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Popular decision making methods by using fuzzy soft sets belong to two main

categories, namely, score-based methods and fuzzy choice values based meth-

ods. It is necessary an application background to choose which one is better,
since each of them makes sense in specific decision making situations and both

of them could be improved. Therefore, in this contribution we focus on im-

proving the former one. To improve the score based method, it is provided a
novel adjustable algorithm by using fuzzy soft set that introduces thresholds

when comparing two membership function values and afterwards coming up
with new concepts of scores.
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1. Introduction

Many real word problems take place under uncertainties. Fuzzy set theory,1

rough set theory,2 vague set theory3 and many others are some well known

mathematical tools that could be used to handle these uncertainties. Lack-

ing of parameterized tools is a common limitation of all previous models.
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Molodstov4 put forward the notion of soft set theory, which considers alter-

natives from different parameters aspects which successfully overcomes such

a limitation. After the appearance of soft set theory, the researches concen-

trate on three main directions: 1) the operations and algebraic structure of

soft sets;5 2) the fusion of soft sets with other existing models for dealing

with uncertainty, various generalized soft set models have been proposed

by researchers;6 and 3) the applications of soft sets (and generalized soft

sets) in practice situations,7–10 especially in decision making (DM).11–14

Fuzzy soft sets were constructed from the combination of fuzzy sets

and soft sets. One of the most popular DM method by using fuzzy soft

sets was put forward by Roy and Maji15 and built upon the concept of

scores of alternatives, that is denoted by classical score based method. In

such a method, by computing row and column sums of a comparison table

the scores of alternatives could be obtained. In this contribution, a DM

method by using fuzzy soft sets on the basis of several new concepts of

scores for alternatives will be proposed. Since we follow Roy and Maji’s

idea15 of using scores to achieve the optimal choice, it could be viewed

as an improvement of classical score based method. Different comparison

thresholds in forms of values or fuzzy sets could be adopted during the

computation process of scores according to either the willing of decision

makers or demands of the circumstances, in this way the decision results

will be adjustable.

The remainder is organized as follows: Section 2 makes a brief review

on soft sets and fuzzy soft sets. Section 3 introduces some new concepts for

scores of alternatives based on fuzzy soft sets, and afterwards puts forward

a decision making algorithm. Conclusions are given in Section 4.

2. Preliminaries

This section reviews basic definitions of soft sets and fuzzy soft sets.

A soft set is defined as a mapping from a parameter set to the power

set of universe:

Definition 2.1.4 Let U be the universe set and P (U) be the power set of

U . Let E be the parameter set and A ⊆ E. A pair (F,A) is called a soft

set over U , where F is a mapping F : A −→ P (U).

For any e ∈ A, F (e) is e−approximate elements of the soft set (F,A),

then a soft set is a parameterized family of subsets of U .

A fuzzy set1 F in the universe U is defined as F = {(x, µF (x))/x ∈
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U, µF (x) ∈ [0, 1]}, where µF (x) indicates the membership degree of alter-

native x determined by a membership function F .

Fuzzy soft sets are fuzzy generalizations of soft sets:

Definition 2.2.16 Let U be the universe set and F (U) be all fuzzy sets on

U . A pair (F,A) is called a fuzzy soft set over U , where F is a mapping

F : A −→ F (U).

For any e ∈ A, F (e) is a fuzzy subset of U . A fuzzy soft set will

degenerate to a soft set when F (e) degenerates to a subset of U for all

e ∈ A. If F (e) is a crisp subset of U for any e ∈ A, then the fuzzy soft

set (F,A) degenerates to a crisp soft set. Denote the membership degree

of x ∈ U with respect to e ∈ A as µF (e)(x), then F (e) can be represented

by F (e) = {< x, µF (e)(x) > |x ∈ U}.

3. Improved Score Based Decision Making Method by

Using Fuzzy Soft Sets

Maji and Roy introduced the notion of scores for alternatives and a way to

compute the scores when solving DM problems by using fuzzy soft sets.15

However, the way for determining scores should not be unique, because

making use of different scores, different decisions may meet the demands of

different applications. In this section, a novel method for DM will be given

by introducing several novel concepts of scores for alternatives.

In the following, all concepts are constructed under the background of

DM. Let U = {x1, x2, . . . , xn} be a universe set that consists of n alterna-

tives, E be a parameter set, A ⊆ E and A = {e1, e2, . . . , em}.
First, a measure called “d-level score” is introduced:

Definition 3.1. Suppose that (F,A) is a fuzzy soft set over U . For a value

d ∈ [0, 1], d-level score of xi ∈ U with respect to el ∈ A is defined as

S(xi)(el)d = R(xi)(el)d − T (xi)(el)d, (1)

where R(xi)(el)d = |xj ∈ U : µF (el)(xi)− µF (el)(xj) ≥ d| and T (xi)(el)d =

|xj ∈ U : µF (el)(xj)− µF (el)(xi) ≥ d|.
Based on Eq. (1), the d-level score of xi, denoted by Sdi , is defined as

Sdi =
m∑
l=1

S(xi)(el)d. (2)

A tool called d-level score table could be constructed with rows labeled

by parameters in A and columns corresponds to alternatives in U . For each

entry position (i, j), there is a value S(xi)(el)d computed by Eq. (1).
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An example to illustrate d-level score table can be the following one:

Example 3.1. Let U = {x1, x2, . . . , x4}, E = {e1, e2, . . . , e6} and (F,E)

be a fuzzy soft set (see Table 1).

Table 1. Fuzzy soft set (F,E).

e1 e2 e3 e4 e5 e6
x1 0.6 0.8 0.1 0.4 0.2 0.9

x2 0.9 0.2 0.4 0.3 0.7 0.6
x3 0.6 0.7 0.4 0.8 0.1 0.2

x4 0.2 0.3 0.1 0.3 0.4 0.1

Suppose that d = 0.2, then 0.2-level score table of (F,E) could be

obtained (see Table 2).

Table 2. 0.2-level score table of (F,E).

e1 e2 e3 e4 e5 e6
x1 0 2 −2 −1 −2 3

x2 3 −2 2 −1 3 1
x3 0 2 2 3 −2 −2

x4 −3 −2 −2 −1 1 −2

In detail, S(x2)(e3)0.2 = R(x2)(e3)0.2 − T (x2)(e3)0.2 = 2 − 0 = 2, then

the value in entry position (2, 3) is 2. Values in other entries of Table 2 can

be computed in a similar way.

Actually, d ∈ [0, 1] is a comparison threshold used to compare two mem-

bership values for computing the d-level score. The methods for determin-

ing the threshold value (TV) d can be various, since it should be chosen

depending on the requirement of DM situation.

The importance degrees for various parameters may be also different in

decision makers’ consideration, therefore the comparison TVs could be dif-

ferent for different parameters, which could be done by applying a function

(a fuzzy set) instead of a value during the comparison process. Consider

the specific structure of a fuzzy soft set, if we choose a TV within interval

[0, 1] for each parameter in A, all thresholds with respect to all parameters

could form a fuzzy set.

In the following, we apply a fuzzy set θ as the threshold to introduce a

concept called level score corresponding to a fuzzy set:
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Definition 3.2. Let (F,A) be a fuzzy soft set over U and θ : A −→ [0, 1]

be a fuzzy set on A, called a comparison threshold fuzzy set (TFS). The

level score of xi ∈ U on el ∈ A corresponding to θ is denoted by S(xi)(el)θ
and defined as

S(xi)(el)θ = r(xi)(el)θ − t(xi)(el)θ (3)

where r(xi)(el)θ = |xj ∈ U : µF (el)(xi) − µF (el)(xj) ≥ θ(el)| and

t(xi)(el)θ = |xj ∈ U : µF (el)(xj) − µF (el)(xi) ≥ θ(el)|. The level score

of alternative xi corresponding to θ is defined as

Sθi =
m∑
l=1

S(xi)(el)θ. (4)

A tool called level score table corresponding to fuzzy set θ could be con-

structed with rows labeled by parameters in A and columns corresponding

to alternatives in U . For each entry position (i, j), there is an input a value

S(xi)(el)θ computed by Eq. (3). Obviously, the level score of alternative

xi corresponding to θ could be obtained by computing the row sums of the

corresponding level score table.

For the comparison TFS θ, if θ(el) = t (t ∈ [0, 1] is a constant) for all

el ∈ A, then the level score corresponding to θ degenerates to a d-level score.

In other words, level score table corresponding to a fuzzy set degenerates

to a d-level score table.

Based on (F,A), several commonly used TFSs are defined: (1) Mid TFS

θmidF : θmidF (el)= 1
|U | (maxxi∈UµF (el)(xi)−minxi∈UµF (el)(xi)); (2) Min TFS

θminF : θminF (el)=min{xi,xj∈U}|µF (el)(xi)− µF (el)(xj)|; (3) Max TFS θmaxF :

θmaxF (el)=max{xi,xj∈U}(µF (el)(xi)− µF (el)(xj)) for el ∈ A.

Level scores based DM method is carried out according to the below

algorithm:

Algorithm 3.1.

Step 1. Collect assessments on alternatives with respect to parameters and

present the assessments as a fuzzy soft set (F,A).

Step 2. Select a comparison TV d ∈ [0, 1] (or chose a comparison TFS θ)

for (F,A).

Step 3. Construct the d-level score table (or level score table corresponding

to fuzzy set θ) of (F,A).

Step 4. For each alternative xi, calculate the d-level score of xi, i.e. S
d
i

(or level score corresponding to θ, i.e. Sθi ).
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Step 5. Choose xj as the optimal choice by Sdj = maxiS
d
i and denote

the decision result by D((F,A), t) (or select xj as the optimal choice if

Sθj = maxiS
θ
i and denote the decision result by D((F,A), θ)).

The optimal choice can be one or several alternatives. If there are too

many selected alternatives as the decision result in step 5, decision makers

could go back to step 2 to change the comparison threshold in order to limit

the number of optimal choices. The application of TVs in DM benefits from

idea of Feng et al.17

Example 3.2. In a DM problem, suppose that the assessments provided by

decision makers form a fuzzy soft set (F,E) with its tabular representation

(Table 1) in Example 3.1. If the problem is handled by using Algorithm

3.1, and the comparison TV is chosen as d = 0.2. From the 0.2-level score

table of (F,E) (Table 2), the 0.2-level scores of alternatives are S0.2
1 = 0,

S0.2
2 = 6, S0.2

3 = 3, and S0.2
4 = −9. Then, the optimal choice is x2.

Theorem 3.1. If the TV d = 0, then the d-level score of each alternative

computed by Eq. (1) is the same as its score by using classical score based

method.

By Theorem 3.1, it is shown that the decision result obtained from

Algorithm 3.1 will be the same as the result obtained by using classical

score based method when the TV degenerates to zero. However, compared

with classical score based method, the introduction of TVs could not only

reflect the quantity, but also the quality to which degree alternatives satisfy

parameters when two membership function values need to be compared,

which makes the decision result adjustable and increases the flexibility of

the classical method.

Theorem 3.2. Suppose that a DM problem could be handled by using a

fuzzy soft set (F,A). Let D((F,A), θ) be the decision result obtained from

Algorithm 3.1, where θ is a comparison TFS. If θ(el) > θmaxF (el) for all

el ∈ A, then D((F,A), θ) = U .

4. Conclusion

Explorations on DM methods by using fuzzy soft sets contribute to the

development of soft set theory. A novel adjustable method has been intro-

duced in this contribution. The proposed algorithm has the potential to be

extended to deal with uncertain situations in which generalization models

of fuzzy soft sets are applied.
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