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A B S T R A C T

Failure mode and effect analysis (FMEA) is one of the most powerful reliability analysis techniques for
identifying and preventing potential risks across various fields. Current FMEA methods, while effective, still
present several shortcomings. For example, using experts’ subjective pairwise comparisons of risk factors to
determine their weights reduces the stability of the result; different relationships among failure modes are
often ignored. To improve the performance of FMEA, multi-criteria decision-making (MCDM) methods have
been employed to support risk evaluation and prioritization in recent years. This paper proposes a novel FMEA
method by exploring several MCDM techniques. First, the Extended Comparative Linguistic Expressions with
Symbolic Translation (ELICIT) are utilized to generate group risk assessments under uncertainty. Then, grey
relation analysis (GRA) is incorporated into the decision-making trial and evaluation laboratory (DEMATEL)
method to objectively determine the weight of risk factors. Afterward, the traditional ORESTE (organísation,
rangement et Synthèse de données relarionnelles (in French)) method is generalized to the ELICIT environment
to prioritize the failure modes, in which the Besson’s ranking is replaced by deviation measure for more
accurate ranking results. Finally, a case study of FMEA for electro-mechanical actuators is presented to
illustrate the effectiveness of the proposed method. The results indicate that our approach can express risk
information more flexibly, determine the weight of risk factors more objectively, and prioritize failure modes
more reasonably.
. Introduction

Failure mode and effect analysis (FMEA) is a group-oriented relia-
ility management tool for evaluating and eliminating possible failures
o improve system performance [1,2]. If these potential failure modes
re not well managed, they can cause severe damage to the equip-
ent and body alike [3,4]. NASA initially utilized FMEA within the

erospace industry as a safety protocol [5]. Since then, FMEA has
een extensively employed in various industrial categories, such as ma-
hine manufacturing [6], food manufacturing [7], and pharmaceutical
anufacturing [8].

Traditionally, FMEA prioritizes failure modes by calculating risk
riority numbers (RPNs), which are multiplied by three different risk
arameters (i.e., Occurrence (O), Detection (D), Severity (S)) [9]. A
arger RPN value means the corresponding failure mode has a higher
isk. Even though the traditional FMEA is easy to understand and imple-
ent, its application is limited due to several inherent drawbacks [10,
1]. For example, (i) risk factors are evaluated on a 1–10 scale with
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crisp numbers, which cannot reflect the uncertainty of human cogni-
tion, (ii) the risk factors are confined to O, S, and D; their weight is
not considered, and (iii) the calculation of RPN is unreasonable, that is,
different combinations of O, S, and D can produce the same RPN despite
having different implications. Given these shortcomings, scholars have
proposed different approaches to improve the traditional FMEA. Multi-
criteria decision-making (MCDM) is the most widespread method to
enhance the analysis capability of FMEA [12]. Determining the ranking
of failure modes in FMEA can be regarded as a multifaceted challenge
that requires MCDM analysis. In other words, FMEA can be viewed as
MCDM problems due to the involvement of multiple risk factors in the
assessment and prioritization of failure modes. As a well-known field
in operations research, MCDM can provide helpful ideas for improving
FMEA regarding expressing uncertain risk information, calculating risk
factor weights, and ranking failure modes [13,14].

Various fuzzy set theories have been introduced to better express
experts’ risk assessment. For example, Yener et al. [15] utilized in-
tuitionistic fuzzy numbers to evaluate the risk levels in an assembly
line. Ghoushchi et al. [16] used Z-numbers to prioritize the failure
vailable online 14 January 2023
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modes in an automotive spare parts factory. Jin et al. [17] intro-
duced interval-valued q-rung orthopair fuzzy numbers into the FMEA
to enhance the risk assessment of tool-changing manipulators. Later,
linguistic variables were introduced into the FMEA to capture the
uncertainty of the evaluation to a greater extent [18]. For example,
linguistic distribution assessments were used to collect the preference
information of experts [19]. Considering different words have different
meanings for different people, Zhang et al. [20] explored the person-
alized individual semantics (PISs) of experts in linguistic evaluation.
Later, Gai et al. [21] developed a consensus-trust driven bidirectional
feedback mechanism to improve the consensus level of experts’ as-
sessments. Ko [22] utilized 2-tuple linguistic variables to assist with
semiconductor packaging risk evaluation. However, the 2-tuple linguis-
tic representation model only uses single linguistic terms to assess risk
factors, which cannot adequately reflect the hesitancy and ambiguity of
FMEA experts. Recently, Labella proposed The Extended Comparative
Linguistic Expressions with Symbolic Translation (ELICIT), which is a
flexible linguistic structure that extends the representation of compar-
ative linguistic expressions to a continuous domain to better model
experts’ preferences [23]. Compared with other linguistic expressions,
the ELICIT is much closer to the human reasoning process and can
enhance the interpretability and accuracy of the results [24]. Dutta
et al. [25] employed ELICIT information to deal with uncertain expert
opinions in a manufacturing plant location problem. However, ELICIT
has not yet been utilized in FMEA problems. Therefore, it is used in
this study to facilitate the expression and processing of uncertain risk
information.

The weight of risk factors exerts a substantial impact on the final
risk priority and therefore should be considered in the FMEA. Many
strategies have been developed to determine the weight of risk factors,
such as the maximum deviation method [7], data envelopment analy-
sis [8], the consensus-based weighting method [26], and the entropy
method [27]. However, these methods ignore the correlation between
risk factors in the weighting process. Therefore, several techniques
have been introduced into FMEA to overcome this deficiency, such as
the decision-making trial and evaluation laboratory (DEMATEL) [28],
the analytic hierarchy process (AHP) [29], and the analytical network
process (ANP) [30].

Among these methods, DEMATEL stands out as a practical structural
modeling approach with the advantage of visualizing the intensity of el-
ements’ relations and their importance using graph theories and matrix
computations. It is worth noting that the causal diagrams in DEMATEL
use bidirectional digraphs rather than directionless graphs to portray
the critical contextual relationships and the influence strength among
the involved elements. Therefore, DEMATEL has been widely used
in multi-criteria decision-making problems to quantify the importance
of criteria [31]. However, among these methods, the direct-relation
matrix is constructed based on experts’ subjective pairwise comparisons
of factors. When the number of risk factors involved increases, com-
paring every two risk factors becomes a heavy workload. Additionally,
the consistency of the pairwise comparison is difficult to guarantee.
A relatively small change in the direct-relation matrix can cause a
more significant difference in the total-relation matrix, which reduces
the method’s stability. Grey relation analysis (GRA) can remedy this
shortcoming by replacing the subjective pairwise comparison with the
grey relational coefficient. The major advantage of GRA is that it is
not limited by the sample size and normally distributed data [32].
Additionally, the calculation process is simple and easy to understand.
Therefore, we combine GRA and DEMATEL to take advantage of both to
calculate the weight of risk factors based on objective risk information.
In this way, the correlation between risk factors can be considered more
impartially and efficiently.

FMEA aims to rank potential failure modes under multiple risk
factors. Much research has applied MCDM techniques to facilitate
risk prioritization. For instance, Zhang et al. [33,34] proposed several
397

consensus-based FMEA methods to obtain the acceptable risk order
for most experts. Huang et al. [35] developed a TOPSIS-based FMEA
approach to perform risk analysis for steam systems. Liu et al. [7]
improved the PROMETHEE method to evaluate risk levels of green
logistics systems. Compared with these decision-making techniques,
an outranking method ORESTE (organísation, rangement et Synthèse
de données relarionnelles (in French)) has the following advantages:
(i) It is simple to understand and easy to apply; and (ii) The process
is straightforward and we can observe variations in the results when
initial evaluations are changed or when different thresholds are de-
fined [36,37]. Previous research has shown that conflict analysis in
ORESTE is more effective in separating the preference, indifference,
and incomparability relations between alternatives than other outrank-
ing methods, such as PROMETHEE and ELECTRE [38]. Also, Chatterjee
et al. [39] illustrated the superiority of ORESTE regarding the reliability
of results in a flexible manufacturing selection problem. However, the
traditional ORESTE method cannot deal with uncertain evaluations.
Additionally, Besson’s ranks are utilized to represent the important
degree of criteria and the performance of alternatives, which brings
about information loss. To take advantage of the conflict analysis in
ORESTE and enhance its accuracy in calculating preference scores, we
improve the classical ORESTE method and generalize it into the ELICIT
environment to address risk prioritization problems. In this way, we
can obtain the risk priority number of failure modes and capture the
relationship between them.

Based on the previous analysis, this paper proposes an ELICIT
information-based ORESTE method for FMEA considering risk corre-
lation with GRA-DEMATEL. The main contributions are summarized as
follows.

(1) The ELICIT information is first applied to FMEA to determine
group risk evaluation. Compared with other fuzzy information
structures, ELICIT is closer to the human reasoning process and
can preserve more information during computing with words
processes, which can improve the accuracy of the final risk
priority.

(2) Obtaining the weight of risk factors is an essential part of
FMEA. We incorporate GRA into DEMATEL for weight calcula-
tion with objective risk information. Specifically, the elements
in the direct-relation matrix are determined by calculating grey
correlation coefficients. In this way, when many risk factors are
involved, the inconsistency of pairwise comparisons caused by
traditional DEMATEL can be avoided. Additionally, the correla-
tion between risk factors can be analyzed more objectively and
efficiently.

(3) FMEA aims to rank potential failure modes so that effective
measures can be taken to prevent risks. We improve the classical
ORESTE method and generalize it into the ELICIT environment
for risk prioritization. In the original ORESTE, the global prefer-
ence score is determined by Besson’s ranking, which may result
in information loss. To overcome this limitation, we utilize the
deviation measure to replace Besson’s ranking for a more accu-
rate risk priority result. Besides, the relations between failure
modes can be distinguished in terms of preference, indifference,
and incomparability.

(4) This study applies the proposed method to address the risk pri-
oritization problem of an electro-mechanical actuator, in which
a two-level hierarchical structure of risk factors is constructed.
Validity, reliability, and comparative analysis prove the effec-
tiveness of our method in dealing with practical engineering
problems.

The rest of this paper is organized as follows. Section 2 briefly
reviews the basic concepts of ELICIT information and the ORESTE
method. Section 3 develops the improved risk prioritization method.
Section 4 validates the effectiveness of our method through the risk
analysis of an electro-mechanical actuator. Discussions are given in
Section 5 to demonstrate the superiority of our method. Finally, con-

clusions are provided in Section 6.
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2. Preliminaries

In this section, some basic concepts of Hesitant Linguistic Term Sets
(HFLTSs), Comparative Linguistic Expressions (CLEs), ELICIT informa-
tion and the ORESTE method are reviewed in brief.

2.1. The Hesitant Linguistic Term Sets and Comparative Linguistic Expres-
sions

Due the inherent ambiguity of human cognition, a single linguistic
term is insufficient to model the preferences of experts. In practical
situations, experts may hesitate among multiple linguistic terms to
describe their judgments. To address this issue, Rodríguez et al. [40]
introduced the concept of Hesitant Linguistic Term Sets, which enables
experts to express their opinions flexibly.

Definition 1 ([40]). Let 𝑆 =
{

𝑠0, 𝑠1,… , 𝑠𝑔
}

be a linguistic term set, an
HFLTS 𝐻𝑆 is an ordered finite subset of the consecutive linguistic terms
of 𝑆. Then, the empty HFLTS and full HFLTS for a linguistic variable
𝜗 can be defined as 𝐻𝑆 = 𝜙 and 𝐻𝑆 = {𝑆}, respectively. Any other
HFLTS is formed with at least one linguistic term in 𝑆.

Example 1. Let 𝑆 =
{

𝑠0 ∶ 𝑣𝑒𝑟𝑦 𝑙𝑜𝑤, 𝑠1 ∶ 𝑙𝑜𝑤, 𝑠2 ∶ 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑠3 ∶ ℎ𝑖𝑔ℎ,
𝑠4 ∶ 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ

}

denotes a linguistic term set, an HFLTS might be
𝑆 (𝜗) =

{

𝑠1 ∶ 𝑙𝑜𝑤, 𝑠2 ∶ 𝑚𝑒𝑑𝑖𝑢𝑚
}

.

Although experts can utilize HFLTS directly to describe their evalua-
tions, they are not close to the expressions used by human beings. Later,
Rodríguez et al. [41] proposed the Comparative Linguistic Expressions
(CLEs) based on HFLTS to better model the hesitancy of experts. CLEs
are constructed with context-free grammars 𝐺𝐻 . A basic context-free
grammar for generating CLEs is shown as follows.

Definition 2 ([41]). Let 𝑆 =
{

𝑠0, 𝑠1,… , 𝑠𝑔
}

be a linguistic term set and
𝐻 be a context-free grammar. The elements of 𝐺𝐻 =

(

𝑉𝑁 , 𝑉𝑇 , 𝐼, 𝑃
)

are defined as follows.

𝑉𝑁 =
{

(𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑡𝑒𝑟𝑚) , (𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑡𝑒𝑟𝑚) ,
(𝑢𝑛𝑎𝑟𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) , (𝑏𝑖𝑛𝑎𝑟𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) , (𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

}

𝑇 =
{

𝑎𝑡 𝑙𝑒𝑎𝑠𝑡, 𝑎𝑡 𝑚𝑜𝑠𝑡, 𝑏𝑒𝑡𝑤𝑒𝑒𝑛, 𝑎𝑛𝑑, 𝑠0, 𝑠1,… , 𝑠𝑔
}

∈ 𝑉𝑁

The production rules defined in an extended Backus–Naur Form are
hown as follows.

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐼 ∶∶= (𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑡𝑒𝑟𝑚) |(𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑡𝑒𝑟𝑚)
(𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑡𝑒𝑟𝑚) ∶∶= (𝑢𝑛𝑎𝑟𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) (𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑡𝑒𝑟𝑚)|
(𝑏𝑖𝑛𝑎𝑟𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) (𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑡𝑒𝑟𝑚)
(𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛) (𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑡𝑒𝑟𝑚)
(𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑡𝑒𝑟𝑚) ∶∶= 𝑠0

|

|

|

𝑠1
|

|

|

… |

|

|

𝑠𝑔
(𝑢𝑛𝑎𝑟𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) ∶∶= 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 |𝑎𝑡 𝑚𝑜𝑠𝑡
(𝑏𝑖𝑛𝑎𝑟𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) ∶∶= 𝑏𝑒𝑡𝑤𝑒𝑒𝑛
(𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛) ∶∶= 𝑎𝑛𝑑

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

The CLEs can be transformed into HFLTS for computation, which is
efined as follows.

efinition 3 ([41]). Let 𝐸𝐺𝐻
denotes the transformation from CLEs to

FLTS, i.e., 𝐸𝐺𝐻
∶ 𝑆𝑙𝑙 → 𝐻𝑆 . 𝑆 is the linguistic term set used by 𝐺𝐻
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nd 𝑆𝑙𝑙 is the expression domain generated by 𝐺𝐻 .
.2. The ELICIT information

The ELICIT linguistic model is an extension of comparative linguistic
xpressions (CLEs), which can improve the interpretability and accu-
acy of the results in computing with words processes [23]. ELICIT
xtends the CLEs by utilizing the concept of symbolic translation used
y the 2-tuple linguistic model. Given its flexible representation struc-
ures, ELICIT can retain more information during the computation
rocess.

efinition 4 ([23]). Let 𝑆 = {𝑠0, 𝑠1,… , 𝑠𝑔} denotes a set of linguis-
ic terms, and 𝑔 + 1 is the granularity of 𝑆. The possible ELICIT
xpressions can be denoted as: ‘‘𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 (𝑠𝑖, 𝛼)𝛾 ’’, ‘‘𝑎𝑡 𝑚𝑜𝑠𝑡 (𝑠𝑖, 𝛼)𝛾 ’’,
nd ‘‘𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (𝑠𝑖, 𝛼1)𝛾1&(𝑠𝑗 , 𝛼2)𝛾2 ’’, where 𝛼 is the symbolic translation
arameter with 𝛼 ∈ [−0.5, 0.5), 𝛾 is the adjustment parameter with
∈

(

− 1
2𝑔 ,

1
2𝑔

)

for 𝑖, 𝑗 = 1, 2,… , 𝑔. When 𝛼 = 𝛾 = 0, the ELICIT
expression becomes CLE.

For ELICIT information, the approach of computing with words
includes three stages: translation, manipulation, and re-translation. The
specific process is as follows.

Definition 5 ([23]). Let 𝑥𝑒𝑙 be an ELICIT expression and 𝑇 𝑟 (𝑎, 𝑏, 𝑐, 𝑑)
be a trapezoidal fuzzy number (TrFN). The function 𝜉−1 is defined as:

𝜉−1 ∶ 𝑥𝑒𝑙 → 𝑇 𝑟 (𝑎, 𝑏, 𝑐, 𝑑) (1)

The transformation function can be defined in different ways accord-
ing to the specific ELICIT expression. Please refer to [23] for more
information.

Definition 6 ([23]). The manipulation stage involves fuzzy arithmetic
computations of the TrFNs obtained in the transformation process. Let
𝑇 𝑟𝐴

(

𝑎1, 𝑏1, 𝑐1, 𝑑1
)

and 𝑇 𝑟𝐵
(

𝑎2, 𝑏2, 𝑐2, 𝑑2
)

be two fuzzy envelops modeled
by two TrFNs. The addition of these two fuzzy envelops is defined by
a shape function 𝜇𝐴+𝐵 as:

𝜇𝐴+𝐵 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑥−(𝑎1+𝑎2))𝑛
(𝑏1+𝑏2)−(𝑎1+𝑎2)

𝑎1 + 𝑎2 ≤ 𝑥 ≤ 𝑏1 + 𝑏2
1 𝑏1 + 𝑏2 ≤ 𝑥 ≤ 𝑐1 + 𝑐2
((𝑑1+𝑑2)−𝑥)𝑛

(𝑑1+𝑑2)−(𝑐1+𝑐2)
𝑐1 + 𝑐2 ≤ 𝑥 ≤ 𝑑1 + 𝑑2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

It is worth noting that, in our method, the computational process deal
with normal TrFNs. Therefore, 𝑛 = 1.

Definition 7 ([23]). The subtraction of the two fuzzy envelops by two
TrFNs 𝑇 𝑟𝐴

(

𝑎1, 𝑏1, 𝑐1, 𝑑1
)

and 𝑇 𝑟𝐵
(

𝑎2, 𝑏2, 𝑐2, 𝑑2
)

is defined with a shape
function 𝜇𝐴−𝐵 as:

𝜇𝐴−𝐵 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑥−(𝑎1−𝑑2))𝑛
(𝑏1−𝑎1)+(𝑑2−𝑐2)

𝑎1 − 𝑑2 ≤ 𝑥 ≤ 𝑏1 − 𝑐2
1 𝑏1 − 𝑐2 ≤ 𝑥 ≤ 𝑐1 − 𝑏2
((𝑑1−𝑎2)−𝑥)𝑛

(𝑑1−𝑐1)+(𝑏2−𝑎2)
𝑐1 − 𝑏2 ≤ 𝑥 ≤ 𝑑1 − 𝑎2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

where 𝑛 = 1.

Definition 8 ([23]). In the re-translation process, the TrFN 𝛽 derived in
he manipulation procedure is transformed into an equivalent ELICIT
y inverse function 𝜉−1. Therefore, the function 𝜉 ∶ 𝛽 → 𝑥𝑒𝑙 is a

mapping defined as follows:

(1) If 𝛽 = 𝑇 𝑟 (𝑎, 𝑏, 1, 1), then 𝜉
(

𝛽
)

= 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡
(

𝑠𝑖, 𝛼
)𝛾 .

(2) If 𝛽 = 𝑇 𝑟 (0, 0, 𝑐, 𝑑), then 𝜉
(

𝛽
)

= 𝑎𝑡 𝑚𝑜𝑠𝑡
(

𝑠𝑖, 𝛼
)𝛾 .

(3) If 𝛽 = 𝑇 𝑟 (𝑎, 𝑏, 𝑐, 𝑑), then 𝜉
(

𝛽
)

= 𝑏𝑒𝑡𝑤𝑒𝑒𝑛
(

𝑠𝑖, 𝛼1
)𝛾1&

(

𝑠𝑗 , 𝛼2
)𝛾2 .

Definition 9 ([23]). Let 𝑥𝑒𝑙1 and 𝑥𝑒𝑙2 be two ELICIT expressions, and
̃ ̃
let 𝛽1 = 𝑇 𝑟1(𝑎1, 𝑏1, 𝑐1, 𝑑1) and 𝛽2 = 𝑇 𝑟2(𝑎2, 𝑏2, 𝑐2, 𝑑2) be their equivalent
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fuzzy numbers obtained from 𝜉−1(𝑥𝑒𝑙1) and 𝜉−1(𝑥𝑒𝑙2), respectively. Then,
the distance between 𝑥𝑒𝑙1 and 𝑥𝑒𝑙2 can be determined as:

𝑑
(

𝑥𝑒𝑙1, 𝑥𝑒𝑙2
)

= 𝑑
(

𝛽1, 𝛽2
)

=

√

(

𝑎1 − 𝑎2
)2 +

(

𝑏1 − 𝑏2
)2 +

(

𝑐1 − 𝑐2
)2 +

(

𝑑1 − 𝑑2
)2

4
(4)

efinition 10 ([23]). Let {𝑥𝑒𝑙1, 𝑥𝑒𝑙2,… , 𝑥𝑒𝑙𝑘} be a set of CLEs or ELICIT
xpressions. {𝛽1, 𝛽2,… , 𝛽𝑘} represents the set of equivalent TrFNs ob-
ained from inverse functions {𝜉−1(𝑥𝑒𝑙1), 𝜉−1(𝑥𝑒𝑙2),… , 𝜉−1(𝑥𝑒𝑙𝑘)}. The
eighted average of {𝑥𝑒𝑙1, 𝑥𝑒𝑙2,… , 𝑥𝑒𝑙𝑘} can be calculated as:

𝑒𝑙 = 𝜉
(

𝑤1𝛽1 +𝑤2𝛽2 +⋯ +𝑤𝑘𝛽𝑘
)

(5)

where 𝜉 (∙) is the mapping given in Definition 5. 𝑤𝑘 denotes the weight
of 𝑥𝑒𝑙𝑘.

2.3. The ORESTE method

The ORESTE method, proposed by Roubens, is an effective ranking
method for multi-criteria decision-making [36]. Compared with other
methods, the ORESTE has the advantages of simple calculation and
strong adaptability. Let 𝐴 =

{

𝑎1, 𝑎2,… , 𝑎𝑚
}

and 𝐶 =
{

𝑐1, 𝑐2,… , 𝑐𝑛
}

denote the sets of 𝑚 alternatives and 𝑛 criteria, respectively. The main
steps of the classical ORESTE are given as follows.

Step 1: Calculate the global preference score.

𝐺
(

𝑧𝑖𝑗
)

=
√

𝜑
(

𝑝𝑗
(

𝑎𝑖
))2 + (1 − 𝜑)

(

𝑝𝑗
)2 (6)

where 𝐺
(

𝑧𝑖𝑗
)

denotes the global preference score of alternative 𝑎𝑖(𝑖 =
1, 2,… , 𝑚) under criterion 𝑐𝑗 (𝑗 = 1, 2,… , 𝑛). 𝑝𝑗 and 𝑝𝑗

(

𝑎𝑖
)

denote
the Besson’s rank of 𝑐𝑗 and the performance of 𝑎𝑖 over 𝑐𝑗 , respec-
tively. 𝜑 (𝜑 ∈ (0, 1)) is an adjustment parameter indicating the relative
importance between 𝑝𝑗 and 𝑝𝑗

(

𝑎𝑖
)

.
Step 2: Determine the weak ranking of alternatives, which can be

calculated as:

𝑅
(

𝑎𝑖
)

=
𝑛
∑

𝑗=1
𝐺
(

𝑧𝑖𝑗
)

(7)

If 𝑅
(

𝑎𝑖
)

< 𝑅
(

𝑎𝑙
)

, then the relationship between 𝑎𝑖 and 𝑎𝑙 is preference
relation (i.e., 𝑎𝑖𝑃𝑎𝑙); if 𝑅

(

𝑎𝑖
)

= 𝑅
(

𝑎𝑙
)

, then the relationship between
𝑎𝑖 and 𝑎𝑙 is indifference relation (i.e., 𝑎𝑖𝐼𝑎𝑙).

Step 3: Obtain the preference intensities. To derive a more reason-
able ranking result, the conflict analysis should be performed according
to preference intensities. The average preference intensity of 𝑎𝑖 over 𝑎𝑙
can be calculated as:

𝑇
(

𝑎𝑖, 𝑎𝑙
)

=

∑𝑛
𝑗=1 max

{

𝐺
(

𝑧𝑙𝑗
)

− 𝐺
(

𝑧𝑖𝑗
)

, 0
}

𝑛
(8)

Afterwards, the net preference intensity of 𝑎𝑖 over 𝑎𝑙 can be com-
puted as:

𝛥𝑇
(

𝑎𝑖, 𝑎𝑙
)

= 𝑇
(

𝑎𝑖, 𝑎𝑙
)

− 𝑇
(

𝑎𝑙 , 𝑎𝑖
)

(9)

Step 4: Establish the PIR structure and determine the strong ranking
of alternatives. The preference (P), indifference (I), and incomparability
(R) relationships between alternatives can determined by following
principles.

𝐼𝑓 |

|

|

𝛥𝑇
(

𝑎𝑖, 𝑎𝑙
)

|

|

|

< 𝜏, 𝑡ℎ𝑒𝑛
{

𝑎𝑖𝐼𝑎𝑙 𝑖𝑓 𝑇
(

𝑎𝑖, 𝑎𝑙
)

< 𝛿 𝑎𝑛𝑑 𝑇
(

𝑎𝑙 , 𝑎𝑖
)

< 𝛿
𝑎𝑖𝑅𝑎𝑙 𝑖𝑓 𝑇

(

𝑎𝑖, 𝑎𝑙
)

≥ 𝛿 𝑜𝑟 𝑇
(

𝑎𝑙 , 𝑎𝑖
)

≥ 𝛿

(10)

𝐼𝑓 |

|

|

𝛥𝑇
(

𝑎𝑖, 𝑎𝑙
)

|

|

|

≥ 𝜏, 𝑡ℎ𝑒𝑛
{

𝑎𝑖𝑃𝑎𝑙 𝛥𝑇
(

𝑎𝑖, 𝑎𝑙
)

> 0
𝑎𝑙𝑃𝑎𝑖 𝛥𝑇

(

𝑎𝑖, 𝑎𝑙
)

≤ 0
(11)

where 𝜏, 𝛿, and 𝜁 are three thresholds set according to practical situa-
tions.

Then, the strong ranking of alternatives can be determined based
on the weak ranking and the PIR structure.
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3. Risk prioritization for FMEA based on ORESTE dealing with
ELICIT information

This section develops an improved risk prioritization method based
on the extended ORESTE with ELICIT information. First, the flowchart
and steps of the proposed method are presented in Section 3.1. Then,
the risk assessment matrix is established in Section 3.2. In Section 3.3,
the weight of risk factors is derived with the GRA-DEMATEL approach.
Finally, failure modes are prioritized with the extended ORESTE in
Section 3.4.

3.1. The flowchart and steps of the proposed method

A flowchart is shown in Fig. 1 to illustrate the proposed method
more clearly. The specific steps are presented as follows and further
detailed in the coming subsections.

Stage I: Establish the group risk assessment matrix with ELICIT
information

Step 1.1: Identify the possible failure modes 𝐹𝑀 =
{

𝐹𝑀1, 𝐹𝑀2,
… , 𝐹𝑀𝑚

}

and construct a hierarchical risk factor structure 𝑅𝐹 =
{

𝑅𝐹1, 𝑅𝐹2,… , 𝑅𝐹𝑛
}

.
Step 1.2: Assemble a group of FMEA experts 𝐸 =

{

𝐸1, 𝐸2,… , 𝐸𝑣
}

to evaluate the risk factors with comparative linguistic expressions
𝑋𝑘 = (𝑥𝑘𝑖𝑗 )𝑚×𝑛.

Step 1.3: Establish the group risk assessment matrix with ELICIT
nformation 𝑋𝑔 = (𝑥𝑔𝑖𝑗 )𝑚×𝑛 by Eq. (5).

tage II: Calculate the weight of risk factors by GRA-DEMATEL
Step 2.1: Establish the direct-relation matrix 𝐵 = (𝑏ℎ𝑗 )𝑛×𝑛 based on

rey relation analysis by Eqs. (13)–(14).
Step 2.2: The direct-relation matrix 𝐵 = (𝑏ℎ𝑗 )𝑛×𝑛 is normalized by

q. (15).
Step 2.3: Compute the total-relation matrix 𝑇 = (𝑡ℎ𝑗 )𝑛×𝑛 by Eq. (16).
Step 2.4: Analyze the influence relation between risk factors.
Step 2.5: Obtain the weight of risk factors 𝑤𝑅𝐹𝑗 (𝑗 = 1, 2,… , 𝑛) by

q. (19).

tage III: Prioritize the failure modes with the extended ORESTE
Step 3.1: Compute the global preference score 𝐺

(

𝑥𝑔𝑖𝑗
)

of failure
odes over risk factors via Eq. (20).
Step 3.2: Derive the weak ranking of failure modes by Eq. (21).
Step 3.3: Determine the average intensity 𝑇

(

𝐹𝑀𝑖, 𝐹𝑀𝑙
)

and net
ntensity 𝛥𝑇

(

𝐹𝑀𝑖, 𝐹𝑀𝑙
)

of failure modes by Eqs. (22)–(23).
Step 3.4: Construct the PIR structures and prioritize the failure

odes by Eqs. (26)–(27).

.2. Stage I : Establish the group risk assessment matrix with ELICIT
nformation

Suppose a risk prioritization problem with 𝑚 failure modes repre-
ented as 𝐹𝑀 = {𝐹𝑀1, 𝐹𝑀2,… , 𝐹𝑀𝑚} and 𝑛 risk factors denoted
s 𝑅𝐹 = {𝑅𝐹1, 𝑅𝐹2,… , 𝑅𝐹𝑛}. Engineers with rich work experience
nd experts with specialized knowledge are invited to form a group
f FMEA experts, which can be represented as 𝐸 = {𝐸1, 𝐸2,… , 𝐸𝑣}.
he weight of expert is denoted as 𝑤𝐸𝑘

with ∑𝑣
𝑘=1 𝑤𝐸𝑘

= 1. Due to
he uncertainty of risk assessment, CLEs are adopted to evaluate the
isk level of failure modes. Since 7-point scale is shown to be more
ccurate, easier to use, and a better reflection of a respondent’s true
valuation [42], the 7-scale linguistic term set 𝑆 = {𝑠0 = very low, 𝑠1 =
ow, 𝑠2 = reasonably low, 𝑠3 = average, 𝑠4 = reasonably high, 𝑠5 =
igh, 𝑠6 = very high} is used for risk evaluation. Let 𝑋𝑘 = (𝑥𝑘𝑖𝑗 )𝑚×𝑛

𝑘
e the CLE from expert 𝐸𝑘, where 𝑥𝑖𝑗 denotes the risk level of 𝐹𝑀𝑖
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Fig. 1. The flowchart of the proposed risk prioritization method.
regarding 𝑅𝐹𝑗 . Then, the individual risk assessment matrices can be
constructed as follows.

𝑋𝑘 = (𝑥𝑘𝑖𝑗 )𝑚×𝑛 =

𝑅𝐹1𝑅𝐹2 ⋯𝑅𝐹𝑛

𝐹𝑀1
𝐹𝑀2
⋮
𝐹𝑀𝑚

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥𝑘11 𝑥𝑘12 ⋯ 𝑥𝑘1𝑛
𝑥𝑘21 𝑥𝑘22 ⋯ 𝑥𝑘2𝑛
⋮ ⋮ ⋱ ⋮

𝑥𝑘𝑚1 𝑥𝑘𝑚2 ⋯ 𝑥𝑘𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(𝑘 = 1, 2,… , 𝑣) (12)

In this study, experts’ weight 𝑤𝐸𝑘
is given in advance. Then, the

group risk evaluation matrix 𝑋𝑔 = (𝑥𝑔𝑖𝑗 )𝑚×𝑛 can be calculated by
aggregating the individual risk assessment by Eq. (5).

3.3. Stage II : Determine the weight of risk factors with GRA-DEMATEL

In the classical DEMATEL method, experts are required to make
pairwise comparisons of risk factors to determine the direct-relation
matrix. However, when the number of risk factors involved increases,
such as 40, then each expert needs to perform 1560 pairwise com-
parisons, which is a considerable workload and very unrealistic. Also,
the consistency of pairwise comparisons will be difficult to guarantee.
Slight differences in the direct-relation matrix can cause significant
changes in the total-relation matrix. Therefore, it is necessary to pro-
pose an objective and efficient weighting method that can simultane-
ously consider the correlation between risk factors.
400
In this section, we incorporate grey relation analysis into the DE-
MATEL method to derive the weight of risk factors based on objective
risk information. Specifically, the grey correlation coefficient is used to
derive the influence level between risk factors and further construct the
asymmetric direct-relation matrix.

Step 1: The group risk assessment matrix obtained in Stage I can be
rewritten as 𝑋𝑔 = (𝑋𝑔

1 , 𝑋
𝑔
2 ,… , 𝑋𝑔

𝑛 ) where 𝑋𝑔
𝑗 = (𝑥𝑔1𝑗 , 𝑥

𝑔
2𝑗 ,… , 𝑥𝑔𝑚𝑗 )

𝑇 (𝑗 =
1, 2,… , 𝑛) is a column vector. In this way, the group risk assess-
ment matrix can be regarded as a row vector with 𝑛 sequences.
Suppose 𝑋𝑔

ℎ = (𝑥𝑔1ℎ, 𝑥
𝑔
2ℎ,… , 𝑥𝑔𝑚ℎ)

𝑇 is the behavioral characteristic se-
quence of system in GRA, and 𝑋𝑔

1 = (𝑥𝑔11, 𝑥
𝑔
21,… , 𝑥𝑔𝑚1)

𝑇 ,… , 𝑋𝑔
ℎ−1 =

(𝑥𝑔1,ℎ−1, 𝑥
𝑔
2,ℎ−1,… , 𝑥𝑔𝑚,ℎ−1)

𝑇 , 𝑋𝑔
ℎ+1 = (𝑥𝑔1,ℎ+1, 𝑥

𝑔
2,ℎ+1,… , 𝑥𝑔𝑚,ℎ+1)

𝑇 , …, 𝑋𝑔
𝑛 =

(𝑥𝑔1𝑛, 𝑥𝑔2𝑛, …, 𝑥𝑔𝑚𝑛)𝑇 are 𝑛 − 1 sequences of relevant factors. Based on
GRA, the direct-relation matrix 𝐵 = (𝑏ℎ𝑗 )𝑛×𝑛 can be derived as follows.

𝜗𝜀
(

𝑥𝑔𝑠ℎ, 𝑥
𝑔
𝑠𝑗

)

=
min𝑗,𝑗≠ℎ min𝑠

{

𝑑
(

𝑥𝑔𝑠ℎ, 𝑥
𝑔
𝑠𝑗

)}

+ 𝜀max𝑗,𝑗≠ℎ max𝑠
{

𝑑
(

𝑥𝑔𝑠ℎ, 𝑥
𝑔
𝑠𝑗

)}

{

𝑑
(

𝑥𝑔𝑠ℎ, 𝑥
𝑔
𝑠𝑗

)}

+ 𝜀max𝑗,𝑗≠ℎ max𝑠
{

𝑑
(

𝑥𝑔𝑠ℎ, 𝑥
𝑔
𝑠𝑗

)} (13)

𝑏 =

∑𝑚
𝑠=1 𝜗

𝜀
(

𝑥𝑔𝑠ℎ, 𝑥
𝑔
𝑠𝑗

)

(14)
ℎ𝑗 𝑚
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where 𝑑
(

𝑥𝑔𝑠ℎ, 𝑥
𝑔
𝑠𝑗

)

denotes the distance between ELICIT expressions 𝑥𝑔𝑠ℎ
nd 𝑥𝑔𝑠𝑗 . 𝜀 is a distinguish coefficient with 𝜀 ∈ [0, 1].

Each column of the risk information matrix will be treated as
the behavioral characteristic sequence once to derive the asymmetric
direct-relation matrix 𝐵 = (𝑏ℎ𝑗 )𝑛×𝑛.

Step 2: The normalized direct-relation matrix 𝐵 = (𝑏ℎ𝑗 )𝑛×𝑛 can be
computed as:

𝑏ℎ𝑗 =
𝑏ℎ𝑗

max
{

max
{

∑

ℎ 𝑏ℎ𝑗
}

,max
{

∑

𝑗 𝑏ℎ𝑗
}} (15)

Step 3: Based on Eq. (15), the total-relation matrix 𝑇 = (𝑡ℎ𝑗 )𝑛×𝑛 can
e calculated as:

= lim
𝑁→∞

(𝐵 + 𝐵
2
+⋯ + 𝐵

𝑁
) = 𝐵(𝐼 − 𝐵)−1 (16)

where 𝐼 is the identity matrix, and 𝐵 denotes the normalized direct
elation matrix.

The diagram of influence relation between risk factors can be drawn
y the threshold 𝜒 (𝑇 ) =

∑𝑛
ℎ=1

∑𝑛
𝑗=1 𝑡ℎ𝑗

𝑛2
.

Step 4: The sums of the rows and columns of 𝑇 = (𝑡ℎ𝑗 )𝑛×𝑛 can be
btained as:

ℎ =
𝑛
∑

𝑗=1
𝑡ℎ𝑗 (17)

𝑗 =
𝑛
∑

ℎ=1
𝑡ℎ𝑗 (18)

𝑗 −𝜐𝑗 denotes the net effect of risk factor 𝑐𝑗 . If 𝜇𝑗 −𝜐𝑗 > 0, 𝑐𝑗 is a cause
actor, otherwise 𝑐𝑗 is a result factor.
Step 5: Based on Eqs. (17)–(18), the weight of risk factors 𝑤𝑅𝐹𝑗

𝑗 = 1, 2,… , 𝑛) can be computed as:

𝑅𝐹𝑗 =
𝜇𝑗 + 𝜐𝑗

∑𝑛
𝑗=1

(

𝜇𝑗 + 𝜐𝑗
) (19)

3.4. Stage III : Prioritize the failure modes with the extended ORESTE

The traditional ORESTE method utilizes Besson’s ranking to deter-
mine the global preference score, which may lead to information loss
and inaccurate results. Additionally, the traditional ORESTE method
cannot address risk priority problems under uncertainty. Therefore, in
this section, we improve the ORESTE method by replacing Besson’s
ranking with deviation measures and extending it into the ELICIT
environment for better risk prioritization results. The specific process
is as follows.

Step 1: In the original ORESTE method, the importance degree of risk
factor 𝑅𝐹𝑗 (𝑗 = 1, 2,… , 𝑛) and the performance of failure mode 𝐹𝑀𝑖(𝑖 =
, 2,… , 𝑚) regarding 𝑅𝐹𝑗 are represented by Besson’s ranks rather than
risp values, which may result in information loss. An example is shown
s follows.

xample 2. Let 𝑆 =
{

𝑠0 = very low, 𝑠1 = low, 𝑠2 = reasonably low,
𝑠3 = average, 𝑠4 = reasonably high, 𝑠5 = high, 𝑠6 = very high

}

be a lin-
uistic term set. Suppose the evaluations on three failure modes 𝐹𝑀1,
𝑀2, and 𝐹𝑀3 regarding 𝑅𝐹1 are 𝑥𝑔11 =

{

𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑠5
}

, 𝑥𝑔21 =
{

𝑏𝑒𝑡 𝑠4 & 𝑠5
}

, and 𝑥𝑔31 =
{

𝑠0
}

, respectively. Therefore, we can get
𝑥𝑔11 > 𝑥𝑔21 > 𝑥𝑔31. Based on the original ORESTE method, the Besson’s
ranks of these three evaluations are 𝑝1

(

𝐹𝑀1
)

= 1, 𝑝1
(

𝐹𝑀2
)

= 2,
nd 𝑝1

(

𝐹𝑀3
)

= 3. From the evaluations we can observe that 𝑥𝑔21 is
bviously closer to 𝑥𝑔11 than 𝑥𝑔31. However, the Besson’s ranks reflect
hat the difference between 𝑥𝑔11 and 𝑥𝑔21 is the same as 𝑥𝑔31 and 𝑥𝑔21,
hich leads to information loss.

According to Eq. (6), we utilize the deviation measure between the
LICIT expression and the positive ideal solutions 𝑑

(

𝑥𝑔𝑖𝑗 , 𝑥
+
𝑗

)

to replace
( )
401

he ranking value 𝑝𝑗 𝑎𝑖 , and the deviation between the risk factor
weight and the maximum value of risk factor weight 𝑑
(

𝑤𝑅𝐹𝑗
, 𝑤+

𝑗

)

to replace the ranking value 𝑝𝑗 . Compared with the original method,
measuring the deviation between each evaluation and the positive ideal
solution can better reflect the differences in the performance of each
failure mode. In this way, the global preference score of 𝐹𝑀𝑖(𝑖 =
1, 2,… , 𝑚) over 𝑅𝐹𝑗 (𝑗 = 1, 2,… , 𝑛) can be calculated as:

𝐺
(

𝑥𝑔𝑖𝑗
)

=
√

𝜑𝑑
(

𝑥𝑔𝑖𝑗 , 𝑥
+
𝑗

)2
+ (1 − 𝜑) 𝑑

(

𝑤𝑅𝐹𝑗
, 𝑤+

𝑗

)2
(20)

here 𝑥+𝑗 =

⎧

⎪

⎨

⎪

⎩

max𝑖
{

𝑥𝑔𝑖𝑗
}

𝑅𝐹𝑗 is a positive risk factor

min𝑖
{

𝑥𝑔𝑖𝑗
}

𝑅𝐹𝑗 is a negative risk factor
, 𝑤+

𝑗 = max𝑗

𝑤𝑅𝐹𝑗

}

, and 𝜑 (𝜑 ∈ (0, 1)) is an adjustment parameter denoting the

elative importance between 𝑑
(

𝑥𝑔𝑖𝑗 , 𝑥
+
𝑗

)2
and 𝑑

(

𝑤𝑅𝐹𝑗
, 𝑤+

𝑗

)2
.

Step 2: The weak ranking of failure modes can be determined as:

(

𝐹𝑀𝑖
)

=
𝑛
∑

𝑗=1
𝐺
(

𝑥𝑔𝑖𝑗
)

(21)

If 𝑅(𝐹𝑀𝑖) > 𝑅(𝐹𝑀𝑙), then 𝐹𝑀𝑖𝑃𝐹𝑀𝑙(𝑙 = 1, 2,… , 𝑚); if 𝑅(𝐹𝑀𝑖) =
𝑅(𝐹𝑀𝑙), then 𝐹𝑀𝑖𝐼𝐹𝑀𝑙(𝑙 = 1, 2,… , 𝑚).

Step 3: The average preference intensity of failure mode 𝐹𝑀𝑖 over
𝐹𝑀𝑙 can be derived as:

𝑇
(

𝐹𝑀𝑖, 𝐹𝑀𝑙
)

=

∑𝑛
𝑗=1 max

{

𝐺
(

𝑥𝑔𝑙𝑗
)

− 𝐺
(

𝑥𝑔𝑖𝑗
)

, 0
}

𝑛
(22)

where 𝐺
(

𝑥𝑔𝑖𝑗
)

and 𝐺
(

𝑥𝑔𝑙𝑗
)

denote the global preference score of 𝐹𝑀𝑖
and 𝐹𝑀𝑙 over risk factor 𝑅𝐹𝑗 , respectively.

Afterwards, the net preference intensity of 𝐹𝑀𝑖 over 𝐹𝑀𝑙 can be
derived as:

𝛥𝑇
(

𝐹𝑀𝑖, 𝐹𝑀𝑙
)

= 𝑇
(

𝐹𝑀𝑖, 𝐹𝑀𝑙
)

− 𝑇
(

𝐹𝑀𝑙 , 𝐹𝑀𝑖
)

(23)

Step 4: The PIR structures of failure modes contain three relation-
ships, i.e., preference (P) relationship, indifference (I) relationship, and
incomparability (R) relationship. Therefore, three parameters should be
determined to construct the PIR structures: preference threshold 𝜏, in-
difference threshold 𝜁 , and the incomparability threshold 𝛿. According
to [36], the thresholds can be calculated as follows.

𝜏 =
𝜁
𝑛

(24)

𝛿 =

{ (𝑛+2)𝜁
2𝑛 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
𝜁
2 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

(25)

where 𝜁 ∈
[

0,
√

𝜑𝜅
]

, 𝜑 (𝜑 ∈ (0, 1)) is the adjustment parameter in
q. (20), and 𝜅 (𝜅 ∈ (0, 1)) is determined by the experts based on the
ractical circumstances.

According to the above analysis, the PIR structures of 𝐹𝑀𝑖 can be
stablished as follows.

𝑓 |

|

|

𝛥𝑇
(

𝐹𝑀𝑖, 𝐹𝑀𝑙
)

|

|

|

< 𝜏,

𝑡ℎ𝑒𝑛
{

𝐹𝑀𝑖𝐼𝐹𝑀𝑙 𝑖𝑓 𝑇
(

𝐹𝑀𝑖, 𝐹𝑀𝑙
)

< 𝛿 𝑎𝑛𝑑 𝑇
(

𝐹𝑀𝑙 , 𝐹𝑀𝑖
)

< 𝛿
𝐹𝑀𝑖𝑅𝐹𝑀𝑙 𝑖𝑓 𝑇

(

𝐹𝑀𝑖, 𝐹𝑀𝑙
)

≥ 𝛿 𝑜𝑟 𝑇
(

𝐹𝑀𝑙 , 𝐹𝑀𝑖
)

≥ 𝛿

(26)

𝐼𝑓 |

|

|

𝛥𝑇
(

𝐹𝑀𝑖, 𝐹𝑀𝑙
)

|

|

|

≥ 𝜏,

𝑡ℎ𝑒𝑛
{

𝐹𝑀𝑖𝑃𝐹𝑀𝑙 𝛥𝑇
(

𝐹𝑀𝑖, 𝐹𝑀𝑙
)

> 0
𝐹𝑀𝑙𝑃𝐹𝑀𝑖 𝛥𝑇

(

𝐹𝑀𝑖, 𝐹𝑀𝑙
)

≤ 0
(27)

4. Risk prioritization for an electro-mechanical actuator

The electro-mechanic actuator (EMA), one of the most critical com-
ponents in the next generation of aircraft, is utilized to manipulate

the location of the vehicles and deploy the equipment, especially the
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𝑤

Table 1
The causes and effects of failure modes.

Component Item Failure mode Failure cause Failure effect

Motor FM1 Stator winding insulation
aging

Over-current or over-voltage Unstable power supply

FM2 Rotor magnet chemical
bond aging

Motor overload or short circuit Damage to the motor

FM3 Rotor eccentric Support bearing damage Damage to the motor

Power
electronics

FM4 Control capacitor dielectric
breakdown

Short circuit, or open circuit of
power device

Power electronics incapacity

FM5 Inverter dielectric breakdown Short circuit, or open circuit of
power device

Damage to the inverter

FM6 Wire overheating Insulation damage, thermal switch
failure, cooling fan damage

Affect the operation of the
device

Mechanical
structures

FM7 Screw broken Strong vibration of mechanical
structure

Degrade motor output
performance

FM8 Excessive wear on
the screw

Rust, connection key fault Loss of motion accuracy

FM9 Nut broken Strong vibration of mechanical
structure

Damage to the mechanical
structures

FM10 Bearing fracture Stress concentration is not
eliminated in the manufacturing
process

Mechanical disintegration

FM11 Bearing corrosion Ambient temperature and humidity Damage to the EMA functions
r
a

4

b
w

𝐵

Table 2
The hierarchical structure of risk factors.

First-level factors Symbol Second-level factors Symbol

Occurrence O Frequency 𝑅𝐹1
Repeatability 𝑅𝐹2

Detection D Visibility 𝑅𝐹3
Inspection 𝑅𝐹4

Severity S Equipment damage 𝑅𝐹5
Economic loss 𝑅𝐹6

embedded optic apparatus (e.g., telescopes and cameras). With the
continuous development of aerospace systems, EMAs are becoming
increasingly crucial to the safety of aerospace vehicles. The failure of
EMAs can seriously affect the operation of vehicles, leading to enor-
mous economic loss. Therefore, conducting failure analysis on EMAs is
of great significance. However, to our knowledge, there are few studies
on risk prioritization for EMAs. Thus, it is necessary to implement our
FMEA method to address this issue and allocate limited resources to
prevent failure modes from occurring.

4.1. Stage I : Establish the risk assessment matrix with ELICIT

Step 1.1: Identify the failure modes and construct a hierarchical risk
factor system.

Based on literature analysis and experience of FMEA team mem-
bers, eleven failure modes are sorted out. The detailed information is
presented in Table 1.

In traditional FMEA, risk factors are confined to Occurrence (O),
Detection (D), and Severity (S), which are inadequate for a comprehen-
sive risk assessment. In this study, we establish a two-layer risk factor
structure, which includes three dimensions and six sub-level factors.
The details are shown in Table 2.

Step 1.2: Three FMEA experts with profound expertise and rich
working experience are invited to give their opinions on the risk level
of failure modes. Due to the uncertainty of the FMEA problem and the
hesitancy of expert evaluation, CLEs are used to evaluate the six risk
factors with a 7-scale linguistic term set
𝑆 =

{

𝑠0 = verylow, 𝑠1 = low, 𝑠2 = reasonablylow, 𝑠3 = average, 𝑠4 =
reasonably high, 𝑠5 = high, 𝑠6 = veryhigh

}

. The original risk information
is presented in Tables 3–5.

Step 1.3: The experts’ weight is given in advance as: 𝑤𝐸1
= 0.3,

= 0.3, and 𝑤 = 0.4. Then, the ELICIT information-based group
402

𝐸2 𝐸3
isk evaluation can be derived, and the results are shown in Tables 6
nd 7.

.2. Stage II : Obtain the weight of risk factors by GRA-DEMATEL

Step 2.1: The direct-relation matrix 𝐵 = (𝑏ℎ𝑗 )6×6 of risk factors can

e constructed based on grey correlation coefficient via Eqs. (13)–(14)
ith 𝜀 = 0.5.

= (𝑏ℎ𝑗 )6×6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0.683 0.634 0.645 0.542 0.662
0.712 0 0.509 0.679 0.569 0.602
0.690 0.527 0 0.662 0.625 0.786
0.657 0.671 0.622 0 0.656 0.702
0.546 0.551 0.579 0.648 0 0.621
0.691 0.592 0.707 0.711 0.639 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Step 2.2: Then, the direct-relation matrix can be normalized to
obtain 𝐵 = (𝑏ℎ𝑗 )6×6 by Eq. (15) as:

𝐵 = (𝑏ℎ𝑗 )6×6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0.202 0.188 0.191 0.161 0.196
0.211 0 0.151 0.201 0.167 0.178
0.205 0.156 0 0.196 0.185 0.233
0.195 0.199 0.184 0 0.194 0.208
0.162 0.163 0.172 0.192 0 0.184
0.205 0.176 0.210 0.211 0.189 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Step 2.3: According to Eq. (16), we can obtain the total-relation
matrix as:

𝑇 = (𝑡ℎ𝑗 )6×6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2.844 2.817 2.828 3.038 2.788 3.062
2.942 2.579 2.731 2.969 2.723 2.972
3.110 2.875 2.762 3.140 2.896 3.187
3.109 2.910 2.922 2.982 2.908 3.174
2.813 2.631 2.657 2.867 2.491 2.880
3.144 2.920 2.967 3.184 2.930 3.032

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Step 2.4: With threshold 𝜒 (𝑇 ) = 2.9, the influence relation between
risk factors is given in Fig. 2.

Step 2.5: According to Eqs. (17)–(18), the sums of the rows and
columns of 𝑇 = (𝑡ℎ𝑗 )6×6 can be obtained as: 𝜇1 = 17.377, 𝜐1 = 17.960,
𝜇2 = 16.915, 𝜐2 = 16.732, 𝜇3 = 17.970, 𝜐3 = 16.868, 𝜇4 = 18.005,
𝜐4 = 18.179, 𝜇5 = 16.339, 𝜐5 = 16.736, 𝜇6 = 18.176, 𝜐6 = 18.307. Then, the
weight of risk factors can be calculated as: 𝑤𝑅𝐹1 = 0.169, 𝑤𝑅𝐹2 = 0.161,

𝑤𝑅𝐹3 = 0.166, 𝑤𝑅𝐹4 = 0.173, 𝑤𝑅𝐹5 = 0.158, 𝑤𝑅𝐹6 = 0.174.
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Table 3
The risk evaluation of failure modes 𝐹𝑀𝑖(𝑖 = 1, 2,… , 11) over risk factors 𝑅𝐹𝑗 (𝑗 = 1, 2,… , 6) from 𝐸1.

𝑅𝐹1 𝑅𝐹2 𝑅𝐹3 𝑅𝐹4 𝑅𝐹5 𝑅𝐹6

𝐹𝑀1 𝑠3 bet 𝑠1 & 𝑠2 bet 𝑠3 & 𝑠5 bet 𝑠1 & 𝑠2 at most 𝑠2 bet 𝑠2 & 𝑠3
𝐹𝑀2 at most 𝑠2 bet 𝑠2 & 𝑠3 𝑠3 at most 𝑠2 bet 𝑠2 & 𝑠3 𝑠3
𝐹𝑀3 bet 𝑠2 & 𝑠3 bet 𝑠2 & 𝑠3 𝑠3 at least 𝑠4 bet 𝑠3 & 𝑠5 𝑠3
𝐹𝑀4 bet 𝑠1 & 𝑠2 at most 𝑠2 at least 𝑠4 bet 𝑠4 & 𝑠5 𝑠3 bet 𝑠4 & 𝑠5
𝐹𝑀5 at most 𝑠2 at most 𝑠2 at least 𝑠5 bet 𝑠4 & 𝑠5 bet 𝑠4 & 𝑠5 at most 𝑠5
𝐹𝑀6 bet 𝑠2 & 𝑠3 at least 𝑠4 bet 𝑠1 & 𝑠2 at most 𝑠2 at least 𝑠4 at most 𝑠2
𝐹𝑀7 𝑠3 bet 𝑠1 & 𝑠2 at most 𝑠2 at most 𝑠2 at least 𝑠4 bet 𝑠2 & 𝑠3
𝐹𝑀8 at least 𝑠5 at least 𝑠4 bet 𝑠2 & 𝑠3 𝑠3 𝑠3 𝑠3
𝐹𝑀9 at least 𝑠4 bet 𝑠3 & 𝑠4 at most 𝑠2 bet 𝑠1 & 𝑠2 at most 𝑠2 bet 𝑠1 & 𝑠2
𝐹𝑀10 at most 𝑠2 bet 𝑠3 & 𝑠4 𝑠3 bet 𝑠2 & 𝑠3 bet 𝑠4 & 𝑠5 at least 𝑠4
𝐹𝑀11 bet 𝑠2 & 𝑠3 𝑠3 at most 𝑠2 bet 𝑠2 & 𝑠3 bet 𝑠3 & 𝑠4 bet 𝑠2 & 𝑠3
Table 4
The risk evaluation of failure modes 𝐹𝑀𝑖(𝑖 = 1, 2,… , 11) over risk factors 𝑅𝐹𝑗 (𝑗 = 1, 2,… , 6) from 𝐸2.

𝑅𝐹1 𝑅𝐹2 𝑅𝐹3 𝑅𝐹4 𝑅𝐹5 𝑅𝐹6

𝐹𝑀1 bet 𝑠2 & 𝑠3 at most 𝑠2 𝑠3 at most 𝑠2 bet 𝑠1 & 𝑠2 bet 𝑠2 & 𝑠3
𝐹𝑀2 𝑠3 bet 𝑠1 & 𝑠2 𝑠3 at most 𝑠2 bet 𝑠1 & 𝑠2 bet 𝑠2 & 𝑠3
𝐹𝑀3 𝑠3 bet 𝑠2 & 𝑠3 at most 𝑠2 bet 𝑠3 & 𝑠5 at least 𝑠4 𝑠3
𝐹𝑀4 at most 𝑠2 at most 𝑠2 at least 𝑠4 𝑠3 at least 𝑠5 at least 𝑠4
𝐹𝑀5 bet 𝑠1 & 𝑠2 at most 𝑠2 𝑠3 bet 𝑠4 & 𝑠5 bet 𝑠3 & 𝑠5 bet 𝑠2 & 𝑠3
𝐹𝑀6 𝑠3 at least 𝑠4 bet 𝑠2 & 𝑠3 bet 𝑠2 & 𝑠3 𝑠3 bet 𝑠1 & 𝑠2
𝐹𝑀7 bet 𝑠1 & 𝑠2 𝑠3 bet 𝑠2 & 𝑠3 at most 𝑠2 at most 𝑠2 bet 𝑠2 & 𝑠3
𝐹𝑀8 at least 𝑠5 at least 𝑠4 bet 𝑠2 & 𝑠3 𝑠3 𝑠3 𝑠3
𝐹𝑀9 bet 𝑠2 & 𝑠3 bet 𝑠3 & 𝑠5 at most 𝑠2 bet 𝑠2 & 𝑠3 bet 𝑠2 & 𝑠3 at most 𝑠2
𝐹𝑀10 bet 𝑠1 & 𝑠2 bet 𝑠2 & 𝑠3 bet 𝑠1 & 𝑠2 𝑠3 at least 𝑠4 𝑠3
𝐹𝑀11 at most 𝑠2 at most 𝑠2 𝑠3 at most 𝑠2 bet 𝑠4 & 𝑠5 bet 𝑠2 & 𝑠3
Table 5
The risk evaluation of failure modes 𝐹𝑀𝑖(𝑖 = 1, 2,… , 11) over risk factors 𝑅𝐹𝑗 (𝑗 = 1, 2,… , 6) from 𝐸3.

𝑅𝐹1 𝑅𝐹2 𝑅𝐹3 𝑅𝐹4 𝑅𝐹5 𝑅𝐹6

𝐹𝑀1 at most 𝑠2 bet 𝑠2 & 𝑠3 bet 𝑠3 & 𝑠4 bet 𝑠2 & 𝑠3 bet 𝑠1 & 𝑠2 𝑠3
𝐹𝑀2 bet 𝑠2 & 𝑠3 at most 𝑠2 at least 𝑠4 bet 𝑠2 & 𝑠3 bet 𝑠2 & 𝑠3 bet 𝑠2 & 𝑠3
𝐹𝑀3 bet 𝑠1 & 𝑠2 bet 𝑠3 & 𝑠5 𝑠3 𝑠3 𝑠3 & 𝑠3 bet 𝑠2 & 𝑠3
𝐹𝑀4 bet 𝑠2 & 𝑠3 bet 𝑠3 & 𝑠4 bet 𝑠4 & 𝑠5 bet 𝑠3 & 𝑠5 at least 𝑠2 at least 𝑠4
𝐹𝑀5 𝑠3 at most 𝑠2 𝑠3 at least 𝑠4 bet 𝑠4 & 𝑠5 𝑠3
𝐹𝑀6 at most 𝑠2 at least 𝑠4 bet 𝑠2 & 𝑠3 bet 𝑠2 & 𝑠3 bet 𝑠2 & 𝑠3 bet 𝑠1 & 𝑠2
𝐹𝑀7 bet 𝑠1 & 𝑠2 𝑠3 bet 𝑠1 & 𝑠2 at most 𝑠2 bet 𝑠3 & 𝑠4 bet 𝑠2 & 𝑠3
𝐹𝑀8 at most 𝑠2 at least 𝑠5 bet 𝑠2 & 𝑠3 at least 𝑠4 bet 𝑠1 & 𝑠2 at least 𝑠4
𝐹𝑀9 bet 𝑠3 & 𝑠4 bet 𝑠3 & 𝑠4 bet 𝑠1 & 𝑠2 bet 𝑠2 & 𝑠3 at most 𝑠2 bet 𝑠3 & 𝑠4
𝐹𝑀10 bet 𝑠1 & 𝑠2 𝑠3 at most 𝑠2 𝑠3 bet 𝑠4 & 𝑠5 bet 𝑠2 & 𝑠3
𝐹𝑀11 bet 𝑠2 & 𝑠3 at most 𝑠2 𝑠3 at most 𝑠2 bet 𝑠3 & 𝑠5 𝑠3
Table 6
The group risk evaluation of failure modes 𝐹𝑀𝑖(𝑖 = 1, 2,… , 11) over risk factors 𝑅𝐹𝑗 (𝑗 = 1, 2, 3).

𝑅𝐹1 𝑅𝐹2 𝑅𝐹3

𝐹𝑀1 bet
(

𝑠1 , 0.492
)0.150 &

(

𝑠2 , 0.162
)0.100 bet

(

𝑠1 , 0.096
)0.067 &

(

𝑠2 , 0.072
)0.067 bet

(

𝑠3 , 0.252
)0.003 &

(

𝑠4 , 0.240
)0.003

𝐹𝑀2 bet
(

𝑠2 , 0.300
)−0.003 &

(

𝑠3 , 0.372
)−0.053 bet

(

𝑠1 , 0.102
)0.050 &

(

𝑠2 , 0.138
)0.050 bet

(

𝑠4 , 0.162
)−0.100 &

(

𝑠5 , 0.498
)−0.150

𝐹𝑀3 bet
(

𝑠2 , 0.096
)−0.020 &

(

𝑠3 , 0.402
)−0.070 bet

(

𝑠3 , 0.264
)−0.267 &

(

𝑠4 , 0.522
)−0.200 bet

(

𝑠2 , 0.102
)0.063 &

(

𝑠3 , 0.630
)−0.053

𝐹𝑀4 bet
(

𝑠1 , 0.096
)0.067 &

(

𝑠2 , 0.072
)0.067 bet

(

𝑠1 , 0.198
)0.133 &

(

𝑠2 , 0.144
)0.133 bet

(

𝑠5 , 0.336
)−0.170 &

(

𝑠6 , 0.402
)0.000

𝐹𝑀5 bet
(

𝑠1 , 0.498
)0.133 &

(

𝑠2 , 0.072
)0.067 at most

(

𝑠1 , 0.102
)0.435 bet

(

𝑠3 , 0.846
)−0.067 &

(

𝑠4 , 0.102
)−0.233

𝐹𝑀6 bet
(

𝑠1 , 0.498
)0.150 &

(

𝑠2 , 0.162
)0.100 at least

(

𝑠5 , 0.102
)−0.269 bet

(

𝑠2 , 0.300
)−0.053 &

(

𝑠3 , 0.300
)−0.053

𝐹𝑀7 bet
(

𝑠1 , 0.300
)0.100 &

(

𝑠2 , 0.300
)0.050 bet

(

𝑠2 , 0.402
)0.063 &

(

𝑠3 , 0.300
)−0.053 bet

(

𝑠1 , 0.000
)0.050 &

(

𝑠2 , 0.030
)0.050

𝐹𝑀8 bet
(

𝑠3 , 0.276
)−0.150 &

(

𝑠4 , 0.042
)−0.200 at least

(

𝑠5 , 0.606
)0.153 bet

(

𝑠2 , 0.600
)−0.053 &

(

𝑠3 , 0.630
)−0.053

𝐹𝑀9 bet
(

𝑠3 , 0.330
)−0.170 &

(

𝑠4 , 0.300
)−0.167 bet

(

𝑠3 , 0.724
)0.283 &

(

𝑠4 , 0.645
)0.124 bet

(

𝑠1 , 0.312
)−0.174 &

(

𝑠2 , 0.495
)−0.152

𝐹𝑀10 bet
(

𝑠1 , 0.458
)0.141 &

(

𝑠2 , 0.614
)0.167 bet

(

𝑠3 , 0.756
)−0.063 &

(

𝑠4 , 0.417
)−0.105 bet

(

𝑠2 , 0.189
)0.143 &

(

𝑠3 , 0.292
)0.172

𝐹𝑀11 bet
(

𝑠2 , 0.142
)0.538 &

(

𝑠3 , 0.395
)0.476 bet

(

𝑠1 , 0.823
)0.154 &

(

𝑠2 , 0.733
)0.204 bet

(

𝑠2 , 0.634
)0.300 &

(

𝑠3 , 0.598
)0.330
s
m

4.3. Stage III : Prioritize the failure modes with the extended ORESTE

Step 3.1: The global preference score of failure modes over risk
factors can be computed via Eq. (20) with 𝜑 = 0.5, and the results are
presented in Table 8.

Step 3.2: The weak ranking of 𝐹𝑀𝑖 can be derived via Eq. (21),
which is shown in Table 9.
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Step 3.3: The average intensity and net intensity of failure modes
can be calculated by Eqs. (22)–(23), which are given in Tables 10 and
11, respectively.

Step 3.4: According to Eqs. (24)–(25), the threshold values can be
et as: 𝜁 = 0.03, 𝜏 = 0.01, 𝜀 = 0.025. Then, the PIR structure of failure
odes can be constructed, which is shown in Table 12.

Therefore, the strong ranking of failure modes is obtained as: FM4
FM3 > FM5 > FM10 > FM6 > FM2 > FM8 > FM7 > FM1 >
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Table 7
The group risk evaluation of failure modes 𝐹𝑀𝑖(𝑖 = 1, 2,… , 11) over risk factors 𝑅𝐹𝑗 (𝑗 = 4, 5, 6).

𝑅𝐹4 𝑅𝐹5 𝑅𝐹6

𝐹𝑀1 bet
(

𝑠1 , 0.096
)0.067 &

(

𝑠2 , 0.072
)0.067 bet

(

𝑠0 , 0.702
)0.000 &

(

𝑠2 , 0.330
)0.000 bet

(

𝑠2 , 0.042
)0.063 &

(

𝑠3 , 0
)−0.003

𝐹𝑀2 bet
(

𝑠1 , 0.069
)0.067 &

(

𝑠2 , 0.458
)0.137 bet

(

𝑠2 , 0.512
)0.063 &

(

𝑠3 , 0.437
)0.049 bet

(

𝑠1 , 0.014
)0.167 &

(

𝑠3 , 0.325
)0.203

𝐹𝑀3 bet
(

𝑠4 , 0.354
)0.167 &

(

𝑠5 , 0.289
)0.033 bet

(

𝑠3 , 0.156
)−0.327 &

(

𝑠5 , 0.276
)−0.257 bet

(

𝑠2 , 0.012
)−0.167 &

(

𝑠3 , 0.031
)−0.033

𝐹𝑀4 bet
(

𝑠3 , 0.632
)0.153 &

(

𝑠5 , 0.524
)0.167 bet

(

𝑠4 , 0.379
)0.412 &

(

𝑠6 , 0.435
)0.241 at least

(

𝑠5 , 0.174
)0.268

𝐹𝑀5 bet
(

𝑠4 , 0.096
)0.033 &

(

𝑠5 , 0.503
)0.062 bet

(

𝑠3 , 0.314
)0.520 &

(

𝑠5 , 0.368
)0.428 bet

(

𝑠2 , 0.498
)0.151 &

(

𝑠3 , 0.137
)0.124

𝐹𝑀6 bet
(

𝑠1 , 0.396
)0.117 &

(

𝑠2 , 0.372
)0.117 bet

(

𝑠3 , 0.228
)−0.183 &

(

𝑠4 , 0.102
)−0.233 bet

(

𝑠1 , 0.300
)0.000 &

(

𝑠2 , 0.330
)0.000

𝐹𝑀7 at most
(

𝑠1 , 0.102
)0.184 bet

(

𝑠3 , 0.270
)−0.217 &

(

𝑠4 , 0.330
)−0.217 bet

(

𝑠2 , 0.000
)−0.003 &

(

𝑠3 , 0.000
)−0.003

𝐹𝑀8 bet
(

𝑠4 , 0.162
)−0.010 &

(

𝑠5 , 0.498
)−0.150 bet

(

𝑠2 , 0.204
)0.030 &

(

𝑠3 , 0.402
)−0.070 bet

(

𝑠3 , 0.240
)−0.200 &

(

𝑠4 , 0.102
)−0.250

𝐹𝑀9 bet
(

𝑠2 , 0.300
)−0.053 &

(

𝑠3 , 0.300
)−0.053 bet

(

𝑠1 , 0.402
)0.050 &

(

𝑠2 , 0.468
)0.050 bet

(

𝑠1 , 0.498
)0.133 &

(

𝑠2 , 0.474
)0.133

𝐹𝑀10 bet
(

𝑠2 , 0.702
)0.113 &

(

𝑠3 , 0.000
)−0.003 bet

(

𝑠4 , 0.330
)0.000 &

(

𝑠5 , 0.300
)0.000 bet

(

𝑠3 , 0.228
)−0.183 &

(

𝑠4 , 0.102
)−0.233

𝐹𝑀11 bet
(

𝑠1 , 0.402
)0.050 &

(

𝑠2 , 0.468
)0.050 bet

(

𝑠4 , 0.366
)−0.117 &

(

𝑠5 , 0.103
)−0.050 bet

(

𝑠2 , 0.067
)0.063 &

(

𝑠3 , 0.000
)−0.003
Table 8
The global preference scores of failure modes over risk factors.

𝑅𝐹1 𝑅𝐹2 𝑅𝐹3 𝑅𝐹4 𝑅𝐹5 𝑅𝐹6

𝐹𝑀1 0.591 0.622 0.354 0.661 0.791 0.674
𝐹𝑀2 0.573 0.640 0.506 0.661 0.454 0.534
𝐹𝑀3 0.366 0.462 0.485 0.214 0.289 0.439
𝐹𝑀4 0.426 0.494 0.301 0.330 0.404 0.000
𝐹𝑀5 0.402 0.713 0.239 0.464 0.438 0.396
𝐹𝑀6 0.691 0.437 0.407 0.406 0.548 0.734
𝐹𝑀7 0.601 0.527 0.573 0.651 0.672 0.598
𝐹𝑀8 0.621 0.509 0.626 0.501 0.566 0.696
𝐹𝑀9 0.504 0.497 0.727 0.667 0.680 0.740
𝐹𝑀10 0.573 0.474 0.462 0.531 0.511 0.491
𝐹𝑀11 0.690 0.741 0.685 0.598 0.678 0.674
Table 9
The weak ranking of failure modes.

𝐹𝑀1 𝐹𝑀2 𝐹𝑀3 𝐹𝑀4 𝐹𝑀5 𝐹𝑀6 𝐹𝑀7 𝐹𝑀8 𝐹𝑀9 𝐹𝑀10 𝐹𝑀11

𝑅
(

𝐹𝑀𝑖
)

0.616 0.561 0.376 0.326 0.442 0.537 0.604 0.587 0.636 0.507 0.678
Weak ranking 9 6 2 1 3 5 8 7 10 4 11
Table 10
The average preference intensity between failure modes.

𝐹𝑀1 𝐹𝑀2 𝐹𝑀3 𝐹𝑀4 𝐹𝑀5 𝐹𝑀6 𝐹𝑀7 𝐹𝑀8 𝐹𝑀9 𝐹𝑀10 𝐹𝑀11

𝐹𝑀1 0.000 0.028 0.022 0.000 0.015 0.036 0.038 0.054 0.074 0.018 0.090
𝐹𝑀2 0.083 0.000 0.000 0.000 0.012 0.069 0.063 0.074 0.110 0.010 0.127
𝐹𝑀3 0.262 0.186 0.000 0.054 0.114 0.178 0.228 0.211 0.260 0.135 0.302
𝐹𝑀4 0.290 0.236 0.104 0.000 0.130 0.221 0.278 0.261 0.310 0.184 0.352
𝐹𝑀5 0.189 0.132 0.048 0.014 0.000 0.151 0.193 0.179 0.230 0.105 0.236
𝐹𝑀6 0.114 0.093 0.017 0.010 0.056 0.000 0.104 0.068 0.130 0.036 0.151
𝐹𝑀7 0.049 0.020 0.000 0.000 0.031 0.038 0.000 0.029 0.053 0.000 0.083
𝐹𝑀8 0.083 0.049 0.000 0.000 0.034 0.018 0.046 0.000 0.071 0.005 0.095
𝐹𝑀9 0.054 0.035 0.000 0.000 0.036 0.031 0.021 0.021 0.000 0.012 0.072
𝐹𝑀10 0.127 0.064 0.000 0.000 0.040 0.066 0.097 0.085 0.141 0.000 0.171
𝐹𝑀11 0.029 0.011 0.000 0.000 0.000 0.010 0.009 0.004 0.030 0.000 0.000
Table 11
The net preference intensity between failure modes.

𝐹𝑀1 𝐹𝑀2 𝐹𝑀3 𝐹𝑀4 𝐹𝑀5 𝐹𝑀6 𝐹𝑀7 𝐹𝑀8 𝐹𝑀9 𝐹𝑀10 𝐹𝑀11

𝐹𝑀1 0.000 −0.055 −0.240 −0.290 −0.174 −0.078 −0.011 −0.029 0.020 −0.109 0.061
𝐹𝑀2 0.055 0.000 −0.186 −0.236 −0.120 −0.024 0.043 0.025 0.075 −0.054 0.116
𝐹𝑀3 0.240 0.186 0.000 −0.050 0.066 0.161 0.228 0.211 0.260 0.135 0.302
𝐹𝑀4 0.290 0.236 0.050 0.000 0.116 0.211 0.278 0.261 0.310 0.184 0.352
𝐹𝑀5 0.174 0.120 −0.066 −0.116 0.000 0.095 0.162 0.145 0.194 0.065 0.236
𝐹𝑀6 0.078 0.024 −0.161 −0.211 −0.095 0.000 0.066 0.050 0.099 −0.030 0.141
𝐹𝑀7 0.011 −0.043 −0.228 −0.278 −0.162 −0.066 0.000 −0.017 0.032 −0.097 0.074
𝐹𝑀8 0.029 −0.025 −0.211 −0.261 −0.145 −0.050 0.017 0.000 0.050 −0.080 0.091
𝐹𝑀9 −0.020 −0.075 −0.260 −0.310 −0.194 −0.099 −0.032 −0.050 0.000 −0.129 0.042
𝐹𝑀10 0.109 0.054 −0.135 −0.184 −0.065 0.030 0.097 0.080 0.129 0.000 0.171
𝐹𝑀11 −0.061 −0.116 −0.302 −0.352 −0.236 −0.141 −0.074 −0.091 −0.042 −0.171 0.000
404
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Table 12
The PIR structure of failure modes.

𝐹𝑀1 𝐹𝑀2 𝐹𝑀3 𝐹𝑀4 𝐹𝑀5 𝐹𝑀6 𝐹𝑀7 𝐹𝑀8 𝐹𝑀9 𝐹𝑀10 𝐹𝑀11

𝐹𝑀1 – < < < < < < < > < >
𝐹𝑀2 > – < < < < > > > < >
𝐹𝑀3 > > – < > > > > > > >
𝐹𝑀4 > > > – > > > > > > >
𝐹𝑀5 > > < < – > > > > > >
𝐹𝑀6 > > < < < – > > > < >
𝐹𝑀7 > < < < < < – < > < >
𝐹𝑀8 > < < < < < > – > < >
𝐹𝑀9 < < < < < < < < – < >
𝐹𝑀10 > > < < < > > > > – >
𝐹𝑀11 < < < < < < < < < < –
Fig. 2. The influence relation between risk factors.

FM9 > FM11. In other words, FM4 (i.e., control capacitor dielectric
breakdown) is the most critical failure mode. Therefore, corresponding
measures should be taken first for failure modes with higher risk
priority to avoid potential accidents.

5. Discussions

5.1. Sensitivity analysis

In this subsection, we conduct sensitivity analyses to discuss the
effect of distinguish coefficient on the weight of risk factors and the
impact of adjustment parameter on the final risk priority.

5.1.1. Analyze the effect of distinguish coefficient 𝜀 on the weight of risk
factors

While calculating the weight of risk factors, grey relation analysis
is utilized to determine the direct-relation matrix. There exists a distin-
guish coefficient 𝜀 in Eq. (13) reflecting the degree of differentiation
between grey correlation coefficients. Therefore, it is necessary to
analyze the effect of this distinguish coefficient on the weight of risk
factors. Fig. 3 illustrates the variation of risk factor weights as the
distinguish coefficient 𝜀 changes from 0.1 to 1.

From Fig. 3, we can observe that the weight of RF1, RF3, RF4, and
RF6 decreases as 𝜀 increases from 0.1 to 1, while the weight of RF2 and
RF5 increases as 𝜀 increases. The weight of RF1 is least affected by the
change in 𝜀, while the weight of RF5 is most affected by the change in
𝜀. The smaller the 𝜀, the larger the discrimination among the weight
of risk factors. Therefore, the value of distinguish coefficient 𝜀 has an
impact on the weight of risk factors, and an appropriate value should
be selected according to the actual situation.
405
5.1.2. Discuss the impact of adjustment parameter 𝜑 on risk prioritization
The first step in risk prioritization is determining the global pref-

erence score for failure modes regarding each risk factor. According
to Eq. (20), 𝜑 is an adjustment parameter reflecting the relative im-
portance between two deviation measures. The first is the deviation
between risk assessments and the positive ideal solution; the second is
the deviation between the weight of risk factors and the largest weight.
Therefore, it is worth discussing the influence of 𝜑 on the final risk
priority. Fig. 4 shows the change in risk priority as 𝜑 increases from
0.1 to 1 with a step size of 0.1.

Fig. 4 shows that 𝜑 = 0.7 is a key point at which the ranking of
failure modes changes. Specifically, when 𝜑 changes from 0.1 to 0.6,
the risk priority remains FM4 > FM3 > FM5 > FM10 > FM6 > FM2 >
FM8 > FM7 > FM1 > FM9 > FM11; when 𝜑 varies from 0.7 to 1, the risk
priority changes to FM4 > FM3 > FM5 > FM10 > FM2 > FM6 > FM8 >
FM7 > FM9 > FM1 > FM11. On one hand, a balance between the two
deviations should be considered to determine a more reasonable result.
On the other hand, the top four failure modes in the risk priority remain
the same despite the variation of 𝜑, which indicates the stability of our
method.

5.2. Validity analysis

In this subsection, we will verify the validity of our risk prioriti-
zation approach from the following three aspects. First, when a failure
mode with non-highest risk priority is replaced by a failure mode with a
lower risk level, the failure mode with the highest risk priority obtained
by the proposed method should be unchanged. Second, an effective risk
ranking method should satisfy the transitive property. Third, suppose a
risk prioritization problem is deconstructed into several sub-problems
and the same FMEA approach is utilized to solve these sub-problems. In
that case, the failure modes should be prioritized in an order consistent
with the original problem.

Regarding the first aspect, we modify the original risk assessment
information of FM10, which is shown in Table 13. The original risk
evaluation of the remaining failure modes other than FM10 remains
unchanged. By employing the proposed method, the new risk priority
can be obtained as: FM4 > FM5 > FM3 > FM6 > FM8 > FM2 >
FM9 > FM7 > FM1 > FM11 > FM10. Compared with the original risk
priority derived in Section 4.3, the failure mode with the highest risk
priority remains the same, i.e., FM4, which illustrates the validity of
the proposed method from the first aspect.

To verify from the second and third aspects, we divided the original
set of failure modes into the following two subsets: 𝛩1 =
{

𝐹𝑀1, 𝐹𝑀3, 𝐹𝑀5, 𝐹𝑀8, 𝐹𝑀10, 𝐹𝑀11
}

, and 𝛩2 =
{

𝐹𝑀2, 𝐹𝑀4, 𝐹𝑀6,
𝐹𝑀7, 𝐹𝑀9

}

. According to our method, the risk priority of 𝐹𝑀𝑖 in 𝛩1
is derived as: FM3 > FM5 > FM10 > FM8 > FM1 > FM11. The risk
priority in 𝛩2 is calculated as: FM4 > FM6 > FM2 > FM7 > FM9. The
risk prioritization in these two subsets is consistent with the ranking in
the original set of failure modes, which further verifies the validity of
the proposed method.
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Fig. 3. The weight of risk factors under different 𝜀.
Fig. 4. The risk priority of failure modes under different 𝜑.
Table 13
The original and modified risk assessment of FM10.

𝑅𝐹1 𝑅𝐹2 𝑅𝐹3 𝑅𝐹4 𝑅𝐹5 𝑅𝐹6

The original 𝐹𝑀10 at most 𝑠2 bet 𝑠3 & 𝑠4 𝑠3 bet 𝑠2 & 𝑠3 bet 𝑠4 & 𝑠5 at least 𝑠4
The modified 𝐹𝑀10 𝑠1 𝑠1 bet 𝑠1 & 𝑠2 𝑠1 𝑠1 bet 𝑠1&𝑠2
5.3. Reliability analysis

In this subsection, we utilize Monte Carlo simulation to illustrate
the reliability of the proposed approach. To begin with, we randomly
construct sequences that simulate the order in which failure modes
emerge. Then, for electro-mechanical actuator systems, the level of risk
increases as failure modes occur in order. Once the risk level reaches
the system risk threshold 𝜃, the system will crash. The threshold 𝜃
reflects the failure tolerance ability of the system. The larger the 𝜃, the
greater the risk the system can bear. The occurrence of failure modes
during this process will be recorded. In this simulation, we set 𝜃 to vary
between 30 and 80 to explore the effect of the system risk threshold on
the priority of failure modes.

According to the above analysis, we conduct 100 000 simulation
experiments and obtained statistically significant data. Fig. 5 shows the
random frequency of failure modes with various system risk threshold
𝜃.

From Fig. 5, we can observe that the risk priority of 𝐹𝑀𝑖 obtained
by random frequency is consistent with those obtained by the proposed
method in Section 4.3, which proves the reliability of our method.
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5.4. Comparative analysis

In this subsection, qualitative and quantitative comparisons are con-
ducted with some typical methods to further illustrate the advantages
of our method.

5.4.1. Qualitative comparative analysis
To begin with, qualitative comparisons are carried out from the

following four aspects: (i) the expression structure of risk information,
(ii) the correlation between risk factors are considered or not, (iii)
weight determination method of risk factor, and (iv) risk prioritization
method. The specific information is shown in Table 14.

For the expression of risk information, most existing methods utilize
crisp numbers [43–45] or fuzzy numbers [15,17,46,47] to evaluate
the risk level of failure modes under different risk factors. Never-
theless, fuzzy numbers are inadequate to reflect the uncertainty in
human thinking. While [7,48,49] use linguistic variables to describe
risk assessment, the hesitancy of expert evaluation cannot be reflected
because each linguistic variable contains only one linguistic term.
In our method, the risk information is expressed with CLEs and the
group evaluation is generated in the form of ELICIT information, which
extends the representation of CLEs to a continuous domain to better
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Fig. 5. The random frequency of failure modes with various system risk threshold 𝜃.
Table 14
Qualitative comparisons of various risk prioritization methods.

Method Risk information
expression

Correlation between
risk factors

Weight determination
of risk factors

Risk prioritization method

[43] Crisp number Not considered Assumed to be equal Traditional RPN method
[44] Crisp number Considered AHP method Weighted RPN method
[45] Crisp number Not considered Assumed to be equal Classification-based consensus method
[46] Triangular fuzzy number Not considered Determined by experts Fuzzy QFD
[15] Intuitionistic fuzzy number Considered DEMATEL method MABAC method
[47] Z-number Considered Z-FUCOM Z-CoCoSo method
[17] IVq-ROFN Not considered Maximum deviation method The extended ARAS method
[7] Linguistic variable Not considered Maximum deviation method RT-PROMETHEE method
[48] Linguistic variable Not considered Given in advance FIS-RPN method
[49] Linguistic variable Not considered Entropy method The extended VIKOR method
[6] LDA Not considered Assumed to be equal Social network-based consensus model
[11] LDA Not considered Assumed to be equal Bounded confidence-based consensus model
This paper ELICIT Considered GRA-DEMATEL The extended ORESTE method

† RPN: Risk priority number; AHP: Analytic hierarchy process; QFD: Quality function deployment; DEMATEL: Decision-making trial and evaluation laboratory; MABAC: Multi
attribute border approximation area comparison; Z-FUCOM: Z-Full consistency method; Z-COCOSO: Z-Combined compromise solution; IVq-ROFN: interval-valued q-rung orthopair
number; ARAS: additive ratio assessment; RT-PROMETHEE: Regret theory-preference ranking organization method for enrichment evaluations; FIS-RPN: fuzzy inference system-risk
priority number; VIKOR: vlsekriterijumska optimizacija i kompromisno resenje; LDA: Linguistic Distribution Assessment; ELICIT: Extended comparative linguistic expressions with
symbolic translation; GRA-DEMATEL: Grey relation analysis-decision-making trial and evaluation laboratory; ORESTE: Organísation, rangement et Synthèse de données relarionnelles.
model experts’ preferences. ELICIT is closer to human thinking and can
improve the interpretability and precision in the process of computing
with words.

Regarding the weight determination of risk factors, many methods
fail to capture the correlation between different risk factors [6,7,11,
17,43,46,48,49]. The methods that consider this interaction (e.g., AHP
[44], DEMATEL [15], and Z-FUCOM [47]) are based on subjective
pairwise comparisons of risk factors given by the experts. However,
when many risk factors are involved in FMEA, the workload of pairwise
comparison is too large, and consistency is difficult to guarantee. In
our study, we incorporate the grey correlation coefficient into the
DEMATEL method to capture the correlation between risk factors based
on objective risk information, which can enhance the efficiency and
accuracy of risk priority results.

Finally, to overcome the deficiencies in the traditional RPN ap-
proach, multiple MCDM techniques have been extended into FMEA to
prioritize the failure modes, such as weighted RPN [44], MABAC [15],
the extended VIKOR [49], and consensus-based methods [6,11,45].
Compared with these methods, the extended ORESTE proposed in our
method can not only determine the utility value of failure modes, but
also establish their PIR structures. Therefore, with the weak ranking
and the PIR structure, the risk priority derived with our method is more
reasonable.
407
5.4.2. Quantitative comparative analysis
After qualitative comparisons, we select the weighted RPN method

[44], the extended ARAS method [17], and the extended VIKOR
method [49] for quantitative comparisons. Because different methods
utilize different risk information expressions, we uniformly use crisp
numbers for risk evaluation, and use the same example to compute the
risk priority obtained by each method. The results are shown in Fig. 6.

Fig. 6 shows that the risk priority varies by method, but FM4 is
the highest risk-prioritized failure mode of all methods, and FM11
is the lowest. However, it is not convincing enough to illustrate the
effectiveness of our approach through a single calculation. Therefore,
the following simulation experiment is conducted based on the risk
prioritization case given in Section 4. We utilize MATLAB to randomly
generate 10 000 sets of weight of risk factors. Then, these four methods
are applied to calculate the risk priority. Subsequently, we record the
proportion of each failure mode in the top four positions of risk priority
under four methods, which is shown in Figs. 7–10.

In Figs. 7–10, we can observe that the largest proportion of failure
modes with the highest risk priority derived by each method is FM4,
which further demonstrates the effectiveness of our method. Addition-
ally, we found that in the proposed method, among the top four failure
modes in the risk priority order, the failure mode with the largest
percentage has an absolute advantage. For example, the percentage of
FM4 in the highest risk priority position in our method is 81%, which is
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Fig. 6. The risk priority of failure modes under different methods.
Fig. 7. (a), (b), (c), and (d) represent the proportion of each failure mode in the highest risk priority position, the second position, the third position, and the fourth position in
the weighted RPN method, respectively.
significantly better than the 61% from [17,43] and the 58% from [48].
Therefore, compared with other approaches, our method has better
convergence and can distinguish the risk priority to a greater extent.

5.5. The theoretical and practical implications

From the theoretical perspective, a novel FMEA framework that
can deal with uncertain risk information and correlative risk factors
is constructed. In this study, ELICIT information is utilized to elicit
the group risk evaluation, which can improve the interpretability of
the generated results. Considering the correlation between risk factors,
GRA is combined with DEMATEL to calculate their weights more
objectively. In risk prioritization, the ORESTE method is improved
and generalized into ELICIT environment to capture the preference,
indifference, and incomparability relations of failure modes through
conflict analysis.
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From the practical point of view, in the risk prioritization problem
of an electro-mechanical actuator problem, our method can take ad-
vantage of the empirical knowledge of FMEA experts in the form of
ELICIT. Other practical issues, such as the relationship between risk
factors, are also considered. Discussions show that our method has
better convergence and can distinguish the risk priority to a greater
extent. Additionally, the proposed framework is well-structured and
easy to implement. As a result, this method can be extended to solve
risk prioritization in other fields, such as green logistic risk assessment.

6. Conclusion

Both the timely detection and elimination of failure modes are
critical to system operation. In light of the limitations of existing FMEA
methods, this paper proposes an improved risk prioritization method
based on the extended ORESTE with ELICIT information. From our
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Fig. 8. (a), (b), (c), and (d) represent the proportion of each failure mode in the highest risk priority position, the second position, the third position, and the fourth position in
the extended ARAS method, respectively.
Fig. 9. (a), (b), (c), and (d) represent the proportion of each failure mode in the highest risk priority position, the second position, the third position, and the fourth position in
the extended VIKOR method, respectively.
theoretical analysis and the case study for verification, we can draw
the following conclusions:

(1) FMEA experts can utilize ELICIT information to flexibly assess
the degree of risk of failure modes, which reduces information
loss and enhances the method’s practicality.

(2) The weight of risk factors is more objectively determined by
introducing grey relation analysis into the traditional DEMATEL,
improving risk prioritization efficiency.

(3) We advance the ORESTE method by replacing Besson’s ranking
with deviation measures and extend it into the ELICIT context,
which improves the accuracy of the risk priority result.

(4) By applying our method to the risk analysis problem of electro-
mechanical actuators, the validity, effectiveness, and advantages
of our method are comprehensively verified.
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In future research, classifying failure modes into several predefined
and risk-ordered categories can improve efficiency in risk manage-
ment [26,50,51]. Therefore, how to cluster failure modes more effec-
tively deserves further study. Second, arriving at a consensual decision
among FMEA experts is important since a highly accepted solution
to the FMEA problem can facilitate the implementation of corrective
measures [6,11]. Thus, we plan to incorporate feedback mechanisms
into the FMEA framework to assist group members in reaching a
consensus. Third, artificial intelligence methods can be introduced into
FMEA to facilitate risk analysis. Nowadays, data availability from past
activities enables new possibilities for advanced data analytics. Using
historical and operational data as another source of knowledge, data
analytic tools can predict specific failure probabilities. These results can
be integrated into the FMEA to achieve dynamic risk evaluation. There-
fore, developing data-driven FMEA methodologies with deep learning
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Fig. 10. (a), (b), (c), and (d) represent the proportion of each failure mode in the highest risk priority position, the second position, the third position, and the fourth position
in the proposed method, respectively.
models on historical data to support risk analysis is another direction
worth exploring.
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