ 1

As a consequence of Definition  8, the next exclusion condition is 
presented.

Definition 9 (Exclusion Condition). Let 𝜖 be the expulsion rate defined 
and allowed in the fuzzychain. If the 𝐸(𝑡𝑖) > 𝜖 then the participant 𝑡𝑖 is 
excluded from the set of validators.

In the final step of this phase, participants from both subsets are 
combined, and the random selection algorithm is applied. It selects one 
participant from the sets 𝑇1, 𝑇2,…, 𝑇𝑛−2, two participants for 𝑇𝑛−1 and 
others two for 𝑇𝑛. Fig.  7 illustrates the process for the 𝑗th round and is 
detailed in Algorithm 2.

After the participants are selected for each fuzzy set, the validation 
and verification process of the block ensues. To do this, the voting 
phase is used and described in detail in the following paragraphs.
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Algorithm 2 SelectionPhase (x)
 Input  : Fuzzy set 𝑇𝑖 ;
 Output  : Validator 𝑉𝑖 ;
1: function SP(𝑥)
2:  𝑟𝑒𝑝[] = 1 ;
3:  if 𝑟𝑜𝑢𝑛𝑑𝑗 == 1 then
4:  for 𝑖 = 1  to 𝑛 − 2 do
5:  𝑡𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝐶ℎ𝑜𝑠𝑒𝑛𝑂𝑛𝑒(𝑇𝑖) ;
6:  end for
7:  𝑡𝑛−1 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝐶ℎ𝑜𝑠𝑒𝑛𝑇𝑤𝑜(𝑇𝑛−1);
8:  𝑡𝑛 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝐶ℎ𝑜𝑠𝑒𝑛𝑇𝑤𝑜(𝑇𝑛)
9:  else
10:  𝐴𝑖 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑢𝑏𝑠𝑒𝑡𝐴(𝑇𝑖);
11:  𝐵𝑖 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑢𝑏𝑠𝑒𝑡𝐵(𝑇𝑖)
12:  for 𝑖 = 1  to 𝑛 − 2 do
13:  𝑎𝑖 ← 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶ℎ𝑜𝑠𝑒𝑛𝑇𝑤𝑜(𝐴𝑖) ;
14:  𝑏𝑖 ← 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶ℎ𝑜𝑠𝑒𝑛𝑂𝑛𝑒(𝐵𝑖) ;
15:  end for
16:  𝑎𝑛−1 ← 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶ℎ𝑜𝑠𝑒𝑛𝑇𝑤𝑜(𝐴𝑛−1) ;
17:  𝑏𝑛−1 ← 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶ℎ𝑜𝑠𝑒𝑛𝑂𝑛𝑒(𝐵𝑛−1) ;
18:  𝑎𝑛 ← 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶ℎ𝑜𝑠𝑒𝑛𝑇𝑤𝑜(𝐴𝑛) ;
19:  𝑏𝑛 ← 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶ℎ𝑜𝑠𝑒𝑛𝑂𝑛𝑒(𝐵𝑛) ;
20:  end if
21:  for 𝑖 = 1  to 𝑛 do
22:  𝑀[𝑖] ← 𝑚𝑖𝑥(𝑎𝑖, 𝑏𝑖)
23:  𝑉𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝐶ℎ𝑜𝑠𝑒𝑛𝑂𝑛𝑒(𝑀) ;
24:  end for
25:  return 𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠 𝑉𝑖 ;
26: end function

Voting phase
The selection phase chooses one participant for the first 𝑛− 2 fuzzy 

sets and two participants for the last 𝑛 − 1 and 𝑛 fuzzy sets. Therefore, 
the number of participants in the voting mechanism depends on the 
number of fuzzy sets, then there is an important requirement related 
to the fuzzy sets. The number of fuzzy sets on 𝑋 should be an odd 
number, this is crucial, particularly in the context of the voting phase 
within the consensus algorithm. This stipulation aligns with the design 
of the voting mechanism, which facilitates the selection of participants 
in a balanced and equitable manner during the voting phase. With an 
odd number of fuzzy sets, there will always be a clear majority when it 
comes to decision-making, minimising the likelihood of ties. In essence, 
the requirement for an odd number of fuzzy sets on 𝑋 serves to optimise 
the efficiency of the consensus algorithm, particularly in the critical 
voting phase where decisions are made regarding the acceptance or 
rejection of blocks within the Fuzzychain network.

Once the validators have been selected from each fuzzy set 𝑇𝑖
at the selection phase, every one of them individually engages in 
the validation process and subsequently indicates whether the block 
should be accepted or rejected. This phase involves a voting mechanism 
employed to determine the block’s validity, wherein a consensus is 
reached based on the majority of participants’ decisions. If the majority 
indicates acceptance, the block is accepted; otherwise, it is rejected.

The sample spaces of the voting mechanism is 𝛺 = {𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑,
𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑}; there are no other possibilities. The validators who won the 
vote will be considered successful, that is if the majority indicates that 
the block is accepted or rejected. Therefore, to encapsulate this idea, 
the next definition is presented.

Definition 10 (Successful Validator). A validator 𝑉  that participates in 
the voting mechanism is considered a successful validator if and only 
if 𝑉  is in the group of the validators who secure the majority vote.

Definition 11 (Unsuccessful Validator). A validator 𝑉𝑢 that participates 
in the voting mechanism is considered an unsuccessful validator if and 
only if 𝑉  is in the group of the validators who secure the minority vote.
𝑢
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Fig. 8. The figure depicts the voting phase between participants chosen in the selection 
phases. Each participant verifies and validates the transactions in the block and then 
casts their vote to accept or reject the block. Then, the winner validator is obtained 
by employing the random selection algorithm.

When the validation process is finished and it has been decided 
whether the block is accepted or rejected, a new selection process is 
carried out among the successful participants to know which of them 
is the winner because only one of them can take the full reward. 
The selection process is performed by the validator random selection 
algorithm presented in the selection phase.

The reward for all successful validators is an increase in their repu-
tation if the reputation is less than 1 and maintaining their reputation 
if the reputation is equal to 1. Nevertheless, for the winner validator, 
in addition to the reputation, a commission for having completed 
validation is obtained. The voting phase is depicted in Fig.  8 and 
computed in Algorithm 3.

It is important to note that in this algorithm the increase and 
decrease in reputation are not proportional, reputation increases more 
slowly and decreases more quickly. Unsuccessful validators are pe-
nalised by lowering their reputation, which limits them to having less 
chance of being selected the next time. In this proposal, any participant 
can make a mistake, so the penalty is the same for everyone regardless 
of whether you have more or less stake.

In summary, the proposed equitable consensus algorithm for Fuzzy-
chain combines elements of proof of stake and fuzzy set theory to 
achieve a fair and reliable method for validating block transactions. 
By introducing linguistic labels to represent participants’ stakes and 
utilising reputation as a selection criterion, the algorithm establishes a 
balanced approach to participant involvement in the validating process. 
The incorporation of a robust voting mechanism, where consensus is 
reached through the majority decision of selected participants, adds an 
additional layer of reliability to the validation process.

The algorithm ensures that successful participants not only con-
tribute to the blockchain by adding accepted blocks but also receive 
dual rewards in the form of a commission for validations and an 
increase in reputation. Conversely, unsuccessful participant validators 
face penalties, including a reduction in reputation, impacting their 
chances of selection in subsequent rounds. This approach encourages 
participants to engage actively in the network, ensuring a balanced 
distribution of opportunities.
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Algorithm 3 VotingPhase (x)
 Input  : Validator 𝑉  ;
 Output  : Validator 𝑉𝑤𝑖𝑛𝑛𝑒𝑟 ;
1: function VP(𝑥)
2:  𝑙𝑖𝑠𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛[];
3:  𝑙𝑖𝑠𝑡𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠[];
4:  for 𝑖 = 1  to 𝑁𝑢𝑚𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠 do
5:  𝑙𝑖𝑠𝑡𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠[𝑖] ← 𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟 𝑉𝑖 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘;
6:  𝑙𝑖𝑠𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛[𝑖] ← 𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟 𝑉𝑖 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑜𝑟 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑;
7:  end for
8:  𝑅𝑒𝑠 ← 𝑣𝑜𝑡𝑖𝑛𝑔𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚(𝑙𝑖𝑠𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛);
9:  if 𝑅𝑒𝑠 == 𝑇 𝑟𝑢𝑒 then
10:  𝑇 𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑙𝑜𝑐𝑘 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑;
11:  else
12:  𝑇 𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑙𝑜𝑐𝑘 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑;
13:  end if
14:  𝑆𝑢𝑐𝑐𝑣 ← 𝑐ℎ𝑜𝑠𝑒𝑛𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠(𝑙𝑖𝑠𝑡𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠);
15:  if 𝑉 𝑖𝑠 𝑆𝑢𝑐𝑐𝑣 then
16:  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑉 );
17:  else
18:  𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑉 );
19:  end if
20:  𝑉𝑤𝑖𝑛𝑛𝑒𝑟 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝐶ℎ𝑜𝑠𝑒𝑛𝑂𝑛𝑒(𝑆𝑢𝑐𝑐𝑣);
21:  𝑅𝑒𝑤𝑎𝑟𝑑(𝑉𝑤𝑖𝑛𝑛𝑒𝑟) ;
22:  return 𝑉𝑤𝑖𝑛𝑒𝑒𝑟 ;
23: end function

The detailed description of the proposed equitable consensus al-
gorithm provides a foundation for understanding its inner workings 
and sets the stage for further implementation and optimisation. This 
algorithm stands as a key component in Fuzzychain’s pursuit of a 
secure, transparent, and inclusive blockchain network. In the next 
section, a security analysis is presented.

5. Security analysis

Ensuring the robustness and security of the proposed equitable 
consensus algorithm for Fuzzychain is paramount for its successful 
deployment in blockchain networks. This section analyzes the proposed 
consensus algorithm to prove that possesses the characteristics of a 
consensus algorithm. In addition, a comprehensive security analysis to 
assess the algorithm’s resilience to potential threats and its ability to 
maintain the integrity of the network.

5.1. Consensus algorithm properties

The properties that an algorithm must satisfy to be considered 
a consensus algorithm were initially proposed in the context of dis-
tributed systems (Lamport et al., 1982). Later, these properties are 
adapted to the blockchain and cryptocurrency context. A consensus 
algorithm should satisfy four fundamental properties: Validity, Agree-
ment, Termination, and Integrity. This section discusses how the pro-
posed consensus algorithm meets these properties, providing proofs for 
each.

Validity: If all honest nodes propose the same value 𝑣, then 𝑣 must be 
chosen.

Proof.  In FuzzyChain, the selection phase ensures that only validators 
selected based on their stake and reputation participate in the block 
validation process. During the voting phase, these selected validators 
verify the correctness of proposed blocks before casting their votes. 
Given that all honest nodes adhere to the validation procedure, they 
will consistently vote for the correct value. The voting mechanism 
follows a majority decision rule, which accurately reflects the consensus 
when honest nodes propose the same valid block. Consequently, the 
block is either accepted or rejected based on the majority decision, 
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ensuring all honest nodes reach the same conclusion. As the voting pro-
cess is deterministic under honest behaviour, the proposed consensus 
algorithm satisfies the validity property, guaranteeing that consensus is 
reached on a correctly proposed value.

Agreement: All honest nodes must agree on the same value.

Proof.  In the proposed consensus algorithm, the selection phase is 
designed to ensure a fair and equitable choice of validators from diverse 
fuzzy sets, with validators exhibiting greater reliability and reputation 
having a higher probability of selection. During the voting phase, a 
majority rule is employed to determine the outcome, and the use of 
an odd number of fuzzy sets eliminates the possibility of ties, thereby 
ensuring a clear and unambiguous decision. Since all honest validators 
adhere to the same protocol rules and base their votes on identical 
transaction data, they are guaranteed to reach a consistent consensus. 
Consequently, the algorithm ensures that all honest nodes cannot arrive 
at different values, thus satisfying the agreement property.

Termination: Every honest node eventually decides on a determined value.

Proof.  Given the proposed consensus algorithm, the selection phase 
ensures that validators are chosen in every round, enabling the consen-
sus process to proceed systematically. During the voting phase, once 
validators cast their votes, the outcome is determined within a finite 
time, ensuring timely resolution. The algorithm is designed to employ 
an odd number of validators to guarantee a decisive outcome. In this 
way, the algorithm ensures that the process will always conclude and 
every honest node eventually decides on a determined value.

Integrity: If an honest node decides on value 𝑣, then 𝑣 must have been 
proposed by some honest nodes.

Proof.  In the proposed consensus algorithm, the integrity of the 
process is upheld by ensuring that only values validated by honest 
validators are considered during consensus. The selection process is 
designed to choose validators fairly, with nodes exhibiting poor reputa-
tions having a reduced likelihood of being selected, thereby promoting 
a trustworthy validator pool. The voting mechanism further reinforces 
this integrity by ensuring that only properly validated transactions can 
reach a consensus. Since the decision-making process relies on majority 
voting among pre-selected, high-reputation nodes, an honest validator 
is inherently prevented from deciding on an invalid or unproposed 
value. Consequently, any value that is decided upon must have been 
proposed by at least one honest node, ensuring that the integrity 
property is satisfied and maintaining the reliability of the consensus 
outcome.

These properties collectively demonstrate that the proposed algo-
rithm is both reliable and secure, capable of achieving consensus in a 
decentralised environment while preventing malicious behaviour and 
ensuring consistent outcomes. As such, the proposed algorithm meets 
the criteria for a consensus algorithm and provides a solid foundation 
for decentralised decision-making in distributed systems.

5.2. Fuzzychain security

This section presents an analysis of the core concepts underlying the 
proposed consensus algorithm.

Untrustworthy validators
The security of blockchain networks relies on the assumption that 

a significant portion of the validators are honest and act in the best 
interest of the network. If a large majority of validators collude or 
behave maliciously, they could potentially compromise the integrity of 
the blockchain. To mitigate these risks, blockchain protocols often set 
10 
a threshold of honest validators required for the network to operate 
securely. This threshold could be expressed as a certain percentage of 
the total of the set of validators. Nevertheless, Fuzzychain does not 
focus on the total percentage of validators, on the contrary, it focuses 
on some fuzzy sets being reliable. In Fuzzychain the specific threshold 
of honest validators required to operate securely is determined by a 
minimum of fuzzy sets trusted. 

Definition 12.  Let 𝑛 be the number of fuzzy sets on the universe of 
discourse 𝑋, the minimum number of fuzzy sets trusted required to 
operate securely is determined by
⌊ 𝑛 − 2

2

⌋

+ 1

where ⌊⌋ denotes the floor function.
This stipulation holds profound significance in fortifying the con-

sensus process against potential threats posed by malicious activities 
or coordinated attacks. By mandating trust in a significant majority of 
fuzzy sets, the algorithm provides formidable defences, shielding the 
system from attempts aimed at compromising its integrity or disrupting 
its functionality.

Fuzzy stake representation
The introduction of fuzzy sets in representing participants’ stakes 

adds an element of uncertainty and flexibility to the algorithm. Fuzzy 
representations allow for a nuanced and distributed approach to stake 
distribution, making it challenging for an attacker to predict or control 
the specific stake distribution necessary to compromise the majority of 
validator positions.

Reputation-based selection
The algorithm emphasises reputation as a factor in the participant 

selection process. Validators are chosen based not only on their stake 
but also on their reputation within the network. This reputation-based 
selection introduces an additional layer of complexity for potential 
attackers, as they would need to influence both stake and reputation to 
control the majority of validator slots. Another point of view is that the 
algorithm employs a mechanism that involves the randomised selection 
of validators from diverse groups. This decentralisation in the validator 
selection process prevents a single entity from gaining control over the 
majority of validator slots in a deterministic manner. As a result, even if 
an entity has a significant stake, the randomness in validator selection 
mitigates the risk of concentration and control.

Incentive structure
The dual rewards system, combining both commissions for suc-

cessful validations and reputation increases, incentivises active and 
honest participation. Attackers attempting a 51% attack would risk 
reputational damage and reduced chances of future selection, discour-
aging malicious behaviour. In addition, the algorithm’s randomised 
selection and the inclusion of reputation as a factor ensure a dynamic 
and ever-changing participant landscape. This dynamic nature makes 
it challenging for an attacker to consistently maintain control over the 
majority of the network’s computational power.

Continuous improvement and adaptability
The penalties imposed on unsuccessful participants, including a 

decrease in reputation and reduced chances of selection in the next 
round, contribute to an environment of continuous improvement. This 
adaptability further deters malicious actors as the network adjusts to 
minimise the impact of unfavourable behaviours.

The proposed equitable consensus algorithm’s resistance against 
51% attacks is rooted in its decentralised, reputation-based, and dy-
namic participant selection process, coupled with the introduction 
of fuzzy sets for stake representation. These features collectively en-
hance the algorithm’s robustness and make it inherently challenging 
for any single entity to gain control over the majority of the network’s 
computational power in a predictable or sustained manner.
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6. Experiments and results

This section performs and discusses a set of experiments designed 
to assess the performance of the equitable consensus algorithm and 
the Fuzzychain proposed within a permissionless scenario. An overview 
of the information system, the outcomes and the findings from these 
experiments are presented.

The experiments were developed on the following software and 
computer specifications. It includes a CPU and an Intel® Core™ i7-
7500U processor, featuring a clock speed of 2.70 GHz and four cores. 
The operating system used is Ubuntu 22.04.3. For compiling, A C++ 
compiler, GCC version 7.4.0 is utilised. The programming language 
employed is Python, specifically version 3.10.12. Additionally, the 
system makes use of two libraries: ECDSA and SIMPFUL.

6.1. Experimental results

This proposal encompasses the execution of two experiments. Exper-
iment 1 is dedicated exclusively to displaying the performance of the 
equitable consensus algorithm. Experiment 2 is designed to showcase 
a comparison concerning the equitable consensus algorithm proposed 
with other consensus algorithms such as PoW, PoS, and DPoS.

Experiment 1
The objective of this experiment is to demonstrate the performance 

of the equitable consensus algorithm. To accomplish this, simulations 
have been developed to illustrate how the consensus algorithm operates 
when selecting participants in each round to validate the block. Fur-
thermore, the experiment offers insights into the frequency with which 
each winning participant is chosen. This analysis allows us to gain a 
comprehensive understanding of not only the algorithm’s functionality 
but also the distribution of selection among participants of the different 
fuzzy sets, a critical element of an equitable consensus algorithm.

For this experiment, we considered 990 validators participating 
in the equitable consensus algorithm, with each validator assigned a 
stake value. According to Definition  4, we defined the information 
representation scale for the stake values with bounds 𝑙 = 0 and 𝑟 = 10. 
We then segmented this scale into five linguistic terms: Very Low (VL), 
Low (L), Moderate (M), High (H), and Very High (VH).

Remark 2.  For this experiment, we have used distributed symmetric 
linguistic labels. Nevertheless, the proposed algorithm allows the use 
of unbalanced linguistic labels (Herrera et al., 2008).

Following the scaling phase in Section 4.2, to develop this exper-
iment, the validators are distributed using a triangular membership 
function as follows: 500 in the linguistic term ‘VL’, 300 in ‘L’, 150 in 
‘M’, 30 in ‘H’ and 10 in ‘VH’ as illustrated in Fig.  9.

From each one of these linguistic terms, we select a set of validators 
based on their reputation. Nevertheless, in the first round, since all the 
validators have the same initial reputation set to 1, the selection process 
is random. According to the selection phase presented in Section 4.2, 
to validate the first block, one validator is chosen randomly from each 
linguistic variable VL, L, and M, and two validators from each linguistic 
variable H and V. From this set of validators, only one validator is 
further selected to perform the validation process. The seven validators 
corresponding to each linguistic term initiate the validation process, 
with each of them casting their vote.

According to the voting phase in Section 4.2, the block is either 
accepted or rejected, and the successful and unsuccessful validators are 
then announced. On the one hand, each successful validator receives 
a reputation increase of 0.005 as a reward for doing well; on the 
other hand, unsuccessful validators decrease their reputation by 0.1 
every time they want to damage the network. Finally, from the pool 
of successful validators, only one is randomly chosen as the winner, 
who is entitled to receive a commission in addition to the increase in 
reputation.
11 
Fig. 9. Membership functions for linguistic terms T(Participant’s stakes)= {Very Low 
(VL), Low (L), Moderate (M), High (H), Very High (VH)}.

For the next round, to choose the validators from each linguistic 
term, everyone’s reputation is considered. We select a set of validators 
using the validator selection algorithm according to the reputation 
shown in the selection phase in Section 4.2. Analogous to the first 
round, from this set of validators, only one validator is selected to 
perform the validation process. The seven validators corresponding to 
each linguistic term initiate the validation process, and each of them 
casts their vote. According to the voting phase in Section 4.2, the block 
is either accepted or rejected, and both successful and unsuccessful 
validators are announced. Successful validators receive an increase in 
reputation of 0.005, while unsuccessful validators have their reputation 
decreased by 0.1. From the group of successful participants, one winner 
is randomly selected and entitled to receive a commission.

This algorithm is executed every time a block needs validation. For 
this experiment, the algorithm was run for 100, 200, 300, 400, and 
500 rounds, aiming to demonstrate the frequency count of validators 
selected for each linguistic term. The validators selected change in each 
round, that is because in each round, the reputation is recalculated, 
and the validator with the highest reputation is chosen according to 
the algorithms presented in 4.2. First, the outcomes of the experiment 
for 100 rounds are presented. Fig.  10 shows the selections of validators 
in each iteration after running the algorithm at 100 rounds. From the 
figure, the proposed method shows the variations in the selection of 
validators. Fig.  11 summarises the number of validators selected for 
each linguistic term at 100 rounds. The 𝑋-axis represents the linguistic 
terms of each validator, and the 𝑌 -axis illustrates the frequency count. 
From the figure, it is evident that most validators are selected from the 
linguistic terms H and VH. That means a greater number of validators 
with a higher interest in the network working well have participated in 
the verification and validation process. Always consider the participa-
tion of the other validators corresponding to the linguistic terms VL, L, 
and M. The mean of selected validators is 20 with a standard deviation 
of 7.07. Therefore, the dispersion of selection among validators for the 
linguistic terms VL, L, and VH are within the first standard deviation 
and the terms M and H are within the second standard deviation.

For rounds 200, 300, 400, and 500, the outcomes are summarised 
in Fig.  12. This figure, despite five plots, corresponds to the selection 
of validators for each linguistic label in different rounds. For instance, 
the green graph illustrates the number of validators selected from each 
linguistic term when the algorithm runs in a set of 300 rounds. In 
this scenario, 46 validations were done by the validators selected from 
the linguistic term VL, 45 from L, 35 from M, 83 from H and 91 
from VH. At the different rounds, the linguistic terms ‘H’ and ‘VH’ 
participate more than others in the validation and verification process. 
This is beneficial as the algorithm was designed to select validators with 
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Fig. 10. The figure shows the selection of validators in each iteration after running the algorithm at 100 rounds.
Fig. 11. The figure summarises the number of validators selected for each linguistic 
term at 100 rounds.

Fig. 12. The figure despite five plots corresponds to the selection of validators for 
each linguistic label in 100, 200, 300, 400 and 500 rounds.

higher reputations, higher stakes and, consequently, higher trust, thus 
increasing trust in the system.

Intending to study the behaviour of the proposed algorithm, we 
decided to repeat 20 times the experiment where the validators are 
selected during 500 rounds. The idea is to show the outcomes obtained 
in each round; nevertheless, since there are multiple numeric values, 
we decided to use a boxplot to group the results. Fig.  13 presents a 
boxplot for each linguistic term VL, L, M, H, VH and the 𝑌 -axis show 
the frequency count. From the figure, it is clear that the data in the 
boxplot for H and VH are greater than the data in the boxplot for VL, 
L, and M. For instance, for the linguistic term VH the minimum value of 
12 
Fig. 13. Figure shows a boxplot representing the frequency and distribution of the 
validator selected by the equitable consensus algorithm in twenty repetitions.

selected validators during the 20 repetitions is 134 and the maximum is 
158 with a mean of 147.3 which is displayed with a green dashed line. 
For the linguistic term M, the minimum value obtained in the twenty 
repetitions is 53, and the maximum value is 85, where the mean is 72.1. 
It is important to mention that this event never happens in the PoS 
consensus algorithm because, in PoS, the distribution of the validator 
selection process is always oriented towards validators with a higher 
stake.

Experiment 2
This section presents a comparison concerning the proposed consen-

sus algorithm and other consensus algorithms used in blockchain. In 
this comparative analysis, we delve into the distinctive features of the 
proposed consensus algorithm with well-established blockchain consen-
sus mechanisms, such as PoW, PoS, and DPoS. Each of these consensus 
algorithms operates on distinct principles and exhibits unique strengths 
and weaknesses. Firstly, PoW, the pioneer in consensus mechanisms, 
relies on computational power to validate transactions through complex 
mathematical puzzles (Bach et al., 2018; Wendl et al., 2023). On the 
other hand, PoS introduces a more energy-efficient approach, where 
validators are chosen based on the amount of stake they hold and 
are willing to ‘‘stake’’ as collateral (Saad et al., 2021; Fahim et al., 
2023). Meanwhile, DPoS further optimises scalability by employing a 
selected group of delegates to validate transactions, nevertheless, this 
specific group of delegates can contribute to the risk of centralisa-
tion (Saad et al., 2021; Alrowaily et al., 2023). Table  3 summarises 
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Table 3
This table summarises a qualitative comparison between PoW, PoS, DPoS, PBFT, PoR, and Fuzzychain.
 PoW PoS DPoS PBFT PoR Fuzzychain  
 Time complexity High Lower than DPoS Lower than PoW Low Low Lower than PoS  
 Energy consumption High Lower than PoW Lower than PoW High Moderate Lower than PoW 
 Security High Lower than PoW High Low Moderate High  
 Decentralisation Lower than Fuzzychain Lower than Fuzzychain Lower than Fuzzychain Lower than Fuzzychain Lower than Fuzzychain High  
the properties of each consensus mechanism. This section aims to 
highlight the differences, enabling a comprehensive understanding of 
how the proposed consensus algorithm contributes to time complexity, 
energy consumption, security, and decentralisation and improvement 
of blockchain technology.

In order to provide a quantitative comparison, the consensus algo-
rithms PoW, PoS and DPoS, PBFT, and PoR were simulated and set 
to the following conditions. For the PoW, 100 miners were selected 
to participate in the verification and validation process during 100 
rounds. The consensus PoW chooses the first miner who solves the 
mathematical proof. The frequency of selected miners was registered, 
and then the data were used to compute the following metrics: Gini 
coefficient, Skewness, and Kurtosis. These metrics also are computed 
for consensus PoS, DPoS, PBFT, PoR, and Fuzzychain. For the consensus 
algorithm PoS, a set of 100 validators is defined to participate in the 
validation process. In this implementation, the validators have different 
stakes, and the validator with a higher stake has more probability 
of choosing the winner to do the validation process. This experiment 
was executed 100 rounds and the frequency of the selected validators 
was registered, and then calculate the three metrics as well. For the 
consensus algorithm DPoS, 100 delegates were defined to participate 
in the verification and validation process. In this experiment, the 
validator is chosen according to the stake and the reputation; that 
is, the delegate that has a higher stake with a higher reputation will 
have a higher probability of being the winner delegated. Similar to 
the others, the number of rounds in this experiment was 100, conse-
quently the frequency of selected delegates was calculated and then 
the metrics were computed also. For the PBFT consensus algorithm, 
a total of 100 validators were defined to participate in the consensus 
process. In this implementation, the network operates leader-based, 
where one validator is randomly selected as the primary node (leader) 
for each round, and the remaining validators act as backups. Each 
round follows the standard PBFT protocol, consisting of pre-prepare, 
prepare, and commit phases to reach an agreement on a proposed 
block. The experiment was executed for 100 rounds, during which the 
frequency of selected primary nodes was recorded, and the consensus 
efficiency was evaluated using three defined metrics. For the Proof of 
Reputation (PoR) consensus algorithm, 100 validators were selected 
based on their reputation scores, which were dynamically adjusted 
according to historical behaviour and participation in the network. In 
this implementation, validators with higher reputation scores had a 
greater probability of being chosen to validate transactions and propose 
new blocks. The experiment was executed for 100 rounds, and the 
frequency of selected validators was tracked. Subsequently, the three 
metrics were computed to assess the consensus process as well. In the 
case of Fuzzychain, we considered 990 validators participating in the 
equitable consensus algorithm, with each validator assigned a stake 
value. The validators are distributed using a triangular membership 
function as follows: 500 in the linguistic term ‘VL’, 300 in ‘L’, 150 in 
‘M’, 30 in ‘H’ and 10 in ‘VH’ as illustrated in Fig.  9. The results are 
displayed in Table  4 where a numerical comparison is presented.

Table  4 presents a comparison between PoW, PoS, DPoS, and the 
proposed consensus algorithm under Fuzzychain. To do this, the Gini 
coefficient is calculated for every consensus algorithm discussed be-
fore. The Gini coefficient assesses the disparity within the values of a 
frequency distribution, such as income levels. A Gini coefficient of 0 
denotes total equality, reflecting a situation where all individuals have 
the same income or wealth. On the other hand, a Gini coefficient of 1 
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Table 4
This table shows the numerical comparison between PoW, PoS, DPoS, PBFT, PoR and 
the proposed consensus algorithm. In bold are the top scores, indicating the most 
favourable interpretation of these statistics in relation to equality.
 PoW PoS DPoS PBFT PoR Fuzzychain 
 Gini coefficient 0.5992 0.4934 0.4126 0.5147 0.3728 0.1720  
 Skewness 1.8855 1.5243 0.9630 1.5569 0.5201 0.2243  
 Kurtosis 3.3206 2.8247 1.3253 3.0123 0..6985 −1.7489  

denotes maximal inequality, where all income or wealth is concentrated 
with a single individual, leaving none for others. Skewness near zero 
suggests a more symmetric and, thus, more evenly structured distri-
bution. Additionally, the lower the kurtosis, the lesser the chances of 
encountering extreme values.

In Table  4, the Gini coefficient in Fuzzychain stands out as be-
ing notably lower than that of the other algorithms, indicating a 
higher degree of fairness in the selection of validators. The equitable 
consensus algorithm employed by Fuzzychain excels in promoting a 
more balanced distribution of validation responsibilities among net-
work participants compared to its counterparts. A lower Gini coefficient 
suggests that Fuzzychain is successful in mitigating the concentration 
or centralisation of validation power, thereby fostering a more inclusive 
and democratic blockchain network. This enhanced equity in validator 
selection is crucial for maintaining the decentralisation and security 
of the network, as it reduces the risk of a single entity gaining dis-
proportionate influence. The findings underscore the effectiveness of 
Fuzzychain’s approach to consensus, emphasising its commitment to 
creating a robust and fair blockchain ecosystem.

7. Discussion

The proposed equitable consensus algorithm for Fuzzychain
presents a distinctive approach to achieving consensus in blockchain 
networks, blending elements of proof of stake and fuzzy set theory. One 
notable feature is the incorporation of linguistic labels to represent par-
ticipants’ stakes within fuzzy sets. This introduces a level of fuzziness, 
enhancing the flexibility and expressiveness of stake representation. 
The algorithm’s emphasis on reputation as a factor in participant 
selection during the mining process is noteworthy, promoting a fair 
and inclusive approach. The randomised selection of participants from 
each fuzzy set adds an element of unpredictability, preventing any 
single participant or group from consistently dominating the validation 
process. The utilisation of a voting mechanism based on the majority 
decision of participants ensures a collective and democratic approach 
to block validation. The rewarding of successful participants with both 
a commission for validations and an increase in reputation creates a 
positive incentive structure, motivating active and responsible partici-
pation. Conversely, the penalties imposed on unsuccessful participants, 
including a decrease in reputation and reduced chances of selection in 
the next round, contribute to maintaining a balance and encouraging 
continuous improvement.

The algorithm presents a consensus mechanism that addresses issues 
of fairness, security, and participant engagement in the Fuzzychain 
blockchain network. However, the practical implications and poten-
tial challenges of implementing such a system will require further 
exploration and empirical testing in real-world blockchain scenarios.

In this work, we have presented an equitable consensus algorithm. 
Nevertheless, it can be seen as a cryptography scheme because it can 
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work with the different types of membership functions that exist in 
fuzzy sets, for instance, triangular MF, trapezoidal MF, Gaussian MF, 
and generalised bell MF, among others. Similarly, it is possible to 
change the randomly chosen algorithm to another algorithm with a 
better performance in choosing the participants. Even more, the voting 
mechanism can be modified to make a decision efficient.

Usually, each fuzzy set has a different number of participants and is 
probably that this number is bigger in linguistic labels such as VL, L, M 
than H, and VH. Another important advantage of this proposed algo-
rithm is that the participants in the Fuzzychain may move to other fuzzy 
sets where the participants are less than others. This is possible because 
the validator receives a commission to make the process correctly.

In the present iteration of our fair consensus algorithm, threshold 
values for reputation are defined as crisp, non-fuzzy values. In future 
works, explore the ’computing with words’ technique to enhance this. 
The idea is to develop a system that dynamically modifies the fuzzified 
reputation each round based on a range of factors. These include the 
number of validators associated with each linguistic term, fluctuations 
in reputation metrics, and the average value of this data. By adopting 
this approach, the algorithm’s resilience would be bolstered, making 
it more adaptable to shifts in real-world scenarios, such as sudden 
changes in the number of validators.

8. Conclusion

In this study, we have introduced an innovative approach to the PoS 
consensus algorithm within the blockchain domain, where validators’ 
stakes are modelled using fuzzy logic values. We have also explored the 
performance of this PoS paradigm in an agent-based blockchain pool, 
as detailed in Section 6. In particular, the FuzzyChain algorithm con-
sistently opts for validators from diverse groups, with a predominant 
selection of the Medium and High categories. However, unlike other 
PoS consensus methods, FuzzyChain ensures that any group, including 
lower-stakes validators, is not overlooked. This deliberate approach 
facilitates a more extensive distribution of rewarded stakes, particu-
larly for well-minted transactions within the Fuzzychain framework. 
Notably, the flexibility of the Fuzzychain allows a selected validator 
to belong to any group without necessitating a predetermined precise 
probability for group selection. This flexible allocation of opportunities 
promotes an inclusive and unbiased approach to validator selection, 
strengthening the integrity of the transaction-solving process. It also 
enhances security by ensuring a broader distribution of validators, 
rather than concentrating control within an exclusive group of high-
stake validators. Furthermore, while fostering diversity, FuzzyChain 
can also be integrated with a reputation-based mechanism to enable 
reputable validators to be rewarded more often and to be promoted 
to wealthier groups more quickly. Future iterations of the Fuzzychain 
will explore extensions involving sets capable of handling increased 
uncertainty, and alternative characteristics of the fuzzy stake will be 
considered to guide the selection process. These ongoing developments 
aim to further enhance the robustness and applicability of Fuzzychain 
within diverse blockchain-operative contexts.
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