
Applied Soft Computing Journal 180 (2025) 113318

A
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Integrating a simplified formula graph representation into a graph neural
network model for premise selection
Xingxing He a, Zhongxu Zhao a, Yongqi Lan a, Yingfang Li b,∗, Li Zou c , Jun Liu d ,
Luis Martínez e , Tianrui Li f
a School of Mathematics, Southwest Jiaotong University, Chengdu, 610031, China
b School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics, Chengdu 611130, China
c School of Computer Science and Technology, Shandong Jianzhu University, Jinan, 250101, China
d School of Computing, Ulster University, Belfast BT15 1ED, Northern Ireland, UK
e Department of Computer Sciences, University of Jaén, Jaén 23071, Spain
f School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China

A R T I C L E I N F O

Keywords:
Premise selection
Graph similarity
Graph representation
Graph neural network
SAGpool-Term-Walk

 A B S T R A C T

The search space for automatic theorem proving typically experiences exponential growth when attempting
to prove a conclusion with numerous axioms. Premise selection presents a novel approach to tackle this
challenge. However, one major obstacle lies in enhancing the presentation of logical formula graphs and
graph neural network models in existing premise selection methods to preserve potential information from the
logical formulas effectively. This study proposes a novel simplified graph representation of logical formulas
by eliminating repeated quantifiers, along with a new term-walk graph neural network model incorporating
an attention mechanism and attention pooling (ASTGNNS). This model aims to preserve syntax and semantic
information of logical formulas, particularly regarding the order of symbols and the scope of quantifiers in
logical formulas, thereby improving classification accuracy in premise selection problems. Specifically, we
first transform first-order logical conjectures and premise formulas into simplified logical formula graphs by
removing repeated quantifiers. Next, we introduce a method based on a common path kernel function to
measure graph similarity and validate the interpretability of our simplified logical formula graphs method.
Then, an attention mechanism is employed to assign weights to term-walk feature information of nodes
for updating node feature representations; meanwhile, attention pooling is utilized for selecting nodes that
significantly contribute towards generating the final formula graph vector. Finally, combining the premise
graph vector and conjecture graph vector forms a binary classifier for classification purposes. Experimental
results demonstrate that our proposed method achieves an accuracy rate of 88.77% on the MPTP dataset and
85.17% on the CNF dataset, outperforming the state-of-the-art premise selection method.
1. Introduction

Automatic theorem proving is a vital field in artificial intelligence,
holding both theoretical significance and practical applications in ex-
pert systems [1], circuit design [2], compiler optimization [3], and soft-
ware verification [4]. An automatic theorem prover (ATP) translates
conjectures and premises into logical formulas to facilitate automated
deduction. The ATP employs an iterative search strategy to generate
proofs for new problems. Although it successfully addresses small-scale
issues, large-scale libraries like the Mizar mathematical library [5] pose
substantial challenges due to the extensive number of unrelated clauses
and unproven propositions, resulting in computational demands that
surpass current technological capabilities.

∗ Corresponding author.
E-mail address: liyf@swufe.edu.cn (Y. Li).

Premise selection offers a promising solution by identifying formu-
las that assist in proving a conjecture before they are entered into
the prover. In recent years, effective premise selection methods have
significantly improved ATP performance [6]. Early premise selection
strategies primarily relied on hand-crafted heuristic methods based on
symbolic comparative analysis [7]. These heuristic algorithms often
faced limitations due to restricted feature design, which diminished
their effectiveness in premise selection tasks. With advancements in
computing power, machine learning techniques [8–11] such as convo-
lutional neural networks [12], long short-term memory networks [13],
and gated recurrent units [14] have emerged as effective alternatives
for premise selection. These models excel at capturing deeper features
https://doi.org/10.1016/j.asoc.2025.113318
Received 10 August 2024; Received in revised form 12 March 2025; Accepted 11 M
vailable online 3 June 2025
568-4946/© 2025 Published by Elsevier B.V.
ay 2025

https://www.elsevier.com/locate/asoc
https://www.elsevier.com/locate/asoc
https://orcid.org/0000-0002-7715-1603
https://orcid.org/0000-0001-8859-5405
https://orcid.org/0000-0003-4245-8813
https://orcid.org/0000-0001-7780-104X
mailto:liyf@swufe.edu.cn
https://doi.org/10.1016/j.asoc.2025.113318
https://doi.org/10.1016/j.asoc.2025.113318

X. He et al. Applied Soft Computing 180 (2025) 113318
of logical formulas. However, features derived from text sequences are
limited in conveying information about logical symbols, while those
based on tree structures mainly preserve the syntactic structure of
logical formulas.

In contrast, graph-based representations can capture the syntactic
structure and some semantic properties of logical formulas. Conse-
quently, the combination of graph neural networks (GNNs) [15,16]
and automatic theorem proving has emerged as a significant research
area due to the natural representation of logical formulas as graphs.
This approach allows comprehensive graph topological structure in-
formation integration to capture their features. Initially proposed by
Wang et al. [17], a GNN model incorporating edge order information
for premise selection was developed using a basic graph convolu-
tional neural network (GCN) [18] for node embedding. Schlichtkrull
et al. [19] expanded GCN by introducing a node relation weight
matrix, resulting in a GNN model that preserves the relational informa-
tion within logical formulas. Lin et al. [20] introduced an innovative
representation method using contrast graphs for logical formula em-
beddings and incorporated an attention-based DenseNet convolutional
network [21] to process the syntactic analytic graphs of formulas.
Despite these advancements, existing research primarily focuses on
GNNs’ capabilities to encode graph information of logical formulas,
with limited attention given to maintaining logical semantics within
the graph representations. Consequently, the performance of GNN-
based premise selection models is constrained by the encoding abilities
of GNNs and the effectiveness of various methods used to represent
logical formulas as graphs. Additionally, there has been an insufficient
investigation into whether these graph representations are suitable for
premise selection tasks, particularly regarding the theoretical justifica-
tion for their applicability and interpretability. Moreover, most existing
GNNs that rely solely on node and edge relationships capture only a
limited set of properties of logical formulas, raising concerns about
aggregating graph information in these networks to manage complex
logical formula graphs. To address this issue, this paper proposes a
simplified graph representation method that handles complex logical
formulas and gives its interpretability.

Furthermore, the current research on graph representation has not
addressed the consistency between logical formulas and their corre-
sponding graphs. Intuitively, the graphs of logical formulas exhibit
certain properties of both logical formulas and graphs. The kernel
approach [22] offers a natural framework for measuring similarity.
However, applying this approach to graph structure data remains chal-
lenging. Based on established graph similarity theory [23] and the
characteristics of logic formula graphs, this paper redefines node la-
bels and tailors graph similarity theory specifically for logical formula
graphs. Consequently, we develop a method for measuring similarity in
first-order logic formula graphs using common path kernel functions.
We compute the similarity values between the enhanced and original
logic formula graphs and compare various representations of logical
formula graphs to the original, validating the feasibility of simplified
first-order logic formula graphs at the level of graph similarity. Com-
pared to existing graphs, our simplified first-order logic formula graphs
eliminate redundant quantifiers, reducing data size while preserving
essential quantifier properties. This streamlined representation demon-
strates greater graph similarity with existing logic formula graphs,
making it more suitable for automatic theorem-proving research and
enhancing its interpretability.

To better incorporate logic formula graph information based on
first-order logic formulas’ internal and external attributes and high-
light the significance of different node information, we propose an
attention-based term-walk GNN that features an attention mechanism
and attention pooling (ASTGNNS) and further investigate these prop-
erties before applying this methodology to premise selection tasks. The
main contributions of this paper are as follows.
2
• We propose a simplified graph representation method for first-
order logic formulas by eliminating repetitive quantifiers. This
approach discusses the graph representation technique for reduc-
ing first-order logic formulas based on a large data scale and
structure while preserving their logical properties.

• We propose a graph similarity measure utilizing a common path
kernel function to evaluate the similarity between formula graphs.
We demonstrate that the simplified graph representation method
preserves more logical properties by analyzing the similarity be-
tween simplified and original formula graphs. This makes it par-
ticularly suitable for tasks related to automatic theorem prov-
ing. Consequently, we provide a theoretical justification for the
interpretability of this simplified representation method.

• To address the simplified graph representation of first-order logi-
cal formulas achieved by eliminating redundant quantifiers, we
propose an ASTGNNS model that comprehensively integrates
term-walk feature information and node embedding information.
This method generates a formula graph vector embedding that
effectively captures the first-order logical formula’s semantic and
syntactic characteristics.

2. Related work

GNNs have emerged as a novel approach in machine learning,
enabling effective extraction and exploration of features and patterns
within graph-structured data. Furthermore, by leveraging their struc-
tural characteristics, first-order logic formulas can be represented as
analytic trees. Consequently, the utilization of GNNs in premise se-
lection surpasses traditional feature-based methods [24,25] and ma-
chine learning techniques [12–14], establishing them as mainstream
methodologies in this domain.

Initially representing textual sequences primarily [12], the advent
of GNNs has prompted researchers to investigate alternative graph
representations for first-order logic formulas such as syntax trees [13,
21] and Directed Acyclic Graphs (DAG) [24]. DAGs are derived from
the analytic tree structure of first-order logical formulas and encap-
sulate unique semantic and syntactic information. As a result, most
premise selection models based on GNNs opt for DAG representation.
To improve node information interaction in the formula syntax tree,
Wang et al. [17] introduced the FormulaNet premise selection model
based on higher-order logic formulas, which can transform the higher-
order logic formula into a directed syntax tree with a root node.
Subsequently, this directed syntax tree is converted into a DAG by
merging identical subexpressions (subtrees) and applying variable re-
naming. A graph convolutional neural network that preserves edge
order information is then used to obtain the graph feature embedding
of the logical formula. Building on this work, Aditya Paliwal et al. [26]
explored various graph representations of higher-order logic formulas.
By analyzing logical formula graphs with or without leaf sharing,
subexpression sharing, and variable renaming, they concluded that the
logical formula graph representation, including subexpression sharing,
performs better in premise selection tasks. At the same time, leveraging
the satisfiability of logical formulas, several studies have examined
graph feature representations for different representations of logical
formulas. Xie et al. [27] used graph convolutional neural networks to
encode decision deterministic decomposable negation normal form (d-
DNNF) for logical formulas [28], introducing regularization techniques
to ensure adherence to the two key properties of d-DNNF: certainty
and decomposability. Given the absence of a unified structure for graph
representations of logical formulas, Michael Rawson et al. [29] catego-
rized existing graph representations into two main types: directed graph
representations for propositional logic and argument order or variable
binding representations for first-order logic, with the latter aligning
with the graph representation [17].

Furthermore, Chaudhuri et al. introduced a clause-scoring neural
network [30] that was trained using hindsight experience replay in

X. He et al. Applied Soft Computing 180 (2025) 113318
Table 1
Representative works of premise selection.
 Approaches Models Structural characteristic Symbols
 Feature-based method ENIGMA [25] Tree representing First-order logic
 Mchine learning method DeepMath [12] Textual sequences First-order logic
 Deep network model [13] Syntax trees First-order logic
 ENIGMA-NG [14] Clause features First-order logic
 GNNs FormulaNet [17] DAG by merging identical subexpressions Higher-order logic
 Subgraph pooling [26] DAGs First-order and higher-order logic
 Semisupervised GNN [27] d-DNNF First-order logic
 Directed graph networks [29] Directed syntax graphs Propositional logic first-order logic
 Clause-scoring neural network [30] DAG First-order logic
 NIAGRA [31] Name-invariant formula representations First-order logic
 Magnushammer [32] Transformer architecture Type systems
 Densely connected GCN [20] Contrastive graph representation First-order logic
 Attention-recurrent cross-GNN [37] DAG First-order logic
an incremental learning scenario. Fokoue et al. proposed an enhanced
GNN for acquiring name-invariant formula representations [31], along
with an efficient ensemble approach for automated theorem proving.
Maciej et al. demonstrated that contrastive training with the trans-
former architecture [32] could yield superior retrieval of relevant
premises. Bauer et al. devised a collection of benchmarking data sets for
recommendation systems [33], aiding the formalization of mathematics
with proof assistants. Lamont et al. presented a framework [34] to
facilitate fair and streamlined comparisons of learning approaches in
interactive theorem-proving settings. Yang et al. on the other hand, de-
veloped a large language model-based prover augmented with retrieval
capabilities for selecting premises from an extensive math library [35].
For a more comprehensive survey on deep learning techniques applied
to theorem proving, refer to Li’s work [36].

To enhance existing premise selection methods, Michael Schli-
chtkrull et al. [19] introduced a node relationship weight matrix
into GCNs, aiming to preserve the relationships between nodes in
logical formulas as much as possible, thereby improving classification
accuracy. Maxwell Crouse et al. [24] explored GNNs that retain both
syntactic and semantic information of logical formulas, which proposed
using GCNs and DAG long short-term memory networks (DAG LSTMs)
to obtain node embeddings based on the reachability within directed
graphs. A local attention mechanism was also introduced to facilitate
continuous information exchange between nodes during training, up-
dating the node embeddings accordingly. Lin et al. [20] developed
a novel contrastive graph representation method for logical formula
embedding, which employs a densely connected graph convolutional
network with an attention mechanism to process the syntactic parse
trees of formulas, generates contrastive formula graphs guided by dif-
ferent logical attributes, and applies both global-local and global-global
contrasts to refine the formula embeddings. Liu et al. [37] introduced
a premise selection method based on an attention-recurrent cross-GNN,
which dynamically exchanges information among specific nodes during
the aggregation phase and cyclically updates node embeddings while
incorporating a gating mechanism based on node types to mitigate the
impact of irrelevant information on the model’s performance. Table 1
shows the representative works of premise selection.

Despite achieving state-of-the-art classification accuracy in premise
selection, these GNN-based models primarily focus on the influence of
various GNN architectures on premise selection and pay less attention
to integrating the inherent properties of logical formulas, leading to
limited retention of first-order logical formula information. Our pro-
posed method builds upon an efficient GNN model to enhance the
representation of logical formula graphs and the classification task of
premise selection. We improve previous premise selection methods by
refining the graph representation of logical formulas and optimizing the
overall structure of the GNN through targeted modifications leveraging
external and internal characteristics specific to logical formulas.
3
3. Simplified logical formula graph representation

This section presents a simplified representation of first-order log-
ical formula graphs by eliminating repeated quantifiers (simplified
DAGs). We specifically define graph similarity for logical formula
graphs to clarify the relationship between simplified DAGs and DAGs.

Let an ordered binary set 𝐺 = (𝑉 ,𝐸) be a graph [38], where the
nonempty set 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑛} of 𝐺 contains all the vertices and set
𝐸 = {⟨𝑣𝑖, 𝑣𝑗⟩|𝑣𝑖, 𝑣𝑗 ∈ 𝑉 } contains all the vertices of 𝐺. 𝐴 = (𝑎𝑖𝑗) ∈
|𝑉 | × |𝑉 | for the adjacency matrix of graph 𝐺 [39] is defined as:

𝑎𝑖𝑗 =

{

1, if (𝑣𝑖, 𝑣𝑗) ∈ 𝐸,

0, otherwise,

where |𝑉 | is the number of vertices in 𝐺, 𝑎𝑖𝑗 is the number of paths
from 𝑣𝑖 to 𝑣𝑗 that have length 1 and are not repeated.

For graph 𝐺, if the vertices 𝑣𝑖 to 𝑣𝑗 are reachable, then there is a path
from 𝑣𝑖 to 𝑣𝑗 . If two paths of graphs 𝐺 and 𝐺′ have the same length,
vertex labels, and edges, these paths are defined as the common paths
of the two graphs.

Definition 1 ([23,40]). Let 𝑥, 𝑥′ ∈ 𝑋, 𝑋 ∈ 𝑅(𝑛), the non-linear function
𝜑 implements a mapping of input space 𝑋 to feature space 𝐹 , where
𝐹 ∈ 𝑅(𝑚), 𝑛 ≪ 𝑚. The similarity between 𝑥 and 𝑥′ is calculated by
kernel 𝑘(𝑥, 𝑥′) as follows:
𝑘(𝑥, 𝑥′) = ⟨𝜑(𝑥), 𝜑(𝑥′)⟩,

where ⟨, ⟩ represents the inner product calculation.

Definition 2 ([23,40]). Let 𝐺 and 𝐺′ be graphs, and the common path
kernel function 𝑘(𝐺,𝐺′) of 𝐺 and 𝐺′ is defined as follows:
𝑘(𝐺,𝐺′) = 𝟏 ⋅ 𝑅 ⋅ 𝟏′ = ⟨𝜑(𝐺), 𝜑(𝐺′)⟩,

where 𝑅 =
∑

𝑖 𝑅𝑖, 𝑅𝑖 is the common path matrix of length 𝑖 of two
graphs 𝐺 and 𝐺′, 𝟏 = (1, 1,…) is a 1 × 𝑛 matrix with values 1.

3.1. Simplified first-order logical formula graph representation based on
removing repeated quantifiers

By removing repeated quantifiers, a simplified first-order logical
formula graph (referred to as simplified DAGs hereafter) can effec-
tively reduce the size of the graph while accommodating more logical
properties. Constructing simplified DAGs involves merging consecutive
quantifiers based on the existing DAGs. Specifically, given a variable
symbol set 𝑉 , a function symbol set 𝐹 , a predicate symbol set 𝑃 ,
a logical conjunctive set 𝐶, a quantifier set 𝑄, and an expression 𝑠
representing a first-order logical formula (term, atom, or formula),
Algorithm 1 recursively constructs simplified DAGs denoted by 𝐺 =
(𝑉 ,𝐸) for the given first-order logical formula.

In Algorithm 1, the time and space complexities are strictly bounded
by a linear order, specifically 𝑂(𝑚). The algorithm iterates over the 𝑚

X. He et al. Applied Soft Computing 180 (2025) 113318
Fig. 1. The formula ∀𝑥∀𝑦∀𝑧(𝑓 (𝑥, 𝑦) → 𝑓 (𝑝(𝑥, 𝑦), 𝑝(𝑧, 𝑥))) is expressed as a simplified DAG; (a) Parse the first-order logical formula into a syntax tree; (b) Merge the same subexpression;
(c) Replace all variables with *; (d) Merge the same quantifier nodes.
Algorithm 1 A simplified algorithm for constructing a directed acyclic
graph from a formula in first-order logic
Require: A formula 𝐹 in first-order logic, 𝐴1 ,⋯ , 𝐴𝑛 are the logical symbols by their

occurrences in 𝐹 , 𝐻(𝐴) is the outermost logical symbol of 𝐴
Ensure: 𝐺𝐹 = (𝑉𝐹 , 𝐸𝐹) is the simplified directed acyclic graph and branch structure based

on their connectives of 𝐹
1: Initiate 𝑉𝐹 = {𝐴1}, 𝐸𝐹 = ∅.
2: for 𝑘 ← 2 to 𝑚 do
3: 𝑉𝐹 = 𝑉𝐹 ∪ {𝐴𝑘}; 𝐸𝐹 = 𝐸𝐹 ∪ {< 𝐴𝑘−1 , 𝐴𝑘 >}
4: if 𝐴𝑘 is a constant symbol then
5: if 𝐴𝑘 is a term in a function symbol or predicate symbol 𝐴𝑖(𝑖 ≤ 𝑘) then
6: 𝐸𝐹 = 𝐸𝐹 ∪ {< 𝐴𝑘 , 𝐴𝑖 >}
7: end if
8: else if 𝐴𝑘 is a variable symbol then
9: if 𝐴𝑘 is a term in a function symbol or predicate symbol 𝐴𝑖(𝑖 ≤ 𝑘) then
10: 𝐸𝐹 = 𝐸𝐹 ∪ {< 𝐴𝑘 , 𝐴𝑖 >}, 𝐴𝑘 =∗
11: else if the occurrence of 𝐴𝑘 is within the scope of the quantifier 𝐴𝑗 (𝑗 ≤ 𝑘) then
12: 𝐸𝐹 = 𝐸𝐹 ∪ {< 𝐴𝑘 , 𝐴𝑗 >}, 𝐴𝑘 =∗
13: end if
14: else if 𝐴𝑘 is a function symbol or predicate symbol then
15: if 𝐴𝑘 = 𝑓 or 𝐴𝑘 = 𝑃 , and its terms are 𝐴11 ,⋯ , 𝐴1𝑛 then
16: 𝐸𝐹 = 𝐸𝐹 ∪

⋃𝑛
𝑖=1{< 𝐴𝑘 , 𝐴1𝑖 >}

17: end if
18: else if 𝐴𝑘 is a quantifier then
19: if 𝐴𝑘−1 = 𝐴𝑘 then
20: continue
21: else
22: 𝐸𝐹 = 𝐸𝐹 ∪ {< 𝐴𝑘 , 𝑥1 >,< 𝐴𝑘 ,𝐻(𝐴𝑘+1) >}
23: end if
24: else if 𝐴𝑘 is a logical connective then
25: if 𝐴𝑘 = ¬ then
26: 𝐸𝐹 = 𝐸𝐹 ∪ {< 𝐴𝑘 , 𝐴𝑘+1 >}
27: else if 𝐴𝑘 = ⊙ and 𝐴𝑘 = 𝐻(𝐴𝑘−1)⊙𝐻(𝐴𝑘+1) then
28: 𝐸𝐹 = 𝐸𝐹 ∪ {< 𝐴𝑘 ,𝐻(𝐴𝑘−1) >,< 𝐴𝑘 ,𝐻(𝐴𝑘+1) >}
29: end if
30: end if
31: end for

logical symbols in the input formula for time complexity. The main
loop runs for 𝑚 − 1 iterations, with each iteration’s operations being
completed in constant time 𝑂(1), and no nested loops are involved.
As for space complexity, the vertex set 𝑉𝐹 holds 𝑚 logical symbols. In
contrast, the edge set 𝐸𝐹 comprises 𝑚−1 edges derived from the initial
graph structure, leading to an overall space complexity of 𝑂(𝑚).

The simplified DAGs proposed in this section satisfy the definition
of a first-order logical formula graph, reducing its size while retaining
some properties such as ∀𝑥∀𝑦𝑓 (𝑥, 𝑦) = ∀𝑦∀𝑥𝑓 (𝑥, 𝑦) and ∃𝑥∃𝑦𝑓 (𝑥, 𝑦) =
∃𝑦∃𝑥𝑓 (𝑥, 𝑦). Fig. 1 illustrates the process of representing a first-order
logical formula ∀𝑥∀𝑦∀𝑧(𝑓 (𝑥, 𝑦) → 𝑓 (𝑝(𝑥, 𝑦), 𝑝(𝑧, 𝑥))) as a simplified DAG.

3.2. Graph similarity based on common path kernel function

The first-order logical formula can be transformed into correspond-
ing DAGs on a one-to-one mapping. However, the simplified logical
formula graph based on DAGs may inadvertently lose or misrepre-
sent crucial information. Therefore, considering graph similarity, we
aim to enhance the simplified representation’s interpretability and
applicability.
4
The kernel function, which relies on common paths, is closely as-
sociated with the graph’s adjacency matrix [23], enabling it to capture
structural information effectively. Nonetheless, this kernel function can
only measure similarity between graphs with identical node labels. We
propose an updated adjacency matrix to address this limitation and
accommodate graphs with varying node labels.

Definition 3. Let the graphs 𝐺(𝑉 ,𝐸) and 𝐺′(𝑉 ′, 𝐸′) be directed graphs,
the updated adjacency matrix 𝐴 and 𝐴′ are defined as follows:

𝐴 = 𝐴 = 𝑎𝑖𝑗 =

{

1, if (𝑣𝑖, 𝑣𝑗) ∈ 𝐸

0, otherwise

𝐴′ = 𝑎′𝑖𝑗 =

{

1, if (𝑣𝑖, 𝑣𝑗) ∈ 𝐸′

0, otherwise

where the adjacency matrix 𝐴 and 𝐴′ satisfy 𝟏 ⋅ 𝐴 ⋅ 𝟏′ ≥ 𝟏 ⋅ 𝐴′ ⋅ 𝟏′, and
𝟏 = (1,… , 1) is a 1 × 𝑛 matrix with values 1.

Based on a shared path, the kernel function computes the common
matrix of two graphs using the adjacency matrix, thereby imposing
constraints on the resulting common matrix. Consequently, the updated
public path matrix is derived as follows.

Definition 4. Let 𝐺(𝑉 ,𝐸) and 𝐺′(𝑉 ′, 𝐸′) be directed graphs, with 𝐴
and 𝐴′ representing their adjacency matrices respectively, the updated
adjacency matrices 𝐴 and 𝐴′ accordingly. The common matrix 𝑅, which
represents the Hadamard product of the updated adjacency matrices, is
defined as follows:

𝑅 = 𝐴 ⊙ 𝐴′ = (𝑎𝑖𝑗 ⋅ 𝑎′𝑖𝑗).

The nodes in the graph typically exhibit stronger interactions with
nodes within relatively small neighborhood ranges [41]. Without loss of
generality, the kernel function corresponding to a common path length
of 1 is computed for illustration here. Therefore, we present the updated
kernel function based on common path updates.

Definition 5. Let the graphs 𝐺(𝑉 ,𝐸) and 𝐺′(𝑉 ′, 𝐸′) be directed
graphs. The common path kernel function 𝑘(𝐺,𝐺′) of 𝐺 and 𝐺′ is
defined as follows:

𝑘(𝐺,𝐺′) = 𝟏 ⋅ 𝑅 ⋅ 𝟏′ = ⟨𝜑(𝐺), 𝜑(𝐺′)⟩,

where 𝑅 is the common matrix for all paths of length 1 of 𝐺 and 𝐺′,
𝟏 = (1, 1,…) is a 1 × 𝑛 matrix with values 1, and 𝑘(𝐺,𝐺′) is the number
of the common paths on the two graphs.

Selecting a fixed range for the kernel function is an appropriate
approach to assess the similarity between any two sets of graphs in a
dataset. Simultaneously, assigning specific weights to edge endpoints
can effectively capture the significance and distinctions of different
nodes and edges within the graph.

X. He et al. Applied Soft Computing 180 (2025) 113318
Definition 6. Let the graphs 𝐺(𝑉 ,𝐸) and 𝐺′(𝑉 ′, 𝐸′) be directed
graphs, 𝐴 and 𝐴′ their adjacency matrices, the weight matrix 𝝁 =
(𝜇1, 𝜇2,…). The similarity 𝑅′(𝐺,𝐺′) of 𝐺 and 𝐺′ is defined as follows:

𝑅′(𝐺,𝐺′) =
𝝁 ⋅ 𝑘(𝐺,𝐺′) ⋅ 𝝁′

𝝁 ⋅ 𝐴 ⋅ 𝝁′ =
𝝁 ⋅ 𝑅 ⋅ 𝝁′

𝝁 ⋅ 𝐴 ⋅ 𝝁′ ,

where 𝑅 is the common matrix for all paths of length 1 of 𝐺 and 𝐺′, 𝐴
and 𝐴′ satisfy 𝟏 ⋅𝐴 ⋅ 𝟏′ ≥ 𝟏 ⋅𝐴′ ⋅ 𝟏′, and the value of each element in the
weight matrix 𝝁 = (𝜇1, 𝜇2,…) is not less than 0.

According to Definition 6, the kernel function 𝑘(𝐺,𝐺′) = 𝝁 ⋅𝑅 ⋅𝝁′ is
an effective method for calculating the inner product of corresponding
eigenvectors. Consider two directed graphs, 𝐺(𝑉 ,𝐸) and 𝐺′(𝑉 ′, 𝐸′),
with adjacency matrices 𝐴 and 𝐴′ respectively, and a common matrix
denoted as 𝑅. Consequently, the following conclusions hold.

Proposition 1. For weighted graph similarity, 𝑅′(𝐺,𝐺′), 0 ≤ 𝑅′(𝐺,𝐺′) ≤
1.

Proof. From Definition 6, we have

𝑅′(𝐺,𝐺′) =
𝝁 ⋅ 𝑘(𝐺,𝐺′) ⋅ 𝝁′

𝝁 ⋅ 𝐴 ⋅ 𝝁′ =
𝝁 ⋅ 𝑅 ⋅ 𝝁′

𝝁 ⋅ 𝐴 ⋅ 𝝁′ ,

where the element values of matrix 𝑅 and matrix 𝐴 are both 0 or 1 and
the value of each element in the weight matrix 𝝁 = (𝜇1, 𝜇2,…) is not
less than 0. Hence we have 𝝁 ⋅ 𝑅 ⋅ 𝝁′ ≥ 0, 𝝁 ⋅ 𝐴 ⋅ 𝝁′ > 0 if and only if
𝑅 = 0, 𝝁 ⋅ 𝑅 ⋅ 𝝁′ = 0, 𝑅 = (𝑎𝑖𝑗 ⋅ 𝑎′𝑖𝑗) ≤ (𝑎𝑖𝑗 ⋅ 𝑎𝑖𝑗) = (𝑎𝑖𝑗) = 𝐴.

Therefore,

0 ≤ 𝑅′(𝐺,𝐺′) =
𝝁 ⋅ 𝑅 ⋅ 𝝁′

𝝁 ⋅ 𝐴 ⋅ 𝝁′ ≤
𝝁 ⋅ 𝐴 ⋅ 𝝁′

𝝁 ⋅ 𝐴 ⋅ 𝝁′ = 1.

Proposition 2. For weighted graph similarity 𝑅′(𝐺,𝐺′), the following
formula holds.
(1) 𝑅′(𝐺,𝐺) = 1;
(2) 𝑅′(𝐺,𝐺′) = 𝑅′(𝐺′, 𝐺).

Proof. According to Definitions 5 and 6, the conclusions follow.

The value range of weighted graph similarity is observed to be [0,1]
from Propositions 1 and 2, and its properties align with the general
definition of similarity.

3.3. Weighted graph similarity of logical formulas

This section calculates the graph similarity of the first-order logical
formula graph using the weighted graph similarity calculation method
based on the updated common path kernel function. First, we establish
the selection criteria for node label sets and define a weight matrix for
the logical formula.

(1) Select the node label set of the logical formula graph

Let 𝐴 and 𝐴′ be the adjacency matrices of the formula graph 𝐺(𝑉 ,𝐸)
and 𝐺′(𝑉 ′, 𝐸′) respectively, then we have

𝑉 = (𝑣1, 𝑣2,… , 𝑣𝑛), 𝑉 ′ = (𝑣′1, 𝑣
′
2,… , 𝑣′𝑚),

where the adjacency matrix 𝐴 and 𝐴′ satisfy 𝟏 ⋅ 𝐴 ⋅ 𝟏′ ≥ 𝟏 ⋅ 𝐴′ ⋅ 𝟏′.
The method for selecting the node label set, based on two logical

formula graphs 𝐺(𝑉 ,𝐸) and 𝐺′(𝑉 ′, 𝐸′), is provided due to the presence
of repeated symbols among the nodes in the logical formula graph.

I. Two cases exist for the formula graph 𝐺(𝑉 ,𝐸).

– If there are no repeated node symbols in 𝑉 , then 𝑉 remains
unchanged.
5
– If there are repeated node symbols in 𝑉 , let 𝑖 ∈ N and 𝑣𝑖
be the repeated node symbols, 𝑉 = (𝑣𝑖) the extended label
set of the repeated node concerning its child nodes. If there
are still repeated node symbols in 𝑉 , expand the node label
set until there are no same node labels. Then rewrite the 𝑉 ,
that is,
𝑉 = (𝑣1,… , 𝑣𝑖−1, 𝑣𝑖, 𝑣𝑖+1,… , 𝑣𝑛).

II. For the formula graph 𝐺′(𝑉 ′, 𝐸′), two cases exist.

– If there are no repeated node symbols in 𝑉 ′, then 𝑉 ′ re-
moves node symbols different from those in 𝑉 , and we
have

(𝑣′1, 𝑣
′
2,… , 𝑣′𝑚) → (… , 𝑣𝑗 ,…),

where 𝑣𝑗 ∈ 𝑉 .
– If there are repeated node symbols in 𝑉 ′, let 𝑗 ∈ 𝑍 and 𝑣′𝑗 be
the repeated node symbols, and 𝑉 ′ = 𝑣′𝑗 the extended label
set of the repeated node concerning its child nodes. If there
are still repeated node symbols in 𝑉 ′, continue to expand
the node label set until there are no same node labels.
Rewrite 𝑉 ′ and remove the node symbol that is different
from 𝑉 , we have
𝑉 ′ = (𝑣′1,… , 𝑣′𝑗−1, 𝑣

′
𝑗+1 ⋯ , 𝑣′𝑚, 𝑣

′
𝑗) → (… , 𝑣𝑗 ,… , 𝑣𝑖),

where 𝑣𝑗 ∈ 𝑉 , 𝑣𝑖 and 𝑣′𝑗 are the same extended label set.

(2) Define rules of weight matrix oriented to logical formulas

Comparative analysis of multiple logical formula graphs shows that
when a certain number of quantifiers are present, the corresponding
part of the logical formula graph exhibits a highly similar structure.
Conversely, if most logical formula graphs contain varying numbers of
quantifiers, each graph will possess a similar structure.

To mitigate the impact of this aspect on classification tasks, we
propose the following definition rule for the weight matrix: For a given
formula graph 𝐺(𝑉 ,𝐸), where 𝑣𝑖(𝑖 ∈ N) represents either a quantifier
symbol or an extended label containing quantifier symbols, the weight
matrix can be defined as follows:
𝝁 = (𝜇1, 𝜇2,… , 𝜇𝑖,… , 𝜇𝑛) = (1, 1,… , 1

4
,… , 1),

where 𝜇𝑖 is the weight of the node 𝑣𝑖.
According to the established node label selection rules and weight

matrix definition rules, the weighted graph similarity between two first-
order logic formulas can be calculated using the specified formula.
Assuming that 𝑚 = 4 in the weight matrix 𝝁, the calculation process
for the weighted graph similarity of the two first-order logic formula
graphs depicted in Fig. 2 is as follows: Figures (a) and (b) represent
the logic formula graphs 𝐺 and 𝐺′, respectively, Figure (c) shows the
adjacency matrix 𝐴 of a graph 𝐺, Figure (d) illustrates the common
matrix 𝑅 derived from Definition 4 and Figure (e) presents the weight
matrix and the weighted graph similarity obtained through Definition
6. It is important to note that each row of matrices 𝐴 and 𝑅 (from top
to bottom) corresponds to the node labels (∀, 𝑥,∃, 𝑦,∧, 𝑝, 𝑞).

3.4. Graph similarity between simplified DAGs and DAGs

To measure the overall similarity between simplified DAGs and
DAGs, we compute the minimum similarity between them. The sim-
plification process for DAGs involves removing identical and consec-
utive quantifiers from the logical formula graph. If DAGs cannot be
simplified, the simplified formula graph based on deleting repeated
quantifiers is identical to DAGs, resulting in a maximum similarity of 1.
To evaluate the overall graph similarity between the simplified graph
and DAGs, we calculate their minimum graph similarity. Given a logical
formula graph 𝐺 and its simplified version 𝐺′ obtained by deleting

X. He et al. Applied Soft Computing 180 (2025) 113318
Fig. 2. An example of the first-order logic formula weighted graph similarity calculation process. (a) logical formula graph 𝐺; (b) logical formula graph 𝐺′; (c) the adjacency
matrix of 𝐺; (d) common matrix 𝑅; (e) the weight matrix 𝜇 and the weighted graph similarity 𝑅′(𝐺,𝐺).
Fig. 3. Graph 𝐺 with 𝑝 quantifier nodes removed, ∗ denotes other logical symbols. Figures (a) and (b) show the logical formula graphs in different cases.
repeated quantifiers, let the adjacency matrix 𝐴 of graph 𝐺 satisfies 𝝁 ⋅
𝐴⋅𝝁′ = 𝑛, where the weight matrix 𝝁 = (1, 1,… , 1

𝑚 ,… , 1). If DAGs can be
simplified, the simplification process will remove edges corresponding
to the quantifiers. Suppose 𝑝 quantifier nodes are deleted. According to
the structure of the logical formula, there are two cases, as illustrated
in Fig. 3.

Case 1. The logical formula contains a sequence of consecutive re-
peated quantifiers with a total of 𝑝 + 1 repeated quantifiers.
If 𝑝 quantifier nodes are deleted, graph 𝐺 will be deleted
2(𝑝+1)+1 edges. Consequently, the weighted graph similarity
based on the common path kernel function is

𝑅′(𝐺,𝐺′) =
𝝁 ⋅ 𝑅 ⋅ 𝝁′

𝝁 ⋅ 𝐴 ⋅ 𝝁′

=
𝑛 − (1𝑚 ⋅ (𝑝 + 1) + 2

𝑚 + 1
𝑚2 ⋅ 𝑝)

𝑛
= 1 −

3+𝑝
𝑚 + 𝑝

𝑚2

𝑛
.

If a fixed number of 𝑝 quantifier nodes are deleted, the larger
𝑛 is, the greater 𝑅′(𝐺,𝐺′) will be. We need to find the smallest
𝑛 under the given 𝑝 to calculate the minimum graph similarity.
The minimum number of variables in a logical formula is
𝑝 + 1, and the minimum number of other logical symbols is
2. Therefore, the minimum number of edges in the logical
formula graph is 3𝑝 + 4. Consequently, the minimum 𝑛 can be
calculated as
min
𝑛

𝑛 = 1
𝑚

⋅ (𝑝 + 1) + 2
𝑚

+ 1
𝑚2

⋅ 𝑝 + 𝑝 + 1 =
3 + 𝑝
𝑚

+
𝑝
𝑚2

+ 𝑝 + 1.

Substituting this 𝑛 into the weighted graph similarity formula
yields the weighted graph similarity when 𝑝 quantifier nodes
are deleted.
𝑅′(𝐺,𝐺′) = 1 −

(3 + 𝑝)𝑚 + 𝑝
(3 + 𝑝)𝑚 + 𝑝 + 𝑚2(𝑝 + 1)

= 1 − 1

1 + 𝑚2

𝑚+1+ 2𝑚−1
1+𝑝

.

This equation shows that 𝑅′(𝐺,𝐺′) is a monotonically increas-
ing function. Therefore, when 𝑝 equals 1, 𝑅′(𝐺,𝐺′) attains its
minimum value:

min(𝐺,𝐺′) = 1 − 4𝑚 + 1 = 2𝑚2
.

𝑅′ 4𝑚 + 1 + 2𝑚2 4𝑚 + 1 + 2𝑚2

6
Case 2. The logical formula contains 𝑘 groups of consecutive repeated
quantifiers, with the total number of repeated quantifiers being
𝑝 + 𝑘.
If 𝑝 quantifier nodes are deleted, then the graph 𝐺 will be
deleted 2(𝑝 + 𝑘) + 𝑘 edges. Consequently, the weighted graph
similarity based on the common path kernel function is given
by:

𝑅′(𝐺,𝐺′) =
𝝁 ⋅ 𝑅 ⋅ 𝝁′

𝝁 ⋅ 𝐴 ⋅ 𝝁′ =
𝑛 − (1𝑚 ⋅ (𝑝 + 𝑘) + 𝑘

𝑚 ⋅ 2 + 1
𝑚2 ⋅ 𝑝)

𝑛

= 1 −
3𝑘+𝑝
𝑚 + 𝑝

𝑚2

𝑛
.

Similarly, after deleting 𝑝 quantifier nodes, the weighted graph
similarity can be expressed as:

𝑅′(𝐺,𝐺′) = 1 −
(3𝑘 + 𝑝) ⋅ 𝑚 + 𝑝

(3𝑘 + 𝑝) ⋅ 𝑚 + 𝑝 + 𝑚2 ⋅ (𝑝 + 𝑘)
.

This equation shows that 𝑅′(𝐺,𝐺′) is a monotonically increas-
ing function. Therefore, when 𝑝 equals 𝑘 (noting that here 𝑘
can be at most 𝑝), 𝑅′(𝐺,𝐺′) reaches its minimum value. Thus,

min
𝑅′

𝑅′(𝐺,𝐺′) = 2𝑚2

4𝑚 + 1 + 2𝑚2
.

Combining Cases 1 and 2, the minimum weighted graph similarity
based on the common path kernel function can be calculated above.
To mitigate the impact of repetitive structures, this paper sets 𝑚 = 4
in the weight matrix 𝝁. Hence, the minimum graph similarity is 0.653,
indicating that this simplification method incurs a relatively low loss
for DAGs.

3.5. Interpretation of simplified logical formula graph representation

Due to the diversity of logical formula symbols, various simpli-
fication methods exist. This section examines the similarity between

X. He et al. Applied Soft Computing 180 (2025) 113318
first-order logic formula graphs and DAGs based on different simpli-
fication techniques, culminating in a rationality analysis of simplified
logic formula graphs derived from deleting repeated quantifiers. Specif-
ically, it focuses on simplified first-order logic formula graphs derived
from node deletions, including random node deletions and deletions of
identical nodes.

Given an original logic formula graph 𝐺0, we define three simplified
formula graphs: 𝐺1 based on random node deletion, 𝐺2 based on
deleting repeated quantifiers, and 𝐺3 based on deleting identical nodes.
Let the adjacency matrix 𝐴0 of graph 𝐺0 satisfy 𝝁 ⋅ 𝐴0 ⋅ 𝝁′ = 𝑛, where
the weight matrix 𝝁 has 𝑚 = 4. If 𝑝 nodes are deleted, the following
cases arise.
Case 1. Simplified logical formula graph based on random node dele-

tion.
If 𝑝 nodes are randomly deleted, particularly when 𝑝 leaf nodes
(all constant symbols) are removed, the DAG will have at
least 𝑝 fewer common edges. Therefore, the similarity measure
𝑅′(𝐺0, 𝐺1) can be expressed as:

max𝑅′(𝐺0, 𝐺1) =
𝝁 ⋅ 𝐴 ⋅ 𝝁′ − 𝑝
𝝁 ⋅ 𝐴 ⋅ 𝝁′ =

𝑛 − 𝑝
𝑛

.

For the simplification method of deleting repeated quantifiers,
the weighted graph similarity based on the common path
kernel function is:

𝑅′(𝐺0, 𝐺2) =
𝑛 − (5

16 ⋅ 𝑝 + 3
4 ⋅ 𝑘)

𝑛
.

– If 0 < 𝑘 ≤ 11
12 𝑝, then the minimum similarity 𝑅′(𝐺0, 𝐺2)

is:

min𝑅′(𝐺0, 𝐺2) =
𝑛 − (5

16 ⋅ 𝑝 + 3
4 ⋅ 11

12 ⋅ 𝑝)

𝑛
≥ 𝑛 − 𝑝

𝑛
= max𝑅′(𝐺0, 𝐺1).

– If 1112 𝑝 < 𝑘 ≤ 𝑝, then the minimum similarity 𝑅′(𝐺0, 𝐺2)
is:

min𝑅′(𝐺0, 𝐺2) =
𝑛 − (5

16 ⋅ 𝑝 + 3
4 ⋅ 𝑝)

𝑛
=

𝑛 − (1
16 ⋅ 𝑝 + 𝑝)

𝑛
<

𝑛 − 𝑝
𝑛

= max𝑅′(𝐺0, 𝐺1).

Case 2. Simplified logical formula graph based on deleting identical
nodes.
Similar to Case 1, if 𝑝 nodes are deleted, identical
sub-expressions in DAGs will be merged, eliminating the pos-
sibility of deleting identical leaf nodes. Therefore, consider
deleting consecutive identical nodes (excluding quantifiers),
resulting in at least 𝑝 + 1 fewer common edges in the DAGs.
The maximum similarity is given by

max𝑅′(𝐺0, 𝐺3) =
𝑛 − (𝑝 + 1)

𝑛
.

For the simplification method of removing duplicate quanti-
fiers, the minimum weighted graph similarity based on the
common path kernel function is

min𝑅′(𝐺0, 𝐺2) =
𝑛 − (1

16 ⋅ 𝑝 + 𝑝)

𝑛
>

𝑛 − (𝑝 + 1)
𝑛

= max𝑅′(𝐺0, 𝐺3),

where 𝑝 < 16.

From Cases 1 and 2, we can conclude:

(1) If 0 < 𝑘 ≤ 11
12 𝑝, then the maximum graph similarity between

the simplified graph based on random node deletion and DAGs
is less than the minimum weighted similarity between the sim-
plified graph based on deleting repeated quantifiers and DAGs.
7
When 𝑝 satisfies 𝑝 < 16, the minimum graph similarity between
the simplified graph based on deleting repeated quantifiers and
DAGs is greater than the maximum graph similarity between the
simplified graph based on deleting the same nodes and DAGs. This
indicates that the simplified graph based on deleting repeated
quantifiers has a higher graph similarity with DAGs in most cases.

(2) If 1112 𝑝 < 𝑘 ≤ 𝑝, then the simplified graph based on random node
deletion has a higher similarity. When 𝑝 satisfies 𝑝 > 16, the
simplified graph based on deleting the same nodes has a higher
similarity. However, the proportion of logical formula graphs
that meet this form in large-scale problem libraries is small or
non-existent.

Therefore, the simplified graph based on deleting repeated quanti-
fiers is more similar to DAGs, shown as in Theorems 1 and 2.

Theorem 1. Let 𝐺0 be a logical formula graph, a simplified formula graph
𝐺1 based on removing random nodes, and a simplified formula graph 𝐺2
with removing repeated quantifier nodes, then 𝑅′(𝐺0, 𝐺1) < 𝑅′(𝐺0, 𝐺2).

Theorem 2. Let 𝐺0 be a logical formula graph, and a simplified formula
graph 𝐺2 with removing repeated quantifier nodes, a simplified formula
graph 𝐺3 based on removing the same nodes, then 𝑅′(𝐺0, 𝐺3) < 𝑅′(𝐺0, 𝐺2).

The graph representation of simplified first-order logic formulas,
achieved by eliminating redundant quantifiers, shows greater graph
similarity with DAGs. Within the first-order logic formulas, the graph
similarity between distinct formulas is generally low due to inherent
structural differences that often exceed simple graphical modifications.
This observation indicates that the graph representation of simplified
first-order logic formulas retains significant information from DAGs
regarding graph similarity. Each graph representation derived from
this simplification method can be effectively mapped to DAGs. Conse-
quently, this approach preserves the essential characteristics of DAGs
and is suitable for applications in automated theorem proving.

4. Model architecture

This section proposes a neural network model with attention mech-
anism and attention pooling based on a simplified logical formula
graph (ASTGNNS) for premise selection. The overall architecture of a
complete premise selection model based on ASTGNNS is shown in Fig.
4. The main part includes three branches, i.e., the graph representation
of the first-order logical formula, the GNN model, and the binary
classifier.

The present section proposes a neural network model incorporating
attention mechanism and attention pooling, based on a simplified
logical formula graph known as ASTGNNS, for premise selection. Fig. 4
illustrates the overall architecture of a comprehensive premise selection
model built upon ASTGNNS. The primary components consist of three
branches: the graph representation of first-order logical formulas, the
GNN model, and the binary classifier.

• Graph representation module: The model receives a sequence
of first-order logical formulas and constructs a simplified graph
representation by eliminating redundant quantifiers.

• GNN module: This module utilizes term-walk mode to aggregate
node information and incorporates an attention mechanism for
assigning varying weights to the term-walk features of nodes. It
further aggregates node information based on the weighted term-
walk feature data. Attention pooling, average pooling, and max-
imum pooling techniques generate the final vector representing
the first-order logical formula graph.

• Binary Classifier module: This module concatenates the premise
graph vector and conjecture graph vector into Multi-Layer Percep-
trons (MLPs) with classification capability. It outputs a predicted
classification score between 0 and 1, which is used for classifying
the premise.

X. He et al. Applied Soft Computing 180 (2025) 113318
Fig. 4. The model architecture of ASTGNNS.
4.1. Term-walk graph neural network with attention mechanism and atten-
tion pooling

Our proposed ASTGNNS model simplifies the representation of
first-order logical formulas by eliminating repeated quantifiers applied
to a GNN. The GNN module of our model draws inspiration from
the Message-Passing Neural Network (MPNN). Additionally, our GNN
model incorporates the existing term-walking feature based on the
analytical tree of logical formulas and generates the final embedded
formula graph vector by introducing an attention mechanism and
attention pooling.

ASTGNNS consists of four stages: initialization of graph node vec-
tors, aggregation of graph node information, transfer of graph node
information, and aggregation of overall graph information (graph pool-
ing). Through iterative updates to the node embedding information
and application of graph aggregation operations, ASTGNNS obtains the
ultimate embedding vector for first-order logical formula graphs.

4.2. Term-walk feature

The term-walk feature can be applied to various tasks of automatic
theorem proving, and the term-walk feature based on the analytic tree
of logical formulas can be easily extended to the term-walk feature
based on simplified DAGs. More formally, let 𝐺 = (𝑉 ,𝐸) represent a
DAG. The term-walk feature in 𝐺 encompasses all directed paths of
length 3 within the graph 𝐺. Additionally, all term-walk features in
𝐺 consist of triplets (𝑢, 𝑣,𝑤) ∈ 𝑉 × 𝑉 × 𝑉 , where 𝑣 ∈ 𝑉 represents any
node in the graph, 𝑢 ∈ 𝑉 is the parent node of 𝑣, and 𝑤 ∈ 𝑉 is the child
node of 𝑣. The logical formula ∀𝑥(𝑓 (𝑥)∧𝑝(𝑥)) serves as an item within a
characteristic collection containing {(∀,∧, 𝑓), (∀,∧, 𝑝), (∧, 𝑓 , 𝑥), (∧, 𝑝, 𝑥)}.

4.3. Graph node vector initialization

The ASTGNNS model begins by assigning an initial embedding 𝑥𝑣
to each node 𝑣 ∈ 𝑉 in the input graph 𝐺 = (𝑉 ,𝐸). Subsequently, it
implements a message passing process through the node state vector
ℎ(𝑘)𝑣 , which is generated by iterating for 𝐾 rounds (𝑘 ∈ {1,… , 𝐾}).
During the initialization stage of the graph node vector, the model maps
the initial eigenvector 𝑥𝑣 of any given node 𝑣 to a fixed-size initial state
vector ℎ0𝑣 using an initial embedding function denoted as 𝐹𝑉 .

ℎ0𝑣 = 𝐹𝑉 (𝑥𝑣),

where ℎ0𝑣 ∈ 𝑅𝑑ℎ𝑣 is the output dimension of the node embedding
vector, and 𝐹𝑉 is a lookup table that stores a fixed dictionary and size
embedding.

4.4. Graph node information aggregation

The node information aggregation module of ASTGNNS is based
on the term-walk feature information of nodes, and an attention
8
mechanism is incorporated to generate weighted node term-walk fea-
ture information as shown in Fig. 5. The node information aggregation
module collects node information based on their respective term-walk
feature sets. Specifically, for each node 𝑉 in the input graph 𝐺 =
(𝑉 ,𝐸), 𝑇𝑢(𝑣), 𝑇𝑚(𝑣), 𝑇𝑙(𝑣) represent the term-walk feature sets of nodes
𝑣 located in the upper, middle, and lower parts respectively.
𝑇𝑢(𝑣) = {(𝑣, 𝑢, 𝑤)|(𝑣, 𝑢), (𝑢,𝑤) ∈ 𝐸},

𝑇𝑚(𝑣) = {(𝑢, 𝑣,𝑤)|(𝑢, 𝑣), (𝑣,𝑤) ∈ 𝐸},

𝑇𝑙(𝑣) = {(𝑢,𝑤, 𝑣)|(𝑢,𝑤), (𝑤, 𝑣) ∈ 𝐸}.

The TW-GNN model aggregates node information by calculating the
average value of node term-walk feature information while disregard-
ing the varying importance of different term-walk features. To address
this issue, ASTGNNS introduces an attention mechanism to compute
the term-walk feature scores 𝑠(𝑘−1)𝑢 , 𝑠(𝑘−1)𝑣 , and 𝑠(𝑘)𝑤 for each node, and
utilizes the softmax function to normalize these scores into attention
weights 𝛼𝑢, 𝛼𝑣, and 𝛼𝑤.

𝑠(𝑘)𝑢 = 𝜎
([

ℎ(𝑘−1)𝑣 ;ℎ(𝑘−1)𝑢 ;ℎ(𝑘−1)𝑤

])

, 𝛼𝑢 = sof tmax
(

𝑠(𝑘)𝑢
)

,

𝑠(𝑘)𝑣 = 𝜎
([

ℎ(𝑘−1)𝑢 ;ℎ(𝑘−1)𝑣 ;ℎ(𝑘−1)𝑤

])

, 𝛼𝑣 = sof tmax
(

𝑠(𝑘)𝑣
)

,

𝑠(𝑘)𝑤 = 𝜎
([

ℎ(𝑘−1)𝑢 ;ℎ(𝑘−1)𝑤 ;ℎ(𝑘−1)𝑣

])

, 𝛼𝑤 = sof tmax
(

𝑠(𝑘)𝑤

)

,

where [ℎ(𝑘−1)𝑣 ;ℎ(𝑘−1)𝑢 ;ℎ(𝑘−1)𝑤], [ℎ(𝑘−1)𝑢 ;ℎ(𝑘−1)𝑣 ;ℎ(𝑘−1)𝑤], and [ℎ(𝑘−1)𝑢 ;ℎ(𝑘−1)𝑤 ;
ℎ(𝑘−1)𝑣] is a concatenation of vectors in 𝑇𝑢(𝑣), 𝑇𝑚(𝑣) and 𝑇𝑙(𝑣), 𝜎 is
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 activation function, 𝛼𝑢, 𝛼𝑣, 𝛼𝑤, 𝑠(𝑘−1)𝑢 , 𝑠(𝑘−1)𝑣 , and 𝑠(𝑘−1)𝑤 ∈
𝑅𝑑ℎ𝑣×1.

Our model concatenates vectors in triples 𝑇𝑢(𝑣), 𝑇𝑚(𝑣), and 𝑇𝑙(𝑣),
and utilizes aggregation functions 𝐹𝑢, 𝐹𝑚, and 𝐹𝑙 to generate node
term-walk feature information from distinct positions. Subsequently,
we assign weights 𝛼𝑢, 𝑎𝑙𝑝ℎ𝑎𝑣, and 𝑎𝑙𝑝ℎ𝑎𝑤 to the term-walk feature
information of each node 𝑣 for generating the final node embedding
information. In the KTH iteration, the sets 𝑇𝑢(𝑣), 𝑇𝑚(𝑣), and 𝑇𝑙(𝑣)
provide information (𝑚(𝑘)

𝑣𝑢 , 𝑚(𝑘)
𝑣𝑚, 𝑚(𝑘)

𝑣𝑙) for node 𝑣.

𝑚(𝑘)
𝑣𝑢 =

∑ 𝛼𝑢 ⋅ 𝐹𝑢([ℎ
(𝑘−1)
𝑣 ;ℎ(𝑘−1)𝑢 ;ℎ(𝑘−1)𝑤])
|𝑇𝑢(𝑣)|

,

𝑚(𝑘)
𝑣𝑚 =

∑ 𝛼𝑣 ⋅ 𝐹𝑚([ℎ
(𝑘−1)
𝑢 ;ℎ(𝑘−1)𝑣 ;ℎ(𝑘−1)𝑤])
|𝑇𝑚(𝑣)|

,

𝑚(𝑘)
𝑣𝑙 =

∑ 𝛼𝑤 ⋅ 𝐹𝑙([ℎ
(𝑘−1)
𝑢 ;ℎ(𝑘−1)𝑤 ;ℎ(𝑘−1)𝑣])
|𝑇𝑙(𝑣)|

,

where [;] denotes vector concatenation, |𝑇𝑢(𝑣)|, |𝑇𝑚(𝑣)|, and |𝑇𝑙(𝑣)|
represent the cardinality of triples in sets 𝑇𝑢(𝑣), 𝑇𝑚(𝑣), and 𝑇𝑙(𝑣) respec-
tively. 𝛼𝑢, 𝛼𝑣, and 𝛼𝑤 denote the contributions of different term-walk
features of a node to its aggregation information.

Therefore, in the KTH iteration, the weighted node information 𝑚(𝑘)
𝑣𝑢 ,

𝑚(𝑘) and 𝑚(𝑘) from the sets 𝑇 (𝑣), 𝑇 (𝑣) and 𝑇 (𝑣) can be summarized as
𝑣𝑚 𝑣𝑙 𝑢 𝑚 𝑙

X. He et al. Applied Soft Computing 180 (2025) 113318
Fig. 5. Graph node information aggregation.

𝑚(𝑘)
𝑣 :

𝑚(𝑘)
𝑣 = 𝑚(𝑘)

𝑣𝑢 + 𝑚(𝑘)
𝑣𝑚 + 𝑚(𝑘)

𝑣𝑙 .

4.5. Graph node information propagation

ASTGNNS updates the node vector ℎ(𝑘)𝑣 with the total node informa-
tion 𝑚(𝑘)

𝑣 from the sets 𝑇𝑢(𝑣), 𝑇𝑚(𝑣) and 𝑇𝑙(𝑣) and the current state vector
ℎ(𝑘)𝑣 of node 𝑣.

ℎ(𝑘)𝑣 = ℎ(𝑘−1)𝑣 + 𝐹𝑠𝑢𝑚(𝑚(𝑘)
𝑣),

where 𝐹𝑠𝑢𝑚 is the node information propagation function.

4.6. Graph aggregation

The graph classification task divides graph pooling into two cat-
egories: global pooling and hierarchical pooling. Global pooling per-
forms a pooling operation on all nodes in the graph based on their char-
acteristics. Hierarchical pooling is performed iteratively on all graph
nodes according to their topology, gradually reducing the number of
nodes until the final embedding vector is generated.

To preserve global and hierarchical characteristics, ASTGNNS com-
bines self-attention pooling [42], global average pooling [43], and
global maximum pooling to generate the ultimate formula graph em-
bedding vector. After 𝐾 iterations, ASTGNNS applies a self-attention-
pooling operation (SAGPool) to obtain a new node representation
from all nodes ℎ(𝑘)𝑣 in the logical formula diagram. SAGPool em-
ploys a graph convolutional neural network approach to calculate
9
Fig. 6. Graph aggregation.

self-attention scores for each node, considering both forward and
backward directions in bidirectional logical formula graphs.

𝑍 = 𝜎(�̃�− 1
2 𝐴�̃�− 1

2 ℎ(𝑘)𝑣 𝛩𝑎𝑡𝑡),

𝑍𝑟𝑒𝑣 = 𝜎(�̃�− 1
2 𝐴𝑟𝑒𝑣�̃�

− 1
2 ℎ(𝑘)𝑣 𝛩𝑎𝑡𝑡),

where 𝑍 and 𝑍𝑟𝑒𝑣 are the node self-attention function based on the
forward logical formula graph and the reverse logical formula graph,
respectively, 𝐴 is the adjacency matrix containing the self-ring, 𝛩𝑎𝑡𝑡 is
the only trainable parameter in SAGPool.

The model arranges nodes in a descending order based on their for-
ward and reverse self-attention scores, subsequently selecting a specific
proportion of nodes to reduce the graph’s size.

𝑖𝑑𝑥 = 𝑡𝑜𝑝_𝑟𝑎𝑛𝑘(𝑍, [𝑘𝑁]), 𝑍𝑚𝑎𝑠𝑘 = 𝑍𝑖𝑑𝑥,

𝑖𝑑𝑥𝑟𝑒𝑣 = 𝑡𝑜𝑝_𝑟𝑎𝑛𝑘(𝑍𝑟𝑒𝑣, [𝑘𝑁]), 𝑍𝑚𝑎𝑠𝑘_𝑟𝑒𝑣 = 𝑍𝑖𝑑𝑥_𝑟𝑒𝑣,

where the return value of the 𝑡𝑜𝑝_𝑟𝑎𝑛𝑘 function is the index of the top
[𝑘𝑁] nodes and 𝑘 ∈ (0, 1] is the pooling ratio.

After obtaining the index matrix, the model transforms the node
features and the adjacency matrix accordingly to generate new node
representations ℎ(𝑘)𝑣_𝑜𝑢𝑡 and ℎ(𝑘)𝑣_𝑜𝑢𝑡_𝑟𝑒𝑣.

ℎ(𝑘)𝑣_𝑜𝑢𝑡 = ℎ(𝑘)𝑣𝑖𝑑𝑥,∶
⊙𝑍𝑚𝑎𝑠𝑘, ℎ

(𝑘)
𝑣_𝑜𝑢𝑡_𝑟𝑒𝑣 = ℎ(𝑘)𝑣𝑖𝑑𝑥_𝑟𝑒𝑣

⊙𝑍𝑚𝑎𝑠𝑘𝑟𝑒𝑣 ,

𝐴𝑜𝑢𝑡 = 𝐴𝑖𝑑𝑥,𝑖𝑑𝑥, 𝐴𝑜𝑢𝑡_𝑟𝑒𝑣 = 𝐴𝑖𝑑𝑥_𝑟𝑒𝑣,𝑖𝑑𝑥_𝑟𝑒𝑣,

where ℎ(𝑘)𝑣_𝑖𝑑𝑥,∶ is the new feature matrix rearranged by ℎ(𝑘)𝑣 according to
the index, ℎ(𝑘)𝑣_𝑜𝑢𝑡 and 𝐴𝑜𝑢𝑡 are the corresponding node feature matrix and
adjacency matrix after pooling, and ℎ(𝑘)𝑣_𝑜𝑢𝑡_𝑟𝑒𝑣 and 𝐴𝑜𝑢𝑡_𝑟𝑒𝑣 correspond to
the reverse logical formula graph.

The ASTGNNS model indicates that ℎ(𝑘)𝑣_𝑜𝑢𝑡 and ℎ(𝑘)𝑣_𝑜𝑢𝑡_𝑟𝑒𝑣 perform
global average pooling (AvgPool) and global maximum pooling (Max-
Pool) for this node. The final formula graph embedding vector ℎ𝐺 of
ℎ(𝑘)𝑣_𝑜𝑢𝑡 and ℎ(𝑘)𝑣_𝑜𝑢𝑡_𝑟𝑒𝑣 is the sum of joining together of the two global pools:

ℎ𝐺 = [𝐴𝑣𝑔𝑃𝑜𝑜𝑙{ℎ(𝑘)𝑣𝑜𝑢𝑡
};𝑀𝑎𝑥𝑃𝑜𝑜𝑙{ℎ(𝑘)𝑣_𝑜𝑢𝑡}]

+ [𝐴𝑣𝑔𝑃𝑜𝑜𝑙{ℎ(𝑘)𝑣_𝑜𝑢𝑡_𝑟𝑒𝑣};𝑀𝑎𝑥𝑃𝑜𝑜𝑙{ℎ(𝑘)𝑣_𝑜𝑢𝑡_𝑟𝑒𝑣}],

where 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 takes the average of nodes on the graph, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 takes
the maximum nodes on the graph, ℎ𝐺 ∈ 𝑅𝑑ℎ𝑣 (see Fig. 6).

4.7. Binary classifier

In the premise selection task, the binary classifier assesses the
utility of the input premise embedding vector and conjecture embed-
ding vector by assigning scores. The graph embedding vectors (ℎ𝑝, ℎ𝑐)
representing candidate premises and conjectures are fed into the clas-
sification function 𝐹𝑐𝑙𝑎𝑠𝑠 to obtain scores indicating the usefulness of
candidate premises given a specific conjecture.
𝑧 = 𝐹𝑐𝑙𝑎𝑠𝑠([ℎ𝑝;ℎ𝑐]),

where 𝑧 ∈ R2 is the score of how useful and useless the candidate
premise is for the conjecture.

X. He et al. Applied Soft Computing 180 (2025) 113318
The binary classifier categorizes the candidate premises by stan-
dardizing the scores of their usefulness and uselessness for the conjec-
ture. �̂� represents the probability of a normalized premise being useful
or useless.
�̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧), 𝑦𝑖 =

𝑒𝑥𝑝(𝑧𝑖)
∑

𝑗 𝑒𝑥𝑝(𝑧𝑗)
,

where 𝑧𝑖 is the 𝑖th element in 𝑧.

4.8. Loss function

The premise selection problem is a classification problem, so the
cross entropy loss of the predicted value �̂� and the true value 𝑦 is
selected as its loss function 𝐿(�̂�, 𝑦):
𝐿(�̂�, 𝑦) =

∑

𝑖
(𝑦𝑖𝑙𝑛(𝑦𝑖) + (1 − 𝑦𝑖)𝑙𝑛(1 − 𝑦𝑖)),

where 𝑦𝑖, �̂� are the values of the true value and the predicted value in
the 𝑖th class, 𝑦 is a one-hot encoding of the true value.

5. Experiments

The premise selection model in our study is implemented using
the PyTorch framework. All experiments are conducted on an AMD
4029GP-TRT server with a Nvidia RTX 2080Ti GPU, 256G memory,
and Center OS 7.6 Linux version. We provide detailed descriptions of
the dataset, evaluation metrics, network configuration, and parameter
settings used in our model. Furthermore, we evaluate the effectiveness
of the premise selection model based on ASTGNNS through rigor-
ous comparisons involving model performance, graph representation
analysis, and ablation experiments.

5.1. Dataset

Based on the MPTP2078 question bank [44], we established the
original dataset and the Conjunctive Normal Form (CNF) dataset. In
propositional logic, the CNF of first-order formulas is analogous to that
of propositional logic. Firstly, logical formulas are transformed into
first-order formulas without existential quantifiers and implication sym-
bols by eliminating implication connectives, shifting negation symbols,
variable normalization, and Skolem normalization. Then, propositional
logic’s associative and distributive laws are employed to generate the fi-
nal conjunctive normal form of first-order logic. The CNF dataset in this
paper comprises the first-order logical formulae from the MPTP2078
question bank transformed by these operations.

We evaluate the experimental results of an ASTGNNS-based premise
selection model on these two datasets, which consist of 1469 conjectures
and 24087 premises used to prove them. These premises are paired with
conjectures (each pair contains a ‘‘+’’ or ‘‘−’’ sign indicating whether
they are useful or not). We construct triples (premise, conjecture, label)
for each premise-conjecture pair, forming a training/validation/testing
dataset. A premise selection model is trained on this dataset, where
each premise is a candidate for a given conjecture. The label represents
binary classification with values 0 or 1 (a label of 1 indicates usefulness
while 0 denotes non-usefulness).

The MPTP2078 formula (premise and conjecture) is presented lin-
early, corresponding to the same order in the Mizar. Each conjecture is
associated with an extensive set of premises, but only a small fraction
of these premises are utilized to prove the conjecture. In this study,
irrelevant premises are negatively sampled, while both premises and
conjectures are represented using artificial features [5] based on sym-
bols and sub-terms of first-order logical formulas. To roughly rank the
premises within a given conjecture, we employ the K-Nearest Neighbor
(KNN) algorithm [45]. Both datasets used in this research consist of
equal samples, totaling 69,054 instances. For training, validation, and
testing purposes, 80%, 10%, and 10%, respectively, were allocated
(40,996 samples for training, 13,990 samples for validation, and 14,068
samples for testing). Refer to Table 2 for detailed information regarding
these two datasets.
10
Table 2
Distribution of MPTP and CNF balanced datasets.
 MPTP (CNF) Training Valid Test
 Positive 27 663 3417 3432
 Negative 27 556 3485 3471
 Total 55 219 6902 6903

Table 3
Parameter settings.
 Model parameter Settings
 Node vector dimension 𝑑ℎ𝑣

128, 256, 512
 Iterations 𝐾 1, 2
 Training rounds 100, 150, 200
 Learning rate 0.01
 Learning rate decay coefficient 0.1
 Batch size 16, 32, 64

5.2. Experiment settings

The parameters of our premise selection model based on ASTGNNS
are configured as follows: (1) The model is trained using the default
settings of the adaptive moment estimation Adam optimizer [41]; (2)
The batch size is set to 32; (3) A regularization parameter of 0.0001
is employed; (4) An initial learning rate of 0.01 is utilized; (5) The
ReduceLROnPlateau strategy from the PyTorch library is adopted for
automatic learning rate adjustment. Table 3 presents a comprehensive
overview of all premise selection model parameter configurations based
on ASTGNNS.

Our proposed ASTGNNS iterates 12 times on different node vector
dimensions (128, 256, 512). The model is then tested on the validation
set, and the corresponding results are saved after each training round.
After 100 rounds, the model selects the round with the lowest loss
on the validation set for testing on the test set and outputs the final
classification accuracy.

Four indices, including Accuracy, Recall, Precision, and 𝐹1, were
selected to assess the classification performance of the premise selection
model based on ASTGNNS.
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
, 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, 𝐹1 =
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

,

where 𝑇𝑃 is the number of positive samples with correct classification
in the classification model, 𝑇𝑁 is the number of negative samples with
correct classification in the classification model, 𝐹𝑁 is the number of
negative samples with classification errors in the classification model,
𝐹𝑃 is the number of positive samples with classification errors in the
classification model, and 𝑇 𝑜𝑡𝑎𝑙 is the number of all samples in the data
set. The higher the Accuracy, Recall, Precision, and 𝐹1 indexes, the
better the model classification effect.

A higher accuracy, recall, precision, and 𝐹1 score indicate a better
classification effect for the model. In ASTGNNS, with a node vector
dimension of 256 and one iteration, optimal results are achieved on the
MPTP test set. Figs. 7 and 8 illustrate the prediction accuracy and loss
of the AS-TWGNN model for one and two iterations on both training
and validation sets when using node vector dimensions of 128, 256, or
512.

We employed several critical hyperparameters in our experiments,
such as node vector dimensions, number of iterations, training epochs,
learning rate, and batch size. These hyperparameters are crucial in
determining the model’s complexity and generalization ability. We
implemented the ReduceLROnPlateau learning rate decay strategy to
reduce overfitting during training, automatically lowering the learn-
ing rate when the validation performance stagnates, thus promoting
smoother convergence. Additionally, we introduced a regularization
term with a coefficient of 0.0001 to further mitigate the risk of over-
fitting. The integration of these strategies ensures strong generalization
across various datasets while effectively preventing overfitting.

X. He et al. Applied Soft Computing 180 (2025) 113318
Fig. 7. Configuration of ASTGNNS in the premise selection.

5.3. Network configurations

A 𝑑𝑣-dimensional space represents the initial one-hot vector for
each node shown in Fig. 7. 𝐹𝑉 denotes an embedding network that
transforms the initial one-hot vector into a node’s initial state vector,
which resides in a 𝑑ℎ𝑣 -dimensional space. The configurations of 𝐹𝑢,
𝐹𝑚, and 𝐹𝑙 are identical, consisting of Fully-Connected Layers (FC)
with an input dimension of 3𝑑ℎ𝑣 and an output dimension of 𝑑ℎ𝑣 .
Similarly, the configuration of 𝐹𝑠𝑢𝑚 resembles that of 𝐹𝑢 but only
changes the input dimension to be equal to 𝑑ℎ𝑣 . On the other hand,
𝐹𝑐𝑙𝑎𝑠𝑠 comprises two fully connected layers: the first layer is an FC layer
with a dimensionality of 𝑑ℎ𝑣 followed by Batch Normalization (BN). In
contrast, the second layer is an FC layer with a dimensionality of 2
achieved through the softmax function. It should be noted that here,
we set 𝑑𝑣 = 793, representing 793 node tokens uniformly denoted as
‘‘Var’’.

5.4. Experimental results and analysis

We compare the premise selection model based on ASTGNNS with
mainstream GNNs and other baseline methods to show its advantages
on the premise selection task, i.e., Graph convolutional neural net-
work (GCN) [46], Graph attention neural network (GAT) [47], Graph
sampling aggregation neural network (GraphSAGE) [48], Simplified
graph convolutional neural network (SGC) [49] and Chebyshev spectral
convolutional neural network (Cheb) [50]. Other baseline methods:
Graph isomorphism network (GIN) [51], Graph Transformer (GT) [52],
PC-GCN [26], TW-GNN [53], etc. To our knowledge, TW-GNN is the
most performant GNN model for premise selection.

To ensure the validity of the comparative results, we re-run the GNN
method within a unified premise selection model framework. During
the experiment, only the components related to the GNN and the logical
formula’s graph representation are modified. We evaluate the premise
selection model based on ASTGNNS on the MPTP and CNF datasets. We
can conclude the following conclusions from Table 4.

• The premise selection methods based on GNN models can achieve
high classification accuracy, while the mainstream GNN models
generally exhibit suboptimal performance. For instance, GCN,
GAT, and SGC models achieve Accuracy indicators of 86.25%,
85.38%, and 85.67%, respectively, on the original dataset. This
indicates that mainstream GNNs primarily capture the topological
structure of logical formula graphs but fail to capture deeper
information within the logical formulas.

• Among other baseline methods, hand-designed feature-based
GNNs PC-GCN and TW-GNN also suffer from similar limitations
as mainstream GNNs do. For example, under the CNF dataset,
PC-GCN and TW-GNN models attain an 𝐹1 index of 83.98%
and 83.72%, respectively, due to their inability to effectively
aggregate information from distant or neighboring nodes.
11
• Our ASTGNNS-based premise selection model consistently outper-
forms other state-of-the-art GNN-based premise selection models
regarding classification accuracy across various datasets. Specif-
ically, compared to mainstream GNNs under the MPTP dataset,
ASTGNNS achieves at least a 2% improvement; furthermore, it
surpasses other baseline methods by 0.5% under the CNF dataset
with a remarkable enhancement of approximately 3% compared
to mainstream GNNs.

The attention mechanism’s use in adjusting the GNN demonstrates
its enhanced capacity to represent syntactic and semantic information
about first-order logical formulas. Moreover, the graph representation
of these formulas influences the model’s classification performance.
In this paper, our proposed model captures information from distant
nodes and addresses concerns related to overfitting by simplifying node
embedding information, thereby improving its overall fitting capability.

We explore the impact of different graph representations of first-
order logical formulas on premise selection models. From Table 4, we
also can conclude:

• Simplified DAGs can yield improved results in most premise
selection tasks based on GNNs. For instance, when applied to the
CNF dataset, GraphSAGE, SGC, and ASTGNNS exhibit an increase
of 0.57%, 0.85%, and 0.26% in accuracy indicators, respectively,
by utilizing simplified DAGs. This demonstrates that simplifying
the graph representation reduces graph size without significant
loss of information from DAGs, thereby enabling its utilization in
premise selection models based on GNNs.

• The performance enhancement observed in certain GNN models
using simplified DAGs may be attributed to their partial simpli-
fication, limiting their ability to learn information from logical
formula graphs effectively.

• Existing representations of first-order logical formulas fail to fully
capture both syntactic and potential semantic information inher-
ent within them. Although DAGs offer a complete representation
of logical formulas, unimportant components within these for-
mulas can introduce errors into the final output formula graph
vector. This could explain why simplifying the logical formula
graph improves classification accuracy in premise selection tasks
from an application view.

5.5. Presentation of training process

The training results of the ASTGNNS model with different parameter
configurations are presented. Only the accuracy and loss are selected
to demonstrate the model’s performance under various parameters. As
shown in Figs. 8 and 9, increasing the model dimension and iteration
number enhances its fitting ability. However, excessively high values
for these parameters may result in overfitting. It is observed that models
with higher dimensions can be fitted more quickly during training,
but their training speed significantly decreases as both dimensionality
and iterations increase. ASTGNNS consistently achieves superior clas-
sification accuracy in premise selection tasks regardless of parameter
settings.

5.6. Ablation experiment

The premise selection model based on ASTWGNNS comprises three
key modules: first-order logic formula graph representation, graph
neural network node information aggregation, and graph pooling. In
this section, we designed eight ASTWGNNS-based premise selection
model variants to evaluate the impact of different components. Specif-
ically, ASTWGNNS(-t) removes the item walk feature, ASTWGNNS(-a)
eliminates the attention mechanism, ASTWGNNS(-r) excludes the graph
representation modification, ASTWGNNS(-p) deletes the attention pool-
ing, ASTWGNN(-a-p) removes both the attention mechanism and at-
tention pooling, ASTWGNN(-p-r) eliminates both the attention pool-
ing and graph representation simplification, ASTWGNNS(-a-r) deletes

X. He et al. Applied Soft Computing 180 (2025) 113318
Table 4
Experimental results of model comparison for MPTP and CNF dataset.
 Model MPTP CNF
 Acc Recall Pre 𝐹1 Acc Recall Pre 𝐹1
 DAGs

 GCN [46] 86.25% 85.47% 86.69% 86.08% 80.51% 78.73% 81.44% 80.07%
 GAT [47] 85.38% 85.56% 85.11% 85.34% 81.80% 81.25% 81.99% 81.62%
 GraphSAGE [48] 86.15% 85.01% 86.86% 85.92% 82.96% 81.62% 83.69% 82.64%
 SGC [49] 85.67% 85.12% 85.92% 85.52% 80.08% 79.86% 80.05% 79.95%
 Cheb [50] 86.14% 85.21% 86.68% 85.94% 81.32% 79.08% 82.60% 80.80%
 GIN [51] 85.93% 85.39% 86.19% 85.79% 82.09% 80.36% 83.08% 81.70%
 GT [52] 86.16% 85.89% 86.24% 86.06% 82.33% 80.98% 83.06% 82.01%
 PC-GCN [26] 87.77% 88.64% 87.01% 87.82% 84.17% 83.40% 84.56% 83.98%
 TW-GNN [53] 88.12% 86.95% 88.15% 88.04% 84.24% 81.42% 86.15% 83.72%
 ASTGNNS 88.24% 87.76% 88.48% 88.12% 84.35% 82.50% 85.48% 83.97%
 Simplified DAGs
 GCN 86.57% 86.26% 86.66% 86.46% 80.97% 78.91% 82.12% 80.48%
 GAT 86.04% 85.65% 86.18% 85.91% 81.80% 80.52% 82.47% 81.48%
 GraphSAGE 86.09% 85.68% 86.26% 85.97% 83.53% 83.02% 83.70% 83.36%
 SGC 86.11% 85.56% 86.37% 85.96% 80.93% 79.71% 81.54% 80.62%
 Cheb 85.90% 84.63% 86.70% 85.65% 80.03% 78.85% 80.57% 79.70%
 GIN 86.74% 86.53% 86.78% 86.65% 83.04% 82.41% 83.31% 82.86%
 GT 86.74% 86.21% 87.02% 86.61% 82.86% 82.29% 83.09% 82.69%
 PC-GCN 88.19% 87.38% 88.70% 88.04% 84.40% 84.73% 84.02% 84.37%
 TW-GNN 88.29% 87.59% 88.43% 88.05% 84.64% 84.42% 84.65% 84.54%
 ASTGNNS 88.77% 88.67% 88.74% 88.70% 85.17% 84.14% 85.75% 84.94%
Fig. 8. Model prediction accuracy and prediction loss for ASTWGNN with 1 iterations.
Table 5
Ablation experiments on MPTP and CNF datasets.
 Model MPTP CNF
 Acc 𝐹1 Acc 𝐹1
 ASTGNNS (-r) 88.58% 88.59% 84.35% 83.97%
 ASTGNNS (-a) 88.34% 88.13% 84.88% 84.89%
 ASTGNNS (-a-r) 88.47% 88.40% 84.75% 84.78%
 ASTGNNS (-p) 88.28% 88.18% 84.84% 84.59%
 ASTGNNS (-p-r) 87.70% 87.47% 84.85% 84.76%
 ASTGNNS (-a-p) 88.29% 88.05% 84.64% 84.54%
 ASTGNNS (-a-p-r) 88.12% 88.04% 84.24% 83.72%
 ASTGNNS (-t) 86.04% 85.91% 81.80% 81.62%
 ASTGNNS 88.77% 88.70% 85.17% 84.94%
12
both the attention mechanism and simplified graph representation, and
ASTWGNNS(-a-p-r) removes the graph representation simplification,
attention mechanism, and attention pooling. The ablation study results
are presented in Table 5.

(1) According to Table 5, the classification performance of
AS-TWGNNS(-t) is suboptimal. This suggests that item walk fea-
tures play a critical role in the premise selection task, and in-
corporating an item walk graph neural network can significantly
enhance model performance.

(2) The performance of ASTWGNNS(-a-p-r) ranks below that of
ASTWGNNS(-r), ASTWGNNS(-a), and ASTWGNNS(-p). This indi-
cates that graph simplification representation, attention mecha-
nism, and attention pooling all substantially impact the classifi-
cation ability of the premise selection model. Furthermore, on

X. He et al. Applied Soft Computing 180 (2025) 113318
Fig. 9. Model prediction accuracy and prediction loss for ASTWGNN with 2 iterations.
Fig. 10. Confusion matrix of the ASTGNNS.
the MPTP dataset, the classification accuracy of ASTWGNNS(-
p-r) is lower than that of ASTWGNNS(-a-p-r), suggesting that
modifying a single module does not necessarily improve the
model’s classification performance.

(3) The ASTWGNNS model consistently outperforms other variants
in the premise selection task. This demonstrates that combining
graph simplification representation, attention mechanism, and
attention pooling yields superior classification results, and remov-
ing any component compromises the overall performance.

5.7. Experiment discussion

Fig. 10 shows the confusion matrices of the ASTGNNS model when
it was experimented on the datasets MPTP and CNF using two graph
representations: DAGs and Simplified DAGs. The 𝑇𝑃 and 𝑇𝑁 val-
ues of the confusion matrices of the ASTGNNS model are very high
under different datasets and different graph representation methods,
demonstrating that the model has excellent performance.

In Fig. 11, we visually compared the performance of various graph
neural network models using a CD diagram, which illustrates the accu-
racy of different models on the FOF (left) and CNF (right) datasets in
a tree-like structure, providing an intuitive hierarchical comparison of
their relative strengths and weaknesses. Each node represents a model,
and it is evident that the ASTGNNS model ranks first on both datasets,
demonstrating a significant performance gap compared to most other
models. Fig. 12 compares accuracy rates between ASTGNNS and other
models on different datasets. It is visible from the graphs that ASTGNNS
demonstrates outstanding performance on both datasets.
13
Fig. 13 shows the impact of different graph representation meth-
ods on the performance of the premise selection model, that is, the
performance of different graph representations under multiple graph
neural network models. It can be seen from the figure that the accuracy
of most models increases after adopting Simplified DAGs, indicating
that this graph representation method can play a role in the premise
selection task. However, in a few models, the Simplified DAGs method
reduces the accuracy, which may be related to the structural design of
the model itself.

6. Conclusion

We propose simplified DAGs by eliminating duplicate quantifiers to
capture first-order logical formulas’ semantic and syntactic properties.
Additionally, we define graph similarity based on the common path
kernel function to demonstrate the rationality of these simplified DAGs.
Leveraging these simplified DAGs and term-walk features, we intro-
duce a novel Term-Walk GNN with attention mechanism and attention
pooling (ASTGNNS). This model utilizes weighted term-walk feature
information to generate node embedding vectors that preserve more
semantic and syntactic properties of first-order logical formulas. Subse-
quently, an attention pooling technique is employed to obtain the final
graph embedding vector. Experimental results on two datasets validate
our proposed model’s superior accuracy in premise selection tasks.
However, our study has several caveats. First, the experiments should
be extended to more scenarios besides premise selection. Second, more
simplified graph representations should be proposed, such as deleting
repeated logical symbols, and merging the same type of symbols. In
future work, we will propose additional graph representations that

X. He et al. Applied Soft Computing 180 (2025) 113318
Fig. 11. A comparison of the performance of different graph neural network models.
Fig. 12. Model comparison experiment results for DAGs and simplified DAGs.
Fig. 13. A comparison of the performance of different graph neural network models.

retain information from first-order logical formulas while exploring
diverse evaluation methods for different graph representations.

CRediT authorship contribution statement

Xingxing He: Writing – original draft, Supervision, Methodology,
Funding acquisition, Conceptualization. Zhongxu Zhao: Writing – re-
view & editing, Validation, Software, Methodology, Formal analysis.
Yongqi Lan: Writing – original draft, Validation, Software, Concep-
tualization. Yingfang Li: Writing – review & editing, Visualization,
Formal analysis. Li Zou: Writing – review & editing, Visualization,
Formal analysis. Jun Liu: Writing – review & editing, Visualization,
Formal analysis. Luis Martínez: Writing – review & editing. Tianrui
Li: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research is supported by the National Natural Science Foun-
dation of China (Grant No. 62176142), the Grant from MOE (Min-
istry of Education in China) Project of Humanities and Social Sci-
ences (Grant No. 20XJCZH016), the Science and Technology Sup-
port Project of Sichuan province (Grant No. 2024YFHZ0316) and the
Fundamental Research Funds for the Central Universities (Grant No.
2682024ZTPY041).
14
Data availability

I have share the link to the data/code related.

References

[1] T. Le Sergent, SCADE: A comprehensive framework for critical system and
software engineering, in: SDL 2011: Integrating System and Software Modeling,
2012, pp. 2–3.

[2] S. Eggersgluss, R. Drechsler, Efficient data structures and methodologies for SAT-
based ATPG providing high fault coverage in industrial application, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 30 (9) (2011) 1411–1415.

[3] A. Darwiche, Compiling knowledge into decomposable negation normal form, in:
IJCAI, vol. 99, 1999, pp. 284–289.

[4] D. Jackson, I. Schechter, H. Shlyahter, Alcoa: the alloy constraint analyzer, in:
Proceedings of the 22nd International Conference on Software Engineering, 2000,
pp. 730–733.

[5] C. Kaliszyk, J. Urban, Mizar 40 for mizar 40, J. Automat. Reason. 55 (3) (2015)
245–256.

[6] I. Abdelaziz, M. Crouse, B. Makni, V. Austel, C. Cornelio, S. Ikbal, P. Kapanipathi,
N. Makondo, K. Srinivas, M. Witbrock, A. Fokoue, Learning to guide a saturation-
based theorem prover, IEEE Trans. Pattern Anal. Mach. Intell. 45 (1) (2023)
738–751.

[7] J. Meng, L.C. Paulson, Lightweight relevance filtering for machine-generated
resolution problems, J. Appl. Log. 7 (1) (2009) 41–57.

[8] J. Zhang, J. Tian, P. Yan, S. Wu, H. Luo, S. Yin, Multi-hop graph pooling adver-
sarial network for cross-domain remaining useful life prediction: A distributed
federated learning perspective, Reliab. Eng. Syst. Saf. 244 (2024) 109950.

[9] J. Zhang, J. Tian, A.M. Alcaide, J.I. Leon, S. Vazquez, L.G. Franquelo, H. Luo,
S. Yin, Lifetime extension approach based on the Levenberg–Marquardt neural
network and power routing of DC–DC converters, IEEE Trans. Power Electron.
38 (8) (2023) 10280–10291.

[10] H. Wang, H. Luo, X. Qiao, M. Huo, X. Xu, Data-driven distributed robust
monitoring and control optimization for interconnected systems, IEEE Trans. Ind.
Inform. (2024).

[11] P. Yan, W. Gong, M. Li, J. Zhang, X. Li, Y. Jiang, H. Luo, H. Zhou, TDF-
net: Trusted dynamic feature fusion network for breast cancer diagnosis using
incomplete multimodal ultrasound, Inf. Fusion 112 (2024) 102592.

[12] G. Irving, C. Szegedy, A.A. Alemi, N. Een, F. Chollet, J. Urban, DeepMath - deep
sequence models for premise selection, in: Proceedings of the Conference and
Workshop on Neural Information Processing Systems, NeurIPS, vol. 29, 2016,
pp. 2235–2243.

[13] L. Sarah, I. Geoffrey, S. Christian, K. Cezary, Deep network guided proof
search, in: T. Eiter, D. Sands (Eds.), 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, LPAR-21, vol. 46, 2017, pp.
85–105.

[14] K. Chvalovsky, J. Jakubuv, M. Suda, J. Urban, ENIGMA-NG: efficient neural
and gradient-boosted inference guidance for E, in: Proceedings of the 27th
International Conference on Automated Deduction, CADE 27, 2019, pp. 197–215.

[15] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph
neural network model, IEEE Trans. Neural Netw. 20 (1) (2008) 61–80.

http://refhub.elsevier.com/S1568-4946(25)00629-5/sb1
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb1
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb1
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb1
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb1
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb2
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb2
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb2
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb2
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb2
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb3
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb3
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb3
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb4
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb4
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb4
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb4
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb4
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb5
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb5
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb5
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb6
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb6
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb6
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb6
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb6
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb6
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb6
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb7
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb7
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb7
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb8
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb8
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb8
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb8
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb8
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb9
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb9
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb9
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb9
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb9
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb9
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb9
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb10
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb10
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb10
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb10
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb10
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb11
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb11
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb11
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb11
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb11
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb12
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb12
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb12
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb12
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb12
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb12
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb12
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb13
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb13
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb13
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb13
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb13
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb13
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb13
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb14
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb14
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb14
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb14
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb14
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb15
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb15
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb15

X. He et al. Applied Soft Computing 180 (2025) 113318
[16] M. Shi, Y. Tang, X. Zhu, Y. Zhuang, M. Lin, J. Liu, Feature-attention graph
convolutional networks for noise resilient learning, IEEE Trans. Cybern. 52 (8)
(2022) 7719–7731.

[17] M. Wang, Y. Tang, J. Wang, J. Deng, Premise selection for theorem proving
by deep graph embedding, in: Proceedings of the Conference and Workshop on
Neural Information Processing Systems, NeurIPS, 2017, pp. 2786–2796.

[18] C. Gao, J. Zhu, F. Zhang, Z. Wang, X. Li, A novel representation learning for
dynamic graphs based on graph convolutional networks, IEEE Trans. Cybern. 53
(6) (2023) 3599–3612.

[19] M. Schlichtkrull, T.N. Kipf, P. Bloem, R. van den Berg, I. Titov, M. Welling, A.
Gangemi, R. Navigli, M.-E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai,
M. Alam, Modeling relational data with graph convolutional networks, in: The
15th International Conference on the Semantic Web, 2018, pp. 593–607.

[20] Q. Lin, J. Liu, L. Zhang, Y. Pan, X. Hu, F. Xu, H. Zeng, Contrastive graph
representations for logical formulas embedding, IEEE Trans. Knowl. Data Eng.
35 (4) (2023) 3563–3574.

[21] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected
convolutional networks, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, 2017, pp. 4700–4708.

[22] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond, MIT Press, 2002.

[23] C.H. Elzinga, H. Wang, Kernels for acyclic digraphs, Pattern Recognit. Lett. 33
(16) (2012) 2239–2244.

[24] M. Crouse, I. Abdelaziz, C. Cornelio, V. Thost, L. Wu, K. Forbus, A. Fokoue, Im-
proving graph neural network representations of logical formulae with subgraph
pooling, 2019, arXiv preprint arXiv:1911.06904.

[25] J. Jakubův, J. Urban, ENIGMA: efficient learning-based inference guiding ma-
chine, in: H. Geuvers, M. England, O. Hasan, F. Rabe, O. Teschke (Eds.),
Intelligent Computer Mathematics: 10th International Conference, CICM 2017,
2017, pp. 292–302.

[26] A. Paliwal, S. Loos, M. Rabe, K. Bansal, C. Szegedy, Graph representations for
higher-order logic and theorem proving, in: Proceedings of the AAAI Conference
on Artificial Intelligence, 2020, pp. 2967–2974.

[27] Y. Xie, Y. Liang, M. Gong, A.K. Qin, Y.-S. Ong, T. He, Semisupervised graph
neural networks for graph classification, IEEE Trans. Cybern. 53 (10) (2023)
6222–6235.

[28] A. Darwiche, P. Marquis, A knowledge compilation map, J. Artificial Intelligence
Res. 17 (2002) 229–264.

[29] M. Rawson, G. Reger, Directed graph networks for logical reasoning, in: Proceed-
ings of the 7th Workshop on Practical Aspects of Automated Reasoning, 2020,
pp. 109–119.

[30] E. Aygün, A. Anand, L. Orseau, X. Glorot, S.M. Mcaleer, V. Firoiu, L.M. Zhang, D.
Precup, S. Mourad, Proving theorems using incremental learning and hindsight
experience replay, in: K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu,
S. Sabato (Eds.), Proceedings of the 39th International Conference on Machine
Learning, in: Proceedings of Machine Learning Research, vol. 162, PMLR, 2022,
pp. 1198–1210.

[31] A. Fokoue, I. Abdelaziz, M. Crouse, S. Ikbal, A. Kishimoto, G. Lima, N. Makondo,
R. Marinescu, An ensemble approach for automated theorem proving based on
efficient name invariant graph neural representations, in: Proceedings of the
Thirty-Second International Joint Conference on Artificial Intelligence, 2023, pp.
3221–3229.

[32] M. Mikuła, S. Antoniak, S. Tworkowski, B. Piotrowski, A. Jiang, J.P. Zhou, C.
Szegedy, Ł. Kuciński, P. Miłoś, Y. Wu, Magnushammer: A transformer-based
approach to premise selection, in: The 3rd Workshop on Mathematical Reasoning
and AI at NeurIPS’23, 2023.
15
[33] A. Bauer, M. Petković, L. Todorovski, MLFMF: data sets for machine learning for
mathematical formalization, Adv. Neural Inf. Process. Syst. 36 (2024).

[34] S. Lamont, M. Norrish, A. Dezfouli, C. Walder, P. Montague, BAIT: Benchmarking
(embedding) architectures for interactive theorem-proving, in: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 38, 2024, pp. 10607–10615, 9.

[35] K. Yang, A. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R.J. Prenger,
A. Anandkumar, Leandojo: Theorem proving with retrieval-augmented language
models, Adv. Neural Inf. Process. Syst. 36 (2024).

[36] Z. Li, J. Sun, L. Murphy, Q. Su, Z. Li, X. Zhang, K. Yang, X. Si, A survey on
deep learning for theorem proving, 2024, arXiv preprint arXiv:2404.09939.

[37] Q. Liu, Y. Xu, X. He, Attention recurrent cross-graph neural network for selecting
premises, Int. J. Mach. Learn. Cybern. 13 (5) (2022) 1301–1315.

[38] B. Bollobás, Modern Graph Theory, vol. 184, Springer Science & Business Media,
1998.

[39] R.B. Bapat, Graphs and Matrices, vol. 27, Springer, 2010.
[40] W. Imrich, S. Klavzar, D.F. Rall, Topics in Graph Theory: Graphs and Their

Cartesian Product, CRC Press, 2008.
[41] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv

preprint arXiv:1412.6980.
[42] J. Lee, I. Lee, J. Kang, Self-attention graph pooling, in: Proceedings of the 36th

International Conference on Machine Learning, ICML, 2019, pp. 3734–3743.
[43] M. Lin, Q. Chen, S. Yan, Network in network, in: International Conference on

Learning Representations, ICLR, 2014, pp. 1–10.
[44] A. Naumowicz, An experiment on mizar adjectives with extra visible arguments,

in: 2020 22nd International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, SYNASC, 2020, pp. 97–100.

[45] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inform.
Theory 13 (1) (1967) 21–27.

[46] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, 2016, arXiv preprint arXiv:1609.02907.

[47] J. Gao, J. Gao, X. Ying, M. Lu, J. Wang, Higher-order interaction goes neural:
A substructure assembling graph attention network for graph classification, IEEE
Trans. Knowl. Data Eng. 35 (2) (2023) 1594–1608.

[48] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large
graphs, in: Proceedings of the Conference and Workshop on Neural Information
Processing Systems, NeurIPS, vol. 30, 2017.

[49] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, K. Weinberger, Simplifying graph
convolutional networks, in: Proceedings of the 34th International Conference on
Machine Learning, ICML, 2019, pp. 6861–6871.

[50] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on
graphs with fast localized spectral filtering, in: Proceedings of the Conference and
Workshop on Neural Information Processing Systems, NeurIPS, vol. 29, 2016, pp.
3844–3852.

[51] C. Wu, Y. Lou, J. Li, L. Wang, S. Xie, G. Chen, A multitask network robustness
analysis system based on the graph isomorphism network, IEEE Trans. Cybern.
(2024).

[52] A. Gui, J. Ye, H. Xiao, G-adapter: Towards structure-aware parameter-efficient
transfer learning for graph transformer networks, in: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 38, 2024, pp. 12226–12234, 11.

[53] Q. Liu, Y. Xu, Axiom selection over large theory based on new first-order formula
metrics, Appl. Intell. 52 (2) (2022) 1793–1807.

http://refhub.elsevier.com/S1568-4946(25)00629-5/sb16
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb16
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb16
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb16
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb16
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb17
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb17
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb17
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb17
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb17
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb18
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb18
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb18
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb18
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb18
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb19
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb19
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb19
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb19
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb19
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb19
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb19
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb20
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb20
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb20
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb20
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb20
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb21
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb21
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb21
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb21
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb21
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb22
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb22
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb22
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb23
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb23
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb23
http://arxiv.org/abs/1911.06904
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb25
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb25
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb25
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb25
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb25
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb25
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb25
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb26
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb26
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb26
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb26
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb26
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb27
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb27
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb27
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb27
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb27
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb28
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb28
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb28
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb29
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb29
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb29
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb29
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb29
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb30
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb30
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb30
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb30
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb30
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb30
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb30
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb30
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb30
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb30
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb30
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb31
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb31
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb31
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb31
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb31
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb31
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb31
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb31
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb31
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb32
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb32
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb32
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb32
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb32
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb32
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb32
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb33
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb33
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb33
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb34
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb34
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb34
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb34
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb34
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb35
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb35
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb35
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb35
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb35
http://arxiv.org/abs/2404.09939
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb37
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb37
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb37
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb38
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb38
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb38
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb39
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb40
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb40
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb40
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb42
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb42
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb42
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb43
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb43
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb43
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb44
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb44
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb44
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb44
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb44
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb45
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb45
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb45
http://arxiv.org/abs/1609.02907
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb47
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb47
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb47
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb47
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb47
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb48
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb48
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb48
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb48
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb48
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb49
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb49
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb49
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb49
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb49
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb50
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb50
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb50
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb50
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb50
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb50
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb50
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb51
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb51
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb51
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb51
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb51
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb52
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb52
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb52
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb52
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb52
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb53
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb53
http://refhub.elsevier.com/S1568-4946(25)00629-5/sb53

	Integrating a simplified formula graph representation into a graph neural network model for premise selection
	Introduction
	Related work
	Simplified logical formula graph representation
	Simplified first-order logical formula graph representation based on removing repeated quantifiers
	Graph similarity based on common path kernel function
	Weighted graph similarity of logical formulas
	Graph similarity between simplified DAGs and DAGs
	Interpretation of simplified logical formula graph representation

	Model architecture
	Term-walk graph neural network with attention mechanism and attention pooling
	Term-walk feature
	Graph node vector initialization
	Graph node information aggregation
	Graph node information propagation
	Graph aggregation
	Binary classifier
	Loss function

	Experiments
	Dataset
	Experiment Settings
	Network configurations
	Experimental results and analysis
	Presentation of training process
	Ablation experiment
	Experiment discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

